

Studies on Logic Program1ning Language
for

Constraint-based Natural Language Analysis

by

Hiroshi Tsuda

A Thesis

Submitted to

The Graduate School of
The University of Tokyo

in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Science

in Information Science

1997

Acknowledgments

My special thanks are due to ProfC'ssors Masami 1-lagiya, .Jun-ichi Tsujii , Toshihisa
Takagi, h:azumasa Yokota, and Takao Gunji for rev iewi ng this thesis and making a number
of helpful suggest ions.

The research on cu-Prolog owes much to the thoughtful and helpful commC'nts of l<oi t i
llas ida and 1-lidetosi Sirai about natura l language process ing and logic programming. I
gratefully acknowledge helpful discussions about JPSG with members of the JPSG work
ing group especially Takao Gunji, Yasunari Harada.]van Sag, Peter Sells, and Yutaka
Tomioka. I wish to thank Hideki Yasukawa, Satoshi Tojo , Mark John son, Andre Wlo
darczyk, and Kuniaki Mukai for enumerable discuss ions on natural language processing.
I would like to thank Akira Aiba for helpful suggest ions about constraint logic program
ming.

For t he research on Quixote, discussions with Kazumasa Yokota about 0000 and
knowledge representation languages were always helpful. I would like to thank Ryo Oj ima,
Yutaka Ni ibe, Chie Takahashi , Toshi hiro Nish ioka and other members of the Quixote
group.

Most of the research topics in this thesis were performed while the author was a
researcher of the Institute for the New Generation Computer Technology (ICOT). Thanks
are due to Professor Kazuhiro Fuchi , Shun-ichi Uchida, Koichi Furukawa, and Katsumi
Nitta for encouraging me to perform research on natural language processing and logic
programming.

I am also indebted to Professor Hisao Yamada and former members of hi s laboratory
at the University of Tokyo: Yosihiko Ono, Koiti Hasida, Nobuo Satake, Yuka Tateishi,
and Mikio Nakano, who had arouse my interest to natural language process ing.

I wish to express my thanks to Akinori Yonezawa, Ken Satoh, Hirotaka Hara, Kunio
Matsui, Haruo Akimoto, Hiromu Hayashi, and Sh igeru Sato for their encouragements.
[would li ke to thank my colleagues at Fuj itsu Laboratories Ltd. and !COT. I thank
anonymous referees of my previous papers.

Finally, I wish to express my grat itude to my fami ly.

Contents

1 Introduction
1.1 Motivation - Constraint-based Natural Language Analysis
l.2 cu-Prolog and Quixote
1.3 Organization of t his Thesis .

2 Constraint-based grammar formalism
2. 1 Feature Structure - data structure

2. 1.1 Feature struct ure
2.1.2 Disjunctive Feature Structu re (DFS)
2.1.3 Typed feature structure .

2.2 Linguistic Constraints
2.2.1 Variety of linguistic constraint
2.2.2 Processing linguistic const raint

2.3 JPSG (Japanese Phrase Structure Grammar)
2.3.1 Phrase Structure ..
2.3.2
2.3.3

3 cu-Prolog

Features
Structural Principle .

3. 1 Moti vation .
3.2 Conventional Approaches.
3.3 Syntax

3.3.1 Syntax of Terms
3.3.2 Syntax of CHC and Program

3.4 Operational Semantics
3.4. 1 Unification between terms
3.4.2 Derivation of CHC

3.5 Constrain t Transformation ..
3.5.1 Modular constrain t
3.5 .2 Constrai nt Transformation

3.6 Implementation
3.6. 1 cu-Prolog iii
3.6.2 Implementat ion of Const rain t Transformer

2

8
8

10
11

13
14
14
16
17
19
19
19
21
21
22
23

25
25
26
28
28
29
31
31
33
37
37
40
43
44
45

4 Applications of cu-Prolog to Natural Language Analysis
4.1 In t roduct ion
4.2 Disjunct ive Feature Structure unificat ion in cu- Prolog

4.2.1 DF'S
4.2.2 DF'Ss as constrained PSTs
4.2.3 DFS unificat ion

52
.52
.52
.53
.53
53

4.2.4 Comparison with 1\aspcr's approach .5.5
4.:3 Process ing JPSG in cu- Prolog .58

4.3.1 Const ra int-based NL analysis .58
4.3.2 .JPSG Parsing in cu-Prolog. .58
4 .3.3 Encod ing Lexical Ambiguity 60
4.3.4 Encod ing Structural Principle 62
4.3 .5 Example . 62

4.4 CFG parsing as constrain t t ransformation 63
4.4.1 Dependency . 66
4.4 .2 Trans-clausal vari able . 66
4.4 .3 Penetrat ion 66
4.4.4 Parsing an am biguous CFG 67
4.4 . .5 Complexity 69
4.4.6 Parsing CFG with feature structure as constrain t transformat ion . 71

5 Quixote
5.1 Motivation .
5.2 Introduction
5 .3 Quixote language

5.3.1 Object Term.
5.3.2 Subsumption Relation
5.3.3 Subsumption Const raint and Attribute Term .
5.3 .4 Rule and Module
5.3 .5 Query processing

5.4 Implementation
5.4. 1 Implementation of Constraint Solving .
5.4.2 Big-Quixote ..
5.4 .3 micro-Quixote

6 Applications of Quixote to Natural Language Analysis
6.1 In t roduction ..
6.2 Attribute Term and Feature Structu re .
6.3 JPSG treatment of "A no B" in Quixote

6.3. 1 Introduction to the variety of "A noB" phrase.
6.3 .2 An analysis of no in Quixote .
6.3.3 Discussion

3

74
74
74
75
75
77
80
84
87
89
91
93
94

96
96
96
98
98

101
107

7 Conclusion 109
7.1 Summary 109
7.2 Discuss ion about cu-Prolog. 110
7.:3 Discuss ion about QuixotE' for N LP fram ework 11 2
7.·1 Constraint-based NLA and Disambiguat ion . 11 2

7.5 Comments about Hetcrogen ~ou s Const rain ts 114

A Append ix I: cu-Prologiii user's manual (Abstract) 116
A. I Introduction 117

A.l.l How to Compile cu- Prolog lll 117
A.J.2 Customize 11 7
A.l.3 How to start and qui t cu-Prolog lll 11 8

A.2 Syntax of cu-Prolog lll 11 8
A.2.1 Constrained Horn Clause (C I-! C) 118
A.2.2 PST (Partially Specified Term) 119
A.2.3 Simplified form or Constrain t 119
A.2.4 BNF description of cu-Prologlll syntax 120

A.3 Summary of system commands 121
A.3 .1 Prolog commands 122
A.3.2 File 1/ 0 commands . 122
A.3.3 Debug commands . 122
A.3.4 Constraint Transformation commands 123
A.3.5 Other commands 123

A.4 Built-in predicates , fun ctors 123
A.4.1 Function al built-in pred icates 123
A.4.2 Predicative buil t- in predicates 125
A.4 .3 Bu ilt-in predicates for constraint transformation 126
A.4.4 Built-in predicates for J PSG parser 126

A.5 File I/ 0 127
A.5.1 Read a program . 127
A.5.2 Save a program 127
A.5.3 Log file. 128

A.6 Constraint Transformation 128
A.6.1 Use constraint transformer alone 128
A.6 .2 Transformation operations 128
A.6.3 Example 128

A.7 Program trace . 129

A.7.1 Set spy points 129

A.7.2 Set trace flag 129

A.7 3 Trace of constrain t transformation . 130

B Appendix II: JPSG / HPSG parser in cu-Prolog
8.1 Simple IIPSC: pars<'r in cu- l' rolog
13 .2 .J PSC pars<' r in cu- Prolog

5

132
I :3:3
l:J5

List of Figures

1.1 Traditional model of natural la nguage analysis
1.2 Constra in t-based model of natural language analysis .

2.1 Example of a feature graph
2.2 Example of a typed featu re st ructure
2.3 Phrase Structure of JPSG
2.4 J PSG treatment of " I<en-ga aruku." .

3.1 Refutation of cu-Prolog ..
3.2 Implementation of cu-Prolog const ra in t solver

4. 1 DFS unification .
4.2 Left corner parser
4.3 The parsing of "Ken ga Naomi-wo ai-s uru."
4.4 The parsing of "Ken ga a i-suru."

5.1 Derivation etwork of Quixote .
5.2 System configuration of big-Quixote
5.3 System configurat ion of micro-Quixote

6.1 Syntactic treatment of "A no B"

7. 1 Technology Map around Constraint-based Grammar Process ing
7.2 JPSG parser with heterogeneous const raints

6

9
10

15
18
21
24

36
46

57
60
64
65

90
93
94

105

111
115

List of Tables

2.1 Various linguist ic const raints . 19
2.2 on head featu res of J PSG . 22
2.3 !lead features of JPSG . 22

3.1 Sy ntax of cu- Prolog in BNF 32
3.2 PST Unifi cat ion algorithm 34

4. 1 D FS as const rained PST 54
4.2 Simple ambiguous CFG grammar 67

5. 1 Comparison between big-Quixote and micro-Quixote 95

6.1 Shimazu's Analysis and Quixote term 107

7. 1 Comparison among const rain t-based grammar, cu-P rolog, and Quixote llO

7

Chapter 1

Introduction

1.1 Motivation Constraint-based Natural Lan-
guage Analysis

The purpose of this thesis is to give a logic programming framework for "constraint

based natu ral language analysis". Natu ral language analysis is a computat ional process

to convert a surface string into an in ternal structure in a computer. In the process, it

is said that there are linguistically different kinds of analysis such as lexical analysis,

parsing, semantic analysis, pragmatic analys is and so on.

Traditional natural language analysis connects processing modules linearly, for ex

ample parsing (syntax processing), semantics processing, and pragmatic processing as in

Figure 1.1. Such linear systems have difficulty in treat ing in ter-modu le constraints be

cause the processing rule is fixed in advance. Those modules are not always independent.

Sometimes, semantic or pragmatic process ing helps reducing the ambiguity in the syntac

tic processing. In such a case, the linear model can be backtrack-based, or needs a special

internal structure to pack the ambiguity in each module.

On the other hand , a process ing model of const raint-based natural language analys is

is shown in Figure 1.2. In the model, all t he linguistic informat ion is stored as a set of

constrain ts . Lexical ent ries and grammatical rules are also provided as a set of constraints.

Constraints are represented as a set of formulas. Each formula defines a range of a variab le,

or a relation among variables and objects. Those constrain ts are solved with several

in teract ing processing modules, which are constraint solvers. Constraint representation

has two significant characteristics: information partiality and decralativeness. Because of

the informat ion parti ality, ambigu ity, vagueness, and sit uated-dependent representation

of natural language can be described using const raints. Constraints are also declarative,

namely t hey only define stat ic relations and nothing about their processing. Declarat ive

8

grammars and lex ica l enLr ies ca n be used in various direcLion s. for cxamplr-, pa rsing and

generation in naLu ra l language process ing.

SL ring

Figure 1.1: Traditional model of natural language analysis

How the const raint-based natural language analysis can be realized? The points are

both a constraint-based description framework of linguistic information a nd a computa

Lional framework to solve constraints.

As a framework to describe grammars based on constraints, various constmint

based gmmmar formali sms have been stud ies since 1980s, such as GPSG (General

ized Phrase SLructure Grarnmar)[GKPS85], LFG (Lexical Funct ional Grammar)[Bre82],

HPSG (Head-driven Phrase Structure Grammar)[PS87b , PS94], JPSG (Japanese Phrase

Strudure Grammar)[Gun87, GUN96], and so on. Most of them are based on phrase

strudure grammars whose nodes are j eatu1·e structures. A feaLure st ructure is a seL of

label-value pairs. Most of the grammar description is declaratively given as local con-

9

Feature
Structure

Constraint

.... Syntax
•:;: Semantics ·· ..

··Pragmatics

Figure 1.2: Const raint-based model of natural language analysis

straints among feature structures in a phrase structure.

As a computational framework of the declarative const ra in t-based grammar, this thesis

gives two constraint logic programming languages cu-Pmlog and Quixote.

1.2 cu-Prolog and Quixote

Main topics of this thesis are two "constraint-based" programming languages, cu-P,·olog

[T HS89, Tsu94] and Quixote[TY94, Yok94]. Their language features and their successful

app licat ions to constraint-based natural language analys is are discussed . Here, the term

"constraint-based" bears a doub le meaning.

First, cu-Prolog and Quixote are exemplifications of CLP (Constraint Logic Program

ming) languages[JL87]. cu-Prolog extends Prolog to treat constraints described in user

defined Prolog predicates. Quixote is designed as a knowledge representation language

with CLP and Object-Oriented features. Quixote handles constraints described as sub

sumption relations (type hierarchy) among objects and their attributes.

Second, these two languages were born as processing frameworks of conslmint-based

grammar formalisms[Shi92]. In computational linguistics, wh ich is a mixed research area

between computer science and linguist ics , a new grammar description formalism called

constrain t-based grammar has been stud ied. Generally, they consist of

• feature structure: data st ructu re to store partial information,

10

------- - ~ -- -

• phrase structure rule: skeleton lo assoc iate feature st ructures, and

• st ruct ure principle: lo c<tl cons t rainl among assoc iated feature strurlur<'S in a phrase

structure.

Their processing fra mework must b<' equipped wit h a data structu re to treat part ial infor

mation, an inference mechanism to construct phrase structures, a nd a devi<T to represent

and process constraints. cu-Prolog and Qui xote have data st ructures that correspond to

feature structures. Both have infer<' nce mechanisms based on logic progr<tmming. Con

st raints in cu-Prolog are represented as use r-defined Prolog predicates and processed using

a cons traint transformation technique. Quixote const raints arc represented as subsu mp

tion among objects with modulari zed (situation-dependent) know ledge description .

Most of the research topics in thi s thesis have been performed while the author was a

researcher of the Institute for the New Generation Computer Technology (!COT). I COT

is the cent ral research center of both the J apanese Fifth Generation Computer System

(FGCS) project and FGCS Follow-on project . One of the purpose of these projects is to

develop technologies for knowledge information process ing based on logic programming

and parallel process ing.

While the author was working at !COT, the author engaged in natural language

processing (N LP) and knowledge representation research based on the constraint logic

programming paradigm. The author cont ributed to the following research projects.

l. A CLP language cu-Prolog: the author designed and implemented cu- Prolog and

a pplied it to JPSG parsing,

2. A Const raint-based knowledge representation language Quixote: the author for

malized and implemented its const ra in t solving mechanism and app lied Quixote to

feature structures and semant ic treatment of JPSG ,

3. An heterogeneous , distributed, and cooperat ive problem solving system Helios: the

author designed its basic negotiation handler and app lied it to const raint-based

natural language process ing.

This thesis compiles these research contributions with part icular emphasis on the first

two topics from the view point of process ing constraint-based grammar.

1.3 Organization of this Thesis

Chapter 2 illustrates an introduction to constraint-based grammar formali sms . [-Jere, va

rieties of feature structures and J PSG - a constraint-based grammar formalism especially

ll

for J npanC'S<' arc mainly ex pla inC'd .

C'hapt<'r :j dPscribcs cu- Pro log. Compared with ot.her CLP languages , cu- Pro log has

S<'VC' ral un ique features . Most. C LP languages take algebraic equ al ion s or inequat ions as

cons traints. cu- Prolog, on the other ha nd , takes Prolog formulas with user-defined pred

ica.tcs which can implement lingui stic const raints. As" const raint so lver , cu- Prolog uses

the un fold / fold transformation, which is a program t rans format ion tec hnique, dynami

call y wit h heuristics. cu- Prolog is equipped with PSTs (Partially Specified Term) as one

of its data. structure.

Chapter 4 presents applications of cu- Prolog in computationa l lingu ist ics. It includes

disju ncti ve feature structure (DFS) unificat ion, parsing const raint-based gra mmar for

mali sms such as HPSG and JPSG, and CFG parsing based on const rain t t ransformat ion .

In these a pplications, DFS unification , disambiguation, a nd parsing are uniformly pro

cessed as constraint transformation.

Cha pte r 5 introduces another constra int-based language Qu ixote. Quixo te is a kind

of DOOD (Deductive and Object-Oriented Database)[KNN89 , DK.M91] 1angu age in the

sense tha t it has Object-Oriented features such as object ident ity and property inheritance,

and an inference mechanism. Quixote is also a kind of C LP language with subsumption

constraints. Quixote a lso has a data structure call ed alt1·ibu/e l e1"1n to treat information

part ia li ty.

Cha pter 6 illust rates applicat ions of Quixote to constrain t- based grammar formalisms.

Here, the author takes typed feature structures[TTY+9:3, TTY+94] and situation

dependent semant ic representation in JPSG[TH96]. Subsumption const raints and the

module mechanism of Quixote play importa nt role in describing situation-dependent se

mant ic and pragmatic information.

12

Chapter 2

Constraint-based grammar
formalism

ln computational linguistics, which is a mixed research area between computer SCI

ence an d linguistics, a new grammar description framework called "constraint-based

grammar"[S hi92] has been studies since 1980s, such as GPSG (Generali zed Phrase Struc

t ure Grammar)[GKPS85] , LFG (Lexical Functional Grammar)[Bre82] , 1-IPSG (Head

driven Phrase Structure Grammar) [PS87b, PS94], JPSG (Japanese Phrase Structure

Grammar)[Gun87, GUN96], and so on. There are several features in the const rain t

based grammar framework , compared with traditional grammar description and Chom

sky's trans format ional grammar (TG)[Cho81]. Here, t he author in troduces an equation

to characteri ze constraint-based grammar formalisms :

constraint based grammar feature st ructure +

phrase structure+

st ructural constraint

First , t he const raint-based grammar formali sm is based on computat ionally tractable

data st ructures and their algori t hms. The data st ructure on which most of the framework

are based on is called f ealm-e structure. At first , feature st ructu re was a set of label-value

pairs a nd only un ification is considered as its operation. That is why constrain t-based

grammar was called "unificat ion-based grammar" in t he earl y 1980s[Shi86]. Further, dis

junct ive feature struct ure was provided in F UG[Kay85] to treat ambiguities in natural

language. To allow effi cient dictionary representat ion , type hierarchy has been deri ved

as typed feature st ructure (o r sorted feat ure st ructure). Typed feature st ructu re is a

cent ral data st ruct ure in t he latest formali sm of HPSG. Apart from th<'ir linguistic ap

plicat ions, so lvab ility and effi ciently algorithms of such feature struct un• formali sms havc

been studied in computational lingu ist ics.

Second, const raint-based grammar formali sms postulate only one int c· rna l struct ure;

they analyl'e natu ral language sentences as phrase struct ure whose nodes arc feature

structures. From process ing point of view, phrase st ructu re is easy to treat. Chomsky's

series of work on generative grammar, on the other hand , has long been committed to t he

/ransfo ·rmalional grai7H!W1' (TG). ln TG , he postulated multiple representat ion levels and

several transformation operations among those levels. For example, in G B theory[Cho8l],

t hree levels S-structure, D-st ructure, and logical form (LF) were considered, and t he trans

formation was abst racted to be a very general operat ion, hence a compu tat ionally hard

operation , called move-a. In his latest theory minimalist]J1'0gmm[Cho95], however, he

considers only an internal st ructural level correspond ing to LF and studies a computa

tional ly economical procedure to map a surface string into a n intern al tree. Chomsky's

approach seems to become similar to the constraint-based grammar.

Third , as its name suggests, constraint-based grammar describes a grammar as a set of

constraints. HPSG and JPSG , for example, are based on very few phrase structures and

most of the grammatical information is sto red as local constraints among nodes in local

phrase structu res. Const raint-based approach makes grammar form ali sms more general

and rich, because morphology, syntax, semantics, and pragmatics are uniformly treated

as constraints. Also, declarative grammar description , one of the most important features

of constraints, allows various flows of information in process ing.

Above three features characterize constraint-based grammar formali sms; feature struc

ture as its main data structure, phrase structure as its analysis framework, and constraints

as its declarative gra mmar descri pt ion. In t he rest of t he chapter, the author will explain

their detai ls based on HPSG and JPSG formalisms especially.

2.1 Feature Structure - data structure

2.1.1 Feature structure

The central data st ructure to treat informat ion partial ity in the constraint-based

(unification-based) grammar formal ism is Jealu1·e slruclU7·e. A feature st ructure is a set of

label-value pairs . The labels are called fealU7-es . In constraint-based grammars, morpho

logical , syntactic, semant ic, a nd pragmat ic informat ion is un iformly stored in the feature

st ructure .

14

~ p

Figure 2.1: Example of a feature graph

First , feature structure can be seen as a rooted, directed, (acyclic,) labeled graph

st ructure called f eatw·e graph[Shi86]. Each arc is labeled with a feature name, and points

to another feature graph or an atomic symbol. Figure 2.1 is an example of a feature graph

representing a J PSG-Iike lexical entry. Let pos represent a part of speech, adJacent the

category that the word follows, and sem a semant ic representation .

Let A a nd L be a non-empty set of atomic symbols and feature names. A feature

graph is an automaton defined as a tuple < Q, q0 , 8, rr > [Kel93], where

o Q is a non-empty, finite set of stat es,

• Cfo E Q is the start state,

• 8: (Q x L)--+ Q is a partial transition fun ction, and

• rr : Q --+ A is a partial ass ignment function . If rr(q) is defined then 8(q, l) is not

defined for any q and I.

The above example of a feature graph is represented over A

{pos, adjacent, sem } with the following function definitions.

• Q = { qo, q" q2 , q3, q.}

o rr(qJ) = p, rr(q4) = n

{p, n} and L

Feature structure is formally treated as so-called feature logics by I<asper[I<as88,

KR90], Rounds, Smolka[Smo 8, Smo92], and so on. For example, Smolka's f eature

tenn.[Smo88] has following syntax, where A and L are a non-empty set of atomic symbols

and feature names.

15

0 TIL

o a for a E .4 ,

o l : S for l E L and S: feat ure' term ,

o (S U T) for 5, T: feature terms (disjunct ion) ,

o (S n T) for S, T: feature terms (conjunction) ,

o p I .j. p2 for pl , p2: paths (path equivalence)

Here, a path is a finite sequence of labels and the last term denotes the feature terms

des ignated by two paths agree. Using the notation of the feature terms the feature graph

in Figure 2.1 is described as follows.

pos : p U adjacent.pos : n U adjacent. sern t sem

Feature terms have been extended to treat negation , path inequali ty, quantification, and

so on.

Generally, a feature st ructure is represented as an AVM (attribute-value matrix) no

tation. Above example of a feature graph is represented as follows.

[

]JOS : 7J l
.]JOS: n

ad] acent : [}/] sent :
sem: Y

(2.1)

Multiple occurrence of Y means the st ructure is shared .

2.1.2 Disjunctive Feature Structure (DFS)

Natural language includes ambiguities such as polysemic words, homonyms, and so on.

A disjunctive jeatu1·e structUI·e (DFS) introduced in FUG[Kay85] is commonly used to

handle disjunction in a feature structure. There are several kinds of structures of DFSs.

Value disjunction A value disjunction specifies alternative values for a single feature.

(2.2) is an example of a feature st ructure with value disjunctions. It illust rates that

t he value of the pos feature is nor v, and the value of the sc feature is <> (empty

set) or < (pos: p] >. The DFS is, t hus, four-way ambiguous.

[

]JOS : { n , V} l
SC : { ~) []JOS : 7J l) } (2.2)

16

General disjunction A general di sjunction specifies alternati ve groups of mult ipi<' fca~

tures. (2 .:3) is an exampl<' of a feat ure st ru ctur<' with a g<meral disjunction. l·'patu r<'

sc111 is common , the res t being two~way ambiguous.

\ \

]>O-' : n] l
v {onn: vs
fJ08: v I
s~ : ([pos : p])

(2.3)

sem: love

Disjunction Name A disjunct ion name was in troduced by Dorre [DE90]. It is a spec ial

case of general di sj unct ion where more than one value a re mutually dependent.

For example, consider a German preposition "in" (in to). It expresses the stati c

reading when the following noun phrase is dative case, and direct iona l read ing when

accusative case. The d isjunction can be expressed as a genera l di sjunct ion in (2.4).

1
syn : [a1·g : [case : dat]

)
sem : [1·el : stat_in]

(2.4)
syn : [a1·g : [case : ace]

sem: [1·el: di,·_in]

(2 .4) is represented as a feature structure with a di sjunction name as (2 .5) . A

name d1 attached to cu rl y brackets is a label to specify the mutua l di sjunction. The

combinations of the values of case and rei features are (dat, diLin) or (ace , staLin).

(2 .5) is, t hus, two~ way ambiguous.

[

syn : I arg : [case: d1 { ~:~ }]] l
sem : r·el : dt { dttLtm }]

s a _t.n

(2.5)

One serious problem in treating DFSs is that the computat ional complexity of their

unification is essentially NP~complete[I<R86]. Some practical, effi cient algorithms have

been studied by [l<as87, 8088] . About DFS unification , see Section 4.2 in detaiL

2.1.3 Typed feature structure

In the latest framework of HPSG [PS94] , typed feature structure[Car92b] (sorted feature

structure[Smo88]) is used as its basic data st ructure. As shown in Figure 2.2, a typed

17

np

Figure 2.2: Example of a. typed feature st ructure

feature structure is described as a feature graph whose nodes are so rted such as w01·d, vp,

phuLse , and so on.

A typed feature stru cture over a set of type symbols Type and a set of labels L is a

tup le< Q , q0 , o,O > [Car9 2b] where

• Q : a finite set of nodes,

• qo E Q: the root node,

• o: (Q x L)--) Q : partial feature value function , and

• 0 : Q --) Type : total node typing funct ion

Figure 2.2 describes a typed feature st ructure defined as follows.

• L = {subcat, cat, ph}

• Type = {word , vp, run , phrase, np}

• o(qo,cat) = q, , o(qo,ph) = q2, o(qo,subcat) = q3, o(qJ,cat) = q,,

• O(q0) = w01·d, O(qi) = vp, O(q2) = 1·un, O(q3) = p/,·ase, O(q4) = np

The example can be described in the AVM notation as (2.6).

word
cat: [vp]
ph: [run]

subcat : [phras[e]]
cat: np

18

(2.6)

Table 2. 1: Various linguistic constraints

Linguistic category II Case st udy Constraint type

syntax effi cient encod ing term equation ,
coordinat ion term incquations,

subsumption
semantics ellipsis higher-order term equat ion
pragmatics collaborat ive dialog temporal const raint

pronoun reference , statist ical const rain t
t ranslation

There are several advantages to adopt typed feature structure for describing linguist ic

informat ion [Kel93]:

• Error detection arising for mis-spellings or mi sunderstand ings of t he type system,

• Multiple inheritance a llows eliminating much redu ndancy, and

• Pre-defin ed types a llow for compact representat ions of feat ure st ructures .

2.2 Linguistic Constraints

This sect ion illustrates the variety of the const rain t domain and their processing in natural

language.

2.2 .1 Variety of linguistic constraint

One kind of heterogeneity in NLP is the variety of constraint domains. In [Shi91], Shieber

describes several constraints in natural la nguage with various linguistic categories and case

studies as Table 2.1. Most of the constraints are represented as sets of formulas containing

variab les. Constraints are characterized as a set of variab le subst itut ions, called models,

that sat isfy them . In this t hes is, (disjunctive) term equation const raints and situat ion

based subsumption constraints are mainly considered.

2.2.2 Processing linguistic constraint

Process ing of constraints is roughly classified as const rain t solving and const rain t relax

ation. Constraint solving is to compute the intersect ion of models of given const rain ts. ln

many cases , including cu-Prolog and Quixote explained in t hi s t hesis, constrain t so lving

19

is a process to convert a given const raint into a normal form. 1 Constraint relaxation is

to r~lax gi vcn over-const rained const raints in to sa tisfia bl~ co nstraints.

Th is thes is mainly concerned about const raint so lving in two logic programming lan

guages a nd t heir ap pli cat ions to natural language ap pl ications . l~xampks of linguist ic

const raint so lving will be in vest igated in Chapter 4 and Cha pter 6. llowever, const rain t

relaxat ion is also important in natural language a nalysis . The res t of the su bsection intro

duces several linguistic phenomena which a rc well explained usi ng const raint relaxat ion.

Part of them will be discussed with an extension of cu- Prolog in Sect ion 7.2.

Pirst. sentences (I) are call ed g(l1·den-palh sentences, beca use many readers backtrack

to understand them[Mar80]. In (Ia), "cotton clothing" is read as a noun phrase at first,

alt hough the parse fail s when one comes to "grows." In these cases, not a ll the const rain ts

are solved ; only partial const raints are solved depending on t he process ing cost .

(l) a . The cotton clothing is made of grows in Miss iss ippi .

b. Have a ll the eggs broken {? or !}

Second ly, sentences (2) are exam ples of semant ic/syntact ic interact ion[Mar80]. They

are all syntact icall y correct sentences. However, t he acceptab ility differs in terms of

syntactic and semantic preferences in constraints. (2a) is recognized as syntactically and

semantically good, (2b) semantically bad , and (2c) mildly good.

(2) a. Whi ch dragon did the knight give t he boy?

b. * Which boy did the knight give the dragon?

c. (?) Which boy did t he knight give the sword?

[MarSO] explains those phenomena using preference in syntact ic and sema ntic const raints.

Last ly, sentences (3) are examples of a parse preference (disambiguation) . Although

they are a ll syntactically ambiguous, each sentence has a preferred reading. The preference

comes from syntactic process ing principles , constraint priorities, constraint interaction ,

and so on. In (3a), the reading "John knows (that) the best man wins." is preferred to

"John knows t he best (thing that) man wins. " The preference comes from a syntactic

principle: disfavor of headless st ructure[HB90]. In the next two J apanese sentences, the

fi rst adjective phrase (A DJ) tends to modify t he nearest following noun (left associat ion

principle) as shown in (3b). In (3c), however, "tsumeeri" (a stand-u p collar uniform)

and "joseito" (a girl student) a re semanticall y inconsistent . Consequently the reading to

modify the last noun ("gakusei") is prefer red .

' CS P (Constraint Satisfact ion P roblem) usually searches variable bindin gs that satisfy given con
straints. On t.he other hand , constraint solving lays emph asis on constraint transformation or rewriting.

20

(3) a. John knows the best man wins. [II B90]

b. Se no taka-i joseito-wo suki-na gakusei.
taii-AOJ girl students-0 13J like boy student
"a boy student who likes tall girls"

c. Tsumceri-no joseito-wo su ki-na gakusci.
a stand-up collar uniform-A OJ gi rl students-OBJ like boy student
"a boy student in a stand-up collar uniform who likes girls."

Besides t he above phenomena, ill-formed sentences, which are syntactically bad al

though semantically understandable, can be considered as inter-module constrain ts be

tween semantic and syntact ic process ing.

2.3 JPSG (Japanese Phrase Structure Grammar)

JPSG is a constraint-based grammar forma lism advocated by Takao Gunj i[MGS+s6,

Gun87, Gun95, GUN96] , especially designed to treat Japanese. Until 1992, JPSG had

been discussed in the PSG-working group at !COT.

Const raint-based grammar formalisms are characteri zed as phrase st ructures whose

nodes are feature structures . Their grammar descriptions consist of a phrase st ructure

and local const raints in a phrase structure called structuml princi7Jies. Current constraint

based grammars such as HPSG and JPSG have a few and general phrase st ructu res, and

most of the grammatical informat ion is mainly described with structural principles.

2 .3.1 Phrase Structure

JPSG has on ly one binary phrase structure (Figure 2.3) . This phrase structure is appli-

Head Daughter

Figure 2.3: Phrase Structure of J PSG

21

feature name
morph

su bcat
adjacent
slash
pslash
ref!
sem

feature name
pos
gr
case
infl
vform
dep
mod

Table 2.2: Non head features of JPSG
meaning
morphology

sub categori zat ion
adjacent category
non local dependency

value range
a sequence of morphological
representation s
a set of local category
a local category
a local category

nonlocal dependency (zero pronoun)
nonlocal dependency ("zibun")

a local category
a local category

a semantic representation

Table 2.3: Head features of JPSG
meaning
part of speech
grammatical rela tion

inflect ion type
verbal form
dependent
modifier (adjunct)

value range
n, v, p, adv, adn
sbj , obj
ga, wo, ni
vc, vv,vk,vs,adj ,na,nil
root, conj , euph , rei, inf, imp
a core category
+,-

cable to both a complementation st1·uctU1·e and an adjunction st1·ucture of J apanese2 In

the complementation structure, Non Head Daughte1· works as a complement . It also acts

as a modifier in the adjunction structure.

2.3 .2 Feat ures

Table 2.2 and Table 2.3 are examples of feature in JPSG[Gun95]. Features in Table 2.2 are

called non-head f eatures and features in Table 2.3 are called head jeatu1·es . Head features

are represented as a value of core feature. There are other kinds of features as below.

• core features: head features + sem

• local features: core features + subcat, adj acent

• const ituency features: local features + slash, pslash, ref!

2 For example , "l(en-ga aisuru (I<en loves)" is a complementation structure, and "ooki-na yama (big
mountainr' is an adjunction struct ure.

22

2.3.3 Structural Principle

Most of the grammatical informat ion is given as constraints among nodes in a phrase

structure. The const raints are ca lled slruclural principles . In [C:unS7], head feature

princip le, sub cat feature princip le, and foot featur<' principle arc ex plained as fo llows.

head feature principle: 1-l ead features con form to the head feai1L1'C principle:

The value of a head feature of the mother unifies with that of the head.

subcat feature principle: Features sc (subcategorization) and adjacent arc called sub

cal fealm·es . They take a set of featu re st ructures that specify complement categories

and conform to the subcat j ealu1·e Jn·inciple:

In the complementation st ructure, the value of a subcat featme of the

mother unifies with that of the head minus left daughter.

foot feature principle: Features slash and pslash are called foot j ealu1·es. T hey take

a list of feature structures and conform to the foot feature principle:

The value of foot feature of the mother unifies with the union of those of

her daughters.

Figure 2.4 is a simple analysis of the Japanese sentence "Ken-ga aruku (Ken walks)."

The subcat feature of "aru-ku" takes an singleton set of feature st ructure. According

to the subcat feature principle, the element of sc in "aru-ku" unifies with the feature

structure corresponds to "Ken ga" to bind variable X into ken. Similarly, Y binds to ken

from the subcat feature principle of adja (adjacent) feature in "I<en " and "ga."

23

[

co1·e : [pos : v)]
sc :<>
sem: walk(ken)

[::]: :J FS: ~~] l
sem: ken

co1·e : [pos : v)

sc : ([cm·e : [;~s: ~:]
sem: X

[
core : [pos : n)]
sem: ken

I
Ken I Pos · 71] core : ·

9'" : ga

ad ·a : cm·e : [pos : n)]
1 sem: Y

sem: walk(X)

I
aru-ku

~

sem : Y

ga

Figure 2.4: JPSG treatment of "Ken-ga aruku."

24

Chapter 3

cu-Prolog

3.1 Motivation

The research on cu- Prolog has started to ann at giving a fund amental framework for

processing const raint-based grammar formali sms. As discussed later , convent ional proce

dural languages and logic programming languages such as Pro log have diffi cu lty in t reat ing

varieties of Aows of information. Convent ional constraint logic programming (CLP) frame

work, on t he other hand, mainly deals with constraints on the algebraic domain. Natural

language processing and A I applicat ions in general are largely founded on symbolic and

combinatorial constrain t domains.

cu-Prolog originates from the constmint unification[Has85, Has86, HS86] , which is a

unification between two patterns with Prolog-term constraints. Its name "cu" comes from

the technique. The author reformali zes the const raint solver of the constraint unification

using the unfold / fold transformation and embed the solver into a logic programming

language to design a constrai nt-based language cu-Prolog[Tsu89, THS89]. As a data

structure to store partial informat ion in const raint-based grammar, cu-Prolog is equipped

with PSTs (Partially Specified Term) as its data st ructure . For procedura l process ing

such as parsing algorithms, cu-Prolog leaves the fixed process ing mechanism of Prolog in

its part . For symbolic and combinatorial constra ints, cu- Prolog can deal with constraints

with user-defined Prolog predicates[Tsu94, Tsu92].

Remaining sect ions of this chapter explain cu- Prolog from a logic-programming view

poin t. cu- Prolog has been implemented on UN IX as cu-Prologlll. Implementation issues

are illust rated in Section 3.6. Several natu ral language applications of cu-Prolog are

explained in the next chapter.

25

3.2 Conventional Approaches

In the beginning of t he research on const raint-based grammar (unificat ion-based gram

mar), Prolog has been often used as the implementation langua.ge[ShiS6, PS87a], mainly

because Prolog is equ ipped with the unilication mechanism between terms. To t reat t he

variety of linguist ic constraints mentioned in the previous chapter, however , Prolog itself

ha.s the following several defects.

Firstly, Prolog does not have a data structu re to represent a feature structure that

partially represents informat ion. The arity of complex terms and the order of arguments

of li ts are both fixed. Even if feature structures are encoded in certain Prolog terms,

special procedures for their unification are necessary.

Secondly, its processing order is fixed and procedural. Prolog is often cons idered as a

"declarative" programming language, because declarative predicate definitions in stantly

become a Prolog program. Seen from its processi ng mechan ism, however, Prolog is not a

declarat ive, but rather a procedural programming language. Atomic formulas of goals are

selected from left to right and rules are applied from top to bottom. Prolog programmers

intentionally have to align goals such that they are solved properly. In the processing of

not only linguistic constraints but constraints in genera.! , it is impossible to st ipulate in

what order those constraints are processed in advance. When there a re both syntactic

and semant ic constraints, sometimes the semant ic constrain t is processed at first , but in

other situations, the other constraint may be processed earlier.

How about other logic programming languages? Consider Prolog- like systems such

as Prolog-Il and CIL[Muk88, Muk91]. They extend Prolog with special data st ructures

and new processing mechanisms. The rational tree in Prolog-Il removes the restriction of

the occur-check from Prolog unification. CIL employs a PST to represent attribute/value

pairs. A PST corresponds to a feature structure. In processing, their bind-hook mechanism

can delay some goals (constraints) until certain variables bind to ground terms. For

example, a formula fr eeze(X ,print(X)) or print(X?) in CIL delays the evaluation of

the goal print(X) until the variable X binds to something. The bind-hook mechanism,

however, only checks the sat isfiability of the delayed goals only by evaluating them. Even

if the same constraint is imposed on more than one place, they are checked independently.

So it is not always efficient in the following situations for example:

• When constraints are imposed on more than one variable, the bind-hook description

becomes ad-hock.

• Constraints are always solved independent ly. Even if some of them bind to an

26

equivalent const rain t, t hey are executed independently.

To extend t he declarati ve feature of Prolog , CL P (Co nstraint Logic Programmin g)

languages[JL87] have been considered . Most CLP languages, such as CLP(H)[JL87].

Prolog- III [CoiS7], and CAL[ASS+ss], take const raints of the algebraic domain with equa

t ions or ineq uat ions. Their constrain t solvers art> based on algebraic a lgorithms such as

derivi ng Grobner bases, so lving algebra ic equations, and so on. However, for AI appli

cat ions a nd natural language process ing systems especially, symbolic constrain ts arc far

more desirable t han algebraic ones.

There are several implementation frameworks speciali zed for const rain t-based gram

mar forma li sms such as PATR-li [S hi88] and ALE (Att ribute Logic Engine)[Car92a].

PATR- Il is a grammar representat ion framework for t he earlier const raint-based gram

mar formalisms (namely, unification-based grammar). As opposed to those frameworks,

cu-Prolog is designed as a general computational framework to treat symbolic const raints

and a partial data structure. cu-Prolog can handle constraints with user-defined Prolog

predicates. ALE is an engine to process the typed feature structure. cu-Prolog cannot

handle typed feature structure. However, typed feature structure is discussed in the other

language Quixote in Chapters 5 and 6 in this thesis.

Compared with above convent iona l approaches, advantages of cu-Prolog are su mma

ri zed as follows.

• cu-Prolog can handle a PST (Partially Specified Term) that has close relation with

the feature structure.

• cu-Prolog takes Prolog atomic formul as with user-defined predicates as constraints.

Its const raint domain is the Herbrand universe that is suitable for processing sym

bolic and combinatorial constraints.

• In the CHC (Constrained Horn Clause) of cu-Prolog, both procedural programming

and declarative programming are integrated.

• Constraints are processed using the unfold / fold transformat ion technique[TS83]

with certain heuristics. The fold transformation can eliminate redundant constraint

process ing.

27

3.3 Syntax

3.3.1 Syntax of Terms

Variab les, constants. function names in cu- Prolog arc defined a.s Prolog. cu-Prolog

borrows the notation of PSTs (Part ially Specified Term) introduced in the CIL

langua.ge[Muk88].

First , terms of cu-Prolog a re defined a.s follows.

[Def) 1 (Term) A term of cu-Prolog is defined 7"eC!L1'Sively as follows .

• A variable is a t enn.

• A constant is a term.

• Wh en f is an n-ary function name and t 1, • • ·, tn a1·e ter·ms, then f(t 1, • • • , tn) is a

tenn.

• A PST is a tem!.

D

[Def) 2 (Partially Specified Term (PST)) A PST(Partially Specified Te1·m) is a

te•·m which is a set of label and value pai•·s having the following fonn:

{l,jt,,12/t2,···}

l; is a constant called a label whe1·e l; "lli(i "I j) . t; is a tenn called a value. "/"is the

delimite1· between a lab el and value. D

The order of labels of PSTs is not significant. An infinite PST st ructure such as

X = {I/ X} is not allowed mainly because of the implementat ion restriction. A non

recursive PST is semantically equ ivalent to a complex term. Let 11, 12 , ·· · ,In are a ll the

PST labels of a program ordered by a certain total ordering such as a dictionary ordering.

A PST {p1/v 1 , • · • ,pm/vm} is equivalent to a complex term of a certain function name

(such a.s 'pst') whose i-th argument is:

• vk, if I;= Pk (k E [l,m])

• _, otherwise.

For example, when (l,m,n) are all the labels , a PST {m/a,l/X} is equivalent to a term

pst(X,a,_).

In the rest of th is t hesis, Lab(p) represents the set of labels of PST p, and the value

of the Iabell of a. PST p is written as p.l. Variables contained in a (sequence of) term t

is denoted as lim·(t).

28

3.3.2 Syntax of CHC and Program

This subsection introduces a basic component of cu-P rolog, called CIIC (Constrained

Horn Clause).

There are two kinds of predicate names, cons/min/ predicate names and progmm predi

cates . A constraint pred icate is a predicate t hat is used as a constraint of C I-I C. Constraint

predicates are defined by a set of normal ll orn clauses, which arc especiall y called con

stminl definition clauses. Const rai nt definition clauses must be modularly defined as

explained later in Subsect ion :3.5 . 1.

Pred icates except for const ra int predicates are called program predicates. Program

predicates are defined by a set of CHCs.

Atomic formulas of cu-Prolog is defined as follows.

[Def] 3 (Atomic formula) An atomic formul a is a ter·m of th e for·m)J(t 1 , • • · , tn), wher·e

p is a n-ar·y pr·edicate name and t 1 , • • • , tn are ter·ms. 0

Here comes t he definition of Constr·ain ed fl om Clause (CHC). 1

[Def) 4 (CHC) A constrained Horn clause (C HC) is either· a p·t·ogmm clause or· a ques

tion clause. 0

(Def) 5 (Program clause) A progra.m clause has one of the following forms.

H C~>C2, ... ,Cm.

H 81 , 82 , .. . , Bn;C1,C2, . .. ,Cm.

H , B; , and Ci are atomic for·mulas. The pr·edicate of H is a Jn·ogmm pr·edicate and

each Cj consists of a constmint pr·edicate. H is called head, B 1, 8 2 , ... , Bn body, and

C~> C2, ... , Crn const raint . Each C, is called a const rain t formu la. 0

When constraints are null , above program clauses are equivalent to the following Horn

clauses.

H.

H B1 , B2 , ... , Bn.

1 A CHC was called a Constmint Added Hom Clause {CAHC} in the earlier research of cu
Prolog[THS89] .

29

The declarative semant ics of the CHC is equiva lent to that of Horn clause in the sense

that t he two kinds of form ulas of the program clause arc equivalent to the following Horn

clauses. A Cll(' is a n extension of a. Horn clau se where part of its body is specified as a

const raint.

11 c,.c2·· .,c
II !3, , 82, ... ,Bn,C, ,C2, ··· ,Cm·

[Def] 6 (Question clause) A quest ion clause has one of the following fonn s.

?- G,,G2, ... ,G";C, ,C2, ··· ,Cm ·

Each G; is an atomic f01·mula whose p1·edicate is a pmgmm predicate and C; a constraint

fonnula. G I ' G2, ... , G'n is called (I goal. c,' c2, ... , Cm is called a goal constraint. 0

When const raints are null , above question clause is equivalent to the following ques tion

clause of Horn cia use.

The above question clause of CHC has the same declarative semantics as the following

question clause of a Horn clause.

Clauses listed below are examples of CHCs.

lexicon([yomuiX], X) : -dictionar·y(yomu, Y); lexical_rule(Y, X).

ps1·(H , M , D); head_f eature_principle(H , M),

subcat_f eatm·e_principle(H , M, D).

Here, lexical_ntle/2, head_f eatm·e_p,·inciple/2, and subcat_f eatm· e_p,·inciple/2 are user

defined constraint predicates. lexicon/2 and ps7)3 are program predicates.

In the surface syntax, PSTs can appear in the heads and bodies of CHCs. In the

internal structure of CHC, however, PSTs always appear in the constraint part. A PST

occurring in the head or body is labeled with a new variable and the equivalent equal

(un ification) const raint of the form X = PST is added to the const rain t part. It is called

a const1·ained PST defined as follows.

30

(Def] 7 (Constrained PST) Lei 71 be a PST, V be a variable, and 11 , • · · , l, be ·related

conslrain/3. A const ra ined PST i.- rrpn.<rnluf "·' fo!lowing con.,lra inl.' tn the con.<lminl

pat·! of CHC:.

\ ' =]J, t,, ... ,l,

where Vw· (p) n \1(17·(1,) f nil or \1 E lim· (I,) (i = I·· ·n). 0

For example, a C HC program clause:

f({pos/v, head/ X}): -g(X) , h(l'');cl(X).

is equivalent to

f(\1): -g(X) , h(Y) ; \1 = {posfv, head/ X} , cl(X).

where \1 = {posjv, head/ X} , ci(X) is a const rained PST. In the following di scuss ion ,

PSTs in C HCs are supposed to be in the constrained PST s.

A progmm of cu-Prolog is a. t uple (CDC, C HC), where C DC is a set of const ra in t

defin ition Horn clauses and C HC is a. set o f C HCs.

Syntax of cu-Prolog is summarized as Table 3.1. Here, < constant > is a string of

alphabet symbols , numbers, and J(a.njis that does not begins with a. capital alphabet nor

Especia lly, the following notations are used .

(<A>] = <A> can be omitted .

< A >-list= <A> [',' < A >- li st] (a sequence of A with a delimiter ',')

3.4 Operational Semantics

This section explains topics in operational semant ics of cu-Prolog. Unification between

terms including PSTs a nd derivation rules of cu-Prolog are discussed .

3.4.1 Unification between terms

The unifi cation operat ion of cu-Prolog is extended to treat PSTs. In Prolog, a. unifier

between two terms is a variable substitution t hat makes the terms eq ua l. A PST unifies

with a variable or another PST. A unifi e r between PSTs is given as a PST that is more

informati ve than the two terms. Before go ing into PST unificat ion, t he subsumption

1·elation between cu-Prolog terms is introduced .

31

Table 3.1: Sy nta x of cu-Prolog in BNF

< capital >

< term >

< v(l7·iable >
< .f unction_tenn >

< pst >
< pai1· >

< af 01·mula >
< chc >

< pclause >

< qclause >
< const•·ainLdef >

A!U!C ! .. -IXIY! Z

< constant > I < va.-iable > I < .funclion _lenn > I < psi >
< capital > [< cons tant >]!-[< constan t >]

< constant > (< term > - 1 i st)

< pai 1· > - lis t

< constant > / < tenn >
< constant > I < constant > (< tenn > - lis t)

< pclause >] < qclause >
< af01·mula > [; < a.fonnula >-li st].!

< afonnula >: - < af01·mula > -list[;< afonnula > -list] .

? _ < afonnula > -list[;< afonnula >-lis t] .

< aformula > .]
< a.f orm.ula > : - < a.f orrnula > - lis t.

[Def] 8 (Subsumption relat ion) A te•·m t subsumes a term u (tm·itt en as t ;;;!. u) when

eithe1· of the following condition holds.

1. t ;;;!p tO whe•·e 0 is a va1·iable substitution.

2. p ;;)P q (p,q: PST) whenlfl E Lab(p) , 31 E Lab(q) and p.l ;;;!p q.l.

0

Here Lab(p) is a set of labels of p, and p.l is the value of label l of p as defined in

3.3.1. Subsumption relation is a partial relation between terms. When p ;;;!p q, q is more

informative than p, or p is more general than q.

Example 1

For example,

Term subsumption

f(X , Y) ;;)" f(a,b)

{lja, rnjb} ;;;!p {1/a, rnjb, njc}

{1/X,m/X} ;;;!p {1/a , rnfa} ;;)P {l/a,m/a,n/c}.

32

0

[Def] 9 (Unification between PSTs) A unifier bet ween two PS T.< X and\" is a PS T

Z tt•hich .<llt isjie.< /h e following I'C ill lion.'.

X ;;)1, Z, Y ;;), Z

Wh en Z e.~is l s, X andY are wiled unifia ble. Th ere c.ri.</.< /he m ost gene ral unifi er (mgu)

bcl wcw t wo unifiabl e PSTs in terms of ;;)P . 0

Example 2 PST unification

The most general unifier between {l j a , m j b} and {lja ,njc} is {l ja , mjb, n /c }. The unifi

cat ion between {1 / a.m / X} and {m/b, n /c} yields the mgu {l/a,mj b, njc} and a varia ble

binding X = b. 0

Algorithm 1 (PST Unification algorithm) puni f y in Table 3.2 computes th e most

geneml u.nijie1· between two PST tenns . Lei X , Y , Z be pointe1·s to PSTs, and T be the

va.·iable substitution of the unification. If unification fails, it relums .fail.

Th e pmcedm-e unify(t~, t2 , Th eta) is defin ed ove 1· two Pmlog terms (ptenn) to compute

th e most geneml1mifie•· Th eta between two t erms t 1 and t2 .

ins tan ce(X , Theta) is the instance of X by applying the substitution Th eta , and T*TO

is a composition of two variable substitutions T and TO.

The algorithm is a subset of t he ex tended unification of CIL proposed by Muka i[Muk91]

because his PST includes a recursive structure. Mukai formali zes PST unification as a

constraint sati sfact ion between two record terms.

3.4.2 D erivation of CHC

The following is t he derivat ion rule of cu-P rolog. The rule derives a. new pair of a. goal

a.nd constrain t (resolvent) from an old goal-constraint pair. It is a SLD derivation with

the leftmost select ion rule as Prolog, followed by constraint solving.

[Def] 10 (Derivation rule) A derivation ru le de1·ives a new goal (•·esolvent) f7'om an

initial goal and a Jn·ogram clause.

Let ? - A , K ; C be an initial goal whe1·e A is th e left most lit em/, A' :- L ; D be a

p1·ogmm clause whose head A' unifi es with A , and (} be th e most geneml unifi er between

A and A' . Consequently, a new goal is de1·ived with the following •·ule.

goal
~

? -A , K ;C.

pr og r·a m
~

A' : -L; D .

subs titu t ion ______....,.___
0 = mgu(A , A')

? - LO~, KO~ ; C' .
'"-..--'

new goa l

33

con st rain t tr·a ns f ormati on

(C', ~) = modu/(!1·(CO U DO)

Table :3.2: PST Unifi cation a lgorithm

boo! punify(X,Y,Z,T) % (Z,T) is a. unifier be tween X and Y
% return true/ fail

pst X, Y, Z; % pointer to PST
substitution T = nil; % vari able subst itution

label: I
subst itu t ion: TO
for I E (Lab(X) u Lab(Y)) {

if (I (j_ Lab(Y)) then Z. l =X.!

}

e lse if (I (j_ Lab(X)) then Z. l = Y.l
else {

if (X. I:pst II Y. l:pst) then {
if (punify(X.l,Y. l,U ,TO) ==true) t hen {

Zl = U·

}

}

x" = in stance(X,TO);
Y = instance(Y,TO) ;
Z = instance(Z,TO) ;
T = T * TO ;

else return(fail) ;

else if (X.I:pterm II Y.l:pterm) t hen {
if (unify(X.I,Y. l,TO) ==true) then {

Z.l =X.!;

}

}

X = instance(X,TO) ;
Y = instance(Y,TO) ;
Z = instance(Z,TO) ;
T = T * TO ;

else return(fail);

else return(fail);

return (true);

34

modulm·(C-'tr) ,·epl·esenls an equivalent and simplified form of cons/mint Cst1· cnllrd

modular. 0

Computat ion of modular() is discussed in Subsection :3.5.1. In the above definition, a

unifier <7 and a set of const ra in t C' a re equivalent to CO U D O.

Example 3

Let

Deri vation

? - p(X);m embe,·(X ,[a, b,c])

be an initial goal, and

p(Y): -q(Y);membe,·(Y,[b,c,d]) .

be a program clause. The head unificat ion between p(X) and p(Y) yie lds t he mgu 0 =

{X/Y} . The const ra in t becomes

membe1·(X , [a, b, c]), membe1·(X, [b, c, d]).

modulm·({member(X,[a,b,c]),membe1·(X,[b,c,d])}) returns cO(X) where c0/1 IS a new

predicate and defined as:

cO(b).
cO(c).

0

With the above derivation rule, the refu tat ion in cu-Prolog can be seen as an extension

of the SLD refutat ion[Lio84] . It is a sequence of goal-constraint pairs as Figure 3.1. Let

Go, G,, · · ·, Gn be goals where Gn =¢,and each C; be a constra int. (Gi+h C;+I) is derived

from (G;,C;) with P;, 0;, and o-; . Here, P; is a progra m clause whose head unifies with

the leftmost atomic formula of G; . 0; is t he mgu of t he head unifi cat ion. o-; comes from

constrain t transformation from const ra in ts of G; and P; under a substitu t ion 0;.

When a goal Gn becomes null (¢), the derivation path stops and t he resu lt becomes

both t he products of unifiers

an d the remaining constraiot Cn .

Note that the heads, goals, a nd bodies of C HCs are processed procedurally just as

Prolog, that is the SLD refu tation with t he leftmost selection rule and the depth-first

35

(G,, C,)

I --------- (P,,O,,aJ)

(G2,C2)

I -------(Pn, On , an)

(C:n = </>, Cn)

Figure 3.1: Refutation of cu-Prolog

36

search st rategy. The constraint parts of C HCs, however, are solved by constraint trans

formation with the unfold/fold transformation and the heuristic selection rule as shown

in the next subsect ion.

The soundness of t he refutation of cu-Prolog depends on the soundnPss of SLD refu

tation and the const raint transformation. The former is guaranteed by Lloyd[Lio84], and

the latter is proved by Tamaki and Sato[TS83] in that unfold/fold transformations keep

semantics of a given program (in this case, const raints). About the completeness of the

refutation, cu-Prolog has the same defect as Prolog because the search strategy is fixed for

the depth first st rategy[Lio84], a lthough the SLD refutation itself is a complete process.

Most of the problem contains both procedural and declarative computations. For

example, in constraint-based natural language processing, the procedural part contains

parsing algorithms, consulting dictionaries, and so on. The declarative part , on the other

hand, contains linguist ic constraints in rules and dictionaries . It is efficient to realize

procedural processes such as parsing algorithms in the body, and unspecified processes

such as linguistic constraint so lving in the constraint part.

3.5 Constraint Transformation

This section explains the constraint solving mechanism of cu-Prolog. The constraint so lver

transforms a given constraint into a normal form. The normal form is called modula1·.

The transformation is based on the unfold/fold transformation.

3.5 .1 Modular constraint

A constraint in CHC must be in a simplified form called modulat·. The modularity of

constraints is checked syntactically and used in the constraint transformer. In tuitively,

constraints are modular when a ll the arguments are different variables[Tsu89, THS89].

For example,

• member(X, Y) , member(U, V) is modular,

• member(X, Y), member (Y, Z) is not modular because the variable Y occurs in the two

distinct places, and

• append(X, Y, [a, b, c, d]) is not modular because the third argument is not a variable.

Modular constraints are satisfiable if each atomic formula is satisfiable 2 . In the following ,

We extend the modularity to treat PSTs.

37

[Def) 11 (Component) A component of a11 arg!l7ncnl of a coH-<Imint predicate is a set

of PST label.< to which the a.rgumcHI ca11 bind. Con.<! an f., and complc.r term.< arc considered

as f>ST< of nil label. D

The component of the nt h argument of a prcdicat<•p is represented as Cmp(p,n).

When there is an at.omic formula of the form X = I in a body, it is equi valent

to cO(X , \11 , ... , 1~,) where { 111, ... , li.,} = \1 m·(t) a nd cO is a new n + 1-ary constraint

predicate defi ned as below.

cO(t, \11, ... , \In)·

The components generalize vacuous mywnenl places[J-!S86. TH90]. In [TH90], the

vacuous argument place is defin ed as follows.

W hen an argument place of a pred icate JS a variable in all of its definit ion

clauses, t he argument place is called a vacuous myumenl place. For example,

the first argument place of member defined below is vacuous.

member (E, [E I_]) .

member(E,[_ IS]) :- member(E,S).

Vacuous argument places are restated as arguments whose components are¢.

Components of a program a re computed by stat ic analysis of the program [Tsu9l] as

follows.

A lgorit h m 2 (Com p uting Comp onent) Components of each. conslminlJn·edicale m·e

computed from the constminl definition clauses .

1. Initially, each Cmp(p, n) is empty for each conslminlJn·edicale p of a give progmm.

2. R epeal the following p1·oced1t1·e to the conslminl definition clauses until th e1·e are no

changes.

(a) If a definition clause of p has a PST T in the n-th myumenl of its head,

Cmp(p,n) = Cmp(p ,n) U Lab(T).

{b) If a definit ion clause of p has a constant o1· com]Jlexlenn l in th e n-th m'!}ument

of its head, C mp(p, n) = Cm.p(p, n) U {nil}.

{c) If a definition clause of]J has a common va1·iable occ1!1~·ing both in the n-th

a1·gumenl of its head and m-t/1 m·g1tmen t of predicate q in its body, Cm p(p, n) =
C mp(p, n) U Cmp(q,m).

38

0

The process a lways stops becaus<' 1 he lengt h of every co!l1ponen1 do<·s not exceed th<'

number of PST labels in the progralll.

Example 4 Components

Consider compon ents of the program :

cO({f/b},X,Y): -c1 (Y,X) .

cO(X,b,_):-X={g/c}, c2(X).

c1(X,X).

c 1 (X' [X I _]) .
c2({h/a}).

c2({f/c}).

I. Step (a) yields Cmp(cO, 1) = {f} and Cmp(c2, 1) = {h ,f}.

2. After step (b) , we get Cmp(c0,2) = Cmp(c1, 2) = {[)}.

3. After step (c), we get Cmp(cO, 1) = {f ,g,h}.

4. Repeat ing either rule does not change components. Thus, the computing process

stops. The rest of the components is {}.

Finally, we get following components.

Cmp(cO,l) = {f,g,h}
Cmp(c0,2) = Cmp(c1,2) = {[]}

Cm.p(c2, 1) = {h, f}
Cmp(c0,3) = Cmp(cl,l) = {}

Dependency of more than one const raint formula are defined as follows.

[Def]l2 (Dependency of component) Two com7>onents are dependent when

• they have a common element , 01·

• one component is {nil} and the othe1· component is not empty.

0

For example, {a , b, c} and { b, c, d} are dependent because band c a.re common element.

{nil} and {a , b} are also dependent.

39

[Def] 13 (Depend ency of component) A sequence of atomic formul"" is dependent

whw "t hast one of th e following conditions holds:

/. a varinblc occu·rs in two distinct places where thei1· components arc dependent, or

2. the bil!(/ing of an m:gument which has a dep endent component.

0

Example 5 Dependency of const raint

Let Cmp(.f, I) = {a. b, c}, Cmp(g, I) = {b, c, d} ,and Cmp(h, I) = {[], e} .

• f(X), g(X) is dependent because Cmp(f, I) and Cmp(g, I) have a common element

a nd a variab le X multiply occurs.

• f(X) ,h(X) is dependent because Cmp(f, l) and Cmp(h,l) are dependent and a

variab le X multiply occurs.

• f({a/xx ,cjyy}) is (in ternally) dependent because the first argument binds loa PST

which has a common element in the component.

0

[Def)14 (Modular) A sequence of atomic fo1·mulas is modular when it contains no

dependency. 0

[Def) 15 (Modularly defined) A constmint pTedicate is modularly defined when the

bodies of its definition clauses are modula1·. 0

In cu-Prolog, constraint predicates mu st be modularly defined. For example,

membe1·j2, append/3, and finite predicates are modularly defined. For natural language

processing app licat ions, the description power is sufficient. 3

3.5.2 Constraint Transformation

The constraint solver of cu-Prolog transforms non-modular constraints into modular ones.

The constraint solver is called the constmint tmnsfo7"me•·.

The const raint transformer dynamically utilizes unfold/fold tmnsf01·mation[TS83] that

preserves the semantics of constraints. One of the idea of the constraint transformer is

to introduce heuristic selection rule in unfolding. The heuristic is mainly explained in

Section 3.6.
3To make cu-P rolog constraint description more powerfu l, [Sir91] defines M-solvoble that is weaker

than modular . A constraint predicate is M-solvoble when at least one of the body of its definition has no
dependency.

40

Mechanism of constraint transformatio n

Tlw unfold/fold trans formation[TS8:3], which is a partial eva luation technique, transforms

a program in to anot her preserving its semantics.

Let the origi nal const rain ts be ~ = C 1, ••• , Cn where any two constrain t formula s

have (trans itively) dependency. Let T be a set of program !-lorn clauses, {.r1, ... , .T,.} =

\1 aT(~), and]J be a new m-ary predicate. Let P; a nd V; be sequences of sets of clauses

that are in itiall y defined as:

'Do {p(x, , ... ,x,.) :- C,, ... ,Cn.}

Po T UVo .

The constraint tmnsfonneT t ransforms or igina l constrai nts 2: in to a new const rain t

p(x 1, . •. , .1:m), if and only if there ex ists a sequence P0 , ... , P1 such t hat every clause in

P1 is modular. P,+, and V;+1 a re derived from P; and TJ, by either unfolding, f olding, or

definition operation (i = 0 .. . l) .

Three operations of unfold/fold transformation is defined as follows.

(Def] 16 (Unfolding) P;+ 1 and V;+ 1 m·e de1·ivedj1'om P; and V; by unfolding as follows.

P;={H: - A·R}uP;, {A;:- B;}CP;, A;li;=Aii; (j=l ... m)

P,+, =PiUUj= 1{Hii; :-B;Ii;, R ii;} V,+, =V;

HeTe, A is a selected atomic Jonnula, A; aTe atomic Jonnulas , and R and B; a1·e

sequences of atomic fonnulas. If the1·e a1·e no]JTogmm clause whose head unifies with H ,

the unfolding Jails. 0

(Def] 17 (Folding) P;+ 1 and V i+ I aTe deTived fmm P; and V ; by folding as follows.

P;= {H:-C·R}UPi {A: -B} c TJ,, BO = C

P,+, =Pi U {H:- Ali, R } TJ,+, = TJ,

Here, C and R a1·e selected such that they have no common va1-iables. 0

(Def] 18 (Definition) Let B be a sequence of non-modulaT atomic fo nnulas,

x, . . . , Xn = Var(B), and q be a new n-a1·y p1·edicate. The clause { q(x, . . . , Xn) : -B.} is

called th e deri vat ion clause of p1·edicate qfn.

V ;, P;

V ;+ 1 = V ; U {q(x 1, ••• ,xn) :- B .}
P;+ , = P;

0

4 I

Unfolding selects a target formula (A) and apply (Prolog) derivation for all the pro

gra m clauses whose heads unify with A. Folding uses a transformation histo ry to e liminal<'

rPdundant tra nsformat ion. Definition de rives a new pred icate name.

The st rategy of the constrain t so lver to appl~' those three operat ions is di scussed in

Section :3.6.

Red u ction

New predicates with on ly one definition clause can be reduced into variab le substitutions.

For example, consider E = member(X, [ga]). E is transformed into cO(X) where cO/ !

is defined with the following single defin it ion clause.

cO(ga).

Here, cO(X) can be unfolded to become a term unifier X = ga. Th is operation is called

,·eduction. T he unifi er 17 in t he [Def] lO(De ri vation ru le) in 3.4.2 is derived from t he

reduction operat ion .

Example of C onstra int Transformation

The fo llowing examp le demonstrates a transformation of E = membe r (A, Z) , append (X, Y, Z) .

Firstly, by introducing a new predicate pl / 4 as Dl , we have:

T {Tl, T2, T3, T4}

T l member (X, [XIY]).

T2 member(X, [YIZ]) : - member (X, Z) .

T3 append([], X, X).

T4 append([AIX], Y, [AIZ]) : - append(X, Y, Z).

D l pl (A, X, Y, Z) : -member (A, Z), append(X, Y, z).

Do {D l }

Po T U {Dl} .

Step 1 : By unfolding of t he fi rst formula of Dl 's body (membe r (A, Z)) , we get T5 ,T6 ,
and P 1 .

T5 pl (A, X, Y, [AIZ]) :- append(X, Y, [AIZ]).

T6 pl (A, X, Y, [BIZ]) :-member(A, Z), append(X, Y, [BIZ]).

P 1 T U {T5, T6}

42

Step 2: By defining new pred icates p2/4 and p3/5 as /J2 and /):3 , we get the following

cJa USC'S.

IJ2

f):3

T "' ·)

T6'

T>,

P,

p2(X, Y, A, Z) :-append(X, Y. [AIZ]).

p3{A, Z, X, Y, B) :-member(A, Z), append(X, Y. [BIZ]).

pl (A, X, Y, [AIZ]) :- p2(X , Y, A, Z).

pl(A, X, Y, [BIZ]) :- p3(A , Z, X, Y, B).

{D1 , /J2 , /J3}

T u {T5', T6' , D2 , /J3}

Step 3: Unfolding /J2 gives t he fo llow ing clauses.

T7 p2([], [AIZJ , A, Z).

TS p2([BIX], Y, A, Z) :-append(X,Y, Z).

P3 Tu{T5' ,T6', T7 , TS , D3}

Step 4: Un folding the second formula. of /J3 's body (append(X, Y, [BIZ])) gives 7'9, TlO,

and P4 .

T9 p3(A, Z, [],[BIZ] , B) :-member(A, Z).

TIO p3(A, Z, [BIX] , Y, B) :-member(A, Z), append(X, Y, Z).

P4 T U {T5' , T6' , T7 , TS , T9 , 1'10}.

Step 5: Folding 1'10 by D 1 generates 7'10' a nd finally we get the following clauses.

TlO' p3(A, Z, [BIX], Y, B) : - pl(A, X, Y, Z) .

P5 T u {1'5' , T6', T7 , TS, T9 , 7'10'} .

Every clause in P5 is modula r. As a result , member(A, Z), append (X, Y, Z) has been

transformed into pl(A,X,Y,Z) , preserving equivalence, and new predicates pl/4, p2/4,

a nd p3/5 have been defined by T5' ,T6',T7,TS,T9, and T10'.

3.6 Implementation

This sect ion presents severa l implementation issues about cu-Prolog. u- Prologlll is an

imple mentation of cu-Prolog.

43

3.6. 1 cu-Prologlll

cu-Prolog has been implemented in the C languag<' on UN IX4.:2f:J 13SD. The la test vcr,ion,

ca ll d cu-Prologf!l , is registered as !COT Free Software (!FS). !FS is a byproduct of til('

.Japanese FGCS project and available by anonymous FTP from http: I / www. icot . or. jp.

cu-Prolog is also implemented on MS-DOS a nd Apple's l'vlacint.osh by ll idctosi

Sirai[Sir9 1]. They are also availab le from the above URL.

Syntax of cu-Prologlll

term: atom, variab le, complex term, or PST

atom: constant, st ring, or number

con st a nt: sequence of characters t hat begins with a small letter or sequence of any

cha racters wit h single quotat ions.

st ring: seq uence of any characters with doub le quotes .

numbe r : integer and float ing number.

variable: sequence of characters that begins with a capital letter or'-'· ' -' is called an

anonymous variable and any two anonymous variables are different.

con1plex t erm: let J be a constant and 11 , t2, · · · , tn be terms, then J(t 1, 12 , · · · , ln) be a

complex term. f is called a (n-ary)funclo,·. A list is a special functor.

at omic formula: let p be a constant and 11 , l2, · · ·, tn be terms, t hen p(11 , l2 , · · ·, ln) be

an atomic formula. p is called a (n-ary) p•·edicate symbol.

PST: sequence of featu re/value pairs quoted by'{' and '}'. A featu re is a constant and

a value is a term.

C onstrained Horn Clause (C HC)

A program of cu-Prologlll is a set of Const rained Horn Clauses (C HCs). A CHC has one

of the fo llow ing forms:

3.: - B, ,· · · , Bn;C, , · ·· ,C, .

44

(Fact)

(Ru le)

(Quest ion)

Each 11 , B, a nd C is an atomic formula. II is call ed a head, B, , · · ·, 13, a body, and

{'1 •. · ·. Cn a cons/min/. A Horn clause is a special case of a CII C: whose constraint is null.

cu- Prolog lll allows a vari ab le as a n atomic fo rmula. By t he follow ing programs,

call /1 and not /1 are defined.

call (X) X.

not (X) :- X, ' fail.

not(_) .

PST (Partially Specified Term)

cu-Prologlll supports PSTs (Partia lly Specified Term) as a data st ructu re to implement

feature structures of constrain t-based gra mmar formalisms. A PST is a term of the

foll owing form:

I;, called label, is an atom a nd I;"# 11(i "# j) . t; , called value, is a. term. Recursive PSTs

are not a llowed .

Un ificat ion between PSTs X and Y produces Z when:

o VI, 1/v E X , I !f. V -t 1/v E Z

o '<11, 1/v E V, l !f. X -t 1/v E Z

o '<11,1/v E X , l /u E V -t 1/uni fy(u, v) E Z

For example, the unificat ion between {1/a ,rn/X} and {m/b,n/c} produces

{1/a, rn/b, n/c} and X is bound to b.
When a PST occurs in multiple places, it is printed wit h a new variable in the con

straint part of C HC. For example,

f(X) :- g1(_p1,X) ,g2(_p2,X); _p 1={f/ a,g/c}.

Syntax and various features of cu-Prologlll is descri bed in Appendix A of th is thesis.

3.6.2 Implementation of Constraint Transformer

Clause Pool

The constraint t ransformer is implemented with the three clause pools as illust rated in

Figure 3.2.

45

-4--- Unfolding

Figure 3.2 : Implementat ion of cu-Prolog const raint so lver

• DEFINITION sto res the derivation clauses of new predicates,

• NON-MODULAR stores non-modu lar constraint definition clauses, and

• MODULAR stores modular constrain t definition clauses.

DEFINITION realizes D; and NON-MODULAR and MODULAR correspond to P; in Section 3.

Implementation of Unfold/fold transformation

T he unfold / fold t ransformat ions presented in Section 3.5.2 a re restated using th ree clause

pools as follows.

1. unf aiding

Remove one clause H : -8. from NON- MODULAR or DEFINITION. Select an atomic

formu la L from 8 , and the rest formul as are R, namely, 8 = L 1\ R. Let P;

-8; . (i = 1, ... , n) be all the const rain t definition clauses whose beads unify with

L (P;O; = LO;). Add HO : -8;0, RO (i = 1, ... , n) to NON- MODULAR or MODULAR

according to the modularity of their bodies.

2. fold ing

Remove one clause H : -8, D. from NON-MODULAR, where

• 8 and D have no depen dency and

• t here is a clause P : -Q in DEFINITION and Q(} = B.

Then, add H: - PIJ, 0. to NON-MODULAR.

46

:3. definition

H<'lnove one clause H : - B from NON-MODULAR, and B is divided inlo sc•v(' ral clusters

13 = B, 1\ · · · 1\ 8 n 1\ R, where

• all 8;(i = 1, · · · , n) and 17 arc sequences of atomic formulas,

• 8; and 8 i (i oF j) have no var iab le dependency, and

• R is modular.

Let X,, ~,··· , X;,m , = \la,·(8 ,) ·•, p, be a new m;-ary predicate and P, =
p;(X ;, 1, .. · , X ;,m,) (i = J, .. ·,n). Then, add each P; :- 8 ;. to DEFINITION

(i = 1, · · ·, n) and H : - P., · · ·, Pn, It to MODULAR.

Transformation Strategy

Procedure 1 (Constraint Transformation Strategy) Let C be a non-modula1· con

s/mint, and X 1 , • · ·, Xn = liar(C), p be a new n-ary predicate. The constminltmnsfonn e1·

adds

p(X, , ···,Xn): -SC.

lo DEFINITION, and 1·epeat following procedtt?·es tLntil DEFINITION and NON-MODULAR be

come empties o1· one of the tLnfolding fails.

1. !f DEFINITION is not empty, 1·emove one clause from DEFINITION and t1·y unfold

ing.

2. If DEFINITION is empty but NON-MODULAR is not empty, 1·emove one clause N j?-om

NON-MODULAR. If N 's head is modulm·, t1·y unfolding. If not, attempt folding or

definition on N's body.

The head modulm·ity checking of the second 7n·ocedm·e 1·educes the numbe1· of new predi

cates. Consider tmnsformation of m embe1·(X, [a , b, c]) , m ember(X, [b, c, d]). Without this

checking, the constmint is tmnsfonned into cO(X) whe1·e c0/1 and cl/1 a1·e defin ed as:

cO(b).
cO(X) : -cl(X) .

cl(c).

cl(X): -c2(X) .

4 A scL of vari ables included in Bi.

47

1/oweve•·. with this checking, it is transformed into cO(X) with the followmg definition of

c0/1.

cO(b).

cO(c).

When the procedure successfully end, th e clauses in MODULAR arc newly defined coll

straint definition clauses and C is transformed into p(X 1, ···,X,.) which has same se

mantics with C. When the procedm'C fails during the unfolding tmnsformation, C cannot

be tmnsfol"'ned into a mod!llar form. 0

By fix ing the transformation st rategy as above, some constraints cannot be trans

formed into modu lar ones, although such a situat ion is rare for actual linguist ic

const rain ts[Tom92]. To avoid the situation, there are several kinds of choices :

• to set t he maximum number of unfolding (cu-Prologlll),

• to adjust heuristics (cu-Prologlll) ,

• to confine user predicates in fin ite or linear[Tom92] predicates, or

• to relax t he definition of modularly-defined such as M-solvable [Sir91}.

Heuristics

The constra int transformer includes heurist ics such as

• how to select a clause from DEFINITION,

• how to select a clause from NON -MODULAR, and

• how to select a li teral in unfolding.

As DEFINITION and NON-MODULAR are implemented as stacks, that is, cu-Prologiii

always selects the latest clause.

An unfolding li teral can be selected arb itrari ly. The const rain t t ransformer computes

t he activation value E. of each atomic formula from following factors, and app ly unfolding

to the atomic formula of t he highest value.

Cons t

Funcl

\Inurn

Number of arguments that bind to constants

Number of arguments that bind to complex terms

Total number of dependent variab les in the formula

48

Rec

Oe.fs

Units

1 for recursive predicate and 0 for finite predicat<?

Number of definition clauses of the predicate

Number of unit clauses in the predicate definition

Facts If the predicate is defined only by unit cla.uses then I, otherwise 0

From above factors, an activation value is computed as:

act ivat ion_ value c; = 3 * Const + 2 *Fund+ \lnum - 2 * Rcc

-Dcfs +Units+ :3 *Facts

The formula is defined so as to include some empirical heuristics used in [T HS90].

Examples of the heuristics is illust rated as follows .

o For p(X, Y) , q(a, X , b), select the second formula from Const factor.

o m(X, Y) , p(X) where m and]J a re defined as

m(X,[])

m([AIB],X): -m(B,X).

p([]).

p([a]).

Select the second formula from Rec factor. Otherwise, the transformation requ ires

more new predicates.

o .fuse(X, Y , Z), f(Z, T, U), f(U, \1, W) where fuse is defined as

fuse([], [], []) .
.fuse([A IX], Y, [AIZ]):- .fuse(X, Y, Z).

fus e(X , [AIY], [AIZ]):- .fuse(X, Y, Z) .

.fuse([AIX] , [AIY], Z):- .fuse(X, Y, Z).

From \lnum factor , select the second formula that has two dependencies in terms

of Z and U. Otherwise, the transformer goes in to an infinite loop.

o ab(X), bcd(X) where ab and abc are defined as

ab(a) .

ab(b) .

bcd(b).

bed(c) .
bed(d).

49

Select the first formula from De.fs factor. It is because the numb<'r of the new

d<'fi nit ion claus<'s become less.

• p(X. l .), q(X , Y) where p/2 is ckfined with 20 unit clauses and q/2 :l unit clauses:

sc\C'ct the latter from Units factor. It is il<'cause the case becomes a "generate and

test·· com putation. Smaller generated ca ndidates are better.

Discussion s

Above heurist ics in selection rules are we ll di scussed in t he resea rch on loop-checking

and terminat ion in Prolog[Lio84, Kle84, MS89, Bes89, ABI-: 89], stat ic analys is of P rolog

programs[Bru82, DebS9] .

Another ex tens ion of Prolog is to improve the SL D resolution. OLDT (OLD reso lu t ion

with Tabulation)[TS86] extends Prolog usin g histo ri es of prev iously derived goals. OLDT

can solve a program that can not be solved finitely in Prolog even if heuri sti c select ion

rules a re used , such as:

1· each(X, Y) : -!'each(X , Z),edge(Z, Y).

1·each(X,X).

edge(a, b).

edge(a, c).

edge(b, a).

edg e(b,d) .

? -1·each(a , X).

In cu-Prolog, !'each(a , X) is transformed in to cO(X) using the prev iously ment ioned strat

egy and heuristics, where

cO(a).

cO(b) .

cO(c).

cO(d).

In t he tra nsformation, a clause cO(Y) : -cO(Z) ,e(Z, Y). is created using folding. A

tabu lation mechanism of OLDT corresponds to fo lding in the unfold / fold transformation.

There is a kind of Prolog problem that cannot be solved effi cientl y in any resolution

methods (top-down approaches) such as :5

5The problem was called an "Overbeck's Problem" by Hasegawa at I COT.

50

p(}/): - p(X), p(i(X, X)).

p(i(i (i(X. Y), Z), i(i(Z, X).i(/1. \')))) .

? - p(i (i (i(a, b) , a),a)) .

A t heo rem prove r MGTP (Mock! C: cnc r"t.io n Theorem Prover)[ll" sCJ-1] can so lve " bovc

problem in a bottom-up approach.

The a uthor is not concerned here wi t h more effect ive he uri stics of cu- Prolog wi t h more

facto rs and with a non-linear formul a . Such he uri sti cs are mainly discussed by Hasida 's

DP[Has91].

.51

Chapter 4

Applications of cu-Prolog to Natural
Language Analysis

4 .1 Introduction

Th is chapter explains three applications of cu-Prolog to const raint- based natural language

analys is. The first is the t reatment of disjuncti ve feature structures (DFS) that are

fundamental dev ices to store ambiguities in feature structures. A DFS is t reated as a

PST followed by a set of constrain t. T he DFS unificat ion is achieved wit h t he PST

un ificat ion followed by const raint solv ing.

T he next a pplication is t he most successful application of cu-Prolog: a constrain t-based

JPSG (J apanese Phrase Structu re Grammar) parser. Lexical ambigui t ies and structured

principles are equally processed using CHC.

The las t a pplication is an experimental app licat ion of the constraint t ransformer of

cu-Prolog to process CFG parsing. St ructured ambiguities are dealt wi t h the constraint

t ransformation based on the unfold/ fold t ransformation.

4.2 Disjunctive Feature Structure unification m cu
Prolog

In t hi s section, t he author applies cu-Prolog to process ing disjunct ive linguistic infonna

tion. Natural language is inherently ambiguous. The ambigui ty can be seen in t he lexical

level such as polysemic words, structure level such as PP-attachment 1
, discourse level,

and so on.

In the con stra int-based frameworks, feature structures has been extended to t reat t he

1 Such as "John saw a man with a telescope. 1
'

52

ambigu ity as disjunctive featu re str uctures (DFS)[l\ayS!i]. T his section surveys SC'veral

works about DFSs and expla ins ho\1' cu- l'rolog can t reat DFSs and lh<'ir unification.

4.2.1 DFS

As described in Chapter 2, there are t hree kinds of d isjunct ive feature struct ures: value

di sjunctions, genera l di sju nct ions, and disjunction names.

A serious problem in t reat ing DFSs is t he computat ional complexity of t heir uni fi

cation. l\ asper[I\H86] examined t he com plex ity of unification between DFSs showing

that a ny unification a lgo ri t hms for DFS have a non-polynomial worst-case complex ity (if

P#NP) . After that , some practical a lgorithms with better average performance have been

stud ied by [I\as87] and [ED88]. When every disjunction is expanded as DNF (disjunctive

normal form), the number of formul as becomes exponential a nd hence t he unifi cat ion will

be a ha rd problem. These pract ical app roaches delay the expansion of di sjunctions as late

as poss ible.

4.2.2 DFSs as constrained PSTs

cu- Prolog requires no specia l device to represent DFSs. Every type of DFS can be ex

pressed with a. constrained PST as shown in Table 4.1.

4.2.3 DFS unification

Every kind of DFS has a corresponding const ra ined PST. Thus, the unification between

DFSs fa ll s into t he unificat ion between constra ined PSTs. The unification between con

stra ined PSTs is performed by the unificat ion between PSTs followed by the transforma

t ion of dependent constraints.

Consider the following example to unify two DFSs[ED88] :

[a.:{[::~] . [:: ~]}]
and

[a:[b:vJ].
d:V

These D FSs correspond to two const rained PST as

X= {a/U },s(U) and

V = {a/{b/ ll} , d/ 11}

53

(4.1)

(4.2)

Table 4 l · DFS as constrained PST
D FS in AVM notation constrained PST

value disjunction:

[

pos : {n, v} l
sc : { ~) [pos : 7J]) }

disjunction name:

s yn : I ar·g : [case : d1 { ~~~ }]] I
{

dlr'_m }] sem : r'el : d1 t t . sa _z.n

V={pos / X, sc/Y},
cO(X), c1(Y)

where
cO(n).
cO(v).
c1([]) .
cl([{pos/p}]).

U={sem/love}, c2(U).
where

c2({pos/n}) .
c2({pos/v, vform/vs,

sc / [{pos/p}]}) .

V={syn/{arg/{case/ X}},
sem/{rel/Y}},c3(X,Y).

where
c3(dat, stat_in).
c3(acc dir in).

54

where a constraint predicate sf I is defined by:

s({b/+,c/-}).

s({b/ -, cf+})

The component of the first a rgument of s is C:m J!(s, I)= {b,c}.

The unification between X and Y gives

X= Y = {a jU.djii} ,U = {b/ll},s(U). (4.:3)

T here is a dependency by U of the second and third formula. with a label b. Note

that U = {b/11} is equivalent to tO(U, 11), where t0 /2 is defined as a. const raint defi ni tion

clause:

tO({b/11} , II).

A new predicate cl/2 is defined as

cl(U, II): - tO(U, II), s(U).

By means of t he unfold transformation, the defini tion clauses of cl/2 becomes

cl({b/+,c/-}. +).
cl({bj-,c/+},-)

Finally, (4.3) is transformed in to

X= Y = {a/U,djll},cl(U, II) .

Note that the result contains no dependency.

4.2.4 Comparison with Kasper's approach

(4.4)

Compare the constrained PST wi t h Kasper's treatment of DFS[I<as87]. Kasper postulates

0 FSs a re of the form:

uconj 1\ disj 1 1\ · · · 1\ di sjm

uconj is called an ·unconditional conjunct that contains no di sjunct ion. Each disj;(i =
l, · · ·, m) is a di sjunction of two or more alternatives. In t he definition of a constrained

PST ([Def] 7 of Section 3.3) , II = p corresponds to t he unconditional conjunct and

c 1(X), c2 (X) , . .. , c.(X) the disjunctions.

In the Kasper's approach, DFS unificat ion cons ists of three procedures:

55

I. definite component unification

2. compatibility checking, a nd

3. ex hausti ve consistency checking .

Each com pu ta tional order is O(nlogn), O(d2 11logn) , and 0(:21<1/>1) for the total number

of sy mbols n and number of di sjunct ions d. 1\asper's algorithm requ ir<'s <·xponent ial

computat ional time in t he worst case. In practical cases, however, it"s comp l<'xity is

O(n 3). That is because the third proced ure is seldom required, and d < 11.

PST unification corresponds to the fir st procedure, a nd the following constraint t rans

formatio n corresponds to the second a nd third procedu res . In the worst case where a ll

constraints inte ract each other, we have to unfold a ll the const raints, which req uires ex

ponentia l time of the number of di sjunct ions (that is, the product of the number of each

defin ition clause), but in reality our approach requires polynomial time, as Kasper's does.

The cu- Prolog approach is superior to I<asper 's in the following points:

• checking is performed by unfolding only de pendent PSTs,

• an unfolding formula is selected by apply ing heuri stics as shown in Section 3.6 , and

• const rained PSTs can treat disjunction names [DE90] and disjunct ion among more

than one feature st ructures[Tsu91] in the same way.

Figure 4.1 is an example of process ing a DFS unificat ion example of [l<as87] 111 cu

Prologl l l. It demonst rates the unifi cat ion between

and

[[

lex : yall]
subj : pe,-son : 2

numbe1· : pl

[
rank : clause]
subj : [case : nom]

11 ([~:~~:;~~::~~~~~-ans] V [v[oice ~ ~Lctive
1

]])
[< subj >,<goal>] < su J >, < ac or >

11 ~[t1·ansitivity : int1·ans l V [11·ansitivity : trans l
actor : [per son : 3] goal : [pe1· son : 3]

11 mt
6
mbe[r· : si1btg .] V nubmbe[1· : plb l] .

su J : num e1· : smg StL J : num er : p

(4.5)

(4 .6)

Here, [< subj >,< goal >] indica tes an path equivalence, t hat is, the value of feature

subj is equal to the value of goal.

56

'l.'l. definition of the unconditional con junct s (user 's i nput)
ccl({voi ce/passive,trans/trans , subj/X ,goal/X}).
cc l ({voice/active, subj/X,actor/X}).
cc2({trans/intrans, actor/{person/thir d}}).
cc2({trans/trans, goal/{person/third}}) .
cc3({numb/s ing, subj/{numb/sing}}) .
cc3({numb/pl , subj/{numb/pl}}) .

'l.'l. Disjunctive Feature Structure unification (user's input)
~ U={rank/clause, subj/{case/nom}}, ccl(U) ,cc2 (U),cc3 (U) ,

U={subj/{lex/,person/second,numb/pl}}.

/.% answer: equivalent constraint
solution = cO(U_O, {subj/{case/nom}, rank/clause},

{subj/{person/second, numb/pl. lex/yall}})

'l.'l. definitions of a new predicate (cO)
cO(_pl, _pl, _pl) :- cc2(_p1) , cc l(_pl);

_pl={subj/{person/second, numb/pl, case/nom, lex/yall},
numb/pl. rank/clause}.

CPU time = 0.150 sec (Constraints Handling= 0.000 sec)

>:-cO(X,_,_). 'l. solve the new constraint
success. 'l. X is the final answer of the unification.

X = {voice/active, trans/trans, subj/{person/second,
numb/pl. case/nom, lex/yall}, goal/{person/third},
actor/{person/second, numb/pl. case/nom, lex/yall},
numb/pl, rank/clause};

This is a demonstration of a DFS unification using the constraint transformer. The first 7 lines

define disjunctions in (4.6) with user-defined predicates. In cu-Prologlll, a constraint that follows

"@" at the top level is transformed into modular one. In this case, it specifies the unification between

(4 .6) and (4 .5) . The constraint transformer returns an equivalent modular constraint and definition

clauses of newly defined predicates. The result of the unification, which is a non-disjunctive FS in

this case, is given as the binding of X in the last 3 lines.

Figure 4.1: DFS unifi cat ion

57

4.3 Processing JPSG in cu-Prolog

This sect ion demonst rates anothe r application of cu- Prolog: processing .J I'SC: (.J a panC's('

Phrase St ructure Grammar).

4.3.1 Constraint-based NL analysis

This section wil l show both i<'xica.l constraints and st ructural principles arC' uniformly

tr<"ated as constrain ts in C HCs of cu-Prolog. Moreover, const raints arc accumulated to

reduce the va lue range of vari ab les. In ot her words, a disambiguation process is auto

mat icall y reali zed by con straint transformation. This gives a picture of constmint-based

nallLml language analysis.

Most traditional a pproaches, on t he other hand , a re procedural and backtrack-based.

That is, a parser returns a n answer , then backtracks to search another answer. Also,

phonological, syntactic, semanti c, and pragmat ic processes are ap plied , one by one.

4.3.2 JPSG Parsing in cu-Prolog

Using DCG [PWSO}, CFG parsing is essentia lly realized as a. following simple Prolog

program.

parse(SO,Sl, Cat) ·- lexicon(SO,Sl,Cat) .

parse(SO,S l,Cat) parse(SO,S2,Catl) ,parse(S2,Sl,Cat2),

psr(Catl ,Cat2,Cat).

Here, SO , Sl, and S2 represent strings. parse(SO ,Sl ,Cat) means that Sl is a last

part of SO and the string which subtracts Sl from SO is parsed to be a category Cat . The

coding sty le is call ed a di.ffe,·ence list because a parsed st ring is represented as a difference

of two strings.

Let Cat, Catl , and Cat2 be categories. The fir st clause looks up a dictionary entry

that is defined as lexicon/3. T he second clause means that the string SO - Sl comprises

a category Cat, when its subst ring SO - S2 is a category Catl , and the other su bst ring

S2 - Sl comprises Cat2, and t here is a phrase structure psr/3 whose mother is Cat a nd

their daughters are Cat 1 and Cat2 .

ln constraint-based grammar formali sms such as J PSG and H PSG, constraints are

stored in var ious places. For example, lex ical entries are equipped with lex ical constrain ts,

and the relat ions among categories of local phrase structure are given as st ructural con

st raints. T hese constraints are implemented in Prolog as follows.

5

parse(SO,Sl,Cat) lexicon(SO,Sl,Cat) ,

lexical_constraint (SO ,Sl ,Cat).

parse(SO,Sl,Cat) : - parse(SO,S2,Catl) ,parse(S2 ,S l,Cat2),

psr(Catl,Cat2,Cat).

psr(Mother,Left,Right) :- structure_constraint (Mother,Left,Right).

Above program , however , has several defects ma inly because the processing order of Prolog

is fixed as mentioned in Section 3.2.

In cu-P rolog, on t he other ha nd , those const ra ints are encoded as usN-defined Prolog

pred icates. He re, CFG parsing is encoded in the Pro log part of a C II C a nd on ly const raints

are encoded in t he constraint part.

parse(SO,Sl,Cat) lexicon(SO,Sl,Cat);

lexical_constraint(SO,Sl,Cat) .

parse(SO,Sl,Cat) : - parse(SO,S2,Catl) ,parse(S2 ,Sl,Cat2),

psr(Catl,Cat2,Cat);

structure_constraint(Catl,Cat2,Cat).

lexicaLconstraint/3 and structure_constraint/3 are constrai nt predicates pro

cessed with the constraint so lver.

Appendix B illustrates a. HPSG pa rser a nd a J PSG parser in cu- Prolog. In eit her

program , constraints are embedded in a left co rne r C FG parser program. A left co rner

parser pa rses a string from left to right. It is implemented as a Prolog program listed

below . (Figure 4.2)

parse(SO , S2,Cat) : - lexicon(SO,Sl,LC),

parsel(LC ,Sl,S2,Cat).

'l. lookup leftmost category

parsel(C,S,S,C).

parsel(LC,SO,S2,Cat) : -

psr(LC,RC ,MC), parse(SO,Sl,RC),

parse1(MC,S1,S2 , Cat).

'l. LC follo wed by (SO,S2) is parsed as Cat

parse1(LC,S1,S2,Cat) means the substring S1 - S2 that follow s a category LC is parsed

to be a category Cat.

Bes ides the above parser program, lex ica l constraints and structural principles can be

embedded in psr /3 and lexicon/ 3 as follows.

59

phrase
structure
rule

Cat
'\

I \
I \

t- --... MC I \ +
constraint --/.""' LC RC \

/~L'
lexicon

+
constraint

= / so 81

Figure 4.2: Left corner parser

lexicon(SO,Sl,Cat) : - dictionary(SO,Sl , C);

lexical_constraint(C,Cat).

psr(D,Head,Mother);

sc_p(D,Head , Mother),

head_p(Head,Mother),

ph_p(D,Head,Mother).

8 2

Although const raints are sto red 111 various places , they are uniformly solved with the

const raint solver in a deri vat ion path of CHC. Constraints imposed on a variab le are ac

cumulated and solved to decrease t he value range of the variab le. Namely, disambiguat ion

process is automatically realized as a const raint transformat ion of cu-Prolog.

Following two subsections di scuss two top ics of t he J PSG parser in cu-Prolog.

4.3 .3 Encoding Lexical Ambiguity

As an example of the usage of DFSs, consider dict ionary entries of homonyms or polysemic

words. If an ambiguous word is stored into mul t iple lex ica l entries, the parsing process

may be inefficien t in that it sometimes backtracks to consult the lex icon. In constraint

based LP, such ambiguity is packed as a lex ical const raint .

Below is a sample lexical entry of a Japanese auxiliary verb "reru." "reru" follows a

verb whose inflection type is vs or vsl. If the adjacent verb is transitive, "reru" indicates

plain passive. 2 If the adjacent verb is intransitive, "reru" ind icates affective passive a

2 For example, "l(en ga Naomi ni ai-sa-rcru" (I<en is loved by Naomi .)
3 For example, u l~ en ga ame ni ru- ra- reru" (!(en is affected by the rain.)

60

Thes<' combinations are represented by adding constraints reru_form/1 and reru_sem/4

to a lexical entry as follows.

%'1. lexical entry of ' 'reru' ,

seclex(reru,{sc/SC, sem/Sem, adjacent/{pos/v,infl/Inf,sc/VSC,sem/VSem}});

reru_form(Inf), 'l. inflection

reru_sem(VSC,VSem,SC,Sem). 'l. combination of subcat and sem

'l. (constraints)

%%%%%% definition of constraints 'l.'l.'l.'l.'l.'l.

reru_form(vs). 'l. inflection type of the adjacent verb

refu_form(vsl).

% constraint for intransitive (affective) passive

reru_sem([{form/ga,sem/Sbj}] ,Sem,[{form/ga,sem/A},

{form/ ni,sem/Sbj}] ,affected(A,Sem)).

% constraint for transitive (normal) passive

reru_sem([{form/ga,sem/Sbj},{form/wo,sem/Obj}] ,Sem,

[{form/ga,sem/Obj},{form/ni,sem/Sbj}] ,Sem).

reru_form(Inf) defines the value range of inflection type of the adjacent verb.

reru_sem(VSC, VSem, SC, Sem) defines relations among subcategori zaLion of the adjacent

verb VSC, semantics of the adjacent verb VSem, subcategorizat ion of "reru" SC, and se

mantics of "reru" Sem.

This lexical entry corresponds to the follow ing D FS.

adjc : [sc : ([pos : ga , sem : 51])]
sem: Semi

sc : j [form : ga] , [form : ni])
\ sem : A sem : 51

sem: affected(A ,Seml)

d [
sc : ([pos : ga , sem : 52], [pos : wo, sem : 02])]

a jc:
sem: Sem2

sc : ([~~~l :9~2] ' [~~~l n~2])

sem: Sem2

adjc:
[

]JOS : V]

in.fl: {vs1,vs2}

61

Although the lexical ent ry is ambiguous, many kinds of constraints arc automatically

accumulatf'd to be so lved during parsing.

4.3.4 Encoding Struct ural Principle

As mentioned in Sect ion 2.2, st ructural pri nciples of J PSG and HPSG are relat ions among

feature structures in a local phrase structure. As show n in Subsect ion 4.3. 1, structure

pri nciples a re encoded as const raints in a ph rase st ructure ru le as :

ps1·(M , D, 1-1); sp1(M , D, 1-1), ... ,sp,(M, D, H).

ll ere, psr/3 is a phrase structure rule a nd each sp; (i = l ... n) indicates a st ructure

pri nciple.

In cu-Pro log, t hese st ructural principles a re evaluated fl ex ibly wit h heu rist ics. A

Prolog program equi valent to the above phrase st ruct ure rule is represented as:

psr(M, D, H) :- sp1(M, D, H), .. . ,spn(M , D, H).

Each pri nciple is, however, a lways evaluated sequent ia lly (from left to right). Prolog,

therefore, is not well sui ted for processing const rain t- based gramma rs because it is impos

sible to st ipulate in advance which linguist ic const ra int is processed, and in what order.

Consider st ructural principles of JPSG explained in Subsect ion 2.3 .3. T he head feature

pr inciple is represented as constrain t hfp(M, D, 1-1) defined a.s below.

hfp({core/ H} , _, { c01·ej H}). (4.7)

T he subcat feature pr inciple is realized as constraint s fp (M, D, H) with t he following

definition.

s.fp({subcat j MS}, D, {subcat j HS}) : -union(M S, D, H S) . (4 .8)

T he foot feature principle is encoded a.s const rain t f fp (M , D, J-1) defined as follows.

J f p({s lash/ M S L }, {slash/ DS L} , {s lash/ HS L}) : -union(DS L, H S L, M S L).(4.9)

4.3. 5 Example

T he author illust ra tes an example of t he J PSG parser implemented on cu-Prolog lll t hat

parses am biguous J apanese sentences.

For a n a mbiguous sentence, the parser returns the corresponding feature st ructu re with

rema ining const raints. The a mbigui ty of the sentence is stored in t he defin ition clauses

62

of re111aining const rain ts. By evaluat ing t he const raints, we can sec how ambiguous the

senten ce is.

Figure 4.:3 shows a parse tree of a sentence (4). The parse r return s a parse tree followed

by a top feat ure st ructure and remaining constraints. Sentence (4) is not a111b iguous, so

the top category does not have const raints on t he sem feature in the Figure. '1

(4) 1\en-ga Naomi-wo a i-suru.
1\en-N OM Noami- love-PRES
' 1\en loves Naomi. '

On t he other hand , sentence (·5) is ambiguous such as ·' [(en-ga (someone wo) ai-suru"

and "Ken ga a i-suru (someone)" (relative clause).

(5) I< en-ga a1-suru.
I< en-N OM love- PRES
' Ken loves (someone). ' or ' (Someone) whom Ken loves'

Figure 4.4 shows a parsing result of (5). The to p feature st ructure st ill has remaining

constraint c31/10 after parsing. The ambiguity of the sentence is automaticall y packed

as a definition of c31. By solving c31 , we can see the content. Here, there are two

results. The ambigui ty comes from a constrain t to share elements between a subcat

feature and a slas h feature, attached as a part of a lex ical rule. In the JPSG parser

program (Appendi x B) , the constraint is implemented as sc_sLmove/3.

4.4 CFG parsing as constraint transformation

ln the JP SG parser explained in Sect ion 4.3, CFG parsing was im plemented in the Prolog

part of CHCs for efficiency. Consequently, the parser can not handle ambiguity on syn

tactic parse trees 5 because the parsing a lgorithm is written proced urally in the Prolog

part of CHCs.

This section introduces an experimental extension of the const rain t transformation

of cu- Prolog, called Dependency Propagat ion (DP) [Tl-190, Has9l, Has90] which regards

const raint t ransformation as computation . As an example of DP, a simple CFG is parsed

only with const raint t ransformation . The content of this sect ion is a cooperat ive work

with l<oiti l-!as ida[TH90].

4 A small lex ical constraint about. the form of the sentence remains as syu_ren(Form) .
5 For example, the ambiguity in "I saw a man with a te lescope". The ambiguity is called slructur·al

ambigt~~ty[Cry 97].

63

tsuda#icot21[5]'l. cup3 j4.p 'l.'l. Start cu-Prolog with JPSG parser

***** cu - Prolog III *****
Copyright: Institute for New Generation Com~:mter Technology, Japan 1989-91
in Cooperation with SIRAICisccs. chukyo-u. ac. JP
M-solvable mode (help -> 'l.h)

'!.'!.'!.'!."!. Example!. ' 'Ken-ga Naomi -wo ai -suru 1 1 (Ken loves Naomi.) '!.%'!.'!.'!.'!.
_: -p([ken ,ga,naomi, wo ,ai, suru]). '!.!. Input

'!.'!. The parser returns the parse tree.
{sern/[love,ken,naorni], core/{forrn/Forrn_3670, pos/v}, sc/[], refl/[J,

slash/[], psl/[J, ajn/[], ajc/[)}---[suff_p]
I
1--{sern/[love,ken,naorni], core/{forrn/vs2, pos/v}, sc/[J, refl /[],

slash/[], psl/[], ajn/[], ajc/[)}---[subcat_p]
I
1--{sern/ken, core/{forrn/ga, pos/p}, sc/[J. refl/[], slash/[],

psl/[], ajn/[], ajc/[)}---[adjacent_p]
I
1-- {sern/ken, core/{form/n, pos/n}, sc/ [] , refl/ [] , slash/[] ,

psl/[], ajn/[], ajc/[)}---[ken]
I
I __ {sern/ken, core/{forrn/ga, pos/p}, sc/ [] , refl/ [] , slash/[] ,

psl/[J, ajn/[], ajc/[{sern/ken, core/{pos/n}, sc/[],
refl/ReflAC_140}] }--- [ga]

I
I
I

I
I __ {semi [love, ken, naomi] , core/{form/vs2, pos/v},

sc/ [{sem/ken, core/{forrn/ga, pos/p}}] ,
refl / [], slash/[], psl/[], ajn/0, ajc/[J}---[subcat_p]
I
1--{sern/ naomi, core/{form/wo, pos/p}, sci[] , refl/ [] ,

slash/[], psl/[], ajn/[], ajc/[]}---[adjacent_p]
I

I

1--{sern/naomi, core/{form/n, pos/n}, sc/[], refl/[],
slash/[], psl/[J, ajn/[], ajc/[J}---[naomi]

I __ {sern/naomi, core/{form/wo, pos/p}, sci[], refl/ [],
psl/[], ajn/[J, ajc/[{sern/naomi, core/{pos/n},
sci[] , refl/ReflAC_960}]}--- [wo]

I __ {sem/ [love ,ken, naomi] , core/{form/vs2, pos/v}}--- [ai]

I __ {sem/ [love ,ken, naomi] , core/{form/Form_3670, pos/v}, sc/ [] ,
refl/[], slash/[], psl/[J, ajn/[J , ajc/[{sem/[love,ken,naomi],
core/{form/vs2, pos/v}, sci[], refl/ReflAC_3702})}---[suru]

category= {sem/ [love ,ken, naomi] , core/{form/Form_3670, pos/v},

slash/[],

sc/[], refl/[], slash/[], psl/[], ajn/[], ajc/[]} 'l.'l. Top feature structure

constraint= syu_ren(Form_3670) '!.'!. Remaining constraints

true .
CPU time = 0 750 sec
19'l.(program) 6'l.(pst/const) 12'l.(string)

Figure 4.3: The parsing of "Ken ga Naomi-wo ai-suru."

64

Y.Y.Y.Y.Y. Exarnple2 . ' 'Ken-ga ai - suru' ' (Ken loves) . '1.'/.Y.'l.'l.
_:-p([ken, ga ,ai , suru]). 'l.Y. Input

{semi [love, Sbj _394, Obj _396] , core/{forrn/Forrn_1056, pos/v}, sc/Msc_1128,
r efl/Href_1130, slash/Hsl_1132, psl/[], ajn/[], ajc/0}---[suff _p]

1--{sern/ [love, Sbj _394, Ob j_396] , core/{form/vs2, pos/v}, sc/Csc_1102,
refl/Cref_1104, slash/Csl_1106, psl/[], ajn/[], ajc/0}---[subcat_p]

I
1--{sem/ken, core/{forrn/ga, pos/p}, sc/ [], refl/ [], slash/[] ,

psl/ [], ajn/[], ajc/[]}---[adjacent_p]

1--{sem/ ken, core/{forrn/n, pos / n}, sc/[], refl/[], slash/[],
psl/[], ajn/[], ajc/[]}---[ken]

l __ {sern/ken, core/{form/ga , pos/p}, sc/[], refl/[] , slash/[],
psl/[], ajn/[], ajc/[{sem/ken, core/{pos/n}, sc/[],
refl/ReflAC_140}] }--- [ga]

l _ _{sem/ [love, Sbj _394, Obj _396] , core/{form/vs2, pos/v }}--- [ai]

I __ {sern/ [love ,Sbj_394,0bj _396], core/{form/Form_1056, pos/v}, sc/ [],
refl / [], slash/[], psl/[], ajn/0, ajc/[{sem/[love,Sbj_394,0bj_396],
core/{form/vs2, pos /v}, sci[] , refl/ReflAC_1116}]}--- [suru]

category; {sern/ [love, Sbj_394, Obj_396] , core/{form/Form_1056, pos/v},
sc/Hsc_1128, refl / Href_11 30 , slash/Hsl_1132, psl/[], ajn/[], ajc/[]}

constraint; c31(Cref_1104, Href_1130, Csl_1106, Hsl_11 32 , Cs c_1 102,
Hsc_1128, Obj_396, Sbj_394, HC_222, Hsl_226) ,syu_ren(Forrn_1056)

true .
CPU time ; 0. 367 sec
20'l.(program) 2'l.(pst/const) 13'/.(string)
'l.X solve remaining constraints of the top structure (c31)
:-c31(,Refl,_,Slash,_,sc,obj ,Sbj ,_,_).

Refl ; [] Slash ; [] SC ; [{sern/ V0_36, core/{form/wo, pos / p}}]
Obj = V0_36 Sbj = ken; %% First solution: subcat remains.

Refl ; [] Slash ; [{sem/V3_58}] SC ; [] Obj ; V3_58 Sbj ; ken;

XX Second solution: One element moves from subcat to slash.
no .
CPU time ; 0.050 sec
20'l.(program) 0'/.(pst/const) 13'/.(string)

Figure 4.4: The pa rsing of "Ken ga ai-suru."

65

4.4.1 Dependency

A triggc r of constraint transformation is a dcpc ndcncy among li terals. 1\ va ri ablr o<·cur ring

in more than one di stinct non-vacuous pi arcs in a clause has dcpcndr ncy. When an

argument place of a. predicate is a variable in a ll of its definition clnnses, Lhe argument

pla ce is ca.\ led a vac·tw·us al'!Jitlllcnl place explained in Subsection :3.5.1. For example , the

fi rst argument place of member defined below is vacuous.

member(E, [EI_]).

member(E,[_ IS]) :- member(E,S).

Variables in vacuous argument places arc represented with # a.s follows.

member(X#,Y), cO(X,Z)

In the above, though variable X occurs in two places, there is no dependen cy because the

fir st X is vacuous.

4.4.2 Trans-clausal variable

Tmns-clausal va1·iables correspond to global variables of many programming languages.

They are treated as if they were constants in some context. 'Ne put * in front of a

trans-clausal variable as follow s.

:-vp(*VO,B),*VO=[see i*Vl] ,*vl=[a,mani*V2].

Constrain t transformation is executed so as to eliminate dependency of goal clauses

or a body of program clauses, therefore is more general than Earley deduction [PW83]

wh ich executes the body of each clause in the fixed left-to-right order.

4.4.3 Penetration

To process vacuous variables and trans-clausal variables , we introduce two penetmtion

operation in addition to the unfold / fold transformation.

DownwaTd penetmtion is to replace a litera l that contains trans-clausal variables with

a new literal that contains no trans-clausal variable. The operation is a combination of

definition and unfolding. For example,

:-p(*VO ,B),*VO=[ai*Vl].

p([aiX] , X) .

p(X,Z):-p(X,Y),p(Y,Z).

66

Table 4.2: Simple ambiguous ('F(: grammar

liP -) II N P

liP -) liP PP

NP -) NP PP

v -) 'see'

NP -) }a n1an'

pp -) 'w ith a telescope'

are transformed to the following clauses. p0/1 is a new predicate and pO(B) is equiv

alent to p(*VO,B). The dependency concerning *VO in the first goal is dissolved.

:-pO(B),*VO=[ai*V1].

pO(*V1).

pO(Z):-p(*VO ,Y),p(Y,Z).

Upward penetmtion is to reduce a unit clause contain ing trans-clausal variables so as

to change some argument places to begin vacuous. For example, let

pO(*V1).

pO(Z):-pO(Y),p(Y,Z).

be all the clauses that define p0/1. The argument place of pO is not vacuous because the

trans-clausal variable *V1 in the first clause is considered as a constant.

By replacing pO(*V1) with a new predicate p1/0, they are transformed to following

clauses.

p1.

pO(Z):-p1,p(*V1,Z).

pO(Z):-pO(Y#),p(Y,Z) .

Then t he argument place of pO becomes vacuous.

4.4.4 Parsing an ambiguous CFG

Let us consider a simple ambiguous context-free grammar in Table 4.2. This grammar

produces structural ambiguity of the PP attachment in " I sec a man with a telescope."

Parsing program in terms of this grammar can be formulated as follows.

67

(CO) *VO=[seei*Vl],
*Vl= [a,man I *V2],
*V2=[with,a,telescopei*V3],
*V3=NIL

(Cl) :-vp (*VO,B).
(C2) v ([see I W] , W) .
(C3) np([a,maniW] ,W).
(C4) pp([with,a,telescopeiW] ,W).
(C5) vp(X,Z):-v(X,Y#),np(Y,Z).
(C6) vp(X,Z):-vp(X,Y#),pp(Y,Z).
(C7) np(X,Z):-np(X,Y#),pp(Y,Z).

There is on ly one de pendency to be elimin~ ted: *VO in (Cl). II ere, we introduce a

new predicate vpO as vpO(V) = vp(*VO, V). By downward pe net ration, (C l) is rep laced

with the following clauses.

(Cl') :-vpO(B).
(C8) vpO(V):-vp(*VO,Y),pp(Y,V).
(C9) vpO(V):-v(*VO,Y),np(Y,V).

By folding the first literal in the body of (C8) , we have

(C8') vpO(V):-vpO(Y),pp(Y,V).

Nex t , we process the dependency concerning *VO 111 t he body of (C9). Let

vO(V)=v(*VO, Y) and by downward penet rat ion , we get

(C9') vpO(V):-vO(Y),np(Y,V) .
(ClO) vO(*Vl).

As vO has only one definition clause (ClO), the n it is reduced.

(C9') vpO(V) :-np(*Vl,V).

Let npl(V)=np(*Vl,V) and by downward penetration ,

(C9") vpO(V): -npl(V).
(Cll) npl(*V2).
(C12) npl(V):-np(*Vl,Y),pp(Y,V).

Fold the first literal of the body of (Cl2) , then

(C12') npl(V) :-npl(Y),pp(Y,V).

The argument place of npl is not vacuous, then we appl y downwa rd penetration to

npl. Here, np12=npl (*V2).

68

(C11') np12.
(C13) npl(V) :-np12,pp(*V2,V).
(C12') npl(V) :-npl(Y) ,pp (Y,V).

W<' have to consider the depe ndency o[t h<' second literal or til<' bod,· o[(C13). lkr<',

let pp2(V)=pp(*V2,V).

(C13') npl(V) :-np12,pp2(V).
(C14) pp2(*V3).

pp2 has only one definition. t hen is reduced.

(C13") np1(*V3).

The remaining definition or npO is (C11') and (C13"). Then (C9") is reduced.

(C9-1) vp0(*V2).
(C9-2) vp0(*V3).

Apply upward penetration to (CB') , (C9-1), and (C9-2) introducing a new predicate

as vp02=vpO(*V2) and vp03=vpO(*V3) , then the definition or vpO becomes as [allows:

vp02.
vp03.
vp0(V):-vp02 ,pp(*V2,V) .
vpO(V):-vp03,pp(*V3,V) .
vpO(V): - vpO(Y),pp(Y ,V).

Pinally, it is trans[ormed to

vp02.
vp03.
vp03.
vpO(V):-vpO(Y),pp(Y,V).

The two occurrences of vp03 correspond to the two meanings o[" I see a man with a

telescope" .

4.4.5 Complexity

This subsection reviews t he complexity or parsing on const rain t trans[ormation. (4. 10-

4.11) is a simple CFG example mentioned in [Has90].

p --+ a

p --+ pp

69

(4.10)

(4 .11)

Parsing the st ring '·aa .. a"(length is n) undt>r this grammar !llay lw formulated in terms

of a st>t of const raints (4.12- 4. 14).

p([aJX],X).

p(X, Z) : -p(X , \ ·), p() ·, Z).

After some transformation steps, (4.15 4.21) is finall y obtained.

: - q, AD= [alA 1], ···,An- I = [alA"].

q: -pD(BD).

q: -]JD,i, BD = A;_(O < i :S n)

p;(Z): -p;,1, p1(Z).(O :S i < j < n)

p;(Z): - p;(Y) , p(Y, Z).(O :S i < n)

Pi,i+ l-(0 :S i < n)

Pi,k : - p;,j, Pj,k-(0 :S i < j < k < n)

(4. 12)

(4. 1 :3)

(4.14)

(4 .15)

(4. 16)

(4. 17)

(4. 18)

(4. 19)

(4.20)

(4.21)

Clauses in (4.21) forms a well-formed su bst ring table, as in CYI\ algorithm, Earley's

algorithm [Ear70] , chart parser, tabu lat ion technique [TS86], and so on. Por instance, the

existence of clause Pi,k :- Pi,j, p1,k. means that the part of the given st ring from position

i to position k has been parsed as having category P and is subdivided at position j into

two parts , each having category P. Note that t he computational complex ity of the above

process is O(n3) in terms of both space and t ime .

.Moreover, the space complexity is reduced to O(n2) if we delete the li terals irrelevant

to instantiation of variab les, which preserves the semantics of the constraints in the case

of Horn programs. That is, the resulting structure wou ld be:

: -q, AD= [alA 1], • • · , An- l = [alA"] .

q: - pD(BD).

q: -BD = A;.(0 < i :S n)

p;(Z) : -p1(Z).(O :S i < j < n)

p;(Z): -p;(Y),p(Y, Z) .(O :S i < n)

Pi,j -(0 :S i < j < n)

70

(4 .22)

(4 .23)

(4.24)

(4.25)

(4.26)

(4 .27)

The process illustrated above corresponds best to Earlf'y's algor ithm. Our procPCiure

may b<' genera li zed to employ bottom-up cont rol. so that the resu lt ing process shou ld be

regarded as char t parsing. left-corner parsing, and so on.

4.4.6 Parsing CFG with feature structure as constraint trans
formation

This section tries to handle various types of constraints such as the constraints on feature

structure or on phrase structures mentioned in the previous two sect ion s. We have to

invest igate some heuristics to determine which constrain t is processed ea rlier than the

others.

Heuristics

In the following discussion, we consider only Horn clause const raint , and two types of

linguist ic const raint: const raint on feature st ru cture and on phrase st ructure.

Following is a heuri st ic used in this sect ion. This heu ri st ic guarantees that the com

putation takes place in such a way that it may be looked upon as phrase-structure com

putation an notated with constrain ts on featu re structu res as in the approach of Section 2,

just as people would like to regard parsing processes to be:

• A variable occurring in both types of constraint does not have dependency.

• Dependencies concerning feature structures should be eliminated earlier than those

concern ing phrase structures.

• Literals concerning phrase stru ctures shou ld be unfolded first when you attempt to

eliminate dependency between literals about phrase st ructures and literals about

feature st ructures .

Example

The program below is another formul at ion of the simple CFG (Table 4.2). We consider

on ly one feature called pos 6 that takes a part of speech such as np ,vp,pp,and so on . pos

feature follows the constraint that corresponds to the first three rules of Table 4.2:

The combination of the value of pos feature of mother , left daughter , and right

daughter category is (vp,n,np),(np,np,pp), or (vp,vp,pp).

6 It is different from pos feature of JPSG .

71

In til<' following, constra in ts concem ing phrase st ructure (predicate est) and those

cotK<'l'ning feature stru ctu re (predicate p) arc separated b,, ' I '. Let phrase structure

constrai nts and feature st ruct ure const ra ints hav<' no dcpcttdcncy.

(PO) *VO=[see i*V l] ,
*V1=[a,man i*V2],
*V2=[with,a , telescope i *V3],
*V3=NIL

(P l) :-p(*VO,B,C).
(P2) p(X,Z,Cat):-p(X,Y#,LC),p(Y,Z , RC)

cst(LC,RC ,Cat).
(P3) p([see iW],W,v).
(P4) p([a,maniW] ,W,np).
(P5) p([with,a,telescopeiW] ,W,pp).
(P6) cst(v ,np,vp).
(P7) cst(np,pp,np) .
(PB) cst(vp,pp,vp) .

The depe ndency to be processed is in t erms of *VO in (Pl) because LC a nd RC in (P2)

do not have dependencies . Process downwa rd penet ration. Here, pO (B, C) =p (*VO, B, C).

(Pl') :-pO(B,C).
(P9) pO(*Vl,v).
(P10) pO(B,C):-p(*VO,Y#,LC) ,p(Y,B,RC)

cst(LC,RC,C).

Fold the first litet'al of (P10).

(P10') pO(B,Cat):-pO(Y,LC),p(Y, B,RC)

cst(LC,RC,Cat).

Upwa rd penetration. Let p01=pO(*V1,v).

(P9) pOl.
(P11) pO(B,Cat) :-p01,p(*V1,B,RC) I

cst(v,RC,Cat).
(P10'') pO(B,Cat) :-pO(Y#,LC),p(Y,B,RC)

cst(LC,RC,Cat).

Un fold the feature const raint of (P11).

(P 11 ') pO(B,vp) : -p01,p(*V1,B,np) .

Downward penetration. Here, pl (B) =p(*Vl, B, np) .

(P11") pO(B,vp) : -p01,p1 (B).
(P12) p1(*V2).
(P13) pl(Z):-p(*Vl,Y,np),p(Y,Z,RC)

cst(np,RC,np) .

72

Unfold the feature constraint of (P13) and fold pl.

(P13') p1(Z) :-p1(Y) ,p(Y,Z,pp).

Upward pcnctra.tion . Let p12=p1(*V2).

(P12') p12.
(P14) p1(Z):-p12,p(*V2,Z,pp).
(P13') pl(Z):-p1(Y#),p(Y,Z,pp).
(P15) pO(*V2,vp):-p01,p12.

Oownwa.rd penetration p2(B) =p(*V2, Z, pp).

(P14') p1 (Z) : -p12, p2 (Z) .
(P16) p2(*V3).
(P17) p2(Z) :-p(*V2,Y,LC),p(Y,Z,RC)

cst(LC,RC,pp).

Unfold t he feature constraint of (P17) , however it fail s because there is no clause matching

cst(LC,RC,pp). p2/1 has only one definition (P16). p1/1 is reduced to be:

(P14") p1 (*V3) .

By upward penetration in t roducing p13=p1(*V3), (P11') and (P15) become

(P11-1) pO(*V3,vp) .

(P15') pO(*V2,vp).

(Pll-1) cor responds to one interpretation : "see (a man with a telescope)."

From (P15') let p02=p0 (*V2, vp) and apply upward penetration to (P10' ').

(P10-1) pO(B,Cat):-p02, p(*V2,B,RC) I cst(vp,RC,Cat).

Unfold the feature constraint of (P10-1).

(Pl0 - 2) pO(B,vp):-p02, p(*V2,B,pp).

It is finally becomes

(P10-3) pO(*V3,vp) .

and co rrespon ds to "(see a man) with a telescope."

Chapter 5

Quixote

5.1 Motivation

Natural language processing involves a very complex Oow of information that can not be

st ipul ated in terms of proced ural programming languages .n This requires some sort of

tool t hat enab les us to represent and to process this complexity.

cu- Prolog, explained in the previous cha pters, gives a framework to embody t his pic

tu re. cu-Prolog, however, does not have enough power to realize the context-based seman

tic structure of natural language, because it is declaratively equal to llorn-clause logic.

What is req uired then is a transaction mechanism of typed Jeatu1-e structuns[Car92b]

and situation-based representation of scmantics[BP83] , as well as constraint-based logical

inference.

In the FGCS project, t he author cont ributed to the Quixote project in its des ign and

implementat ion of const raint solving and its applicat ions to natural language processing.

Quixote is a general knowledge representat ion language based on logic programming. It

has a lso several useful features for natural language process ing. Corresponding to typed

feature st ructures, Quixote is equipped with sort hierarchy and at t ribute terms that stores

partial information. For a situation-based semantic descript ion, the module mechanism

of Quixote enables classified and context-dependent knowledge representat ion.

Remaining sect ions of this chapter explain Quixote from a logic programming view

point. at ural la nguage appl ications of Quixote are explained in the next chapter.

5.2 Introduction

The aim of t hi s cha pter is to explai n a nother knowledge representation language

Quixote[TY94, Yok94]. Qui xote is des igned as a hybrid language for a deductive object-

74

oriented database (DOOD[J-:NN89. Dl-:M91]) la nguage and a constraint logi<" program

ming (C LP) language based on subsumplion constr·aints. Quixote conrbirH'S ohj<'rt

oriental ion concepts such as obj<'cl identity a nd property inheritanc<', co nstrilint rPp

rC's<>ntal ion and process ing , and a med1an ism ca ll ed modnle to classi fy a la rge knowiNig<'

basc[YTY92, YY92, YTM93]. In addition, its logical inference system is <'xlcndcd to

rnakP hypothetica l reasoning and rPst ri cted a bduction. Such features play important

roles in a.pplicat ions such as legal reason ing, biological databases, a.rrcl natura l language

processing.

Sect ion 5.3 in t roduced basic language features o f Qui xote. Section 5.4 shows several

implementation issues mainly concern ing its constra in t solver.

5 .3 Quixote language

This sect ion introduces t he syntax and severa l basic knowledge representation fea tures of

Quixote from a logic-p rogramming point of view .

5.3.1 Object T erm

Quixote terms consist of:

• atom (bas ic object),

• variable ,

• (complex) object term, and

• set of object terms (set term) .

B asic obje ct term

[Def] 19 (Basic obj ec t t e rm) A basis object term or· basic object is an atom. Let B

r·epr-esent a set of basic objects. 0

Below is examples of basic objects .

mozm·t, per· son, piano, violin, instntment

75

Variab le and Label

[Def] 20 (Variab le) A va riable i.< eith er a si ngle value variabl<' or a set va lue var iable.

A .'inglr valu e variable (X E \1;) lakes all object t erm as i f.< valu(. On /h(other hand.

a .<rl value V(L'riable (X " E \1,} lakes a set t erm as its value. Ld \ · br a .,c f of variables.

where \1 = \1, U II, \1, n \1, = 0 o

[D ef] 21 (Label) A label is eith er a single value label or a set value label. A single

value label (l E L;) takes a non-set value, whereas a set value label (I" E L,) takes a set

term as its valu e (L,n L,=0). 1 0

Object term

Complex concepts composed of multiple basic objects, such as "opus 73 of Beethoven"

are represented with complex object t enns as:

op73[composer = beethoven]

where op73 is a basic object , composer· is a label, and beethoven is an object term as the

value.

An object term is defin ed as fo llows .

[Def] 22 (Object term) An object term is a tenn of the following fonn.

Her·e, let o E B , 1~, · · · , ln E L, wher·e l; # l; (i # j) , and t 1 , · ·, t,. be object t er·ms or·

var·iables (E V;). Let 0 represent a set of object terms. 0

In the a bove definition , when n = 0, t he object term is wri tten as o, namely an bas ic

object term, instead of o[].

For example,

mozar·t

male[occupation= pianist]

are object terms. When n > 0, object terms are called complex object ter·rns. An object

term with variab les is called a par·ametric object term. A variab le- free object term is

called a gr·ound object term .

The label-value pairs of a complex object term are called intrinsic pr·operlies of t he

object . Un li ke attribute terms (expla ined later in 5.3.3), on ly = is a llowed as operators

of complex object terms.

11n Quixote system, a set label is an atom fo llowed by *,such as instruments• .

76

[Def] 23 (Set term) A set term is a set of gronnd (ua riable-frcc} objccl term.<. 0

For example following terms are set t!'rms.

{piano, violin }

{mozal"l, beethoven}

[Def] 24 (Canonical form of set term) A .<e/ term S is canon ica l when · satisfies

the following condition.

• \fe l ,e2 E S(el # e2), el If: e2,e2 If: e l

0

Here, I; is a su bsumption relation between terms explained later in the next subsection .

Por example, a set term {int, 1} is not canonical because 1 I; int. The canonical form of

the set is {int}.

Computing the canonical form of given set termS is to repeat the following procedure

until there is no change.

If there are two different element el a nd e2 in Sand el I; e2, remove e l from

s.

5.3.2 Subsumption Relation

Partial relation between basic objects

Initially Quixote programmers give partial relation s :::5 between basic object terms in a

program. The relation corresponds to "!SA" relation or "A-KIND-OF (AKO)" relation.

For example,

mozar-t :::5 pe•·son ,
piano :::5 instntment , violin :::5 instrument

illustrate relations between concepts such as "Mozart is a person,", "violin is a kind of

inst rument" and "piano is a kind of in strument." For simplicity, we assume that :::5 is a

st rict order without circularity. A complete latt ice can be constructed from :::5 relations

among basic objects. 2

2 1n constructing the lattice, Quixote sometirnes assumes intermediate nodes. For example, when the
user defin es c ~ a, c :::5 b, d :::5 a , d :::5 b, Quixote assumes a new atom lmp that meets the relat ion
c :::5 tm.p , d ~ tmp, tmp ~a, tmp :::5 b.

77

Subs umption relation b etween object terms

A partial relation :::S among basic object l<·rms is <'Xt<' nckd to a .,ub.<IIIIIJ!Iion nlal1on E;;

among object terms as fo llows:

[Def] 25 (S ubsumpt ion R e lat ion) Given lwo ground comple.r objcc//(l'm.< II = o[/ 1 =

l l , ···,ln=ln] andl2=o'[l'1 = l'1 , ··· ,l~11 =1:,J.
t2 su bsumes tl (wrillen as t I E;; t2) when th e following condition hoh/8.

o :::S o' and Vlj, 31; I; = lj A t, E;; tj ,

where l ~ j ~ m and I ~ i ~ n . 0

Example 6 Subsumption Relations

Following subsumption relations hold , if male E;; pe1·son and pianist E;; mtts,cwn are

in itially defined.

apple[color= g1·een] E;; apple
male(age= 30, occupation= pianist]

E;; person[occttpation=mttsician]

Let T and l. be special basic objects defined as :

VoEO,oi;;;T,J..i;;;o.

Subsumption relation between set t e rms

The subsumption relat ion is extended to be a relation among set terms.

[Def] 26 (Subsumption rela tion b etween set s) Given two set terms, 5 1

{o~,··· , on} and Sz = {o~,··· , o~}.

0

52 subsumes 5 1 (written as 5 1 !;;;11 52), when the following condition hold , which is

called Hoare orde1·ing.

0

78

When r;;: int, 2 r;;: int, a nd so on '""" defined, the following subsumpl ion r<'iations

hold.

{1,2,:3} r;;: /1 {1 , 2,:3,4,5}
{1 ,2,:3} r;;: 11 {int}

Generall y, ll oare ordering is not a part ial order between scL terms. For <'Xample, both

{l,int} r;;: 11 {2,int} and {2,int} r;;: 11 {l,int} holds although {l.inl} and {2,inl} are

different. However, t he ordering becomes a par t ial order for canonica l set t<·rms. {int} is

the ca non ica l form of both {l,int} and {2 ,int}. So we assume without loss of generali ty

that r;;:H is a partial order for Qui xote set terms.

When t; r;;:H t; 1\ t; ;;) 11 t;, we denote t; ~ 11 t;.

Comments on set ordering

In t he current design of Quixote lang uage, we use Hoare orderi ng (r;;:/1) between set

terms. As a subsumption ordering between set terms, however, Smyth ordering can also

be considered. Smyth ordering r;;:,m between set terms is defined as:

For Smyth ordering, however, the procedure to calculate the canonical set must be:

If there a re two d ifferen t element el , e2 E So and e l r;;: e2, remove e2 from S0 .

For example, the canonical form of { 1, int} is {1} for Smyth ordering. 3

Lattice, meet, and join

Since latti ce const ruction procedure from a partially ordered set is a well known process,

we assume that a set of object terms 0 (without variables) with T and ..L. can become a

latti ce (0 , r;;:, T, ..L.) without loss of generali ty.

The meet and join operat ions of object terms OJ and o2 are denoted by OJ .j_ o2 (meet)

and OJ t o2 (join), respectively:

o[l1 = t.,· ··,m1 = u~,·· ·] ~ p(nt1 = v 1,·· · ,n 1 = tvt,· · ·}

q[IJ = tJ , ··· ,m J = UJ .j_vJ, ··· , n J = WJ,···].
o[l 1 =t~,· · · , »1.t =u~,· · ·]tp[nl 1 =v1, ··· , n 1 =Wt,···,]

7·[mJ = tlJ t VJ, .. -].

where q = o .j_ p and r = o t p.

3 From personal discussions with l(eiji Hirala and l{o Sakai .

79

Set terms constitute another lattice. Given two set terms, S 1 a nd S2 • we ca n define

nwd a nd join operations (lJ. a nd ft . respect ive ly) under !!oar<' ordPr as fo ll ows:

S', lJ. S'2 d~ canoni cal form of {c1 t c1 [c1 E S,. <1 E S,)

S , 1t 52 d~ canoni cal fonn of S 1 US',

where {T} is the top of th e lattice and (} is the bottom.

Example 7 Meet a nd .Join

When male E;; pe1·son , 1 E;; int , a nd so on are defi ned. the following meet and join

opera tions hold.

pe1·son[age = 30] t male [occttpation = pianis t} =
male[age = 30, occupation = pianist},

pe1·son[age = 30] t male[occupation = pianis t} =
pe1·son

{1,2,3} lJ. {2,3 , 4} = {2 , 3}
{6,7,8} lJ. {int} = {6, 7,8}
{1, 2,3} lt {2,3,4} = {1 , 2, 3, 4}
{6 , 7,8} 1t {int} = {int}

5.3.3 Subsumption Constraint and Attribute T erm

0

Objects (object terms) in Qui xote can ha ve various attributes. The attribute specification

is represented in the form of attribu te terms or subsumption constraints.

Attribute term

Attribute terms define a way of att ribu te specificat ion of object terms.

[Def) 27 (Attribute Term) An attribute term is a tenn of th e following form

Her e, let o E 8 , 11, • • · , ln E L; U L, whe1·e l; # lj (i # j }, and t 1 , • · · , tn be object t e1·ms

o1· va1·iables , op; E {--+ , +-, = }(fo1· single value) U {--+ H , +-H , =H} (fo• · set value). 0

The att ribu te-value pairs specified in the right side of / are called ext1·insic 7n·ope1'lies.

Do not confuse extrinsic properties with intrinsic properties wh ich are attribute-value

pairs within complex object terms (See 5.3.1).

For a n attribute term of a complex object term, intrinsic propert ies a re also ext ri nsic

properties. That is,

so

is equivalent to

When there is a same label for intrinsic a nd extr in sic properties, intrinsic properties

override ext rin sic properties. That is, below all ribute term

is equ ivalent to

o[· · , l = t" · · ·] /[l = td.

An attr ibu te term is equivalent to an object term with subsumption constraints. The

transformation is explained in 5.3.3.

Example 8 The first line represents an object moza1'l which has two ext rinsic prop

erties about birth and dead. The second line shows a complex object whose type is a kind

of symphony and no is 9. In the latter case, compose1· is an intrinsic att ribute.

mozm·tj[bi1·th = 1756, dead= 1791]
op125[compose!· = beethoven]j[type --7 symphony, no= 9]

0

Dotted term

[Def] 28 (Dotted Term) A dotted tenn is a term of the form o.l or o.t· which specifies

the value of a label of an object.

The value of a single value Labell of an object tenn o is 1·ep1·esented as o.l, and the

value of a set value Iabell* is o.l*. 0

For example, a dotted term mozart.firsLname corresponds to "Mozart 's first name."

Subsumption constraint

The knowledge such as "the first name of Mozart is Amadeus" , can be represented as

a constraint between a dotted term (such as moza1'i.first.name) and an object term

(amadeus). The constraint is a subsumption constmint defined as follows.

81

[Def] 29 (S ubsumption Constrain t) Lett, t2 be objec/ terms, single value variables,

or rio/led lerms with single value labels, then t 1 ~ t 2 is a subsumplion constraint.

In the case of a set, ift j and t; a1·e set tenns, set value variables, or dolled terms with

sel value labels, then tj ~11 t; is also a (set) subsumption constraint. 0

F'or example, "the first name of Mozart is Amadeus·· is a subsumption constraint

mo=w·t..fi,·st_name"""' amadeus, which is equivalent to

moza7'L .fiTsLname ~amadeus II mozaTt.ji1·sLnam e::;) amadeus .

The semantics of Quixote is outlined in the following three parts (see [YY90] for

details).

(1) An object term is mapped in to a lab eled gmph as a subclass of a hyperset[Acz88].

(2) The subsumption relation among object terms corresponds to a bisimulation 1·elation

among labeled graphs.

(3) A label or an object term used as a label corresponds to a funct ion on a set of

labeled graphs. Here tbe subsumption relat ion among labels is not considered.

Solving subsumption constraints

Solving a set of subsumption constraints is to apply the following rules unt il the set is

satu rated. Constraints of the right hand side are added from those of the left hand side.

x::;)y => y~x

X~ y, y~z => x~z
X~ y, x~z => x ~ (y .j. z)
y ~ x, z~x => (ytz)~x
X~ y, y"""' z => x~z
X~ y, y~x => x"""'y

o[· · ·] ~ o' => o ~ o'
o[· · · , l =x,· · ·] ~ o'[· · · ,l=y, · · ·] => o ~ o' ,x ~ y
o[· · ·, l= x, · · ·] """'o'[· · · ,/=y, · · ·] => o~o',x~ y

where x ~ x and x """' x are removed in the procedure. When a """' b occurs for different

basic objects a and b in t he process, the const raint solving fail s. The termination and

con fluency of the above rules are proved in [Muk90] . Similar rules are also defined for set

constraints. See Section 5.4.1 for detail.

Example 9 Subsumption constrain t solvi ng

When c ~a and c ~bare defined, subsumption constraints {x ~ a,x ~ b,y ~ x,c ~ y}
derive {x"""' c,y """'c}. 0

82

Attribute term and subsumption constraint

The following rules transform an att ribu tC' term into an object term with subsumption

const ra ints. oJC represents an object term with constra ints where o is a n object term and

Cis a set of subsumpt ion constraints.

oj[l-+ t]JC ¢==:> oJ{o.l [:::: t} U C
oj[l t- t] JC ¢==:> o]{o.l:;;;;) t} U C

o/[L=t]JC ¢==:> oJ{o.l ~ t} U C
oj[L· -+H sJIC ¢==:> oJ{o.l" [;; u s} U C
oj[l" t- H s]JC ¢==:> oJ{o.l" :;;) 11 s} U C

of[l"=Hs]JC ¢==:> oJ{o.l" ~H s} U C

Example 10

equivalent to

Attribute Term and Constraints mozal"lj[bil"lh = 1756, dead= 1791] is

mozartJ{mozart.bil"lh = 1756 ,mozal"l.dead = 1791}.

opl25[compose!· = beethoven] j [type-+ symphony, no= 9]

is equivalent to

opl25[composer =beethoven]]

{opl25[compose1· = beethoven] .type [::::s ymphony ,

op125[composer = beethoven].no = 9}

Property inheritance

0

Here we comes the property inheritance mechanism of Quixote. Extrinsic properties of

an object inherit from another object in a subsumption relation .

[Def] 30 (Property Inheritance) If o [:::: p and o does not have an intrinsic property

of a label l (l") , then o.l [:::: p.l (o.l" [;;u p.L·) . 0

If o [:::: p, o.l = a, and p.l is not defined then a [:::: p.l. It is called an upwa1·d inhe1·itance.

On the other hand, if o [:::: p, p.l = b, and o.l is not defined then o.l [:::: b. The property

inheritance is called a downwm·d inheritance.

Properties of labels in intrinsic properties do not inherit. Using this feature, we can

represent an exception of the property inheritance.

Example 11 Property Inheritance

83

(I) If apple j[col01·--+ 1·ed],

then apple[weight= heavy] / [color--+ 1· cd], but

apple[col01· = gncn] does not inherit color --+red.

(2) If apple[weigh.l=heavy]/[m·ea· '<-11 {aomori}]

and apple[color = g1·een]j[m·ea· '<- 11 { nagano}],

then apple j[a1·ea· '<-u {aomori , nagano}]

(by the join operation between sets).
0

ote t hat, in the cases of ,_ and '<-u, extr insic properties are inherited upward by

t he above rule, while in t rinsic properties are not, even though apple[color = g1· een] is

apple[colo1· = g1·een]/[color =green].

Properties are equ ivalent to a set of const raints in Quixote. A multi]Jle inhe1·itance,

thus, corresponds to merging const raints without a preference. For example, when o I;;; p,

o I;;; q, p/[1 = a], and qf[l = b] are defined, o inheri ts two constraints o.l I;;; a and o.l I;;; b

from properties of p and q respect ively. T he constraints are merged to be o.l I;;; a .j. b.

5.3.4 R ule and Module

Module

Quixote objects are defined by rules that are modularized into several modules:

111: {r·, , · · ·, 7'11 },

where m is an object term called a module identifier (mid) , and,.,, · ··, 1'n are ru les defin ed

later. For simplicity, we use the notation 'a modu le m' instead of 'a module with a mid

m .'

When a mid contains a variable, it is called a pammet1-ic module. Variables in a mid

are global in the module, that is, variables in a mid can be shared by rules in the module.

A rule in a module can explicitly refer an object in another module.

Module mechanism is introduced with the following objectives:

o modularization and classification of knowledge,

o co-existence or localization of inconsistent knowledge,

o temporal sto rage of tentative knowledge, and

o introdu ction of a modular progra mming sty le.

84

Rule

A rule of Quixote specifies an ex istence of objects in a module, property specifications of

objects, and a implicat ion relat ion among objects.

a, (=oniCn) be alf•·ibutc terms,

111 0 , m 1, • · ·, mn be mill.s, and D a set of .>ubswnpt ion constraints. A rule is defined as

follows:

a0 is called a head and m 1 : a1 , · · • , m, : an II D is called a body. Co (extr-insic]J1'0]Jerlies

of a0 } must not contain S1lbsumption 1·elations between basic object tenns. 0

The rule in the above definition intui tively means that a module m0 has a rule such

t hat if a1 is sati sfied in a module m 1, • · ·, and an is sati sfi ed in a module mn under

constraint D, then a0 is satisfied in a module m0 .

The rule can be transformed in to:

1no :: ooiCo ¢= m1: Ot , · · ·) 7nn: On II AU C;;

where C0 is called a head constraint and A U C = C 1 U · · · U Cn U D is called a body

constraint. Furt her, a body const raint can be divided in to a set of constrain ts containing

dotted terms (A) and a set of the rest of the const raints (C). The restri ct ion of Co in

t he above definition is to avoid destruction of the lattice by assertion of a subsumption

relation during derivation. A rule with empty body is called a fact.

As shown in 5.3.5, Quixote goals are not always processed from left to right. However,

it is possible to specify the process ing order from left to right. A Rule whose delimiter

of goal is ";" instead of "," is called a se1·ialized rule. The goal is processed from left to

right like Prolog.

From an object-oriented point of view, a rule gives an intensional definition of Quixote

objects. An object in Quixote consists of an object term and a set of methods. An object

term without variables plays the role of an object identijie1· (oid)[AI<89, MHY90], while

each extrinsic property plays the role of a method. That is, a label corresponds to a

message and the value corresponds to the resul t.

For the case in which there is no head constraint , Quixote can be considered as an

instance of CLP(X) [JL87], where a constrain t domain is a set of la beled graphs - as a sub

class of hypersets[Acz88] and (extended) subsumption relations. Without set subsumption

const raints, Quixote becomes a subclass of CLP(AFA), with a hyperset const raint domain

[Muk90].

85

Submodule relation and Rule Inheritance

A module can inherit rules from another module. The relation between modulcs in terms

of the ndc -inheritance is a sub module 1·clation. When a module 171 1 inherits rules in a

modul<' 171 2 , m 1 is cal led a submodnlc of m.2 , and 171 2 is call ed a supcrmodulc of 171 1. T he

relation is represented as m 1 ;ls m 2 .

Note that , submodule relations are different from subsumption relations defined in

5.3.2 although they are both relations between object terms. The submodulc relation

specifics ntle inhuilance, while the subsumption relation specifies property inheritance.

Each rule can have an inheritance fl ag o, l , or ol to control the rule inheritance between

modules. A rule with o oveTTides inherited rules from the supermodule that have thc same

head as shown in Example 12. A rule with l is a local rule, which is not inherited by the

submodules. A rule with ol is inherited as a combination of o and I.

Example 12 Rule Inheritan ce Consider represent ing "In Europe, cars usually drive

on the right. But cars drive on the left in England."

england ;]8 euTope;; J Tance ;]5 ew·ope;;
europe:: cm'f[drive = 1·ight];;
england:: (o)cm-j[d1·ive =left];;

As the last rule has an inheritance flag o, a rule with the same head of the supermodu le

(the second line) is overridden. 0

Storing inconsistent information into several modules

In the current framework of Quixote, names of object terms, subsumption relations, and

submodule relations are global in a database, while the existence of objects and extrinsic

properties are local. That is, if there is no submodule relation between two modules ,

their ext rinsic properties do not contradict, that is, inconsistent knowledge can co-exist

separately in independent modules.

For example, the following program becomes inconsistent because john has a different

extri nsic age property in the module year _1994.

year·_l994 :: john/[age = 20];;
yem·_l994 :: john/[age = 30];;

However, the following is not in consistent , when there is no sub module relation be

tween yea7·_1982 and year _1994.

yew·_l982 :: johnf[age = 20];;
y ar _1994 :: john/[age = 30];;

86

5.3.5 Query processing

Program

A J17'ogram is defined as a t riple (S, /Ill, R) , where S, M. R correspond to definition s of

subsumption re lat ions \ submodu le re lations, and rules. Definitions of rules can be

cons idered as definitions of objects or definitions of contents of modules.

In reali ty, a database tends to be partial , that is, some definition s might be miss ing.

rules might be ambiguous or indefin ite. a nd a Quixote object might be incompletely

defined[Y T+94]. To treat the partiality of information, Quixote has features such as

hypothetical reasoning and answers with assumption.

Query and answer

A query is defined as follows.

[Def) 32 (Query and Answer) Let rn.0 , · · · , m, be mids, a0 , ··· ,a, attdbute terms,

and C a se t of subsumption constmints, H a set of additional ntles called hypotheses .

A que7'Y is defined as follows:

? -mo: ao,···,m, : a, II C [;; H].

An answe1· is in the fonn of

if [Assumption] then [Result) because [Explanation]

whe1·e Assumptions corresponds to info7'mation that does not included in th e progmm,

Result is a set of subsumption constmints, and Explanation shows what knowledge is

used to de1-ive the answe1·. D

Answer with Assumption

Example 13 Answer with Assumption

Consider a piece of knowledge about classical music:

"C major is a kind of major"

"1<551 is a symphony named Jupiter"

"1<467 is a piano concert in C major" , a nd

"Majo r key pieces a re preferable when g loomy."

'Only the :S- relation is defined in 5.

87

The knowledge is encoded in the following Quixote program.

major ~ c_rnajm·; ;
mustc :: 1.:551 /[type= symphony, name= jupiter];;
mustc :: 1.:467 /[type= piano_conce,·t, key= c_major];;
m :: li-<lcn[mood =gloom, music= X] ¢=

mu.<ic: Xj[key--+ maj01·];;
(WhPn gloomy, a piece with a major key is preferable.)

For a quPry such as:

? -listen[mood =gloom, music= /,;467] ,

the answer is simply yes.

Irow about the answer to the following question:

? -listening: listen[mood =gloom, music= k551]

which asks whether 1<551 is preferable? Although there is an object k551 in music module,

it does not specify key (extrinsic) property. Without making any assumpt ions, the query

fail s. However, a.s we focus on the partiality of the information, the lack of information

suggests an assumption to be taken. Hence, the answer IS

IF music: k55l.key G major THEN yes

where unsati sfied constraints of other objects ' ext rinsic properties in bodies are assumed.

0

In logic programming, finding a. la.ck of information or unsa.t islia.b le subgoa.ls corre

sponds to abduction, tha.t is , hypothes is or explanation generation [CM85, HSME88].

Remember that a. rule in Quixote ca.n be represented a.s follows (see Subsection 5.3.4):

mo :: oaiCo ¢= m1: o1, · · · ,mn : o, II A UC;;

In Quixote, only dotted term constraints ca.n become assumptions , tha.t is, when body

constraints about dotted terms a.re not satisfied, they a.re taken a.s a. conditional pa.rt of a.n

answer. Although A a.nd C a.re disjoint, when variables in C a.re bound by dotted terms

during query processing, constraints with the variables in C a.re moved into A. If the

subsumption relation between object terms is taken a.s assumption , it might destroy the

soundness of the derivation because it affects property inheritance a.nd does not guarantee

results in the former derivation.

88

Derivation

An abduct ion is closely relat<'d to proc<'dural sema nt ics. ll ere we will only briefly exp lain

the re lat ion [NOTY9:3].

In gene ral, a der ivat ion by query process ing in Prolog is a fin ite scqucli C<' of a pair

(G,O) where G is goals and 0 is a subst itu t ion [LioS4]:

In C LP, subst itutions of Prolog a re extended as constra in ts {See discussions of cu- Prolog

in Su bsection 3.4.2). Thus derivat ion by query process ing in C LP is the fin ite sequence

of a pair {C, C) of a set G of goals and a set C of const raints:

(Co, Co)=? (G'1,Ct) '* · · · '* (Gn- I ,Cn-1) '* (0,Cn)·

On the other hand , derivation in Quixote is a finite directed acyclic graph of the trip le

(G, A, C) of the set G of goals, the set A of ass umptions, and the set C of con st raints.

A query is also transformed in the form of

?-o1, ··· ,On II Ao U Co,

ltisa triple({o1, .. · ,on },A0 ,C0). Foranode({C}UG;,A;,C;),a ruleG'IC' {= B II AUC ,

and 30 GO=G'O, where B is a set of object terms and 0 is a subst itution , the transfo rmed

node is:

((G; u B)O, (A;O \ C'O) u AO , (C; u C u C')O)s

The deriva tion image is illustrated in the network in Figure 5.1.

If there are two nodes, (G', A, C) and (G, A', C), where A ~ A', then the derivation

path of (G', A', C) is thrown away. Thai is, only the minimal assumption is made. [f there

a re two nodes, (G, A, C) and (G, A, C'), then they are merged into (G' , A, C U C').

5.4 Implementation

This section expla ins implementation issues of Quixote, especially about the constraint

solver to which the author mainly cont ributes . There are two kinds of Quixote implemen

tation; big-Quixote that is a full client-server sty le implementat ion in I<LlC (KLl) and

micro-Quixote that is small rest ri cted implementation in C. Both sys tem are registered

as I COT Free Software (IF'S) 6
.

6 1COT free software is available fr om http://www icot .or.jp

89

Figure 5. 1: Derivation Network of Quixote

90

5.4.1 Implementation of Constraint Solving

ElemenLof a nd Disequation constraints

In big-Qu ixote', th~ domain of co n st r~int is extended to treat clement-of and dis<'quation

const raints. For actual a pplications, there occurs constrai nts like "a variable can be bound

to Mozart, B<'eihovcn. or Bach" or "a variable docs not have the same valuE' of another

variab le." To treat such di sj unctive information , Quixote can process <'lcment_of and

disequation const raints.

[Def] 33 (Element-of Constraint) Lett be object. terms, single valnc vm·iables, or dot

ted terms with single value labels, s be a set of gmund object terms, then t E s is an

elemenLof const raint. 0

[Def] 34 (Disequation Constraint) Let t 1, t2 be ground object tenns, single value val"i

ables, or dott.ed tenns with single value labels , then t 1 of. t2 is a diseq uation const rain t.

0

In add ition to rewriting rules for su bsumption constrain ts in 5.3.3, the following ru les

are added to treat elemenLof and disequation constraints.

x E s l , x E s2 =? x E sl n s2
X E {a} =} X~ a

X of. a, X E s =} X E s - {a}

Constrain ts such as x of. y (x andy are not unifiable) and o E {o , · ··} a re removed.

When x of. x , o E s (o is ground and s does not contain o) , or x E {} occurs in the

const raint rew riting process, the constrain ts are unsatisfiable.

Constraint solving procedure

Let

o C be a set of constrain t,

o A, 8 be object terms,

o A9 , 8 9 be ground object terms,

o T, U be single-value variab les or object terms,

o x, y be single-value var iables,

91

• .r·, y· be set-value variable's.

• S be a sC't.-value variable or a set, and

• s be a sC't ..

The constraint solving procedure of big-Quixol<' is to repeal the following rewriting

rules lo C until C is saturated.

{T!;;:; T} n C
{ :r !;;:; T, T !;;:; .t} n C
{Ui;;;y,yi;;;T} nC

{x!;;;A 9 ,x!;;; 89 } n C
{A9 !;;;x,89 i;;;x} n C

{o[· ·]i;;;p} n C

=}

=}

=}

=}

=}

=}

c
{~·~T} n C
{Ui;;;y,yi;;;T,Ui;;;T} n C
{x!;;:; A9 .(. 89 } n C
{A 9 f89 i;;;:r} n C
{oi;;;p}n C

{o[.. ·l;=T;, .. Ji;;;p[· ·,l;=U; , ..]} n C
{T ~ T} n C
{A~x}nC

{x ~ T} n C(3 x)
{o[/ 1 =Tl, .. · , ln=Tn]~

=}

=}

=}

=}

{oi;;;p,Vl ;E p[.. ·],T;!;;;U;} n C
c
{x ~A} n c
{x ~ T} n C[x/T]

p[l1 =Ul,··· , ln=Un]} n C =* {o~p,ViE[l,n] , 'li~U;} n C
{x* i;;;u x*} n c =} c

{x"i;;;u 5,5 i;;;u x"} n c =} {x" ~H S} n c
{5li;;;u y· , y·~;;;u 52} n C =* {5li;;;u y",y"i;;;u 52,Sli;;;u 52} n C

{x* i;;;u sl,x i;;;u s2} n C =} {x· i;;;u sl JJ. s2} n C
{sli;;;H x",s2!;;; 11 x"} n C =* {slfl s2i;;;u x"} n C

{s~us} n c =} c
{x* ~II s} n c =} C[x*/s]

{xEsl,xEs2} n C =* {xEslUs2} n C
{x E {A}} n C =* {x ~A} n C

{tl ?/! t2 , tl[x/T] = t2[xfT]} n C =* {x ?j! T} n C
{11 ?/! t2, •ttnifiable(ll , 12)} n c =} c

{x ?/! A,x E s l} n C =* {x E sl - {A}} n C

Here, T[x/1] stands for rep laci ng all the occurrence of x in T with I.

When one of t he following constraints occurs during the saturat ion process, the con

straint solver fail s .

I. o ~ p where o and pare literally different atoms .

2. s l ~ s2 where s l U s2 # sl n s2

3. T?j! T

4. x E ¢

92

5.4.2 Big-Quixote

Big-Quixote is a full implementation of all the features of Qui xote language described

in Section 5.3. It consists of Quixote-client and Quixote-server modules as shown in

Figu re 5.2.

big-Quixote

Figure 5.2: System configurat ion of big-Quixote

Quixote-server consists of following modules. They are mainly implemented in t he l<Ll

language on PIMOS and KLIC systems. I<Ll is a parallel logic programming language

developed at !COT. KLIC is a system to translate programs in l<Ll into programs in C

language, which is also developed at !COT .

1. Quixote server: TCP/IP commun ication interface.

2. I<Ll IF: data transformation, etc.

3. QS: manages external DBs.

4. Persistence Manager: interface to external DBs.

5. Data Manager: manages internal representat ion of Quixote objects .

6. Interpreter: makes inference.

7. Constraint Solver: solves subsumption , set, and disequation constraints.

In t he latest version of big-Quixote (ver.4), there are three kinds of client interface:

Qmacs, Qshe\1 , and X-Windows interface with a WWW browser such as Netscape.

1. Qmacs: interactive user interface on top of GNU-Emacs .

2. Qshell: batch user interface with Q!F libraries.

3. QMI: CCI interface to Quixote from WWW browser.

4. window: window interface to display lattice st ructures , module hierarchies, and

derivation trees .

93

5.4.3 micro-Quixote

Full implc nre nLaL io n of ri ch Q uixoLc fcaLu r<•s Lends Lobe Loo heavy for sma ll workstations

and P Cs. Mi cro-Qui xoLe is des igned Lo exL racL cenLra l feaLures o f Q uixoL<• as a p rogra m

ming language a nd offers a s mall sysLem fo r knowledge informat ion procf'ssi ng[NTY94).

Micro- Qui xoLe s uppor ts Lhe fo llowing feaLu rc o f QuixoLe.

• objed Lerms (w iLhouL sd) .

• s ubsumpLion consL ra in ts,

• properLy inhe rita nce,

• module, a nd

• a nswe r wiLh ass umptions, hy poLh eLi cal reasoning.

For simplicity, micro-Qui xoLe uLili zes a Prolog- like depth-first search wiLhouL me rging

deriva tions. Consequently, some rcs uiLs of micro-Quixote a re diffcrcnL from Lh osc of big

Qu ixote .

Micro-Qui xoLe is impleme nLed in Lhe C language independent of big-Qui xoLe a nd has

t he following features .

• Every Lhing is impleme nLed in C a nd has high portability,

• small sysLe m size (199EB of source code) , and

• has an externa l call mecha nism .

System configurat ion of micro-Quixote is s hown in Figure 5.3.

Figure 5.3: SysLe m confi gura Lion of micro-Quixote

94

A unique feature of micro-Qui xote is a n external ca ll mecha nism. ~li c ro-Qui xote

allows representing external constrain ts which are so lved by an external constraint solver.

An operation of ex ternal con straints begins a nd ends with '·#",such as

7 - X/ [name; A] II

{X;<male, A #regexp# ''on''}.

(search a man whose name contains ··on. 11
)

When an external con straint bind s to be ground, micro-Qui xote throws it ou t and w<tits for

the result (true or false). The trigge r is like the bind-hook expla ined in Section 3.2. This

is the external call mechanism. In micro-Qui xote, external call messages are dispatched

from GN U- Emacs to the X-Windows in terface or be (binary calculator), and so on . The

external call mechanism plays an important role when micro-Quixote is embedded into

a heterogeneous cooperative problem solving sys tem like Helios[AYT94], which will be

di scussed in Sect ion 7.5.

Table 5 .1 summarizes the difference between big-Quixote and mi cro-Quixote in terms

of various features .

Table 5.1: c omparison b etween big-Q uixote an d ITII CI'O- Q uixote
big-Quixote micro-Quixote

OS/machine Environment UNIX , PIMOS UNIX, MS-DOS , Macintosh
Development Language KLl (KLIC), C c

Emacs-Lisp, etc.
Code Size 6Mbyte 199Kbyte
Method for Derivation OLDT SLD with Prolog-like search strategy
Subsumption Constrain t j j
Property Inheritance j j
Module j X

Answer with Hypothesis
Conditional Query j j
Set, Inequality Constrain t j X

NAF (Negation as Failure) j X

Solution Composition j X

Database Functionality j X

External Problem Solver Call Arithmetic module External Constraint Call

95

Chapter 6

Applications of Quixote to Natural
Language Analysis

6.1 Introduction

Several features of Quixote introduced in the previous chapter make it app licable to

various domains : for example, legal reasoning, genetic information process ing, and natura l

language processing.

or these, this chapter fo cuses on two nat ura l language applications of Quixote: typed

fea/U7-e str·uctur·e [TTY+93, TTY+94] and a semant ic representation in const raint-based

grammar[TH96]. As the latter example, seman t ic representat ion of a phrase of the form

"A no B" in Japanese is di scussed. The phrase is a famous example that various in terpre

tat ions are poss ible accord ing to the situation the phrase is uttered . The latter example

is a cooperative work with Yasunari Harada.

6.2 Attribute Term and Feature Structure

T his subsect ion mentions the relation between an attribute term of Quixote and a feature

st ructure. [TTY+93, TTY+94]

A feature structure is a partial fun ction from features to their values and represented

with a set of feature-value pairs as in troduced in Section 2.1 . For example, an AVM form

(6. 1) shows a function mapping the feature number onto the value singular and person

thir·d [Sh i86] .

Simi lar to a feature structure, an att ribu te term can describe information partially.

96

For example, a feature structure (6. 1) corresponds to an att rib ute term (6.2).

[
number: s ingula1·]
person : thinl

X j[num be1· = 8ing-ular,pcrson =third]

(6. 1)

(G.2)

ll erc, X stands for the feat ure st ructure itself. T he unificat ion bel ween feature st ru <

tures is performed by unifying head object terms followed by rcla.tccl dotted term con

st raint solving. (6.2) is equivalent to the following clotted term constra ints.

X. numbe1· ~ singulm·

X .pe1·son ~ thi,·d.

Next, consider a. ty ped feature st ructure[Car92b], where t he lates t fra mework of 1-1 PSG

is const ructed upon [PS94J . It is the feature structure whose nodes a.re labeled with sort

(type) symbols as introduced in Sect ion 2. 1. Using inheritance among supersorts a.nd sub

sorts of ty ped feature structures, efficient representat ion of lex icon[DSG92] a.ncl grammar

is poss ible.

For example, (6.3) is a simple HPSG-Iike typed feature st ructure representing the wo rd

"run." word , vp, run, or np specifies the sort of each structure.

word
CAT: [vpj
PH: [run]

SUBCAT : [phrase l
CAT : [npj

(6.3)

T he bas ic object term and a subsumpt ion relation (partial relation) < Bobj, ~> in

Quixote naturally comprises types and their inheritance hierarchy. To treat the inheri

tance and information partiality, it is natura l to describe a typed feature structure with

an att ribute term whose head is subsumed by a bas ic object term. Property inheritance

mechanism corresponds to the inheritance between typed feature st ructures. (6.3) is rep

resented as the following subsumpt ion relations and two att ribu te terms.

Y=<word, Z=<phrase

Y/[cat->vp,ph->run,subcat=Z]

Z/ [cat->np]

In comparison with related KR languages, PST in C IL [MYS5] a nd ,P-terms in

LOGIN[AI<NS6] have close relat ion with feature structures. However, att ribu te terms

in Quixote a re more powerful because C IL does not have a property inheri tance feature

and LOG IN cannot handle const raints .

97

6.3 JPSG treatm.ent of "A no B" in Quixote

This sect ion di sc usses a semantic and pragmatic rcprcs<' nlation of a .Japan<·s<· plm1S<' of

the forn1 ··_A. no B" in Qui xote.

6.3.1 Introduct ion to the variety of "A no B" phrase

Japanesc adnominal particle no combines two noun phrases .A. and B to form a com

pound noun phrase of the form " .A. no B". The kinds of re lation s that obtain between

the referents of .A. a nd B are quite varied, which is somewhat reminiscent of the case of

8nglish compound nominal. Thus, the first linguistic problem concerning the adnominal

particle no is how to handle its semantics. The "meaning" of no is "underspeicified" and

"s ituation dependent." Also , there is a very interest ing pragmatic problem to be solved.

In certain cases, the noun phrase A has to have a complex internal structure in order for

the entire NP to be meaningful.

Toward the end of this section , we propose how inference process resolves referents

of noun phrase express ions within contexts. Various aspects of Quixote offer a natural

explanat ion of the difference of acceptabil ity among express ions of the form "A no B."

Semantic aspect of no

Let us briefly review the kinds of relations that can hold between t he referents of the noun

phrases combined by the adnominal particle no, taking examples that will be di scussed

later.

(6) a. 1987 nen no "Information-based Syntax and Semantics"

(the book) "Information-based Syntax and Semantics" published in (the year)

1987

b. 20 sai no otoko

a/the man aged 20

c. nagai kami no zyosei

a/the woman with long hair

d. bin no kuti

the mouth/opening of the/a bottle

e. otoko no nenrei

the age or the man

L 1992 nen 8 gatu no COLING

(the conference of) C OLING in August or 1992

98

g. honyu rui no ningen

human beings. which is a kind of nlamn lals

h. gakki no piano

t he pia.no, which is a kind of musica l inslnuncnl

These examples and t heir translations wou ld suffice lo indi cate t hat the "nwa ning'' of

no is "unders pecified'' and "conlcxl-dcpendcnl. .. lnluil ively speaking, what no docs is to

combine two noun phrases, regardless of lhe meaning, and the rest is up to the context ,

fo r the most part . vVe would no t want to say that 110 is 25-way ambiguous or I 00-way

ambiguous. On the other hand, we will give a small representation model of a semant ic

framework of "A no B" a nd the processing mechanism how the ambigu ity is genera ted

acco rding to t he situation using Quixote.

However, trad itional approaches to the semantics of 110 was either lo enumerate the

kinds of relations no can "mean" or lo di sregard the meaning entirely and let the examples

lake over. For example, as wi ll shown in Subsect ion 6.3.2, [SNN86] categori zed these

semantic relat ions into 5 groups, with 86 finer sub-categories and gave their semantic

representat ions in the form of Prolog terms. This approach, however, has the following

problems.

• Anything outside this categori zat ion has lo be added .

• The representat ions a re too artifi cial and complex because they are represented as

combination of many Prolog terms.

• There is no way metaphorical ex press ions can be handled in a simple way.

• A given express ion has lo have only one meaning.

• It cannot treat situation dependencies.

Example based translation offers a good performance, es pecially with th is kind of

phenomena. However, in terpretation of noun phrases with no is in fa.cl context and

situation dependent, and is not lexically driven. In most cases, the relat ion that holds

between the referents of the two noun phrases combined by the ad nominal particle no can

be determined only after the referents of these two noun phrases are determined. Since

stat ist ical approach works only by chance, there is no way to remedy t he system when il

fa il s. Also, there is no way in which stat isti cal approaches can begin to expla in the kind

of pragmatic constraints mentioned below .

On the other hand, we conceive of the semantics of no as somet hing ve ry much like

a na phora. Semantic representations of noun phrases will correspond lo object terms a nd

dotted terms in Quixote. Also, modu les in Quixote is employed to express situation of

99

utter~ nee and context for in te rpretation. Hcfcrcntsofnoun ph rases arf' detcnnined agai nst

the hMkgro un d of those situations. Civcn the description of the context of ut !era nee and

des igna t ion of object referred to by t he noun phrases, the re lation between the two noun

phrases co mbi ned can be sett led in a fairl y stra ightforward manner. Most of the cases

fall in to onl y 2 different ways of interpreting the phrase "A no B.'" although we arc more

than well aware that t hese docs not ex ha ust the usc of no.

Pragmatic aspect of no

Although no ca n combine almost any two noun phrases to form a noun phrase that can

be interpreted in one way or another, t here is an interest ing pragmat ic const raint on

what kinds of combinations form more or less natural expressions. Take the following

example, for instance. Without specia l contextuali zation, t he (7b-b) sentence is much

more difficult to in terpret than (7b-a) . Note, however , that it is not the case that it is

completely im poss ible to imagine a situation where such express ions can be meaningful.

Por instance, if we are talking about people working in a be~uty parlor , it may refer to

the person in charge of doing t he ha ir. 1

(7) a. nagai kami no zyosei

b. (') kami no zyosei

Compare thi s with the followin g English case. 2

The examples above, along with other similar cases, suggests that the noun phrase

preceding no must be "complex" when it refers to something tha t is either a part of,

in a lieably possessed by, or a property of the referent of t he noun phrase following no.

(9) a. hutoi ude-no dansei

b. (*) ude-no dansei

1This problem is discussed in [Har9 l] .
2The whole distribution seems to suggest something similar to the English cases, although we cannot

go further into this comparison here .

(8) a. long-haired girl
b. (*) haired girl

I. T he murdered rnan had thrown a bomb into the Police Station.
2. *The killed man had throw n a bomb in to the Police Station .

(a) cut diamond
(b) cut glass
(c) * cut bread
(d) badly cut bread
(e) sliced bread

100

(10) a .. otit uita seikaku-no dansri

b. (') scikaku- no gakusci

Note t hat t h is cannot be described simp ly by svntactic terms. Although examples

like t hose above might scrm to suggest t hat the noun phrase preced ing no must itsrlf be

syntactica lly "com plex" or mod ified by ot her pre nomi nal f'lcmcnl. such is not llw cas<' as

can be seen fronr t he examp les below.

(II) a. gela-no otoko

b. hige-no otoko

Taking into consideration the exa mples above, we can observe that noun phrase of the

fo rm "A no 8 " is rat her odd or mea ni ngless if the referent of A is part or properly of t he

referent of 8 , whereas if t he re lation invo lved is opt ional part-whole relation or somethi ng

other than object- property, t he whole noun phrase is much easier to make sense or.

(12) a. otoko-no gela

b. get a-no otoko

c. otoko-no asi

d . * as i-no otoko

(13) a. kuruma-no sanruu hu

b. san ruu hu-no kuruma

c. kuruma-no taiya

d . • taiya-no kuruma

In [Har91], Harada pointed out t hi s interesting phenomenon, and asked whether th is

should be considered a sy ntact ic, semant ic or pragmat ic issue. In t hi s sect ion, we will

a rgue that t hi s is in fact a pragmatic matter, and show how thi s fa lls ou t from our

t reatment of the semant ics of no wit hi n Quixote.

6.3.2 An analysis of no in Quixote

In t his subsection, we class ify semantic contents of "A no 8 " phrases a nd give t heir

representat ions in Quixote, wit h objects, constra ints, a nd modules . First, in 6.3.2, we

show limi ted in terpretat ion of noun phrases represented in Quixote. Second in 6.3 .2, we

class ify t he reading of "A no B" from an object-oriented, const ra in t- based, a nd situat ion

dependent view. 6.3.2 combines sema.nli c as pects with sy ntact ic t rea t ment of no in JPSG.

6.3 .2 discusses t he recogni t ion of "A no 8 " a nd 6.3.3 compares our approach with another

one.

101

Limited se mantic interpretation of nouns in Quixote

lk forc di scuss ing a bout '· A no 13", consid er how the intC' rpretations of following nouns

arc- rC'presented in Qui xote .

(a) proper noun ,

(b-1) non-relat ional common noun , a nd

(b-2) rela tiona l common noun

First, (a) proper nouns des ignate some objects in a situat ion. So they are represented

as object terms in some modules. For example . in terpretat ions of /,·en (a person's name)

and '·Inf ormation Based Semantics' (a book name) al CS LI in .July 2:3, 1995 a re

cs li_ l995_7 _2:3 : ken

csli_l995_7 _23 : book[t i tl e = in f onn at ion _based_semantics]

Secondly, consider common nouns such as tukue (desk) , kami (hair) , halwoya (mot her)

, m.ae (front) , and so on. Common nouns give semantic types of objects. According to

t he kinds of constraint between semantic types and objects that the nouns refer to, they

are class ified into non-relational nouns and relat ional nouns.

tukue, kami, and so on a re classified as (b-1) non-relat ional common nouns. The

const ra in t between objed s and seman t ic ty pes t hat t he noun s refer to , is the subsumption

(is_a or a..kind_of) constrain t. tukue specifies an object X that is subsumed by desk t hat

is the semantic type of tukue. Its representation in Qui xote is:

si t : X I X I;;; desk

where si t is a situation.

halwoya, mae, and so on are class ified as (b-2) relational nouns. They ha ve hidden

arguments in their semantic type representation. The constraint between semantic types

and objects depends on their utterance situations. mae specifies an obj ect mae[base = X]

that is defined by the following rule in a situation sit.

sit : mae[bas e = X] ¢= X ; ;

The rule intuitively means that if a.n objed X is defined in a module si t , then t he object

mae[base =X] exists in the module sit , which gi ves definition of "(X no) mae".

In any cases, interpretations of common noun s a.re given as objed identifiers (vari ables)

in a module, equipped with constrain ts or rule definitions.

Note that some nouns such as sen ei, hahaoya, and so on work a.s both non-relat ion

and rela.tiona.l nouns, which give ri se to some a mbiguities in "A no B" . Consider "sensei

no tuku e" (a. kind of desk for teachers, or a desk of a teacher).

102

Classification of "A noB" and their representation in Quixote

In this ~ubsection, we give a cat<'gori?.ation of '·A no B" and lh<'ir representation 111

Quixote. Seen from objects, const raints , and situation~, interprrtat ions of '" A no B'" ar<"

classiflc-cl into the following threr cas<'s:

(Rl) H is one of the attribut<'s of object A.

(R2) 1\ is the value of one of the attributes of object B, and

(R3) 1\ and B are equivalent in a super situation between SA and Sa. (Sx is a situation

where X exists.)

(Rl)

Examples of (IU) are otoko no nenrei (age of a/the man), bin no kuli (opening of a/the

bott le), and so on. The reading is possible when A specifies an object and B is an att ri bute

of A. Let OA be an object that A specifies, La be an attribute that B speci fi es, and MA

be a situ ation where OA ex ists. The total semantic representation of read ing (RI) of "A

no B" is a clotted term in Quixote:

(6.4)

Consider oloko no nem·ei for example. An interpretation of oloko is represented as

X I X ~ man where man is a semant ic type of otoko. Let age be an attribute specified

by nenr·ei. otoko no nem·ei falls into X.age with the constraint X ~man.

(R2)

Examples of (R2) are hatati no otoko (a/the man whose age is 20), ta1·o no kekkon (Taro's

marriage), and so on . The reading is possible when B is an object and A is t he value of

one of the att ributes of B. Let OA and Oa be the objects specified by A and B, Ma be

the situation where 0 8 resides. Then the total semantic representation of "A noB" is an

att ribute term in a module:

31, Ma: Oa/[1 = OA]· (6.5)

Consider hatati no otoko for example. An interpretation of otoko is X I X ~ man.

hal ali is the value to specify one's age. So, lwtati no otoko fall s into the following semantic

representation : X /[age= 20], where X ~man.

103

(R3)

ou•an 110 June (a/the bowl as a boat), a nd hasi no kai (a/th<' chopstick as an oar), and so

on a rc· cxan1ples of (11:3). This is t he rea ding where an obj<'c l is r<'f<'lTC'd to as different

objects in different situations. ln the object-oriented enalysis such as with Qui xote, using

t he sa me object identifier in the same module may lead to constra int contradict ion or

data base in consistency. For example, suppose X is a lso a bowl and a boat in a situa tion.

Then two sets of const raints imposed on X: X !;;:; bowl, X !;;:; boat, and t hey are merged

into X == l_ (X is the bottom object).

To avoid the contrad iction, such information must be stored in different modules.

Consider three modules MA , Me, and MNo, and each of them has a n object with the

same object identifi er X. MA is the module where X is referred as A, 111/e is t he module

where X is referred as B, and MNo is a supermodule of MA and Me where X is referred

as "A no B" . Then the semantic interpretat ion of "A no B" is the object in a module

MNo:

(6 .6)

Consider "owan no Jun e." Let o be a n object iden tifier. m_owan, m_f une, m_owan-fune

be t hree modules where m_owan_June is a super-module of the other two modules. The

semanti cs in terp retat ion of owan no Jun e represented as a set of rules in Quixote is: 3

m_owan_J une ~s 1n_owan; ; 7n_owan_fune ~s 7n_f une; ;

m_owan :: o I o.k ind !;;:; bowl; ;

m_June :: o I o.kind!;;:; boat ;;

m._owan_f une :: o; ;

3T h is description, acluatly1 has a litt..le problem because o f several limitations of Qu ixote . It may be
more natural to describe the example as the fo llow ing rules, us ing variable X as an object.

m_owan _f une ~s m_owan; ; m_owan_fun e ~s rn_fun e;;
nLowcm ::X 1 X~ bowl; ;
m_fune ::X I X ~boat;;
m_owan_fune :: X ;;

Th is descript ion1 however, is not val id because the variable scope is within a rule in Quixote. So , Xs in
different modules can be bi nd to different objects.

In stead, how about the following representat ion?

m_owarLj tm e ~s m_owan ; ;m_owan_fun e ~s m_fune ; ;
nLowan :: o I o ~ bowl ;;

1n_fune :: o J o ~boat ;;

7JL0W(IIL/liH f :: o;;

This leads to contradict ion because the subsumption relations among basic objects are defin ed globally
(over every module) in the current fr amework of Quixote. At lea.st one of the constraints, o ~ bowl and
o ~ boat , always fails.

104

Syntactic treatment of no in JPSG

As ca n be seen in Llw previous subsect ions, an in tcrpr<"tat ion of .. i\ no if" is constructed

frolll interprct.ations of A and B under its utterance situatio11. II ere. wc combine 1 he

semantic ana lys is with syntact ic treatn1cnt of no in .JPSG. S~· nla c ti ca ll y . Lil<' lex ica l entry

of no has adjacent and mod feat ures to combinc a.n adjacent st ructure and a following

st ructure. Figure 6.1 illustrates a rough syntactic fea.tmc structure represcntation of .. A

noB" .

]JOS :]J

[

pos: n
si luali~n : SNo
sem : A No

mod: [~~tua;:~n : Sa]
sem . .>ia

si tuation : SNo
sem: XNo

~

[

]JOS : 1l]

si tuati~n : SA
sem:)iA

I
A

]JOS:]J

adjacent : [~~t:,~;:~n : SA
sem:)iA

mod : [~~t:~~~~n : Sa]
sem: .>ia

situation: SNo
sem: XNo

no

Figure 6.1 : Syntactic treatment of "A noB"

The value of sem (semantic) feature of "A noB" unifies with X No that comes from

the value of sem feature of the lex ical entry of no. So, we have only to give the value of

sem of no. Let si tuation be a featu re that takes a situation identifie r. According to three

read ings of "A noB" in 6.3.2, X No is defined as follows.

X No SA: XA.Xa, whe1·e SA: XA , SA= Sa = SNo (Rl)

v

105

Sa: Xa /[1 = XA]. where Sa: X a. SA: X .. \· S, =·"'a= S.vo

(R2)

v

Recognition of " A no B"

We slatted from the standpoint that the interpretation of '·A 110 13'' is situat ion dependent,

and gave a const raint-based, object-oriented repr<'senlalion of" A no B" using Quixol<' in

6.:3.2. In t hi s subsect ion, we give a process ing model of ·'A no 13" that explains several

pragmatic aspects in t roduced in 6, and discuss about some ambigu it ies in in terpreting "A

no B". We assume t he situat ion is stored as a set of object with some allributes, namely

a database (DB). All t he object in every situat ion and t heir alt ri butes are defined in

the DB. Interpret ing "A no B" corresponds to queries to the DB t hat match previously

explained three semantic representat ions.

A simple procedure to recogn ize "A noB" is li sted as follows. Let Sit be the situation

where "A noB" is ullered , OA, Oa be interpretations of A and B.

l. If OA exists in Sit, and Oa is one of the att ribu tes of A, t he reading is (Rl):OA.Oa.

2. Otherwise, search the attribute of Oa whose value can be OA· If the allr ibu te ex ists

(= 1), the reading is (R2) Oa/[1 = OA]·

3. If there are submodules SA and Sa where OA and Oa exist respectively, reading (R3)

is available.

4. If not , the phrase is un acceptable.

The ambiguities of "A no B" ari se from the variations of interpretation of both noun s

(twice for each) , disjunct ion of semant ic feature of the lexical ent ry of no(three t imes),

and the selection of a label in t he read ing of (R2).

Reconsider sentences 7b in refss:pragmat ic. Why !.:ami no zyosei sounds strange? For

the phrase, in terp retat ion (R2) is most likely because zyosei cannot be an attribu te of

kami semantically, and it is hardly to imagine a n object that is both kami and zyosei

pragmatically. Pragmatically, nouns that specify attributes or parts of a n object such as

kami,nem·ei, ude seems unlikely to be values of some other all ributes. However, when

such situation is poss ible, for instance, if we are talking about people working in a beauty

parlor, kami no zyosei refers a certain object.

106

6.3.3 Discussion

Compariso n with Shimazu cl. cd.'s Analysis

Sh imazu[SNN86] analyzes thf' usage of "A no 13"' scmanticall~' into the following 5 cate

gories and into minute 86 sub-catego ries.

I. 13 is predicativf', and A is one of the cases of 13.

2. 13 specifics t he role from basis A.

:). B is an attr ibu te of A.

4. A is pred ica.tive, and B is one of the cases of A.

5. A is one of the properties of B.

T he relation between Sh imazu 's categorization and ours in 6.3.2 is summarized in

Table 6.1. T he occurrence rates are counted from 5,950 cases abstracted from essays of

newspapers[S 1N86] .

ln [SNN86] (occurrence) Example Our analysis, Quixote term
l (21.0%) Taro no kek kon (R2) X/[agent = tm·o]l X~ man·iage
2 (12.2%) bin i no mae (R2) front[base =building I] 4

3 (6.3%) bara no iro (R1) 1·ose.color
4 (4.6%) sanpo no hi to (R2) X/[action---+ walk] I X~ man
5 (56.0%) 23sai no seinen (R2) X/[age = 23]1 X~ man

Table 6.1: Shimazu's Analysis and Quixote term

Seen from the table, over 75% of the "A noB" in [SNN86] falls in to our category (R2)

in 6.3.2 with Quixote attribute terms. Simazu's minute categorization can be seen as

defau lt sets of labels of each object. Such lexical static analysis, however , cannot explai n

the variety of t he in terpretat ion of "A no B", especially, context dependency.

Further study

Th is section app lies Quixote to the semant ic and pragmatic representation of "A no

B" phrases in Japanese. Fi rst, interp retat ions of various kinds of nouns are encoded in

Quixote by using its object and constraint representation. Second, we give a categorizat ion

of the semantic in terp retation of "A no B" into three different Quixote terms: a dotted

term , a n att ribute term, a nd objects in modules. Lastly, pragmatic aspects in recognizing

"A no B" phrases are given as a database query, where databases correspond to current

situat ion and queries fall into semantic representation of "A noB".

The following aspects are remaining.

107

• Minutr <alegorizat ion of (R2). The constraints arc relativel y too wrak. compa red

with (HI) and (H:3).

• lmplrnwntalion on top of Quixolr syslclll.

lOS

Chapter 7

Conclusion

7.1 Summary

T his thes is gives a logic programming framework for const rain t- based natu ral language

analys is. Two constraint-based logic progra mming languages cu- Pro log and Quixote are

explained and their effecti veness to const raint-based natura l la nguage a nalys is is illus

trated through various applicat ions.
Most of t he previous works on constra int-based natura l language analysis are specific to

a certain theory[Car92a, Shi86] or based on t rad itional logic programming[PS87a]. Li ttle

stud ies have been made as to tackle t he problem from a programming language poin t

of view. T his thes is gives a fund amental CLP framework to const raint-based natural

language analysis. Two logic programming la nguages can be a lso a pplicable to other

const raint-based problems than natural language process ing.

cu-P rolog and Quixote cont ribute to computation linguisti cs as giving workable com

ptitat ional devices to represent a nd process constraints. Us ing cu-Prolog, for examp le,

researchers can actually write down linguisti c const raints in the form of Prolog predi

cates, a nd simulate their behav ior as JPSG parser in Section 4.3. cu-Prolog t hus can

become a debugging tool for describing linguist ic constraints. Linguistic phenomena have

been discussed in various t heories using various formats and logical frameworks. These

progra mm.ing languages can represent such knowledge and clarify the difference among

t heories, as shown in a treatment of "A no 8" in Quixote (Sect ion 6.3) .

Reconsider the first equat ion in Chapter 2 t hat explains constrain t-based grammar

formalisms.

const raint-based grammar feature structure+

phrase st ructure+

109

structural constraint

S<'vcra l features of cu-Prolog and Quixol<' describ<'d in thi s thesis ar<' summa ri zed as

Table 7.1.

T II -a J e 1 .l: c omparison among constraint-based grammar, cu- Prolog, and Q xotc · lll

Constra in t- based cu-Prolog Quixote
Grammar

Data Structu re Feature St ructure constrained- PST Atlribute Term
Procedural Phrase St ructure C llC (P rolog Part) Rule
Declarat ive Structural Const raint Prolog te rm Subsumption

constraint constraint

Information in na.tural language shou ld be described partially in syntax , semantics,

pragmatics, and so on. To tackle the info rmat ion partiality from the viewpoint of com

puter science, const raint-based programming form ali sms are desirable up to now, because

const rain ts only specify t he value range or relations between variables.

Cont ributions of t he author concerning this thesis are summarized as follows.

o The author plays a central role in des igning and implement ing cu-Prolog. (Chapter 3)

o The a ut hor gives various app lications of cu-Prolog to natural language processing

illust rated in C hapter 4 including implementation of JPSG parser (Section 4.3) wh ich

is a killer app licat ion of cu-Prolog. The example on CFG parsing (Section 4.4) was a

cooperat ive work with I<oiti Has ida.

o Quixote itself is designed and implemented in the Quixote group at !COT headed by

I< azu masa Yokota. As a member of t he group , the author contribu ted to design and

implement Quixote especially concerning its const raint solving (Cha pter 5).

o The author gives example applications of Quixote to natura l lang uage processing as

explained in Chapter 6. The analysis of "A noB" is a cooperative work with Yasunari

Harada.

Figure 7.1 is a map of the research around constraint-based grammar process ing.

7.2 Discussion about cu-Prolog

The author wou ld li ke to st ress that every feature ment ioned in this thesis was uniformly

processed in the sa me framework as const rain t t ransformat ion.

DP (Dependency Propagation or Dynamic const rain t Processing) [Has91 , Hl87,

I-INM93, TH90], which is a n extens ion framework of t he const raint unifi cation[Has85,

llO

Constraint-based Grammar

Disjunctive Feature Structure

psi-Term LIFE Verbmobile

Uranus

I
PROS IT

constraint
unification

Situation Semantics

I
constraint
projection

Figure 7.1: Technology Map a round Constrain t-based Grammar Processing

HS86], treats clausal-form logic programs by constraint transformation. DP adopts idea

of the dynamics; potential energy is defined to programs and inferences are controlled

to minimize the energy[H M93]. Nakano proposes another extension of const raint unifi

cation called constmint pmjection(CP) that can treat DFS unifi cation efficien tl y[ak9 1] .

Compared with DP and CP, cu-Prolog mixes procedural programming a nd const ra ints by

CHC , and can be seen as being a more practical approach to processing const raint-based

grammar.

In the current framework , every constraint is equally satisfied, such that if the con

st raint is over-constrained, the transformation fails. However, constraints occurring in a

grammar description somet imes contradict each other and have preferences or hierarchies

as shown in Section 2.2. Such cases would easily occur if we were to consider various

heterogeneous linguistic constraints.

For example, Marcus postulates following two constraints[Mar80], semantic and syn

tactic preferences, to explain the acceptability of Wh-clauses such as sentences (2) intro

duced in Section 2.2.

• (Semantic preference): The preference of indirect object (10) taken by the verb "give"

IS

highe7·_animate(people) > animate> inanimate.

• (Syntact ic preference):

- prefer: NEXT-as-10: The noun next to the verb is !0.

111

- not-prefer: WH-com p-as-10: The complement of tlw WH -clausc is 10.

C'ost-basrd abduct ion[HSME88] adds nunwrica l costs and weights to literals to der ive the

least cost abd uction as the bes t ex planation.

What is t he framework to treat such constraint hie rarchy or rrlaxation? A cue in

the field of C LP is a hierarchica l constraint logic prog ramming (II C LP) [BMMW89] pro

posed as an extension of C LP. In HCLP, eve ry const raint is labeled with a st rength ,

with const ra ints being processed from t he st ronger to the weaker ones. II C LP a lso pro

vides comparators, t hat may differ in the app lication, to compare the app ropriateness of

sol utions.

A fur t he r work of cu- Prolog is to attach such a constraint hie ra rchy in the const raint

part of CHC.

7.3 Discussion about Quixote for NLP framework

Compare Quixote with related works . It resembles F-logic [l<if90] in t he sense that it is a

DOOD la nguage and introduces object-orientation concepts into logic programming. As a

knowledge representat ion language, however , Qui xote has additional conven ient features

such as a module mechanism , a bduct ive inference, and so on. Unl ike conventional C LP

languages[J L87], Quixote can treat constraints on symbolic const ra int domain , which

is suitable for natural language description. As a predecessor of the situated inference

system , PROSIT is proposed [PS91 , NSHP88]. In PROSIT, each rule is asserted in

one hiera rchical situation and those rules are inherited. Qui xote offers the same ability

and the simple infons in PROS IT a re extended to complex object terms in Qui xote. The

concept of complex object terms and attribute terms of Quixote inher its PST of CIL

[MY85], t hat is an ancestor language developed in !COT. The new mechanism of Quixote

is summarized as follows:

• an object-orientation concept such as object identity is introduced into the logic pro

gramming as the fundamenta l philosophy,

• the concept of module enab les us local definition in a la rge knowledge-base, and

• its logical inference system is extended to be able to restri cted abduction.

7.4 Constraint-based NLA and Disambiguation

In the programming languages mentioned in this t hesis, a natural language grammar is

represented as both procedurally (in rules in cu-Prolog and Quixote) and declarat ively

112

(in t he constrain ts part of both languages.) The author considers t he cooperat ion of both

kinds of process ing is espe<ially important for natural language a nalysis. In tlw .JI'SC:
pa rse r in Sect ion 4.3 , phrase structural process ing in the body part of (' II(' w nst ru rts a

skeleton phrase struct ure t ree, and most of t he fcatu rP st ructures a rc clct<'nninccl t hrough

cons traint process ing in t he constraint part of C IJ C.

Maxwell d iscusses pa rsing constrain t-based g ramma r as a combination of proc<'ssing

both phrasal constra in ts and att ri bute-value/ fun cL ion constraints[M h:92]. He shows var

ious st rategies such as :

• in terl eaved strategy : funct ional constraint process ing is interleaved 111 phrase st ruc

ture constraint process ing.

• non-interleaved st rategy: first process phrase struct ure const raint and t hen process

fun ct ional const ra int process ing.

and illustrates that the former is preferab le for effi cient parsing. T he J PSG parser in

Sect ion 4.3 can be seen as an exemplification of the interleaved strategy, because phrase

structure constraint process ing is perfo rmed in the Prolog part and fun ct ional constraint

processing is performed in the constraint part of CHC a nd t hey interact each other in the

derivat ion.

Examine two kinds of process ing from the disambiguation poin t of view. In [Cry97],

"ambiguity" is explained as hav ing following types.

• grammatical (st ructural) a mbigui ty :

• phrase-structure ambiguity : "new houses a nd shops" 1

• lexical ambiguity: "I found the table fascin at ing." 2

• vagueness: "He clicln ' t h it t he clog." 3

In NLP research, the structural ambiguity has been especially studied for di sambiguat ion

to yield various algorithms such as [TOM86] . Lexical ambigu ity an d vagueness , however ,

are matters of const raints (d isjunct ive and negat ive constraints). They are represented

declarati vely and processed as constrain t solving and constraint relaxat ion .

Those kinds of d isambiguations have been studied independently in NLP. However ,

cu-P rolog and Quixote can process them totally as const raint so lving. The JPSG pa rser in

Sect ion 4.3 states nothing about new st ructural di sambiguat ion a lgor ithms. Any ex isting

a lgorithms are available in the body part of cu-Prolog. It suggests, however, a method to

cooperate two kinds of - st ructural/ procedural and constraint / declara tive- process ing.

1 "new (houses and shops)" or "(new houses) and shops."
2 table = 'object. of furniture' or 'table of figures.'
3T he sentence has unspecifi able range of meanin g exce pt for hitting the dog.

113

7.5 Comments about Heterogeneous Constraints

cu-Prolog and Quixote arc independcnt programming languages. Thcy have different

const raint domains and different kinds of applications to natural langnage processing.

As shown in Section 2.2, the constraint domain and process ing in natural language

processing are inherenLiy heterogeneous. Seen from the heterogeneity in natural language

processing, the followin g three aspects a re important.

l. To explain various natural language phenomena, the constraint domain must be di

versified, such as symbolic, temporal, and term unification.

2. Seen from view of constraint processing, natural language process ing involves various

kinds of processes: not only const raint sat isfaction but const rain t relaxation.

3. the data size utilized in natural language processing is becoming larger a nd larger

as shown in recent electronic dictionaries and large corpora. There also already

exist various natural language processing resou rces such as dictionaries, parsers, and

constraint solvers. From an engineering point of view, it is preferable to combine

those exist ing natural language resources.

One of the further step of the const raint-based NLP research is to combine heteroge

neous languages such as cu-Prolog a nd Quixote. In [TA94 , TA96] , the author gives an

idea to realize the combination in MAS (Multi-agent system) called He/ios[AYT94] that

meets above three requirements. In Helios, ex ist ing problem solvers including const raint

solvers are wrapped by capsules to become agents. Agents can commun icate each other

by sending messages in an enui1'0nment.

Figure 7.2 is an example of a JPSG parser with heterogeneous constraint so lvers.

A CFG parser , a feature structure unifier, and dictionaries are independent problem

so lvers to become agents. The CFG parser agent is the leader of parsing process. When

the agent detects a set of constraint that cannot be solved by itself, it throws the constraint

to its outside environment. The environment determines suitable destination agents to

solve the constraint. The constraint is sent to the destination agents and solved to be

returned to the original agent (CFG parser) through environment .

114

User(= outmost environment)

Environment

Figure 7.2: JPSG parser with heterogeneous constraints

115

Appendix A

Appendix 1: cu-Prologlll user's
manual (Abstract)

116

This cha pter is abstracted from cu-Prolog \11 Us<'r·s manual. Tlw original manual is avai l
able from IFS (!COT Free Software) whose UHL is http://www.icot .or.jp/.

A.l Introduction
cu-Prolog lll is a n implementat ion of cu-Prolog in the C language of UN IX BSD.
cu-Prologlll is registered as IFS (!COT Free Software) that is avai lab le from
http: I /www. icot . or. j p/. Later, llidctosi Sirai (s irai@sccs.chukyo-ac.jp) implemented
cu-Prolog in Apple Macintosh and DJ 's GPP (80:386/486 MS-DOS machine with the DOS
extender). They are also available from the above URL.

A.l.l How to Compile cu-Prologiii
The source codes of cu-Prolog iii consist of t he following header fil es and program fil es in
the C language.

• header fil es:
include.h funclist.h varset.h globalv .h sysp.h

• program fil es concerning Prolog in terpreter:
main.c mainsub.c new.c read.c print.c refute.c unify .c

• program fi les concerning built-in predicates:
defsysp.c syspredl .c syspred2 .c jpsgsub.c

• program fil es concerning const raint t ransformat ion:
modular.c trans.c tr_sub .c tr_split.c

To get the execution code of cu-P rologlll , you have only to com pile a nd link a ll the
modules (*.c fil es) . In UNIX for example,

cc -o cuprolog *.c [CR]
or

make [CR]

A.1.2 Customize
Before compiling, you may have to rewrite some statements in include .h according to
yo ur system.

CPU time

cu-Prologlll uses system dependent fun ctions to count process times .
l. If your system has times() 1 fun ct ion ,

#define CPUTIME 60
If times() in you r system returns C P U time in N-th of a second ,

#define CPUTIME N
2. ln Sun-4 system, clock() is supported . T hen, please define SUN4 as follows instead

of CPUTIME.
#define SUN4 1

3. Otherwise, the CP U t ime is not printed.
#define CPUTIME 0

1times() is the UNIX 4.2/3 BSD Library t hat returns C PU t ime in 60th of a second.

117

Heap size

cu-Prolog l l l has the following data areas.
system heap: stores program clauses. Its size is SHEAP_SIZE (the default valu<' is 20000)

user heap : stores tem poral da.ta in the Prolog interpreter. Its size is HEAP_SIZE (t he
defau lt value is 600000)

constraint heap: stores constraints and PSTs. Its size is CHEAP_SIZE (the default value
is 2.5000)

environm ent stack: stores temporal environments in the Prolog interprC'ler. Its size is
ESP_SIZE (the default value is 500000)

user stack: is a trail stack in the Prolog interpreter. lts size is USTACK_SIZE (the default
value is 10000) CT

string heap: stores st rings. Its size is NAMLSIZE (the default value is 50000)
When there are frequent overAows of above areas, increase their area sizes and compile

all the modules.

A.1.3 How to start and quit cu-Prologiii
To start cu- Prologlll , type the following in OS.

cuprolog [CR]
To start cu-Prologlll with reading an initial program, type

cuprolog filenam e [CR]
To quit cu-Prologlll, type

%Q [CR] or :-halt. [CR]
at the top level of cu-Prologlll.

A.2 Syntax of cu-Prologiii

term : atom, variable, complex term, or PST
atom : constant , st ring, or number
constant : sequence of characters that begins with a small letter or sequence of any

characters with single quotations.
string : sequence of any characters with doub le quotes .
number : integer, Aoati ng number.
variable : sequence of characters that begins with a capital letter or - · _ is called an

anonymous variable and any two anonymous variables are different .
complex term : let p be a string and t 1 , t 2 , · • ·, tn be terms, then p(t 1 , t 2 , · · ·, tn) be a

complex term. p is called a juncto1· or a Jn·edicate symbol. List is a special functor.
PST (Partially Specified Term) : seq uence of feature/value quoted by'{' and'}'. A

feature is a constant and a value is a term.

A.2.1 Constrained Horn Clause (CHC)

T he program clause of cu-Prologlll is called Constrained Horn Clause(C HC) and has the
following forms:

1. H;C1 , .. · ,Cn · (Fact)

liS

2. 11 :- Br , ··· , Bm:Cr.··· ,Cn. (Hule)
:3. : - Br , · · ·, Bn; C, · · · , C". (Question)

11 , /Jr,···,Bn, and C1, ···,Cn arc call ed 1/wd, Body, and Con.,frainl respectively.
ll orn clause is a spec ial case (null constraint) of C II C:.

cu-Prologl II allows a variable as an atomic formula . By the following programs,
call/1 and not/1 are defined .

call (X)
not(X)
not(_).

- X.
X, ' fail.

A.2.2 PST (Partially Specified Term)

cu- Prologlll supports PSTs (Partially Specified Term) as a data structure to implement
feature st ructures of constraint-based grammar formalisms. A PST is a term of the
fo llowing syntax:

{lr/tr, l2/t2 , ... , lnf tn}
l; , called label , is an atom and 1; # l1(i # j). t;, called value , is a term . Recursive PST
st ructu res a re not a llowed.

For example, the unifi cation between {1/a,m/X} and {m/b,n/c} produces
{1/a,m/b,n/d.

When a PST occurs in multiple places, it is printed with a new variab le in the con
straint part of C HC. For example,

f(X) :- g1(_p1,X) ,g2(_p2,X); _p1={f/a,g/c}.

A.2.3 Simplified form of Constraint
In a CHC, atomic formulas of the constraint pa rt must be a simplified form called mod
ular.

[Def) 35 (modular) A sequence of atomic formulas C 1 , C2 , ... , Cm is modular when

/. eve1·y a1!JUment of C; is a va1·iable {1 :::; i :::; m), and
2. no vm·iable occu1·s in two distinct places, and
3. the p1·edicates occurring in C; a1·e modulady defined {1 :::; i :::; m). 0

The predicate occurring in the constraint of C HC is an ordinary Prolog predicate of
the following form.

[Def) 36 (modularly defined) A predicate p is modularly defined , when eve1·y body of
its definition clause is modular o·r empty. 0

With PST, modular is naturally extended as follows.

[Defl 37 (component) A component of an a7!JUment of a]indicate is a set of labels to
whicli th e a1!JUment can bind. He1·e, an atom or a complex te1·m is 1·ega1·ded as a PST of
!he lab el []. 0

119

Cmp(p,n) sta nds for the component of t he nth argument of a predicate p. Cmp(T)
represents a set of labels of a PST T. In a constraint of t lw form X=t. variable- X is
regarded as taking Cmp(t).

Components ca n be computed by stat ic ana lys is of the program [Tsu9 1]. \ 'ncuou.,
argument p/ace>[T I-190] are argunwnts whosr components arr ¢.

Consid er the following exa mp le.
cO({f/b},X,Y) : - cl(Y,X).
c0(X,b,_): - X={g/c},c2(X).
cl(X,X).
c 1 (X' [X I _]) .
c2({h/a}).
c2({f/c}).

The com ponents are computed as follows.

Cmp(cO,l) ={f,g , h}
Cmp(cO, 2) =Cmp(c1, 2)={ D}
Cmp(c0,3) =Cmp(c1,1) ={}
Cmp(c2,1) ={f, h}

You can see each component with 'l.d command of cu-Prolog. In the following example,
Cmp(p3,1)={f,h} and Cmp(p3 , 2)={g,h}.

_'l.d p3
'l.d +--- - - - -- (p3/ 2) - - --- [f .hlg .h]--2/2--+
p3({f / a} , {g/ b}).
p3({h/c} , {h/d}).

(Def] 38 (dependency) A cons/mint is dependent when
1. a vm·iable occuTs in two distinct]Jiaces whe1·e thei1· com]Jonenls have common lab els,
2. a v111·iable occu1·s in two distinct places wheTe one component is { []} and anoth e1·

component does not contain [] , o1·
3. the binding of an argument whose component is not ¢. 0

For example, when Cmp (p, l) = {f,g}, Cmp(q,l) = {h} , constraint p<{f / b}) has a
dependency, and p(X) ,q (X) and p({l / a, m/ b}) do not have dependencies.

(Def] 39 (m odular (wit h P ST)) A constmint is modular when it contains no depen
dency. A liom clause is modular when its body has no dependency. 0

User-defined pred icates in a constraint must be defined with modular Horn clauses
2

A.2.4 BNF d escription of cu-Prologiii syntax
T he fo llowing is a B F description of the syntax of cu-Prologii L

2For example, member/2, append/3 , and finite predicates are defined with modular Horn clauses.

120

A.3

< chm· >
< whitechCLT >

< capitCLl >
< SmCLll >
< digit >

< se1·ies >
< numbe1· >
< chCLrseq >

< cwseq >
< s t1·ing >

< snwllseq >
< capitC!lseq >

< t enn >
< t ennJis t >

< vm· >
< atom>

< cons tant >
< PST >

< pai1·_lis t >
< pC!i1· >

< C!j >

< af_ist >
< HORN>

< C H C>
< op_term >

< opl >
< op2 >

<capital > I < .<111all > I <digit >
< chen > I < .•pace >
AIBICI ... IX I\"I Z
albkl .. . 1-r lylz
Oll l21:314l5 l6 1718l9
< digi t > I < digit>< se1·ies >
< se1·ies > I < se1· ies > . < se1·ies >
< chw· > I < chm· >< cha1·seq >
< w hi techw· > I < whitecha,- >< cwseq >
"< cwseq > ,,
< snwll > I < small >< clw1·seq >
<capi tal > I < capital> < charseq >
< vw· > I < atom > I < smallseq > (< t em dis t >)I< PS T >

< t e,-m > I < t enn >, < te,·m_lis t >
< capi tal seq > 1- < cha1·seq > 1-
< constant > I < s t1· ing > I < numbe,- >
< smallseq > I' < cwseq >'
< pCLi ,·_l·is t >
< pai1· > I < pai1· >, < pai,·_list >
< name > / < t en n >
< smallseq > (< t e,·m Jist >)I < smallseq > I
< op_te,·m > I < va1· >
< af > I < a f >, < af Ji st >
< a.f > I < af >:- < C!j_list > 1?- < afJis t >
< horn > .1 < horn > ; < "J_list >.
< opl >< te1·m > I < temt >< op2 >< tenn >
not

<= > 1=1= .. 1> 1>=1 < 1<=1==

Summary of sy st e m commands

This section li sts all the system commands from the top level of cu-Prologlll. p·redicate
represents predicate_name or Jn·edicate_name/ m·ity.

121

A.3.1 Prolog commands

'l,h hPJp
OS_commrmd execute OS comm<tnd.
'l.d pndicnlc list definition cia usPs of a predicatc
'l.d* list <til the program
'l.d/ li st all predicate n<tmes include rcduccd predicates
'l,d? li st <til predicate names without reduccd pr<'dicatcs

for sys tem predi c<ttes, +:recursive, -Junctor
for user predic<ttes, *:spied, -:reduced,+:recursivc.

: new ly defined predicates during constrai nt transformation
'l.f show free heap size
'l.Q quit cu-Prolog lll
'l.R reset cu-Prolog lll
'l.G stat ic garbage collection
'i.e n·umbe1· set maximum depth of resolution
'l.u toggle switch to handle undefined predicates (ERROR/TRUE)

A.3.2 File I/0 commands

''Jilena1ne"
"Jilena1ne?
'l.l filename
'l.l no
'l.w filename

consult file without echo back
consult file with echo back
set log file name
reset log fil e
write the current program to file

A.3.3 Debug commands

'l.p 7n·edicate

'l.p *
'l.p
'l.p >
'l.p ?

'l.t
'l.s

switch (on/off) spy points on the predicate
set spy points on all the predicates
remove spy points of all the predicates
switch (set/remove) spy points on constraint transformation
li st spied predicates
normal t race mode on/off switch
step trace mode on/off switch

l22

A.3.4 Constraint 'fransformation commands
'l.L
'l.a
'l.o
'l.n predicate
'l.P predicate

'l.P *
'l.P ?

li st deri vation clauses of new pred icates (in
all modular moclr (in CT)
!'vi-Solvab le modr (in CT)
set new predicates na mr (in CT) (cO,c l. ...)
preprocess const ra in t parts
preprocess const rain t parts of all t he C II Cs
li st predicates with non-canonical const ra in ts

A.3.5 Other commands
'l.C redefi ne cat fun ctor for J PSG parser

A.4 Built-in predicates, functors

This sect ion li sts built-in predicates and fun ctors of cu-Prologlll. In the following table, +
represents the input argument, - the output argument, PST the argument to take a PST.

A.4.1 Functional built-in predicates
These pred icates work as function s.

Predicate
'/0
abolish/2
arg/3

assert/1,2,3

asserta/1,2,3
assertz/1,2,3
attach_constraint/1

close/1
compare/3

concat2/2

default/3

Mean ing
cut
abolish(P+,A+) Delete definition clauses of predicate P/A.
arg(Pos+, T+ ,Arg-) Unify t he Posth argument ofT with Arg.
Eg: arg(2,test(a,b,c) ,X) --> X=b .
assert(H+),assert(H+,B+),assert(H+,B+,Cstr+)
Add H:-B;Cstr. in the end of the program.
add the clause in the beginning of the program.
add the clause in the beginning of the program.
attach_constraint (Cstr+) Add new constraint Cstr.
Cstr is a formula or list of formulas.
close(F) close file pointer F
compare(X+,Y+,C-)
When X andY are numbers or strings,
C unifies with their relat ion.
The relation is > ,==, or <
Eg: compare("abc 11

, "xyz 11
,, <,)

compare(123,456,'<')
concat2(Str+ ,List-) List is a list of characters of string Str
Eg: concat2("ab", ["a", "b"])
default(X?,Y+,Z+)
If PST X unifi es with Y, unify X with Z,

123

divstr/4

equal/2
eq/2
fail/0
functor/3
geq/2
greater/2
halt/0
leq/2
less/2
rnl/2

rnultiply/3
name/2(A,L)

nl/0
op/3

open/3

pnames/2

pvalue/3

read/1
read/2

reset_tirner/0
see/1
seen/0
strcrnp/3

otherwise, fai ls.
Cg: : - X={pos/p,sern/Y},default(X,{pos/p},{ajn/[]j)
makes X= {pos/p,ajn/[] ,sern/Y}.

:- X={pos /n, sern/Y}, default (X, {pos/p}, { aj n/ []}) . fails.
divstr(X+,N+,Y-,Z-)
Y unifies with the first N charact<'rs of string X and Z the r<est.
When N < 0, Y unifies with the last -N charact('rs.
Eg: divstr ("abcdefg" ,3, "abc", "defg").

divstr ("abcdefg" , -2, 11 abcde", "fg").
equal (X, Y) unify X and Y
eq (X, Y) check X is equal to Y
a lways fail s
functor (T+, F, A) pred icate name of term T is F I A.
geq (X+ , Y+) check X>=Y
greater(X+,Y+) check X > Y
quit cu- Prologlll
leq (X+, Y+) check X=<Y
less(X+,Y+) check X < Y
uni v. rnl(T,L) is eq uiva lent toT= . . L.
L is a li st of predicate name and a rguments of term T.
Eg: rnl(f(a,b,c),X) --> X=[f,a,b,c]
rnultiply(X+,Y+,Z-) is X * Y = Z
name (A+, L-) t he name of the atom A is the list L
Eg: name (abc, [97, 98, 99]).
write ' \n '
op(P+,T+,Op+) Defi ne operator Op as precedence P and type T.
P in[O, 1000] and T is xf ,yf ,fx, fy ,xfx ,xfy, or yfx.
Eg: : -op (700, xfx, '=') .
open (FileName+, Type+, FP-) Open a stream.
FileName is a file name. Type is r (read) or w (write).
FP is a corresponding fil e pointe r.
pnames (PST+, FL) Unify the list of features of PST with FL.
Eg: pnames<{l/a,m/b}, [l,m]).
pvalue(PST+ ,F+, V) Unify the value of feature F of PST with V.
When PST does not have feature F, it fails.
read(X-) , read a term for the keyboard and unify it with X.
read(X- ,FP+) read a term form FP and unify it with X.
Wben FP is the end of files, X unifies wi t h end_of_file
reset CPU timer(cf. timer/2)
see(F-) fil e F becomes tbe current inpu t st ream
close the current input st ream
strcmp(X+,Y+,C-)
Uni fy C with the relation between st rings X andY.

124

strlen/2

substring/ 3

substring/4

surn/3

tab/0
tab/1
tell/1
tirner/2

told/0
true/0
unbreak/0
var/1
write/1

(cf. comparej:3)
C is > ,=;;;; 10r <
Eg: strcrnp("abc", "xyz", '< ').
strlen(S+,L) Lis the l<'ngth of st ring S
Eg: strlen("abcdef" ,6).
substring(X+,N+,Y-)
Unify Y with more tha n Nth characters of str ing X
(When N < 0, Y unifi es with t he last -N chara cters of X.)
Eg: substring("abcdefg" ,3, "defg")

substring("abcdefg" , -3, "efg").
substring (X+,N+,L+,Y-)
Unify Y with L characters from Nth element of st ring X.
Eg: substring("abcdefg" ,3,2, "de")

substring("abcdefg" ,-3,2, "ef") .
surn(X,Y,Z) compute X+ Y = Z
(More than one a rgument must be bound .)
print tab
tab(FP+) pr in t tab to fil e poin ter FP
tell (T+) fil e T becomes the current output st re<tm
tirner(X-, Y-) X unifi es with C P U time after reset_timer.
Y unifies with CUP t ime used in the const ra int transforn1<ttion.
close the current output stream made by tell/1
a lways succeeds
return to the breakpoint in the step t race.
var(T) T is a free variable
write (T) write te rm T

A.4.2 Predicative built-in predicates
These predicates may have many solutions by backtracking.

PREDlCATE
clause/3

concat/3

count/1
execute/1

gensyrn/1

MEANING
clause(T+,Body-,Cstr-)
There is a program clause Head: -Body; Cstr.
where Head unifies with T.
concat (Sl +, S2+, S-) or co neat (S1 - ,S2-, S+)
stringS is a concatenation of S1 and S2.
Eg: concat("ab", "cd" ,S) --> S="abcd"

concat(X,Y,"abc") -->
X=" 11 ,Y= 11 abc" or X="a",Y="bc 11 or

count (X-) Produce an integer to be unifi ed with X (X=O, 1, 2, · · ·).
execute(L+) Execute goals given as a li st L
Eg: execute([rnernb(X, [a,b]) ,rnernb(X, [b,c])])
gensyrn(X-) Create a new string to X.

125

isop/3

memb/2
or/2,3,4,5

retract/1,2,3

%n changes the first half of the st ring (default is c).
isop(Prec,Type,OP)
Prec and Type is a precedence and type oft lw op<'ra tor OP.
Eg: :-isop(X,Y,Z). --> X=900, Y=xfy, Z='/' etc.
member (Atom, List+) built- in member predicate
Exec ute more than one goa ls.
Eg: :-or (memb (X, [a, b]) , memb (X, [j , k])) .

--> X=a,b,j,k
retract(Head+) , retract(Head+ ,Body+).
retract(Head+,Body+,Cstr+)
Delete a program cla use that unifies with Head: -Body; Cstr.

A.4.3 Built-in predicates for constraint transformation
The fo llowing are special built-in pred icates for constraint transformation.

Predicate
condnarne/2

pcon/0
unify/2

Meaning
condnarne(Cstr+,PL-) Unify pred icate names in Cstr with PL.
Eg: condnarne([f(a,b) ,g(c,d)], [g,f])
Print cu rrent const ra in ts.
unify (C+, NC-) Transform constraint C in to NC.
Here, C and NC are li st of atomic formulas.
Eg: unify([member(X, [a,b,c]) ,f(X,Y)], [cO(X,Y)])

A.4.4 Built-in predicates for JPSG parser
The following are special built-in predicates for J PSG parser.

Predicate/Functor
cat / 6

Meaning
Functor for the feature structure of J PSG
Functor for hi sto ry t(M,L,R)

tree(H) Print history H in tree format

cat /6 functor is set by %C command from the top level of cu-Prologlll as follows.
%C [Featm·e 1 ,FType1 ,Featw·e2 ,FType2 , •••]

Here, FeatUI·e; is a feature name that begins with a capital letter and be shorter than
five letters. FType; is a feature type defined as follows.

FType
2
3

Meaning
takes one category (adjacent,slash, etc.)
takes set of categories (subcat, etc.)
otherwise

126

Default value is [PDS,l,FDRM,l,AJA,2,AJN,2,SC,3,SEM,l]. that is.

Feature
POS
FORM
A.J A
A.JN
sc
SEM

PSC: features
pos
gr ,vfo rm. pform , a nd so on
adjacent
adjunct
subcat
Sf'Jl1

By tree/3 , functor cat (A1·g 1 , • • ·, ATgn) is printed as
ATg, [ATg2 , Featw· e3 : A1·g3, · · ·, F ealttTen- l: .4T9n-JJ: A>·gn

Features of null values ([]) are not printed.

[Def] 40 (History) A history is defined ,·ecm·sively as follows.
• A catego1·y is a histoTy
• !f C and W a1·e catego>'ies, then t (C, W, []) is a hist01y
• !fL and R m·e hist01·ies and M is category, then t(M,L,R) is a hisl.o>·y.
• !f L and R a1·e hist01·ies, and C and W are catego>·ies, then t(t(C,W, []) ,L,R) is a

histo1y D

tree(t(C,W, []))writes

c--w
and tree(t(M,L,R)) writes

---M
I
1-L
I
1-R

A.5 File I/0

A .5 .1 R ead a program
• Start cu-Prologlll from OS wi t h reading an initial file:

cuprolog fil ename [CR]
• Read a fil e in the top level of cu-Prologlll without echo back:

"filename" [CR]
• Read a fi le in the top leve l of cu-Prologiil with echo back:

"filename? [CR]

A .5 .2 Save a program
To save current program clauses to a fi le in the top level of cu- Prologlll ,

%w fil ename [CR]

127

A.5.3 Log file
• Set log file :

%1 filename [CR]
• l~ nd log fil e :

%1 no [CR]

A.6 Constraint Transformation

A.6 .1 Use constraint transformer alone
You can use t he constraint solver (transformer) of cu- Prologll l alone in the following two
ways.

'CO' command

First, from the top level of cu-Prologlll , type ' CO ' foll owed by a sequen ce of atomic formulas
and a period. For example, by typing as follows,

CO member(X, [a,b,c]) ,member(X, [b ,c,d]) . [CR]
Then, cu-Prologl ll returns the equi valent modularly defined constraint a nd its defin itions.

unify/2 predicate

Second , you can use the const raint transformation routine as a Prolog procedure. cu
Prologlll has the predicate unify (01dCond, NewCond). unify / 2 takes constraints as a
li st of literal s as follow s.

[cO(X,Y), c 1 (P,Q,R), c2(Q,S)]
unify / 2 succeeds iff DldCond is instantiated to a const ra int a nd NewCond is a free vari ab le.
NewCond is insta ntiated to the modularly defined constraint that is equi valent to OldCond.

A.6.2 Transformation operations
See Sect ion 3.6 .2.

A.6.3 Example
This subsection shows some example in the constraint transformer of cu- Prologlll.

Symbolic and combinatorial constraint

Pred icates member/2 and append/3 are frequently used as symbolic and combinatorial
const raints. The following example transforms non-modu lar const raints in to modu lar
ones.

tsudaCOicot21[5] cup3 %start cu-Prolog from UNIX
***** cu - Prolog Ver . III *****
Copyright : Institute for New Generati on Computer Technology , Japan 1989-91
in Cooperation with SIRAI«<sccs . chukyo-u.ac . jp

128

All Modular mode (help -> %h)

_member(X,[XIY]). %definition of member/2
_member(X,[YIZ]) :-member(X,Z).
_append ([],X, X) . % definition of append/3
_append([AIX] ,Y,[AIZ]):-append(X,Y,Z).

-~ member(X, [a,b,c]),member(X,[b,c,d]). % User's constraint input 1

solution
cO(b).
cO(c).
CPU time

cO(X_O) % Equivalent and modular constraint
% New predicates made in the transformation

= 0.017 sec (Constraints Handling 0 . 000 sec)

-~ member(X,[a,b,c]),member(X,[j,k,l]). % User's constraint input 2

solution= fail. %Transformation fails.
CPU time= 0.017 sec (Constraints Handling= 0.000 sec)

-~ member(A,X),append(X,Y,Z). % User's constraint input 3

solution= c2(X_1, Y_2, 2_3, A_O) %Equivalent and modular constraint
c4(VO_O, V1_1, V2_2, [VO_O I V3_3]) :- append(V1_1, V2_2, V3_3).

% New predicates
c3(VO_O, V1_1, V2_2, [VO_O I V3_3], V4_4) :- c2(V1_1, V2_2, V3_3, V4_4).
c2([VO_O I V1_1], V2_2, V3_3, VO_O) :- c4(VO_O, V1_1, V2_2, V3_3).
c2([VO_O I V1_1], V2_2, V3_3, V4_4) :- c3(VO_O, V1_1, V2_2, V3_3, V4_4).
CPU time= 0.050 sec (Constraints Handling= 0 . 000 sec)

A. 7 Program trace

A.7.1 Set spy points

'l.p *
'l.p

set spy points on all the predicates.
remove spy points on all t he predicates.

'l.p 7n·edicate
'l.p >

switch (set/remove) the spy point on the predicate
switch (set/ remove) the spy point on t he unfold/fold transformat ion .
li st spied predicates . 'l.p ?

A.7.2 Set trace flag
There are two trace modes of spied predicates .

%s switch step (in teractive) trace (on/off). ln th is mode, the prompt is '>'.
%t switch normal trace (on/off). In this mode, the prompt is'$ ' .

In the step trace mode, the user suggests the next act ion a.t spy points.

INPUT
[CR]

ACTION
continue
skip t racing

129

a prin t ancesto r goals.
b brea k. Go to cu- Pro loglll telllpora ll v.

By :-unbreak, user ca n return to thi s poin t.
f fa il t hi s goal.

leap. skip until the current go<tl <'nels.
z quit re fut <ttion

A. 7.3 Trace of constraint transformation
To t race const ra int transfo rma tion , first spy const ra in t t ra nsformat ion by 'l.p >, then ty pe
'l.t for t he normal trace <tnd 'l.s for the ste p trace.

Print traces

Clauses in DEFINITION (de rivation clauses of new predi cates) a re printed <ts follows.
[Clause_N umber(Sta tus,N u mbe r_oLDefin ition s)] Deri vation _C ia use
[l(d,O)] cO(X) <=> member(X, [a,b,c]). (Example)

Here, Status is:

Sta tus
r

d

g
f

Function
removed: clause (other tha n f and g) removed in unfolding
deri vation: deri vation clauses not unfolded
registered: unfolding of thi s clause y ields a t leas t one uni t clause.
fal se_regi stered: unfolding of t hi s cla use fa ils

C lauses in NON-MODULAR or MODULAR are prin ted as follows.
<Cla use_Number (Sta tus,N umber_oLDefinitions) > Clause
<2(u)> cO(X) :-member(X, [b,c]). (Example)

Here, Status is defined as follows.

Status
r

u

m

Function
removed: clause removed by reduction or unfolding
untouched : clause in NON-MODULAR that is not unfolded
modular: clause whose body is modular
unit: unit clause

Commands in the step trace mode

In the step trace mode, the user have to suggest the next action afte r spy points.

Input
[CR]
u CN LN

Function
continue: continue with defa ult heuri sti cs .
manual unfolding: CN is a cl<tuse number ,
its LNth formula is selected for unfolding.
stop tracing: notl·ace after thi s

130

n

q
z

stop step tracing: normal trace after this
quit transformation (asserting the ru rrenl clauses).
abort transformation (dclctci ng a II the new cia uses).

131

Appendix B

Appendix II: JPSG/HPSG parser in
cu-Prolog

132

Th is appendi x shows a sam ple HP SG parser and J PSG parser program in cu-Prolog.

B.l Simple HPSG parser in cu-Prolog

This program is a simple HP SG parse r. The g rammar was given by G. Smolka during

our p rivate com muni cation in 1994 .

T he program implements t he fo llow ing t hree features .

feature name meaning value

ph phono logical feature st ring
head head feature {noun, adject ive, determiner, verb}
sc subcat feature list of head features

T he grammar contains two kinds of phrase structure rules.

1. Moth er ,_ H eadDaughte1· + N onH eadDaughte1·

2. Mother,_ Non H ead Daughte1· + H eadDaughter

Each feature fo llows the following set of principles.

P h o n ological Featur e P r in ciple The value of phonological featu re of t he mother uni

fi es with the con catenation of the phonological values of her da ughters.

Head Featu re P r incip le T he value of head feature of t he mother uni fies wit h t hat of

her Head daughter.

Su bcat Featu re Principle T he value of sub cat feature of the head unifies with the

append of t he head value of t he non-head and the subca t value of the mother.

1: %%%%%%%%%%%%%%%%%%%%%%%%% hpsg .p %%%%%%%%%%%%%%%%%
2: %% Simple HPSG parser
3: %% 1994 . 5.20
4: %% H.Tsuda
5: %% (gr ammar by G.Smolka)
6: %% {head/_ , sc/_ , ph/_}
7 : %% ---
8: %% head : head f eature
9: %% sc: s ubcat f eature

10: %% ph: phonological f eatur e
11: %% --- ----
12: %% Exampl e.
13: %% ?-p ([mary,meets, j ohn]).
14 : %% ?-p ([the,girl,i s, mary]).
15 : %% ?-p ([mary,is,embarrassed]).
16 : %%
17:
18: %% Left Corner Parser
19: p(Sentence) :-
20: parseO(Cat ,H,Sent ence, D) ,nl, tree(H) ,nl,

133

21:
22:
23:
24:
25:
26 :
27:
28:
29:
30:
31:
32:
33:
34:
35 :
36:
37:
38:
39:
40:
41:
42 :
43 :
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:

write("category; "),write(Cat),nl,
writeC'constraint= ") ,pcon,nl.

parseO(MCat,MHist,Str,Rest):
lookup(Str,SubStr,Cat,Hist), 1 ,

parsel(Cat,Hist,MCat,MHist,SubStr,Rest).

parsel(Cat,H,Cat,H,Str,Str).

dictparsel(LCat,LHist,GCat,GHist,Str,Rest):
psr(LCat,RCat,MCat,RN),
parseO(RCat,RHist,Str,SubStr),
parsel(MCat,t(t(MCat,RN,[]),LHist,RHist),

GCat,GHist,SubStr,Rest).

%% phrase structure rules
%% psr(LeftCat,R1ghtCat,MotherCat)
psr(Head,D,P,1); % R1ght head

sc_p(Head,D,P),
head_p(Head,P),
ph_p(Head,D,P).

psr(D,Head,P,2); % Left head
sc_p(Head,D,P),
head_p(Head,P),
ph_p(D,Head,P).

%% head feature principle
%% head_p(HeadDaughter, Mother)
head_p({head/H},{head/H}).

%% phonology feature principle
%% ph_p(LeftDaughter, RightDaughter, Mother)
ph_p({ph/LP},{ph/RP},{ph/PP}) : - append(LP,RP,PP).

%% subcat feature principle
%% sc_p(Head,Daughter,Mother)
sc_p({sc/[RH IPSC] },{head/RH ,sc/[] },{sc/PSC}) .

%% dictionary
%% lookup(Str,RestStr,Cat,History)
lookup([WordiX] ,X,{ph/[Word] ,head/Cat,sc/SC},t(Cat,[Word] ,[]))

:-(Word,Cat,SC).

diet (mary, noun, []) .
diet (john, noun, []) .
dict(girl, noun, [determiner]) .
dict(nice,adjective, 0).
dict(pretty,adjective, 0).
dict(the,determiner,[]).
dict(laughs,verb,[noun]).
dict(meets,verb,[noun,noun]).
dict(kisses,verb,[noun,noun]).

134

74: dict(embarrasses,verb,[noun,noun]).
75: dict(thinks,verb,[verb,noun]).
76: dict(is,verb,[adjective,noun]).
77: dict(met,adjective,[]).
78: dict(kissed ,adjective , []) .
79: dict(embarrassed,adjective, []).
80:
81: XXX constraints definition
82: append([] , X,X).
83: append([A IX] ,Y, [AIZ]):-append(X,Y,Z).
84 : member(X, [XIY]).
85 : member(X , [Y IZ]): - member(X,Z).

B .2 JPSG parser in cu-Prolog

The program implements fo llowing features.

featu re name meaning feature type
cor e core syntact ic features head feature
ajc adjacent category adjacent feature
sc subcategorization subcat feature
adj adjunction head feature
psl slash for relative clause slash feature
slash slash slash feature
refl reflective slash feature
sem semantics head feature
temp temporal feature in

the proto lexicon head feature

value
core category
FS (feature structure)
list of FS(s)
feature structure
list of FS(s)
list of FS(s)
list of FS(s)
Prolog term

Prolog term

cor e feature takes a core category that is a feature structure with the fol lowing syn

tactic features.

feature name meaning
pos part of speech
fo r m verb form, noun form
view aspect (derived from temp)

value
p, n, v, vs, adn , adv
n, ns, v, vv , vk, vcw, adj, na
Prolog term

1: xxx
2 : XX JPSG parser ver1.3
3 : XX 1992.6.6 Hi r oshi Tsuda
4 : XX 1995.12 commented by John Fry (ETL)
5: xxx
6 : XX Cat egor y :
7: XX {core/{po s / Pos , form/Form, view/View},
8: XX ajc/Adj acent, sc / Subcat, ajn/Adj oin,
9: XX psl/PSlash , s l ash/Sl ash , refl/Refl, sem/Sem (,temp/Temp)}

10 : XX Pes: part of speech p, n ,v, vs(sahen- dousi) ,adn(rentai- si) , adv(fuku- si)

135

11:
12:
13:
14 :
15:
16:
17:
18:
19 :
20:
21:
22:
23:
24 :
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

'!.'!. Form:
'!.'!.

'!.'!.

'!.'!. Temp:

when Pos=n, n,ns(sahen-meisi)
when Pos=v, vv,vk,vcw, ... (verb form),

adj(adjective), na(adjective-verb)
Temp feature for proto-lexicon

'!.'!.'!. Left Corner Parser
p2(S):-parseO(A,B,S , [] ,[idx(s,speaker)]),write(A),nl,pcon,nl.
p(Sentence):-

parseO(Cat,H,Sentence,[] ,[idx(s,speaker)]),nl, tree(H),nl,
write("category= "),write(Cat),nl,
write("constraint= "),project_cstr(Cat),nl.

nil_or_speaker([]).
nil_or_speaker([{sem/speaker}]).

parseO(MCat,MHist,Str,Rest,Idxlist):
lookup(Str,SubStr,Cat,Hist,Idxlist,Nidx),',
parse1(Cat,Hist,MCat,MHist,SubStr,Rest,Nidx).

parse1(LCat,LHist,GCat,GHist,[WordiSubStr] ,Rest,Idxlist):
lookup_post(LCat,Word,RCat ,RHist, RuleName),
psr_adj(LCat,RCat,MCat),
parse 1 (MCat,

t(t(MCat,RuleName,[]),LHist,RHist),
GCat,GHist,SubStr,Rest,Idxlist).

parse1(Cat,H,Cat,H,Str,Str,N).

parse1(LCat,LHist,GCat,GHist,Str,Rest,Idxlist):
psr(LCat,RCat,MCat,RN) ,
parseO(RCat,RHist,Str,SubStr,Idxlist),
parse1 (MCat, t (t (MCat, RN, 0) , LHist ,RHist),

GCat,GHist,SubStr,Rest,Idxlist).

45: '!.'!.

46: '!.'!.

47:

phrase structure rules
psr (LeftCat ,RightCat,MotherCat)

48:
49:
50 :
51 :
52:
53 :
54 :
55:
56 :
57 :
58:
59 :
60:
61:
62:
63:
64:
65:

'!.'!. 1 . Adjacent Structure: psr_adj(Left,Head,Mother)
'/.'/. (CHC)
psr _adj ({core/Cc, sc/Csc ,refl/Cref, slash/ Csl, psl/Cpsl, sem/SEMO, aj n/ 0},

{core/Hc,ajc/[{core/ Cc,sc/Asc,refl/ReflAC,sem/SEMO}] ,
ajn/Adj, sc/Hsc, refl/Href, slash/Hsl, sem/SEM},

{core/He , aj c/ 0 , ajn/ Adj , sc/Msc, refl/Mref, slash/Msl ,psl / Cpsl, sem/ SEM}) ;
adjacent_sc_p(Csc,Asc,Hsc,Msc),
slash_p (Csl ,Hs l,Msl),
refl_cond(Cref,Href,Mref,Hsc).

'!.'!. slash feature principle:
'!.'!. slash_p (LeftS,RightS,MotherS)
'!.'!. LeftS=C.slash, RightS=H.slash, MotherS=M.slash
slash_p([], 0 , 0).
slash_p([S], [], [S]).
slash_p([], [S], [S]).
slash_p([S] ,[RS] ,[RS]) :-sem_unify(S,RS).
sem_unify({sem/X},{ sem/X}).

136

66:
67: 'l.'l. adjacent - subcat principle for adjacent structure
68: 'l.'l. adjacent_sc_p(CSC, ASC,HSC,MSC).
69: 'l.'l. CSC=C.sc, ASC=H.ajc.sc, HSC=H.sc, MSC=M.sc
70: 'l.'l. adjacent_sc_p(CSC, [] ,HSC,MSC) :-merge(CSC,HSC,MSC).
71: adjacent_sc_p ([] ,[] ,SC,SC).
72: adjacent_sc_p ([SC IR], [], [], [SCIR]).
73: adjacent_sc_p(CSC,[AS] ,HSC,SC) : - one_of(CSC,AS,Rest),append(HSC,Rest,SC).
74: adjacent_sc_p([A1,A2IR] ,[A1,A2] ,SC,MSC): -append(SC,R,MSC). f* passive *f
75:
76: 'l.'l. 2 . relative clause structure : psr(R,H,M)
77: 'l.'l. (CHC)
78 : psr({core/{form/rel},sc/Rsc,slash/Rsl,psl/Rps,sem/Rs ,ajc/[] ,ajn/[]},
79: {core/Hc,ajc/Ha, s lash/Hsl,sem/Hs},
80: {core/He, sci[], slash/Msl ,psl/ 0, semi [Hs ,Rs]} , [relative_s]);
81: {pos/n}=Hc,sc_sl(Rsc,Rsl,Rps,Ha,Hsl,Msl,Hs).
82 :
83 : sc_sl([], [{sem/Hsm}] ,Rps,[] ,Hsl,Msl,Hsm):-slash_p(Rps,Hsl,Msl).
84: sc_sl(O ,Rsl,Rps,[{core/ {form/ rel}}] ,Hsl,Msl,Hsm):-
85 : sl_psl_p(Rsl,Hsl,Msl,Rps).
86 : sc_sl([{sem/Hsm}] ,[Rsl] ,Rps,[] ,Hsl,Msl,Hsm):-sl_psl_p([Rsl] ,Hsl, Ms l , Rps).
87: 'l.'l. sl_psl_p(Csl,Hsl,Msl,Psl)
88: sl_psl_p(0, [], [P], [P]) .
89 : sl_psl_p(Csl,Hsl,Msl, 0) : - slash_p(Csl, Hsl ,Msl) .
90: sl_psl_p(Csl,Hsl,Msl,[{sem/X}]) : -slash_p(Csl,Hs l ,[{sem/X}]).
91 :
92: 'l.'l. 3. Subcategorization Structure : psr (C,H ,M)
93: 'l.'l. (CHC)
94 : psr(Comp,
95: {core/He , ajn/Hn, ajc/Hac, sc /HC, refl/Hr,.slash/Hsl, sem/Hs},
96: {core/He, ajn/Hn, ajc/Hac, sc/Rest, refl/Mr, slash/Msl,psl/Cps,sem/Hs},
97: [subcat_p]);
98: {core/Cc, ajc/0, refl/Cr,slash/Csl,psl/Cps, ajn/[]}=Comp,
99: one_ of (HC, Camp, Rest) ,

100: slash_p(Csl,Hsl,Msl),
101: refl_cond(Cr,Hr,Mr,Rest),
102: sc_cond(Cc ,He) .
103:
104: sc_cond({pos/p},{pos/v}) .
105 : sc_cond({pos/ adn},{pos / n}) .
106:
107 : refl_cond(0 , 0, 0 ,Rt) .
108 : refl_cond~ 0, [Cat], [Cat] ,Rt).
109: refl_cond [Cat], 0 , [Cat] Rt) .
110: refl_cond [Cat], 0, 0 ,sd :- memb3 (Cat ,SC).
111:
112: 'l. 'l.'l. 4. Adjunction Structure: psr (An,H,M)
113 : psr({core/ _,ajn/ [Head], slash/Asl,refl/ReflA,psl / Apsl,sem/As},
114 : Head,
115: {core/C,ajn/ A,ajc / [] ,sc/ Hsc,slash/Msl,refl / ReflM,psl/Apsl, sem/As},
116: [adj unct_p]) ;
117: {core/ C,ajn/ A,ajc / [] ,sc/Hsc,slash/Hsl,refl / ReflH ,sem/ Hs}=Head,
118: refl _cond(ReflA,ReflH,ReflM,Hsc),
119: slash_p(Asl,Hsl,Msl).
120:

137

121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166
167
168
169
170
171

%% lexical rule (for general dictionary)
%% lex_rule(OrigCat,NewCat)
lex_rule(C,Cat) :-

same_feature(C,Cat),
sc_to_sl(C,Cat) ,default(Cat,{},{ajc/[] ,ajn/[] ,refl/[]}).

'!.'!. core,sem
same_feature({core/C,sem/S},{core/C,sem/S}).

%% sc,slash (subcat to slash movement, sc,slash,psl default)
%% (CHC)
sc_ to_sl ({sc/ 0}, {sci[] , slash/[] , psl/ []}) :-I .
sc_to_sl ({sc/S}, {sc/Nsc, slash/Nsl ,psl/ 0}); sc_sl_move(S ,Nsc ,Nsl).
sc_sl _move (Sc, Sc, 0) .
sc_sl_move(Sc,Nsc, [{sem/Sl}]):-one_of(Sc,{sem/Sl},Nsc).

%% temp,asp (temp to aspect conversion, asp default)
%% temp_to_asp({temp/O},{core/{asp/0}}) :- 1 .
%% temp_to_asp({temp/t(S,F,R,DSF,DRF)},{core/{view/asp(AB,AE,AD,AT)}});
%% temp_cstr(S,F,R,DSF,DRF,AB,AE,AD,AT).
temp_cstr(S ,F, TO,DSF,T1,S,F,DSF,basic).
temp_cstr(TO,F,R,T1,f,F,R,f,result).
temp_cstr(TO,F,T1,T2,T3,F,i,i,exp).
temp_cstr(TO,T1,R,T2,f,R,i,i,exp).

%% general dictionary
%% (CHC)
lookup([idx(Word, I) I X] , X, Cat, t (Cat, [Word, I] , 0) , Oldidx, Oldidx)

:-member(idx(I,Sem),Oldidx), I,
dict1(Word,C) lex_rule(C,Cat);{sem/Sem}=Cat.

lookup([idx(Word,I) 1xj ,X,Cat,t(Cat, [\lord, I], 0) ,Oldidx ,
[idx(I,Sem)IOldidx]) :-I,
dict1(11ord C) lex_rule(C,Cat);{sem/Sem}=C.

lookup([[SentiContj 1xj ,X,Cat,Hist,Idx,Idx) :
parseO(Cat,Hist,[SentiCont] ,[],Idx).

lookup ([\lord I X] ,X, Cat, t (Cat, [\lord] , 0), Idx, Idx)
:-dict1(11ord,C),lex_rule(C,Cat).

%% pp, suffix, auxiliary verb dictionary (CHC)
%% lookup_post(PreCat, Word, PostCat, PostHist,RuleName)
lookup_post({core/{pos/v,form/Form}},llord, Cat,t(Cat,[Word],[]),[suff_p])

:-search_suffix(Form,llord,Cat);
{slash/[] , psl/ [] ,refl/ []}=Cat.

lookup_post (_,\lord, Cat, t (Cat, [\lord] , 0) , [adj acent_p])
:-dict_pos(llord,Cat);
{slash/[] , psl/ [] , refl/ []}=Cat.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Various constraints
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

172 %%
173 %%
174

general constraint
constraint (finite predicate)

175
176

%% one_of(List, One, Rest)
one_of([XIY] ,X,Y).

IListl<=3

138

177
178
179
180
181
182
183
184
185
186:
187:
188:
189 :
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206 :
207:
208:
209:
210:
211 :
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225 :
226:
227:
228:
229:
230:
231:

one_of([X,YIZ] ,Y,[XIZ]).
one_of([X,Y,Z] ,Z,[X,Y]).

'l.'l. member(X,List)
memb3(X, [XIY]).
memb3(X,[Y,XIZ]).
memb3(X,[Y,Z,X]).

1Listl<=3

'l.'l. finite permutation
perm2([A,B] ,[A,B]).
perm2([A,B] ,[B,A]).
perm3([A,B,C] ,[AIX]):-perm2([B,C] ,X) .
perm3([A,B,C] ,[BIX]):-perm2([A,C] ,X).
perm3([A,B,C] ,[CIX]):-perm2([A,B] ,X) .

'l.'l. constraint (recursive predicate)
merge ([] , D , D) .
merge ([] , [A I X] , [A I X]) .
merge ([A I X] , 0 , [A I X]) .
merge([AIX],[BIY] ,[AIZ]):-merge(X,[BIY] ,Z).
merge([BIX] ,[AIY] ,[AIZ]):-merge([B IX] ,Y,Z).

append ([] , X, X) .
append([AIX] ,Y,[AIZ]) :-append(X,Y,Z).

member(X, [X I Y]).
member(X,[YIZ]) :-member(X,Z) .

'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l. SA-HEN constraint 'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.

su_handler(Adjacent,v_su, D ,SC,Sem) :
suru(Adjacent,SC,Sem).

su_handler([{core/ {pos/v, form/vcs}, aj c/ D , ajn/ D , sci[] , sem/Sem}] ,
Form, D, D ,Sem).

suru([{core/{pos/n,form/ns},sc/Subc,sem/[PrediSRest]}],
SC,[PrediSRest]):- suru_correspond(SRest,Subc,SC).

suru(O, [{core/{pos/p,form/wo},
sc/[{core/{pos/adn,form/ga},refl/RF,sem/Sbj}ISc],

refl/RF,sem/[Pred,Sbj,ObjiSRest]}ISC],
[Pred,Sbj,ObjiSRest]):-

suru_correspond([Sbj ISRest],
[{core/{pos/adn,form/ga},refl/RF,sem/Sbj}ISc] ,SC).

suru(D,
[{core/{pos/p,form/ga},refl/RF,sem/Sbj},
{core/{pos/p,form/wo},

sc/[{core/{pos/adn,form/ga},refl/RF,sem/Sbj}ISC],
sem/[Pred,Sbj,Dbj ISRest]}ISC],

BR,RF,[Pred,Sbj,Dbj ISRest]) :- suru_correspond(SRest,Sc,SC).

suru_correspond (D , D , []) .
suru_correspond([Sbj], [{core/{form/F},sem/Sbj}],

[{core/{pos/p , form/F},sem/Sbj}]) .
suru_correspond([Sbj,Dbj],

[{core/{form/FO} ,sem/Dbj},{core/{form/FS} ,sem/Sbj}],
[{core/{pos/p,form/FS},sem/Sbj},{core/{pos/p,form/FO} ,sem/Dbj}]) .

139

232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243 :
244 :
245:
246:
247:
248:
249:
250:
251:
252 :
253:
254:
255 :
256 :
257:
258:
259:
260:
261:
262:
263 :
264:
265:
266 :
267 :
268 :
269:
270:
271:
272:
273 :
274:
275:
276:
277:
278:
279:
280:
281:
282:
283
284
285
286

suru_correspond ([Sbj ,Obj,Iob],
[{core/{form/FO},sem/Obj},
{core/{form/FI},sem/Iob},{core/{form/FS},sem/Sbj}],
[{core/{pos/p,form/FS},sem/Sbj},
{core/{pos/p,form/Fl},sem/lob},
{core/{pos/p,form/FO},sem/Obj}]).

adn_2([{core/{pos/adn,form/First},sem/Obj},
{core/{pos / adn,form/Second},sem/Sbj}],
First,Second,Obj,Sbj).

adn_2([{core /{pos/ adn,form/First},sem/Obj},
{core/{pos/adn,form/ Second},sem/Sbj}],
Second,First,Obj,Sbj) .

adn _wo_ga(SC,Obj ,Sbj): -adn_2(SC,wo,ga,Obj,Sbj).

adn_1([{core/{pos/adn,form/First},sem/Sem}],Form,Sem).

%%%
%% PP (postposition), aux , etc. (have ADJACENT feature)
%% dict_pos(1word, Cat) : pp, aux, etc .
%%%
%% Post Positions
dict_pos(nado,

{core/{pos/n,form/Form},ajn/0 ,sc/0,
ajc/[{core/{pos/n,form/Form},sc/0 ,sem/SEM}] ,sem/etc(SEM)}) .

%% Postpositional particles (Zyosi)
%'l. --wo,ga,ni,de ,to, no, ha,ba
general _pp (Form,

{core/{pos/p,form/Form},ajn/0 ,sc/0,
ajc/[{core/{pos/n},sc/[],sem/SEM}] ,sem/ SEM}).

dict_pos(wo, Cat):-general_pp(wo, Cat) .
dict_pos(ga, Cat):-general_pp(ga, Cat) .
dict_pos(ni, Cat):-general_pp(ni, Cat).

dict_pos(de,
{core/{pos/adn,form/de},sc/[],
ajc/[{core/{pos/n} ,sc/[] ,sem/SEM1}],
ajn/[{core/{pos/v},sem/SEM2}],sem/de(SEM1,SEM2)}).

dict_pos(to,
{core/{pos/Pos, form/to}, sci 0,
ajc/ [{core/{pos/Cat1,form/Form}, sc/ 0, sem/SEM1}],
ajn/[{core/{pos/Cat2},sem/SEM2}], sem/SEM}) ;
to_compl(Pos,Cat1,Form,SEM1,Cat2,SEM2,SEM).

to_compl(adj,n,_,S1,v,S2,[with(S1) IS2]).
to_compl(adn,n,_,S1,n,S2,[S1,andiS2]) .
to_compl (adj , v, Inf, S1, v, S2, [with, S1, S2]) :-sentence_ end (Inf).
sentence_end(inf).
sentence end(a_inf) .
to_compl(adj,v,imp,S1,nil,S2,S1).

140

287:
288:
289:
290:
291:
292 :
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307 :
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:

dict_pos(no,
{core/{pos/adn,form/Form},sc/[],

ajc/[{core/{pos/CP,form/CF},sc/[] ,sem/CS}] ,ajn/Adjoin,sem/SEM});
no_handler(CP,CF,Form,Adjoin,CS,SEM).

no_handler(p,Form,Form, [] ,Sem,Sem) :-
with_case(Form).

no_handler(n,n,no,
[{core/{pos/n,form/n},ajc/[] ,ajn/[] ,sc/[] ,sem/inst(Dbj,Type)}],

Atr,inst(Obj,[rel,Atr,Type])).

dict_pos(ha,
{core/ {pos/p,form/Form},ajn/[] ,sc/[],
ajc/[{core/{pos/Cat,form/F},sc/[] ,sem/ SEM}] ,sem/SEM});

wa_compl(Cat,F,Form).

wa_compl(p,Form,Form):-with_case(Form).
wa_compl(n,_,Form) without _case(Form).

with_case(to).
with_case(he).
with_case(ni) .
with_case(no).

without_case (ga).
without_case (wo) .

dict_pos(mo, {core/{pos/p,form/Form},ajn/[] ,sc/0,
ajc/[{core/{pos/Cat,form/F},sc/[] ,sem/SEM}] ,sem/SEM});

mo_compl(Cat,F,Form).

mo_compl(p,wo,wo).
mo_compl(n,F,ga).
mo_compl(p,Form,Form):-with_case(Form).

%% general constraint
v_renyou(conj).
v_renyou(vv).
v_renyou(v_y) .
v_renyou(v_si).
inf_form(inf).
inf_form(a_inf).

%% Fuku Zyosi
/.'l.---ba,temo,demo,te,de,tari,dari,shi

dict_pos (ba, {core/{pos/ adv, form/katei}, sci D ,
ajc/[{core/{pos/v,form/katei},sc/[] ,sem/SEM1}],
ajn/[{core/{pos/v},ajc/[] ,ajn/[] ,sem/SEM2}] ,
sem/if(SEM1,SEM2) }) .

%% --temo,demo (even if)
temo_demo(Form

{core/{pos/ adj , form/temo}, sc/ D ,
ajc/[{core/{pos/v,form/Form},sc/[] ,sem/SEM1}],
ajn/[{core/{pos/v},ajc/[] ,aj n/[],sem/SEM2}],

141

343 :
344:
345 :
346:
347:
348:
349:
350:
351:
352 :
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363 :
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375 :
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:

sem/even_if (SEM1,SEM2) }) .
dict_pos(temo,Cat) :-temo_demo (Form ,Cat); te_form (Form).
di ct_pos(demo ,Cat) :-temo_demo(Form ,Cat) ;demo_f orm (Form) .
demo_form(conJ_de).
demo_form(na).

%% --te, de + iru,miru, et c.
te_de(Form,

{core/{pos/v,form/conj2},sc/[] ,
ajc/[{core/{pos/v,form/Form},sc/[] ,sem/SEM}] , sem/SEM}) .

dict_pos(te,Cat) :-te_de(Form,Cat);te_form (Form).
dict_pos(de,Cat) :-te_de(conj_de,Cat).
te_form(vv).
te_form(v_y).
te_form(conj_te).
te_form(v_si).

%%%% --tari,dari
tari_dari(Form,

{core/{pos/adj, form/tari}, sci 0,
ajc/[{core/{pos/v,form/Form},sc/[] ,sem/SEM1}],
ajn/ [{core/ {pos/vs}, aj c/ [] , aj n/ 0 , sem/SEM2}] ,
sem/[SEM11SEM2]}) .

dict_pos(tari,Cat) : -tari_dari(Form,Cat);te_form(Form).
dict_pos(dari,Cat):-tari_dari(conj_de,Cat).

'!.'!.'!.'!. --shi
dict_pos(shi,

(--shi,--shi)

{core/{pos/adj, form/adn}, sci 0,
ajc/[{core/{pos/v,form/Form},sc/[] ,sem/SEM1}],
ajn/[{core/{pos/v,form/Form},ajc/[] ,ajn/0 , sc/0 ,sem/SEM2}],
sem/[SEM1ISEM2] });
inf_form(Form).

'!.'!. weak verbs
'!.'!. --(te/de)iru,iku,kuru,miru,shimawu: stative verbs
stative_verb(F,

{core/ {pos/v, form/F}, aj n/ [] , sci 0 ,
ajc/ [{core/{pos/ v,form/conj2},sc/[] ,sem/Sem}] ,sem/[stativeiSem]}) .

dict_pos(i,Cat):-stative_verb(vv,Cat).
dict_pos(ik,Cat):-stative_verb(vck,Cat).
dict_pos(k,Cat):-stative_verb(vk,Cat) .
dict_pos(mi,Cat):-stative_verb(vv,Cat).
dict_pos(shimaw,Cat):-stative_verb(vcw,Cat).

'!.'!.'!.'!. --dasu,kakeru,hajimeru,owaru,tuzukeru :v(renyou) + v sub-verb
sub_verb(F,A,

{core/{pos/v ,form/F} ,ajn/ 0 , sc/ 0,
ajc/[{core/{pos/ v,form/ Form},sc/0 ,sem/ Sem}],sem/[AISem]});

v_renyou(Form).
dict_pos(das,Cat):-sub_verb(vcs,begin,Cat).
dict_pos(kake,Cat):-sub_verb(vv,nearly,Cat).
dict_pos(hajime,Cat):-sub_verb(vv,begin,Cat).
dict_pos(owar,Cat):-sub_verb(vcr,end,Cat).

142

398:
399:
400:
401:
402:
403:
404:
405:
406:
407:
408:
409:
410:
411:
412:
413:
414:
415:
416:
417:
418:
419:
420:
421:
422:
423:
424:
425:
426:
427:
428:
429:
430:
431:
432:
433:
434:
435:
436:
437:
438:
439:
440:
441:
442:
443:
444:
445:
446:
447:
448:
449:
450:
451:
452:
453:

dict_pos(tuzuke,Cat) :-sub_verb(vv,continue,Cat).

'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l. Auxiliary verbs (Zyo-doushi) 'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.

'l.'l.'l.'l.'l. --seru, --saseru : Causative verb (shieki)
shieki_verb(Form,

{core/{pos/v,form/vv},ajn/[],
ajc/[{core/{pos/v,form/Form},sc/[{core/{pos/p,form/ga},sem/Iob}],

sem/Act}],
sc/[{core/{pos/p,form/ga},sem/Sbj},

{core/{pos/p,form/ni},sem/Iob}],
sem/[cause,Sbj,Iob,Act]}).

dict_pos(sase,Cat):-shieki_verb(Form,Cat);sara_set(Form).
dict_pos(se,Cat):-shieki_verb(Form,Cat);sere_set(Form).
sara_set(vv).
sara_set(vk).
sere_set(vc_m) .
sere_set(v_sa) .

'l.'l.'l.'l.'l. --re(ru), --rare(ru) . Passive verb (ukemi)
dict_pos(rare,Cat) :-ukemi_verb(Form,Cat);sara_set(Form).
dict_pos(re,Cat):-ukemi_verb(Form,Cat) ;sere_set(Form).

ukemi verb(Form,
{core/{pos/ v,form/vv},ajn/[],
ajc/[{core/{pos/v,form/Form},

sc / [{core/ {pos/p,form/ga},sem/Agt},
{core/{pos/p,form/F},sem/Pat}],

sem/Act}],
sc/[{core/{pos/p,form/ga},sem/Pat},{core/{pos/p,form/ni},sem/Agt}],
sem/[passive,Pat,Agt,Act]});
obj_case(F).

control_passive(0 ,Sbj, []).
control_passive([{core/ {pos/p,form/Form},ajc/ [] ,ajn/[] ,sc/[],sem/Sbj} l

Rest], Sbj,Rest):-obj_case(Form).

obj_case(ni) .
obj_case(wo).

'l.'l.'l. general auxirialy verb (syusi,rentai form & others)
Y.Y.Y. nu, ta,u,you,mai
aux_syu_ren(Form,A,

{core/{pos/v ,form/Fm}, ajn/X, sci 0, sem/Z,
ajc/[{core/{pos/v,form/Form},sc/Y,sem/Sem}]});

syu_ren(Fm,X,Y,Z,[A,Sem]).

aux_verb(Fm,Form,A,
{core/{po s /v,form/ Fm},ajn/[] ,sc/0 ,sem/[A,Sem],
ajc/[{core/{pos/v,form/Form},sc/[] ,sem/Sem}]}).

'l.'l.'l. rel_clause(Form,HSC,CSC,HAdjoin,Csem,Hsem)
syu_ren(inf, 0, [] ,Z,Z).
syu_ren(rel,[{core/{pos/n} ,sem/inst(A,B)}] ,[{core/{pos/p},sem/A}],

inst(A,[B,Z]),Z).

l43

454:
455:
456:
457:
458:
459:
460:
461:
462:
463:
464:
465:
466:
467:
468:
469:
470:
471:
472:
473:
474:
475:
476:
477 :
478:
479:
480:
481:
482:
483:
484:
485:
486:
487:
488 :
489:
490:
491:
492:
493:
494:
495:
496:
497:
498:
499:
500:
501 :
502 :
503 :
504:
505:
506:
507:
508:
509:
510:

'l.'l.'l.'l.'l. --na(i),--nu . Not
dict_pos(na,Cat):-aux_verb(adj,Form,no,Cat); nai_set(Form) .
nai_set(vc_m) .
nai_set(vv).
nai _set(vk).
nai_set(v_si) .
nai_set(mizen).

dict_pos(nu,Cat):-aux_syu_ren(Form,no,Cat) ;nu_set(Form).
dict _pos (n ,Cat): -aux_syu_ren (Form,no,Cat);nu_set(Form).
dict _pos(zu,Cat): -aux_verb (renyou ,Form,no,Cat);nu_set(Form).
dict_pos(ne,Cat): -aux_verb(katei,Form, no,Cat);nu_set(Form).
nu_set (vc_m).
nu_set(vv).
nu set(vk).
nu=set(v_se) .

'l.'l.'l.'l.'l. --ta,da : Past
dict_pos(ta,Cat):-aux_syu_ren (Form,past,Cat) ;ta_form(Form) .
dict_pos(da,Cat) : -aux_syu_ren(conj_de,past,Cat).
dict_pos(tara,Cat) : -aux_verb(katei,Form,past,Cat);ta_form(Form).
dict_pos(dara,Cat) :-aux_verb(katei,conj_de,past,Cat) .

ta_form(adj_tt).
ta form(na tt).
ta=form(X)~-te_form(X).

'l.'l.'l.'l.'l. --u, --you : suiryou (guess) or ishi(will)
dict_pos(u,Cat): -aux_syu_ren(Form,may ,Cat);u_set (Form).
u_set(vc_o) .
u_set (mizen).

dict_pos (you ,Cat): -aux_syu_ren (Form,may,Cat);you_set(Form) .
you_set(vv).
you_set(vk).
you_set(v_si).

'l.'l./.'l.% --rashii : suitei
dict_pos(rashi,Cat) :-aux_verb(adj,Form,polite,Cat);rashii_set(Form).
rashii_set (na) .
rashii_set(F): - inf_form(F).

'l.'l.'l.'l.'l.'l. --mai : not+guess, not+will
dict_pos(mai,Cat):-aux_syu_ren(Form,no,Cat);mai_set(Form) .
mai_set~inf).
mai_set vv) .
mai_set vk) .
mai_set v_si).

'l.'l.'l.'l.'l.'l. --ta(i) : hope
dict_pos(ta,Cat) : -aux_verb (adj,Form,hope,Cat);v_renyou(Form).

'l.'l.'l.'l.'l. --sou (da) . : may & I hear
dict_pos(sou,Cat):-aux_verb(na,Form,A,Cat); souda_set (Form,A).
souda_set(F,may):-souda_may_set(F).
souda_may_set(F):-v_renyou(F) .
souda_may_set(adj).

144

511:
512 :
513:
514:
515:
516:
517:
518:
519:
520:
521:
522:
523:
524:
525:
526:
527:
528:
529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:
541:
542:
543:
544:
545:
546:
547:
548 :
549:
550:
551:
552:
553:
554:
555:
556:
557:
558:
559:
560:
561:
562:
563:
564:
565:
566 :

souda_may_set(na).
souda_set(inf,hear).
souda_set (a_inf,hear).

'I.%%%% --desu, masu. . teinei
desu(Inf,Cat) : -aux_verb(Inf,Form ,polite,Cat);desu_set(Form).
desu_set(rel).
desu_set (adj) .
desu_set(na).
dict_pos(desho,Cat) :-desu(vc_o,Cat).
dict_pos(deshi,Cat) :-desu(v_y,Cat).
dict_pos(desu,Cat):-aux_syu_ren(Form,polite,Cat);desu_set(Form).
masu(Inf,Cat) : -aux_verb (Inf,Form,polite,Cat);v_renyou(Form).
dict_pos(mase,Cat):-masu(v_se,Cat).
dict_pos(masho,Cat) :-masu(vc_o,Cat).
dict_pos(mashi,Cat) : -masu(v_y,Cat).
dict_pos(masu,Cat):-aux_syu_ren(Form,polite,Cat);v_renyou(Form).
dict_pos(masure,Cat):-masu(katei,Cat).
dict_pos(mase,Cat):-masu(imp,Cat).

%%%%% --nagara, --tsutsu : cont . adverb
dict_pos(nagara,

{core/{pos/adv,form/adv},sc/[],
ajc/[{core/{pos/v,form/Form},sc/[] ,sem/SEM}],
ajn/[{core/{pos/vl},ajc/[] ,ajn/0 ,sem/SEM1}],
sem/[with,SEM,SEM1]});

nagara_set(Form) .
nagara_set(a_inf).
nagara_set(F):-v_renyou(F) .

%%
%% verb suffix
%%

'!.'!.%%% search_suffix(Form,Word,Cat) %%%%%%%%%%%%%%
%% « Example »
%% mizen/ renyou/ syusi / rentai/
%%
%% vc? yom-mu rna mi mu mu
'1.'1. mo(+u) n
'!.'!. vv iki-ru ru ru
%% vk kuru ko ki kuru kuru
%% vs1 tanjyou-suru si si suru suru
'1.'1. sa
%% se
'1.'1. vs2 ai-suru sa si suru suru
%% adj haya-i karo katt i i
'!.'!. ku
%% na kirei-da daro datt da na
%% de
'!.'!. ni
%% « Form Table »
'!.'I. vc?: vc m conj inf rel
%% (vck,vcs,vct,vcn, vc_o conj _t e (k,t,r,w,ik)
%% vcr,vcw,vcg,vcb, conj_de (g,n,m,b)
%% vcik)

145

katei/

me

re
kure
sure

sure
kere

nara

katei

imp/

me

ro
koi
seyo
siro

seyo

imp

567:
568:
569:
570:
571:
572 :
573:
574:
575 :
576:
577:
578:
579:
580:
581:
582 :
583 :
584:
585:
586:
587:
588:
589:
590:
591:
592:
593:
594:
595:
596:
597:
598:
599:
600:
601:
602:
603:
604:
605:
606:
607:
608:
609:
610:
611:
612:
613:
614:
615:
616:
617:
618:
619:
620:
621:
622:
623:

'!.'!. vv:
'!.'!. vk:
'!.'!. vs1:
'I.'!.
'I.'!.
'!.'!. vs2 :
'!.'!. adj:
'!.'!.

'l.'l. na :
'!.'!.

'!.'!.
search_suffix(adj,i,

vv
mizen
v_si
v_se
v_sa
vc_m
mizen

mizen

vv
v_y
v_si

v_y
adj_tt
adj_ku
na_tt
na_de
na_ni

inf
inf
inf

inf
a_inf

a_inf

rel
rel
rel

rel
rel

rel

{core/{pos/v,form/Form},ajn/X,sc/[] ,sem/Z,
ajc/[{core/{pos/v,form/adj},sc/Y,sem/Sem}]});

syu_ren(Form,X,Y,Z, [neg,Sem]).

search_suffix(na,na,
{core/{pos/v,form/rel},sc/[],
ajc/[{core/{pos/v,form/na},

katei imp
katei imp
katei imp

katei imp
katei

katei

sc/[{core/{pos/p},ajc/[] ,ajn/[] ,sc/[] ,sem/Obj}],
sem/Sem}],

ajn/[{core/{pos/n,form/n},ajc/[] ,ajn/[] ,sc/[] ,sem/inst(Obj,Type)}],
sem/inst(Obj ,[and,Type,Sem])}).

'!.'!.'!. suffix search
search_suffix(Fm,Word,

{core/{pos/v,form/Form},ajn/X,sc/[] ,sem/Z,
ajc/[{core/{pos/v,form/Fm},sc/Y,sem/Sem}]}
:-suff_s(Word,Fm);syu_ren(Form,X,Y,Z,Sem).

search_suffix(Form2,Word,
{core/{pos/v, form/Form1}, aj n/ [] , sc/ D ,
ajc/[{core/{pos/v,form/Form2},sc/[] ,sem/Sem}] ,sem/Sem}
:-suff(Word,Form1,Form2).

'!.'!.'!.'!.'!. suffix syusi, rentai
suff_s su,vcs).
suff_s nu,vcn).
suff_s mu,vcm).
suff_s bu,vcb).
suff_s ku,vck).
suff_s ku,vcik).
suff_s~tu,vct).
suff_s u,vcw).
suff_s ru,vcr).
suff_s ru,vv) .
suff_s kuru,vk).
suff_s(suru,vs1).
suff_s(suru,vs2) .

'l.'/.'1.'1.'1. Suffix (mizen, renyou, meirei)

'!.'!.'!. adj, na
suff(karo,mizen,adj).
suff(katt,adj_tt,adj).
suff(ku,adj_ku,adj).
suff(daro,mizen,na).

146

624
625
626
627
628
629
630:
631:
632:
633 :
634:
635 :
636 :
637:
638:
639:
640:
641:
642:
643:
644:
645:
646:
647:
648:
649:
650:
651:
652:
653:
654:
655:
656:
657:
658:
659 :
660:
661:
662:
663:
664 :
665:
666:
667:
668:
669:
670:
671:
672:
673:
674:
675:
676:
677:
678:
679:
680:
681:

suff(datt,na_tt,na).
suff(de,na_de,na).
suff(ni,na_ni,na).
suff(da,a_inf,na).

%'l.'l. vs, vk - mizen, renyou
suff(se,v_se,vs1).
suff(si,v_s i,vs1).
suff(sa,v_sa,vs1).
suff(si,v_y,vs2).
suff(ko,mizen,vk).
suff(ki,v_y,vk).

'l.'l.'l. v5 mizen
suff(Suf,vc_m ,Inf):-vc_m_suff(Suf,Inf).
vc_m_suff~sa,vcs).
vc_m_suff sa,vs2).
vc_m_suff na,vcn).
vc_m_suff ma ,vcm).
vc_m_suff~ba ,vcb).
vc_m_suff ka ,vck) .
vc_m_suff ka ,vcik).
vc_m_suff(ta,vct).
vc_m_suff(wa,vcw).
vc_m_suff(ra,vcr).

suff(Suf,vc_o,Inf): - vc_o_suff(Suf,Inf).
vc_o_suff~so,vcs).
vc_o_suff so,vs2).
vc_o_suff no,vcn).
vc_o_suff mo,vcm).
vc_o_suff(bo,vcb).
vc_o_suff(ko ,vck).
vc_o_suff(ko,vcik).
vc_o_suff~to,vct).
vc_o_suff wo,vcw).
vc_o_suff ro,vcr).

'l.'l.'l. v5 renyou
suff(si,v_y,vcs).

suff(Suf,conj,Inf) :-vc_conj_suff(Suf, Inf).
vc_conj_suff(ni,vcn).
vc_conj_suff(mi,vcm).
vc_conj_suff(bi,vcb).
vc_conj_suff(wi,vcw).
vc_conj_suff(gi,vcg).
vc_conj_suff(ki,vck).
vc_conj_suff(ki,vcik).
vc_conj_suff(ti,vct).
vc_conj_suff(ri,vcr).

'l.'l.'l. v5 renyou - onbin
suff(i,conj_te,vck).
suff(i,conj_de,vcg).
suff(t,conj_te,vct).
suff(t ,conj_te,vcw).
suff(n,conj_de,vcb).

147

682:
683:
684:
685:
686:
687:
688:
689:
690:
691:
692:
693:
694 :
695:
696:
697:
698:
699:
700:
701:
702:
703:
704:
705:
706:
707:
708:
709:
710:
711:
712:
713:
714:
715:
716:
717:
718:
719:
720:
721:
722:
723:
724:
725 :
726 :
727:
728:
729:
730:
731:
732:
733:
734:
735:
736:
737:
738:

suff(n,conj_de,vcm) .
suff(t,conj_te,vcr).
suff(n,conj_de,vcn).
suff(t,conj_te ,vcik) .

%%% katei (only -ba)
suff(Suf,katei,Inf) :-suff_ba(Suf,Inf).
suff_ba(se,vcs).
suff_ba~ne,vcn).
suff_ba me,vcm).
suff_ba be,vcb) .
suff_ba ke,vck) .
suff_ba(ke,vcik).
suff_ba(te,vct).
suff_ba(we,vcw).
suff_ba(re,vcr).
suff_ba~re,vv).
suff_ba kure,vk).
suff_ba sure,vs1) .
suff_ba sure,vs2) .
suff_ba kere,adj).
suff_ba(nara,na).

'/.'/.% meirei
suff(Suf,imp,Inf):-imp_suff(Suf,Inf).
imp_suff(se,vcs).
imp_suff(ne,vcn) .
imp_suff(me,vcm).
imp_suff(be,vcb).
imp_suff(ke,vck) .
imp_suff(ke,vcik).
imp_suff(te,vct).
imp_suff(we,vcw).
imp_suff(re,vcr).
imp_suff(ro,vv).
imp_suff(koi,vk).
imp_suff(siro,vs1).
imp_suff(sero,vs1).
imp_suff(seyo,vs2).
/.'/.I.'/.Y.'/.'/.!.'/.Y.!.Y.'/.'/.Y.'/.'/./.Y.'/.'/./.'/.1.'/.'/./.'/.'/.'/./.
'/.'!. noun.dic
'/.'/. common noun, proper nouns
'l.

'/.'/.'/.'/.'/.'/.'/. common nouns .
c_noun(Sem,{core/{pos/n,form/n},sem/inst(Obj,Sem)}).

dict1(ari,Cat):-c_noun(ant,Cat).
dict1(esa,Cat) :-c_noun(food,Cat) .
dict1(gakusha,Cat):-c_noun(scholar,Cat).
dict1(gyouretsu,Cat) :-c_noun(row,Cat).
dictl(hana,Cat) : -c_noun(flower,Cat) .
dict1(hatarakiari,Cat):-c_noun(worker_ant,Cat).
dict1(hito,Cat) :-c_noun(person,Cat).
dict1(hon,Cat):-c_noun(book,Cat).
dict1(ishi,Cat) :-c_noun(stone,Cat).

148

739: d ct1(jimen ,Cat):-c_noun(ground,Cat).
740: d ct1(katamari,Cat) :-c_noun(block, Cat).
741: d ct1(michi,Cat):-c_noun(road,Cat).
742: d ct1(mi chishirube,Cat) :-c_noun(row,Cat).
743: d ct1(michisuji,Cat) :-c_noun(road,Cat).
744: d ct1(mokutekichi,Cat):-c_noun(goal,Cat).
745: d ct1(natsu , Cat) :-c_noun(summer,Cat).
746: d ct1(niwa,Cat) :-c_noun(garden,Cat).
747: d ct1(satou,Cat) : - c_noun(sugar,Cat).
748: d ct1(soto,Cat) :-c_noun(out,Cat) .
749: d ct1(sumi ,Cat) :-c_noun(corner,Cat).
750: d ct1(tsubu,Cat) :-c _noun(grain,Cat).
751: d ct1(yousu,Cat): - c _noun(yousu,Cat).
752: d ct1(yukute,Cat):-c_noun(way,Cat).
753:
754 : 'l.'l.'l.'l.'l.'l.'l. proper nouns.
755: p_noun(Sem,{core/{pos/n,form/n},sem/Sem}).
756 :
757 : dict1(amerika,Cat):-p_noun(america,Cat).
758: dict1(hiroshi,Cat):-p_noun(hiroshi,Cat).
759 : dict1(ken,Cat):-p_noun(ken, Cat) .
760: di ct1(naomi,Cat) :-p_noun(naomi,Cat).
761: dict 1(wilson,Cat) :-p_noun(wilson,Cat).
762:
763: 'l.'l.'l.'l.'l. jibun (self)
764: dict1(jibun, {core/{pos/n,form/n},
765 : refl/[{core/ {pos/p ,form/ga} , sem/Sem}],
766: sem/Sem}).
767 : dict1(jken, {core/{pos/n,form/n},
768 : refl/[{core/{pos/p,form/ga},sem/ken}],
769: sem/ken}) .
770:
771: 'l.

772: 'l.'l. verb.dic
773: 'l.'l. Verbs except sahen-v
774: 'l.
775: 'l.'l. vi (!subcat l;;1 : --ga)
776 : ga_verb(F,Act,
777: {core/{pos/v,form/F},
778 : sc/[{core/ {pos/p,form/ga},sem/Sbj}],
779: sem/[Act,Sbj]}) .
780 :
781 : 'l.'l.'l.'l.'l. vt (!subcat l;;2 :)
782: 'l.'l. --ga --wo
783: ga_wo_verb(F,Act,
784: {core/{pos/v ,form/F},
785: sc/[{core/{pos/p,form/ga},sem/ Sbj},
786 : {core/{pos/p ,form/wo},sem/Dbj}],
787 : sem/[Act, Sbj,Dbj]}).
788: 'l.'l. --ga --ni
789: ga_ni_verb(F,Act,
790: {core/{pos/ v,form/F} ,
791: sc/[{core/ {pos/p , form/ga} ,sem/Sbj},
792: {core/{pos/p , form/ni} ,sem/Obj}],
793: sem/[Act,Sbj,Dbj]}).

149

794:
795: 'l.'l. --ga --wo --ni
796: ga_wo_ni_verb(F,Act,
797: {core/{pos/v,form/F} ,
798: sc /[{core/{po s /p,form/ga} ,sem/Sbj},
799: {core/{pos/p,form/wo} , sem/Iob} ,
800: {core/{pos/p,form/ni},sem/Dob}],
80 1 : sem/[Act,Sbj ,Iob, Dob]}) .
802 :
803: 'l.'l. temp. feature
804 : 'l.'l. kiru,akeru
805 : temp1({core /{view/asp(AB,AE,AD,AT)}});
806: temp_cstr(3,2,2,f,f,AB,AE,AD,AT).
807: 'l.'l. anki - suru
808: temp2({core/{view/asp(AB,AE,AD , AT)}});
809: temp_cstr(3, 2 ,0,f,u,AB,AE,AD,AT) .
810: 'l.'l. aruku,yomu
811: temp3({core/{view/asp(AB,AE,AD,AT)}});
812 : temp_cstr(3,2,2,f,O,AB,AE,AD,AT).
813: 'l.'l. matu,damaru
814: temp4({core/{view/asp(AB,AE,AD,AT)}});
815: temp_cstr(3,1,1,f,O,AB,AE,AD,AT).
816: 'l.'l. suwaru,kekkon-suru
817: temp5({core/{view/asp(AB,AE,AD,AT)}});
818: ,, temp_cstr(3,2,2 , 0,f,AB , AE ,AD, AT).
819: 'l.'l. suwaru,s1nu
820: temp6({core/{view/ asp(AB,AE,AD,AT)}});
821: temp_cstr(3,2,0,0,f,AB,AE,AD,AT).
822 : 'l.'l. niru,tadayou
823 : temp7({core/{view/asp(AB,AE,AD,AT)}}) ;
824 : temp_cstr(O,O,O,O,u,AB,AE,AD,AT) .
825 : 'l.'l. odoroku,tumaduku
826: temp8({core/{view/asp(AB,AE , AD,AT)}});
827: temp_cstr(3,2,2,0,0,AB,AE,AD , AT).
828:
829: 'l.'l.'l. lexical entry
830: dict1(age,Cat):-ga_wo_ni _verb(vv,give,Cat) .
831: dict1(ai,Cat):-ga_wo_verb(vs2,love,Cat).
832: dict1(ake,Cat):-ga_wo_verb(vv,open,Cat),temp1(Cat).
833: dict1(aruk,Cat) :-ga_verb(vck,walk,Cat) .
834: dict1(chigaw,Cat):-ga_verb(vcw,differ,Cat) .
835: dict1(chirijirininar,Cat):-ga_verb(vcr,scatter,Cat) .
836: dict1(deki,Cat) :-ga_verb(vv,can,Cat) .
837: dict1(de,Cat):-ga_ni_verb(vv,go_out,Cat) .
838: dict1(hashir,Cat):-ga_verb (vcr,run,Cat).
839: dict1(hazure,Cat):-ga_wo_verb(vv,be_off,Cat).
840 : dict1(i,Cat):-ga_verb(vv,be,Cat) .
841 : dict1(ik,Cat) : -ga_ni_verb(vck,go_to,Cat).
842: dict1(isog,Cat):-ga_verb(vcg,hurry,Cat).
843: dict1(kaer,Cat) :-ga_ni_verb(vcr,return,Cat) .
844 : dict1(kag,Cat) : -ga_wo_verb (vcg,smell_of , Cat) .
845: dict1(kak,Cat) : -ga_wo_verb (vck, writ e,Cat).
846 : dict1(kaw,Cat) :-ga_wo_verb(vcw,buy,Cat).

150

847:
848:
849:
850:
851:
852:
853:
854:
855:
856:
857:
858:
859:
860:
861:
862:
863:
864:
865:
866:
867 :
868 :
869:
870:
871:
872:
873:
874:
875:
876:
877:
878:
879:
880:
881:
882:
883:
884:
885:
886:
887:
888:
889:
890:
89 1:
892 :
893 :
894 :
895:
896:
897:
898 :
899:
900:
901:

dict1(kawar,Cat):-ga_verb(vcr,lose,Cat).
dict1(kat,Cat):-ga_ni_verb(vct,win,Cat).
dict1(ke,Cat):-ga_wo_verb(vv,kick,Cat).
dict1(ki,Cat):-ga_wo(vv,wear,Cat),temp1(Cat) .
dict1(majiwar,Cat):-ga_verb(vcr,cross,Cat).
dict1(manab,Cat) :-ga_wo_verb(vcb,learn,Cat).
dict1(mayow,Cat) :-ga_verb(vcw,be_lost,Cat).
dict1(mi,Cat):-ga_wo_verb(vv,see,Cat).
dict1(midare,Cat) :-ga_verb(vv,be_confused,Cat).
dict1(mitsuke,Cat):-ga_wo_verb(vv,find,Cat).
dict1(mot,Cat) :-ga_wo_verb(vct,have,Cat).
dict1(na,Cat) :-ga_ni_verb(vv,become,Cat).
dict1(nor,Cat):-ga_ni_verb(vcr,get_on,Cat).
dict1(ok,Cat):-ga_wo_ni_verb(vck,put,Cat).
dict1(omow,Cat) :-ga_wo_verb(vcw,think,Cat).
dict1(os,Cat):-ga_wo_verb(vcs,push,Cat).
dict1(saegir,Cat):-ga_wo_verb(vcr,interrupt,Cat).
dict1(sagas,Cat):-ga_wo_verb(vcs,seek,Cat).
dictl(shir,Cat) :-ga_wo_verb(vcr,know,Cat).
dict1(shin,Cat) : - ga_verb(vcn,die,Cat) .
dict1(susum,Cat):-ga_ni_verb(vcm,advance,Cat).
dictl(tador,Cat):-ga_wo_verb(vcr,follow,Cat).
dictl(tasuke,Cat):-ga_wo_verb(vv,help,Cat).
dictl(toor,Cat):-ga_ni_verb(vcr,pass ,Cat) .
dict1(tsuge,Cat):-ga_wo_ni_verb(vv,tell,Cat).
dict1(tsuk,Cat):-ga_ni_verb(vck,reach ,Cat).
dict1(tsuzuku,Cat) :-ga_verb(vck,continue,Cat).
dict1(wakar,Cat):-ga_wo_verb(vcr,understand,Cat).
dictl(yom,Cat) :-ga_wo_verb(vcm,read,Cat).
Y.Y.Y.Y.Y.Y.'l.Y.Y.%1.%%%%%%%%%%%%%%%%%%
'l.'l. sahen.dic
'l.'l. sahen-n , v dictionary
'l.

'l.'l.'l.'l.'l. verb : SURU
suru_verb(F, {core/{pos/vs,form/F},ajc/Adj,sc/SC,sem/Sem});

s=u(~.~.~m).

dictl!shi,Cat):-suru_verb(v_si,Cat) .
dict1 se,Cat):-suru_verb(v_se,Cat).
dict1 sa,Cat):-suru_verb(v sa,Cat).
dict1 sure,Cat):-suru_verb(katei,Cat) .
dict1 shiro,Cat):-suru_verb(imp, Cat).
dictl(sero,Cat) :-suru_verb(imp,Cat) .

'l.'l.'l.'l.'l. sa-hen verbs (do)
sahen_verb(F,Act,

{core/{pos/v,form/F},sc/[{core/{pos/p,form/ga},sem/Sbj}] ,
sem/[Act,Sbj]}).

dict1(tanjou,Cat):-sahen_verb(vs1,be_born,Cat).

'l.'l.'l.'l.'l. sa-hen nouns.
dictl(chousa,

{core/{pos/n,form/ns},sc/SC,sem/[investigate,Sbj,Obj]});
adn_wo_ga(SC,Obj,Sbj) .

151

902:
903:
904:
905 :
906:
907:
908:
909:
910:
91 1 :
912:
913:
914 :
915:
916:
917:
918:
919:
920:
921:
922:
923:
924:
925:
926:
927:
928:
929 :
930 :
931 :
932:
933:
934:
935:
936:
937:
938:
939:
940:
941:
942:
943:
944:
945:
946:
947:
948:
949:
950:
951:
952:
953:
954:
955:
956:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% adject.dic
%% adjective, adjective-verb
'l./.'l.'l.Y.'l.Y.'l.'l.'l.'l.'l.'l.'l.'l.'l./.Y.'l.'l.'l.'l.'l./.'l.'l.'l.'l.'l.'l.'l.'l.'l.'l.

%%%%% Adjectives
adjective(A,

{corel{poslv,formladj}, scl[{corel{poslp,formlga},semiDbj}],
semi [A, Dbj]}) .

dict1(aka,Cat):-adjective(red,Cat).
dict1(siro,Cat) :-adjective(white ,Cat) .
dict1(kuro,Cat) :-adj ective(black,Cat).
dict1(ooki,Cat) :-adjective(big,Cat).
dict1(yo,Cat):-adjective(good,Cat).

%%%%% na (adjective-verb)
ajverb(A,

{corel{poslv,formlna}, scl[{corel{poslp,formlga},semiDbj}],
semi [A,Dbj]}) .

dict1(kirei,Cat):-ajverb(beautifle ,Cat) .
dict1(kaiteki,Cat):-ajverb(comfortable,Cat).
%%
%% dictionary of misc. words
%%

%%%%%%%% rentai-shi
rentaishi (A,

{corel{posladn, formladn},
ajnl[{corel{posln,formln},aj cl[] ,ajnl[] ,scl[],semiSEM}],
semi[Ai [SEM]]}).

dict1(sono,Cat) :-rentaishi(the,Cat).
dict1(kono,Cat) :-rentaishi(this,Cat).
dict1(ano,Cat):-rentaishi(that,Cat).
dict1(ippikino,Cat):-rentaishi(one,Cat).

%%%%%%% fuku-shi (adverb)

adverb(MODIFY,
{corel{posladv, formladv}, ajnl[{corel{poslv},semiSEM}],
semi[MODIFYISEM]}).

dictl(yoku,Cat):-adverb(often,Cat).
dict1(zutto,Cat):-adverb(continue,Cat).
dict1(hajimeni,Cat):-adverb(first,Cat).
dict1(sukoshi,Cat):-adverb(slightly,Cat) .
dict1(yagate,Cat):-adverb(in_the_end,Cat).
dict1(tsugitsugito,Cat):-adverb(continue,Cat).
dict1(dandanni,Cat):-adverb(gradually,Cat).
dictl(komakani,Cat):-adverb(minutely,Cat).
dict1(kesshite,

{corel{posladv,formladv}, ajnl[{corel{poslv},seml[noiSEM]}],
seml[never!SEM]}).

%%%%% Examples %%%%%%%%%%%%%%%
%% ?-p([ken,ga,naomi,wo,ai,suru]).
%% ?-p([ken,ga,naomi,ni,ai,sa,re,ta]).

152

Bibliography

[AB I\89) 1\rzyszLof R. ApL, Roland N. Bol , and Jan Willem !\lop. On the safe termi
nation of PROLOG programs. In Pmc. of 6th lnt cmalional Conference of
Logic Pmgmmming, pages 353 368, 1989.

[Acz88) Peter Aczel. Non- We/(Founded Set The01-y. Lecture Notes No. 14, SLan
ford: CS Ll , 1988.

[Al<89) S. Abiteboul and P. Kanellakis. Object ldenLity as a Query Language Prim
itive. In Proc. A CM S IGMOD lntemational Conference on Management of
Data, Port land , June 1989.

[AKN86) Hassan A"iL-Kaci and Roger Nas r. LOGIN: A Logic Programming Language
with Built-In InheriLance. Joumal of Logic Pmgmmming, :3: 185- 215, 1986.

[ASS+88) Akira Aiba, K. Sakai , Y. SaLo, D. J. Hawley, and R. Hasegawa.. ConsLraint
Logic Programming Language CA L. In Proc. FGCS88, 1988.

[A YT94) Akira Aiba., l<azumasa Yokota, and Hiroshi T suda. Heterogeneous Dis
t ribu ted CooperaLive Problem Solving System HEL lOS. In Pmc. FGGS94,
1994.

[Bes89) Philippe Besnard. On Infinite Loops in Logic Programming. Rapports de
Recherche N 1096, INRIA , September 1989 .

[BMMW89) Alan Borning, Michael Maher , Amy Ma rtindale, a nd Molly Wi lson. Con
stra inL Hierarchies and Logic Progra mming. In Proc. 6th fnt emational Con
f e!·ence of Logic Progmmming, pages 149- 164 , 1989 .

[BP83) Jon Barwiseand John Perry. Situation and AUitudes. MIT Press, Cambridge,
Mass, 1983.

[Bre82) Joan W. Bresnan, edi to r. The Mental Rep1·esentation of Gmmmatical Rela
tions. MIT Press, Cambridge, Mass, 1982.

[Bru82) Maurice Bruynooghe. Analysis of Dependencies to Improve the Behaviour
of Logic Programming. In D. W . Loveland , ed itor, 6th Confe1·ence on Auto
mated Deduction, pages 293- 305, New York , June 1982. Springer- Verlag.

[Car92a) Bob Carpenter. ALE - The Attribute Logic Engine User's Guide. Anony
mous FTP (C MU), December 1992.

[Car92b) Bob Carpenter. The Log·ic of Typed Feature S tructw·e. Cambridge Uni versity
Press, !992.

153

[Cho81)

[Cho95)

[CM85)

[Co\87)

[C ry97)

[D890)

[Deb89)

[DKM91)

[DSG92)

[Ear70)

[EDSS)

[GKPS85)

[Gun87)

[Gun95)

[GUN96)

[Har91)

[Has94)

[Has85)

Norm Chomsky. Lecture.< on G'ovcmmcnf and Bindi••g. Foris, Dordrccht,
1981.

Norm Chomsky. The Minimo/i.<f 1-'mgmm. ~\IT Prc•ss. 199.5.

8. Chern iak and D. McDcrmolL. lnlmdncfion to .4.-tificia/ lnf clligcncc.
Addison-Wesley, 198!).

A. Colmerauer. Pro log Ill. 13\ "TE, August 1981.

David Crystal. A Dictionary of Linguistic.< and Phoncfic.'. 13\ackwr11. 4th
edition, 1997.

.Jochen Dorreand Andreas 8isc1e. Fceturc Logic with Disjunctive nification.
In COL/NC-90 Vo/.2, pages 100 105 , August 1990.

Saumya 1~. Debray. Static Inference of Modes and Data Dependencies in
Logic Programs. A CM Tmnsaclion on Pmgramming Language and Sy I ms,
II (3):418- 450, July 1989.

C. Delobel , M. Kifer, and Y. Masunaga, ed itors. Deductive and Objeci
Q,·ient.ed Databases (Proc. Second fnl emafional Conference on Deduclive
and Object-0•-iented Databases (DOOD '91 }), volume 556 of LNCS. Springer,
1991.

Walter Daelemans, [(oen raad De Smedt, and Gerald Gazdar. Inheritance
in Natural Language Processing. Computational Ling1tislics, 18(2):205- 218,
1992.

J Earley. An Efficient Context-Free Parsing Algorithm. Communications of
ACM, 13:94- 102, 1970.

Andreas Eisele and Jochen Don·e. Un ifi cation of Disjunctive Feature De
scriptions. In 26th ACL Annual Meeting, pages 285- 294 , June 1988.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and !van A. Sag. Cene•·
alized Phmse St•·uct1L!·e Cmmmar. Basil Blackwell, England:Oxford , 198-5.

Takao Gunji. Japanese Phmse St•·ucture Gmmma1·. Reidel, Dordrecht , 1987.

Takao Gunji . An Overview of JPSG : A Constraint-Based Grammar for
Japanese. In R. Mazuka and N. Nagai, editors, Japan ese Sentence Pm
cessing, Pmc. Jntenwtional Sym]Josium on Japan ese Syntactic P1·ocess-ing,
chapter 5. Lawrence Erlbaum, 1995.

Takao GUNJ I, editor. Studies on the Unive•·sality of Constmint- Based Phmse
St•·uctu1·e Gramma•·· Report of the In ternational Scientific Research Pro
gram , Joint Research, Project No. 050441:33, Supported by the Ministry of
Education, Science, and Culture, Japan. Osaka Un ive rsity, March 1995.

Yasunari Harada. "No" ni tuite no zyakkan no kansatu. Waseda Daigaku,
Gogaku Kenkyusyo 1\'iyo 42, 1991. (in Japanese).

Ryuzo Hasegawa, Parallel Theorem-Provins System: MGTP. In Proc.
FGCS94, 1994.

Koiti Hasida. Bounded Pamllelism: A Theo•·y of Linguistic Pe1jonnance.
PhD thesis, Department of Information Science, University of Tokyo, 1985.

154

[llas86]

[llas90]

[IIas91]

[H 1390]

[HI87]

[HNM93]

1\oiti Ha sida. Conditioned Unification for Natural Language Processing. In
I llh lnlunal ional Confucncc on C'ompulalional Linguistic.'. pages 8!i 87,
1986.

I\oiti llasi da. Sentence Processing as Constraint Transformation. In Proc.
EGA I "90, 1990.

1\oiti Hasida. Common ll eu ri stics for Pars ing, Generation, and Whatever.
In Tomek Strzalkowski , ed itor , Reversible Cmmmar in Naluml Lang11agc
Processing. Kluwer Academic Publishers , 199l.

.Jerry H. Hobbs and John Bear. Two Principles of Parse Preference. In
COLINC \lol.3, pages 162 167, August I990.

1\oiti Hasida and Shun JSIZAJ\1. Dependency Propagation: A Un ified The
ory of Sentence Comprihension a nd Generation. In IJ CA I, 1987.

Koiti Hasida, Katashi Nagao, and Takashi Miyata. Joint Utterance: In
trasentential Speaker/Hearer Switch as an Emergent Phenomenon. In IJ-
CA 193, pages 1193- 1199, Chambery, 1993.

[HS86] Koiti Hasida and Hidetosi Sirai. Zyoukentuki Tan'itu-ka (Conditioned Uni
fication). Compute•· Software, 3(4) :28- 38, 1986 . (in Japanese).

[HSME88] Jerry R. Hobbs, Mark Stickel, Paul Martin , and Douglas Edwards . Inter
pretat ion as Abduction. In 26th A CL Annual Meeting, pages 95- 103, 1988.
(also in Artificial Intelligence, Vol.63, No.1-2, 1993).

[J L87] Joxan Jaffar and Jean- Louis Lassez. Constraint Logic Programming. In
Proc. 14th AC/11 POPL Confe•·ence, pages 111- 119, Munich, 1987.

[Kas87] Robert T. Kasper. A Unification Method for Disjunctive Feature Descrip
tions. In 25th ACL Annual Meeting, pages 2:35- 242, July 1987.

[Kas88] Robert T. Kasper. Conditional Descriptions in Functional Unification Gram
mar. In 26th ACL Annual Meeting, pages 2:33- 240, June 1988.

[Kay85] Marti n Kay. Parsing in Functional Unification Grammar. In David R. Dowty,
Lauri Karttunen , and Arno ld M. Zwicky, editors, Natuml language pm·sing,
chapter 7, pages 251-278. Cambridge university press, 1985.

[Kel93] Bill Keller. Feat1l7·e Logics, Infinita,·y Desc1·iptions and Gmmmar. Lecture
Notes No. 44, Stanford :CSLl, 1993.

[I<if90] Michael Kifer. Logical Foundation of Object-Oriented and Frame-Based Lan
guage. Technical Report 90/14 , State University of New York at Stony Brook ,
June 1990.

[Kie84] Johan de !\leer. Choices Without Backtracking. In Proc. of A A A I, pages
79- 85, 1984.

[J\NN89] W. Kim , J.-M. Nicolas, and S. Nishio, editors. Deductive and Object-O,·iented
Databases (Proc. 1st Int. Con f. on Deductive and Object- Q,·iented Data-bases
(DOOD89)). North-Holland, 1989.

[l\R86] Robert T . Kasper and Wi ll iam C. Rounds. A Logical Semantics for Feature
Structure. In Proc. 24th A C L Annual Meeting, pages 257- 266, 1986.

155

[l\H90]

[L io84]

[M l\92]

[Mar ' O]

[MS89]

[Mcs+s6]

[MHY90]

[MukSS]

[Muk90]

[Muk91]

[MYS5]

[NOTY93]

[Nak91]

[NPS91]

[NSHP88]

[NTY94]

Ho bert T. 1\ asper and William C. Rounds. The Logic of l lnificalion in
G rammar. Linguistics ru1d J>hilo.<ophy, I :3(I)::3.5 58. 1990.

.John \N. Lloyd, Foundations of Logic Programming. Springer- Verlag. 1984.

.John T. Maxwe ll and Hona ld M. 1\aplan. The lnterfac<' betw<'en Phrasa l and
Functional Constrain t. Pmc. Workshop of ECA 19~. 1992.

Mitchell P. Marcus. A Theory of Syntactic Recognition for Nalnra/ l,anguagc.
MI T Press, Camb ri dge: Mass, 1980.

Shaul Markovitch and Paul D. Scott. Automatic Ordering of. ubgoa ls a
Machine Learning Approach. In Proc. of th e North A mcrican ConfeTence of
Logic Programming, pages 3 19. MIT , 1989.

Hideo Miyosh i, Taka.o Gunji, 1-lidetos i Sira i, 1\ oiti Ha.sida, and Ya.sunari
Harad a.. Nihongo 1\ukouzou Bunpou ; JPSG(J a pancse Phrase St ructure
Gra.mmar:JPSG). ComputeT Softwa1·e, 3(4) :39- 4.5, 1986. (in J apanese).

Y. Morita., H. Ha niud a., and I<. Yokota. Object Identi ty in Quixote. In Pmc.
S !GDBS and SIGA l of !PS J , Oct 1990. (in Japanese).

l(unia.ki Mukai. Partiall y Specified Term in Logic Program ming for Linguisti c
Analysis. In Pmc. lntemational Confe1·ence of F1jlh Genemlion ComputeT
Systems, pages 479- 488. ICOT, OHMSHA , Springer- Verlag , 1988.

I<. Mukai. CLP(AFA): Coinduct ive Semantics of Horn Clauses with Compact
Constrain t . In 2nd Conf. on Si tuation Theo1'Y and It s Applications. Kinloch
Rannoch Scotla nd , Sep 1990.

Kuni a.k i Mukai. Constraint Logic P1·ogmmming and the Unification of Infor
mation. PhD t hes is, Tokyo Institute of Technology, 1991.

I<uniaki Mukai and 1-!idek i Ya.sukawa. Complex Indeterminates in Prolog and
its Application to Discourse Models. New Generation Co mputing, 3(4):441-
466, 1985 .

Toshihiro Nish ioka, Ryo Oj ima., Hiroshi Tsuda., and Ka.zuma.sa. Yokota.. Pro
cedural Semantics of a DOOD Programming Language Quixote. In S JG- DBS
No.94, pages 1- 10, Nagasaki, 1993. lnf. Proc. Soc. Japa n. (in Japanese) .

Mikio Nakano, Constraint Project ion: An Efficient Treatment of Disjunctive
Feature Descriptions In Pmc. of 29th ACL Annual Meeting, pages 307- 314,
1991.

H. Nakashima, S. Peters, a nd H. Schutze. Communication and inference
through situations. Pl"oc. JJCA J'91, pages 76- 8 1, 1991.

H. Nakashima, H. Suzuki, P. Hal vo rsen, and S. Peters. Towards a computa
tional interpretation of situation theory. In P1·oc. FGCSBB, pages 489- 498,
1988.

Y. Niibe, C. Takahashi, and 1<. Yokota. Design and Implemen tat ion of micro
Quixote and Its Extension Function. In Pmc. Jo in/ W01·kshop of S JGDBS
of JPSJ and S IGDE of IEJCE, pages 139- 146, July 1994. (in Japa nese).

156

[PS87a]

[PS87b]

[PS94]

[PW80]

[PW ' :3]

[S hi86]

[Sh iSS]

[S hi91]

[S hi 92]

[Sir91]

[SmoSS]

[Smo92]

[SNN86]

[TA94]

[TA96]

[TI190]

[T H96]

Fernando C. N. Pereira and Stuart i\1. Shieber. Prolog and Nntu.mi-Lrmguagc
A nalysi.s. Lecture Notes No. I 0, Stanford:CSL I. 1987.

Ca rl Poll a rd and Iva n A. Sag. Information-Based Synto..r and Semantics.
\fo/.1 Fundamentals. Lecture Notes No. 1:3, St.an ford :C:S LI , 1987.

Carl Pollard and Iva n /\. Sag. !lead-Driven Phmsc Strnc/111"(Gmm.mar.

Uni ve rsity of Chicago Press a nd CS LI Publicat ions. 1994.

Fernando C. N. Pereira and Dav id 1-1 . D. Warren. Definite Clause Grammar
for La nguage Analysis. A 1·tijicial Intelligence, 1:3:2:31 278. 1980.

Fernando C. 1. Pereira and David H. D. Warren. Parsing as Dl"duction.
P-roc. ACL'83, pages 137- 144, 1983.

Stua rt M. Shieber. An ln 11·oductionto Unification-Based A]lproach to Gmm
mar. Lecture Notes No.4, Stanford:CS LI, 1986.

Stuart M. Shieber. A Uniform Architecture for Parsing and Generation. In
12th lntemational Conf e1·ence on Comp-u tational Linguistics, pages 614- 619,
1988.

Stuart M. Shieber. Constraints and natural-language analysis. Tutorial in
Internat ion al Logic Programming Symposium, October 1991 .

Stuart M. Shiel)er. Constmint-Based Cmmmm· Fonnalisms. MIT Press, A
Bradford Book, 1992.

Hidetosi Sirai. A Guide to MacCUP. unpublished, 199 1. (availab le by
anonymous FT P from cs li .stanford.edu (pub / MacCu p)) .

Gert Smolka. A Feature Logic with Subsorts. LILOG Report 33, IBM
Deutschland , Stuttgart, West Germany, May 1988.

Gert Smolka. Feature Constra int Logics for Unification Grammars. Joumal
of Logic Progmmming, 12(1 and 2):51-87, 1992.

Akira Shimazu , Shozo Naito, and Hirosato Nomura. Analys is of semantic
re lat ions between noun connected by a Japanese particle "no" . Mathematical
Linguistics, 15(7):247- 266, 1986. (in J apanese) .

Hiroshi Tsuda and Akira Aiba. Heterogeneous Natural Language Under
standing in Helios. In FGCS94 W01·kshop on Hetemgeneous Coopemtive
Knowledge-Bases. !COT, Dec. 1994 .

Hiroshi Tsuda and Akira Aiba. Heterogeneous Natural La nguage Under
standing in Helios. Compute1· Sojtwa1·e, 13(6) :43-52, 1996. (In Japanese) .

Hiroshi Tsuda and Ko iti Hasida. Parsing as Const ra in t T ransformation -
an Extension of cu-Prolog. In Seoul lntemational Conj e1·ence on Natural
Language Pmcessing, pages 325- 331, 1990.

Hiroshi Tsuda and Yasunari Harada. Semantics and Pragmatics of Ad nomi
nal Particle NO in Quixote. In Takao G UNJI, editor , Studies on the Unive,·
sality of Constmint.-Based Phmse St,·uctm·e Gmmmar, pages 191- 201. Osaka
Un ivers ity, March 1996. Report of the Internat ional Scientific Research Pro-

157

[T II S89]

[T HS90]

[TO I\1 86]

[Tom92]

[TS8:3]

[TS86]

[Tsu89]

[Tsu91]

[Tsu92]

[Tsu94]

gram .. Joint Research, Project No. 060441 :n. Supported by the Ministry of
8ducation, Science, and Culture, .)a.pan.

lli roshi T suda, 1\ oiti Has ida , a nd Hidetosi Sirai .. JP SG Pa rser on Const raint
Logic Programming. In 4th A CL Dnropcan Chapter, pages 95 I 02, 1989.

Hiroshi Tsuda, 1\ oit i ll asida, and llidetos i Sirai. cu-Prologand its a pplicat ion
to a .JPSG parser. In !\.Furukawa, li.Tanaka., and T .Fujisak i, ed itors, Logic
Programming '89, pages] :34 14:3. Springer-Verlag LNA I -~85. 1990.

Masaru TOMITA. Efficient Parsing for Natural Langua_q c. 1\luwer Academic
Press , 1986.

Yu taka Tomioka. Computab ility of Modularization of Const rain ts. Compul e1·
Softwa1·e. 9(6) :58- 68, 1992. (in .J a panese).

Hisao Tamaki and Taisuke Sato. Unfold/Fold Transformat ion of Logic Pro
grams. In Proc. S econd fnlenutlional Conf e,·ence on Logic Prog·ramming,
pages 127- 137, 1983 .

1-lisao Tamaki and Taisuke Sato. OLD Resolution with Tabulation. In P1·oc.
Third Inte-rnational Confe1·ence on Logic P1·ogramming, pages 84- 98, 1986.

Hirosi Tsuda. A JPSG Parser in Const raint Logic Progra mming. Mas ter's
t hes is, Department of Information Science, Uni versity of Tokyo, 1989.

Hiroshi T suda. Disjunctive Feature Structure in cu-Prolog. In 8th Conf.
P1·oc. Japan Soc. Softw . Sc. Japan. , pages 505- 508, 199 1. (in J apanese).

Hiroshi T suda. cu- Prolog for Const raint- Based Grammar. In P1·oc. FGCS92,
pages 347- 356, June 1992.

Hiroshi Tsuda. cu- Prolog for Const raint-Based Natural Language Process
ing. IEICE Transactions on lnfo,·mation and Systems, E77- D(2):171- 180,
February 1994.

[TTY+93] Satoshi Tojo, Hiroshi Tsuda, Hideki Yasukawa, [(azumasa Yokota, a nd Yuk
ihiro Morita. Qu ixote as a Tool for Natu ral Language Processing. In TA!93,
pages 266- 270 , Boston, 1993. 18EE.

[TTY+94] Satoshi Tojo, Hiroshi Tsuda, Hideki Yasukawa, 1\azumasa Yokota, and Yuk
ih iro Morita. Quixote: A Framework for Linguistic Informat ion Process ing.
Journal of Japan Society of A1·tijicial Intelligence, 9(6):863- 874 , 1994. (in
Japanese) .

[TY94] Hiroshi Tsuda and I<azumasa Yokota. Knowledge Representation Language
Quixote. In Pmc. FGCS94 , June !994.

[YNT+94] 1\azumasa Yokota, Toshihiro ishioka, Hiroshi T suda, , and Satoshi Tojo.
Query Processing for Part ial Information Databases in Qui xote. In 6th IEEE
Intemational Conference on Tools with A ,·tificial Intelligence, New Orleans ,

ov. 6-9 1994 .

[Yok94] 1\azumasa Yokota. Qui.wte: A Constmint Based Approach to a Deductive
Object-Oriented Database. PhD thesis, 1\yoto Un iversity, J 994.

158

[YT M9:J]

[YTY92]

[YY90]

[YY92]

l~azumasa Yokota, Hirosh i Tsuda, a nd Yukihiro Morita. Specific Ft:'alur<'s
of a Deductive ObjPct -Oricntt:'d Da tabase Languag<' QuixolC'. In h·oc.
ACM S fCMOD Workshop on Combining Declarati ve and Objrrt-Orir11trd
Databases, Washington DC, USA , May 29 199:3.

ll ide ki Yasukawa, Hiros hi T suda, a nd l~azumasa Yokota. Objccls, Pro pe r
t ies, and Modules in Qui xote. In Proc. FGCS92, pages 257 2G8, 1992.

ll idcki Yasukawa and l~azumasa Yokota. Labe led Graphs as S<'ma nt ics of
Objects. In Pl-oc. S IGDBS and S IGA l of IPSJ, October 1990.

I~. Yokota and H. Yasukawa. Towards an Integrated l~now lcdge- Base Man
agement System. In Proc. FGCS92, volume 1, pages 89 11 2. Institute for

ew Generation Compute r Technology, 1992.

159

Index

Symbols--
1. 7'
T 78
""78
S"u 79
P9
t79
.!). so
1t so
~ 78
~,, :32
~ II 78

~"" 79
~s 86
Cmp(p,n) 38
Lab(p) 28
o.l 28, 81
\lm·(t) 28

--A--
AKO (a kind of) 77
AL E (Attribu te Logic Engine) 27
assumption 87
atomic formul a 29
at t ribute term SO, 96
AVM (Att ribute-Value Matrix) 16, 96

--B--
bas ic object 75
big-Qui xote 89, 93
bind-hook 26

--C--
CAH C (Const rai nt-Added !-lorn Clause)

29
CAL 27
canonical set 77

160

C ll C (Constrained !lorn C lause) 29, 44 ,
llS

C IL 26, 97
C LP (Constraint Logic Programming)

10, 27
C LP (AFA) 8-5
complex object term 76
component 38
const ra ined PST :3 1
const rain t defi ni t ion cla use 29
const rain t pred icate 29
constrain t projection Ill
const ra int transformer 40
constrai nt uni ficat ion 25
const raint-based grammar LO, 13
constraint-based natural language

analysis 8, 58, I 09
core feature 22, 1:35
cu-P ro log 10. 25
cu-Prolog III 43, 11 7

--D--
definition (of unfold/ fold) 41
dependency 39, 40 , 66
deri vation clause 41
deri vat ion network 89
deri vat ion rule 33
DFS (Disj unct ive Feature Structure) 12,

16, 53
di fference list 58
di sambiguat ion 20, 58, 11 2
disequation constra in t 9 l
disjunct ion name 17
DNF (Disj uncti ve Normal Form) 53
DOOD (Deducti ve and Object-Oriented

Database) 12

doLLed Lcrm 8 1
downward inheri tance 8:3
DP (De pende ncy Propagat ion or

Dynamic const ra in t Procrss ing)
6:3 , Ill

8
8arley 's a lgo ri Lh m 70
element-of const ra in t 91
expla nation 87
ext rin sic pro perty 80

F'-
F-logic 11 2
feature 14
feature gra ph 15
feature logic 15
feature structure 14 , 4-5
featu re term 15
FGCS (Fift h Generat ion Com puter

System) 11
fold ing 41, 46
foot feature 23, 62

---G-
garden-pa th sentence 20
G B t heory 14
genera l disjunct ion 17
G P SG (Ge neralized Phrase St ructure

Gra mma r) 9, 13
g ra mma tical ambiguity 113
ground object term 76

--H--
HC LP (Hierarchical CLP) 112
head feature 23 , 62 , 1:35
I-Ielios 114
Hoare orde ring 78
H P SG (Head-drive n Phrase St ructure

Gra mma r) 9 , 1:3, 133
hype rset 85

--I--
I COT (Institute for New Gene ration

Compute r Technology) 11 , 11 2

161

IF'S (!COT Fre<' Softwarr) -II. 89, Ill
inJwritance ('XC<'J>l ion 8:J
in trinsic prop<'rt.v 16
!SA 77

.J
join 79
.JPSG (J apa nese Phrase Structure

Grammar) 9. 1:3 , :21, J:l5

- 1\--
1\ asper 15

--L--
Iabel 28, 76
left co rner pa rser 59
lex ical ambigu ity 60, 11 3
LFG (Lexical Funct iona l G ram mar) 9,

1:3
LO G IN 97

--M-
M-solvable 40, 48
MAS (Mult i-Agent System) 114
meet 79
micro-Q u ixote 89, 94
mi ni malist progra m 14
mod ula r 35, 37
modula rly defined 40
module 84
module ident ifie r 84
multiple inhe rita nce 84

--0--
object ide ntifier 85
object ident ity 11 2
object term 75, 76
OLDT 50 , 95

--P--
pa ra met ric module 84
pa ra metri c o bject term 76
PATR- II 27
PP at tachment 52
Progra m cla use 29

program pr<'d ica t<' 29
Prolog 26
propC'rly in!JC' rita nce S:J
PI\OSIT 112
PST (Parti al ly Specifi ed Term) 25, 26,

2S, 4:). 97 . 119
PST unification :3:3

- Q
questio n clause :30
Quixote I 0, 7.5

- Fl.
reduction 42
resolvent :33
rule inherita nce 86

- S-
seriali zed rul e 85
set term 77
set value label 76
set value vari able 76
single value label 76
single value vari ab le 76
SLD derivation 33
Smolka 1.5, 133
Smyth ordering 79
sorted feature st ructure 17
structura l a mbigui ty 113
structura l principle 23
subcat feature 23, 62, 135
submodule re lation 86
subsumption 32
subsumption constraint 82
subsumption constraint solver 82
subsumption relation 78

--T--
TC (Tra nsformational Grammar) 13
typed feature structure 17, 96

--U--
unfold / fold 40 , 46
unfolding 4 I, 46
unifi cat ion-based grammar 13

162

upward inheritance s:3

v
vacuous argum<'n l place :)S. 66
vagueness I I:)
val ue 2S
value disjunction 16

Publication List

(Papers with* are included in this thesis.)

• (*) Hiroshi Tsuda, l(oiti Hasida, and Hidctosi Sirai. JPSG Parser on Constraint Logic
Programming, 4th ACL European Chapter, pages 95 I 02, 1989.

• Hiroshi Tsuda, Koiti 1-Jasida, and Hidetosi Sirai. Parsing as Constraint Sat isfaction

an Application of cu-Prolog 6th Conf. Proc. J apan Soc. Softw. c. Japan., pages

257- 260, 1989.(in Japanese)

• (*) Hiroshi Tsuda, Koiti Hasida, and 1-lidetosi Sirai. cu-Prolog and its applicat ion to a

JPSG parser. In K.Furukawa, 1-l.Tanaka, and T.Fujisaki, ed itors, Logic Pmgramming

'89, pages 134- 143. Springer-Verlag LN A 1-485, 1990.

• (*) Hiroshi Tsuda and Koiti Hasida., Parsing as Const raint Transformation - an Ex

tension of cu-Prolog, Seoul Internat ional Conference on Natural Language Processing,
pages 325- 331, 1990.

• Hiroshi Tsuda. Disjunctive Feature Structure in cu-Prolog, 8th Conf. Proc. Japan
Soc. Softw. Sc. Japan. , pages 505- 50 , 199l.(in Japanese)

• (*) Hiroshi Tsuda. cu-Prolog for Constraint-Based Grammar, Proc. FGCS92, pages
347- 356, June 1992.

• Hideki Yasukawa, Hiroshi Tsuda, and Kazumasa Yokota. Objects, Properties, and

Modules in Quixote, Proc. FGCS92, pages 257- 268, 1992.

• Hiroshi Tsuda and I<azumasa Yokota., A DOOD Approach to Const raint-Based Gram

mar In S!G-DBS No .94, pages 21- 28, Nagasaki, 1993. Inf. Proc. Soc. Japan. (in

Japanese).

• (*) Hiroshi Tsuda. cu-Prolog Jl[User's manual , ICOT Free Software

(http:/ j www.icot.or.jp/), 1992.

• Satoshi Tojo, Hiroshi Tsuda, Hideki Yasukawa, Kazumasa Yokota, and Yukihiro
Morita. Quixote as a Tool for Natural Language Processing. TA 193, pages 266- 270,

Boston , 1993. IEEE.

• Kazumasa Yokota, Hiroshi Tsuda, and Yukihiro Morita. Specific Features of a Deduc

tive Object-Oriented Database Language Quixote. Proc. ACM SIGMOD Workshop on

Combining Declarative and Object-Oriented Databases, Washington DC , USA, May

29 1993.

o Satosh i Tojo, Hiroshi Tsuda, llideki Yasukawa, h: azumasa Yokota, a nd Yukihiro

Morita. Quixote: A Fra mework for Lingu ist ic Information Process ing. Joumal of

Japan Society of Arlificlallntclligcncc, 9{6):86:3 874 . 1994. {in .J apa n<'sc) .

o (*) Hiroshi Tsuda and 1\awmasa Yokota., 1\nowlcdgc Hcprcscntation Language

Qui xote. Proc. FGCS94 , June 1994.

o (*) Hiroshi Tsuda. cu-Prolog for Constrain t-Based l\atu ral La nguage Process ing. 18-

ICE Transactions on Jnfonnalion and Systems, E77-D(2):17 1- 180, February 1994.

• Akira Aiba, 1\ azumasa Yokota, a nd Hiroshi Tsuda., Heterogeneous Dist ributed Coop

erative Problem Solving System HELlOS, Proc. FG CS94, 1994.

• Hiroshi Tsuda and Akira Aiba., Heterogeneous Natural Language Understanding in

1-l elios. FGCS94 Workshop on Heterogeneous Cooperat ive Knowledge- Bases, ICOT,

Dec. 1994.

o (*) Hiroshi Tsuda. Big-Quixote User's manual, !COT Free Software (http:/ fw ww .icot.or.j p/),

1995 .

o (*) Hiroshi Tsuda and Yasun ari Harada., Semantics and Pragmat ics of A.dnominal

Particle NO in Quixote. In Takao GUNJI, edi tor, Studies on the Universality of

Constmint-Based Phmse Structu1·e Gmmmm·, pages 191- 201. Osaka Un iversity, March

1996. Report of t he In ternat ional Scient ifi c Research Program, Joint Research, Project

o. 06044133, Supported by the Minist ry of Education , Science, and Cu lture, Japan.

• Sigeichirou Yamasaki a nd Hiroshi Tsuda (Eels. Trans.) , "Telescript Gengo Nyuumon "

(Introduction to Telescript Language), ASCII , Japan , 1996 (in Japanese).

o Hirosh i Tsuda and Akira Aiba., Heterogeneous Natural Language Understand ing in

1-lelios. Computer Software, 13(6), pp.43- 52, 1996. (In J a panese) .

