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Chapter 1. 

Introduction 

Since Bednorz and Miiller(l] ctiscovered the high Tc superconductivity in 

La2-rBarCu04 , many types of high Tc superconductors have been discovered(2,3]. The 

crystal structures of high Tc superconductors are layered-perovskite, consisting of Cu02 

planar sheets and interstitial insulating sheets. They are classified into three types 

accorcting to the types of Cu-0 networks, such as octahedra- (T-phase), square- (T'­

phase) and pyramid-type (T"-phase)(2]. They are also classified by the number of Cu-0 

sheets in a unit cell. There seems to be general agreement that Cu0 2 planes play a 

main ro le in the superconductivity and normal state transport , and in this context a 

number of theoretical models have been proposed(4,5]. Most of them are based on a 

Cu d,_., - 0 p. band in a Cu02 sheet. However, it seems difficult to explain high Tc 

superconductivity by using a model consisting of only a single Cu02 sheet, because almost 

all the hole-doped high Tc superconductors consist of pyramid-type Cu05 or octahedral­

type Cu06 clusters, so that the ctifference of Tc values in octahedral and pyramid type 

cuprates seems to be difficult to be explained. On the other hand Kamimura and his 

co-workers [6,7,8,9,10,11,12,13,14,15,16,17,18] have claimed the important role of the ai
9 

band consisting of Cu dz2 orbitals, Op. orbitals in a Cu02 layer and Op, orbitals of apical 

oxygen, due to the effect of Hund's coupling. 

In this context it is necessary to calculate the many-body electronic structure of 

copper oxides from the first principles. From this standpoint, Kamimura and Eto[S] 



tried to calculate the electronic structure of a single Cu06 octahedron embedded in 

1~-~STxCuO. (abbreviated as LSCO) from the first principles as accurate as possible, by 

using the multi-configuration selfconsistent field variational method with configuration 

interaction. According to Kamimura and Eto the lowest multiplet state of a Cu06 

octahedron changes from the spin-singlet 1 A1g state to the spin-triplet 3B1g state when 

the Sr concentration increases, where A1g and B1g represent irreducible representations of 

a tetragonal symmetry group D4h· However, the energy difference between the 3B1g and 

1A,g multiplet states is at most 0.2eV, and thus tllese two states are easily mixed by the 

transfer interactions between neighboring Cu06 octa!Ied.ra which is approximately 0.3eV 

for LSCO. 

In order to verify the existence of the 3B18 state which is due to the Hund's coupling, 

Chen et a/.[19] have performed polarization-dependent X-ray absorption measurements 

for 0 K-edge and Cu L-edge in LSCO. They have observed the doping-induced 

satellite peak(L;) for both polarizations of the electric vector of X-ray, E, parallel and 

perpendicular to the c-axis, at the same energy. Their result has suggested that the dopant 

holes must consist of 3B1g and 1 A1g states, since the Elfc and the E.Lc polarizations detect 

the existence of 3 B1g and 1 A1g states, respectively. 

The coexistence of local antiferromagnetism and superconductivity in LSCO has 

been observed by, for example, neutron scattering experiments by Birgeneau et a/[20]. In 

other words the localized spins fo1·m a two-dimensional local antiferromagnetic (AF) order 

even in the superconducting state and a dopant hole moves interacting with the localized 

spins. If we assume that a dopant hole hops from a 3 B1g (or an 1 A1g) multiplet state at 

one site to the same multiplet state at a neighbouring site, the motion of the dopant hole 

disturbs the AF order of the localized spins. On the other hand if a dopant hole hops 

from a 3 B1g (or an 1 A1g) multiplet state at one site to an 1 A1g (or a 3B1g) multiplet state 

at a neighbouring site, and then from the 1 A1g to the 3B1g state, etc., the local AF order 

of the localized spins is not disturbed at all. 

From this standpoint Kamimura and Suwa[21] have recently constructed a new 

electronic structure in the underdoped superconducting concentration regime of hole-

2 

doped cuprates. In their model they assumed that the localized spins form local AF order 

in the area whose diameter is a spin-correlation length, and then that the carriers take the 

3B1g high-spin state and the 1 A1g low-spin state alternately in this spin-correlated region. 

ln 3 B1g state, which is called the Hund's coupling triplet, the dopant hole occupies the 

antibonding aj'
8 

orbital consisting of Cu d,,, in-plane oxygen Po and apical oxygen p. 

orbitals, and constitutes a spin triplet multiplet with the localized holes accommodated 

in an antibonding bj'g orbital consisting mainly of a Cu d~'-v' orbital. (See Fig. 1) ln the 

1 A1g state, which is called the Zhang-Rice singlet, the dopant hole occupies the bonding 

b1g orbital consisting mainly of the in-plane 0 Po orbitals and constitutes a spin singlet 

multiplet with the localized hole in a big orbital. The dopant hole hops from the ajg 

orbital at one site to the b18 orbital at the neighboring site, interacting with localized 

spins. 

The characteristic feature of the theoretical model of the coupled fermion-spin 

system by Ka.mimura and Suwa is the alternating appearance of the Hund's coupling 

triplet and the Zhang-Rice singlet in a spin-correlated region of the local antiferromagnetic 

ordering. This ch':"racteristic feature is originally called "two-story house model" by 

Mott[22] and Cohen[23], but now we call "extended two-story house model" [6 ,22,23], 

because the upper story corresponding to the states of itinerant carriers consists of two 

kinds of orbital states aig and b1g. The effective model Hamiltonian for describing this 

"extended two-story house model"[6,22,23] is originally expressed as[21,24] 

H = 2::= C:mO/moCimo + 2::= tmn(C[moCJna + b.c.) 
i,m.,u {i,j),m,n,u 

+Jl:= S; · S; + l:=KmBim · S ; +Ul:=nim1nim!1 

(id) i,m i,m 

(1.1) 

where C:m (m =aig or b1g) represents the effective one-electron energy of the aig- and b1g­

orbital states, elmo ( Cima) the creation (annihilation) operator of a dopant hole in the 

i-th Cu06 cluster, tmn the effective transfer of a dopant llole between m-type and n-type 

orbitals of neighbOl'ing Cu06 octa!Ied.ra, J the superexchange coupling between the spins 

S; and Sf of the dx'-•' localized holes in the antibonding b~g orbital at the nearest Cu 

3 



Figure 1: The schematical views of a.u antibonding ajg orbital consisting of a Cu <;!,> orbital 
hybridized by in-plane oxygen p" and apical oxygen Pz orbitals, a bonding b1g orbital consisting 
of in-plane oxygen p" orbitals hybridized by a Cu d,'-•' orbital, and an anti bonding b~g orb.ital 
consisting of a. Ou d•'-•' orbital hybridized by in-pl<•ne oxygen Pa orbitals. 

i and j sites (J > 0, a.ntifenomagnetic), Km the excha.nge integral between the spins of 

a dopant hole s;m and a d,>-y> localized spin S; in the i-th Cu06 (K.i, < 0 for a triplet 

spin state with ajg orbital, 3B1g, and Kh,, > 0 for a singlet spin state with b1g orbital, 

I A,g). and u the Hubbard U-like parameter with n;m<T = ctm<TCjn<T• 

Among many kinds of high 'I~ superconducting Cu-oxides, LSCO is regarded as 

the proto-type high Tc superconductor among the hole-doped cuprates, so that it will be 

powerful approach to high Tc superconductivity to investigate LSCO. The main purposes 

of the present thesis are to derive an effective one-electron-type energy band structure 

for a carrier system in LSCO from the Hamiltonian (1.1), to clarify that the alternate 

appearance of the ai9 and the b19 orbitals is realized in the Cu02 network, a.nd to examine 

the validity of the calculated effective one electron-type band structure, wave functions 

and Fermi surfaces by comparing the obtained results with experimental ones. 

In the present treatment the bis band splits into two bands, the upper a.nd the lower 

Hubbard ba.nds, due to strong U-effect. The upper Hubbard band is empty while the lower 

Hubbard band is fully occupied by electrons even in the superconducting LSCO as well 

as in the undoped La2Cu04 • And the spins of the holes in upper Hubbard band form 

the local AF order in the superconducting concentration region due to the superexchange 

coupling J in the Hamiltonian (1.1). Then we treat the exchange interaction between 

the spins of a dopant hole and a localized spin in the fourth term in the right hand side 

of Eq. (1.1) by the molecular field approximation. As a result Li,m KmBim · S; becomes 

Li,m Krnsim. (S;) where (S;) is the average value of the sublattice magnetization and z-axis 

is taken as a direction of the sublattice magnetization. In the present paper, as to the 

value of (S;), we take that at T =OK so that (S;) is taken to be ±S depending on whether 

the localized spin of the s.ite is up or down. This means that the a.ntiferromagnetic order 

exists in a whole system but not locally. Since the area of the antiferromagnetic ordering is 

finite in a real situation, so the present treatment for a perfect antiferromagnetic ordering 

is a drastic approximation. By this molecular field approximation we can separate the 

hole carriers and the localized spins. Thus an effective one-electron-type energy band 

structure for a carrier system in LSCO is calculated. 

5 



In order to calculate the effective energy bands for a carrier system based on the 

present approximation for the antiferromagnetic ordering we first adopt an AF unit cell, 

then derive the effective one electron type 34 x 34 dimensional Hamiltonian matrix (H( k)) 

and finally diagonalize it, where 2p,, 2p" and 2p, atomic orbitals for each of eight oxygen 

atoms and 3dy., 3d,., 3d,., 3dr'-y' and 3d,, atomic orbitals for each of two Cu atoms in 

the unit cell are taken as the basis functions. In this way we have obtained the effective 

one-electron-type energy band structure, wave functions and the Fermi surfaces at which 

the Fermi distribution function shows discontinuity for up-spin and down-spin dopant 

hole carriers separately. 

The calculated effective one-electron-type energy band structure shows that, in 

the concentration below the onset of superconductivity the holes with up-spin are 

acco=odated in b1g orbital constructed from oxygen Pa orbitals at a Cu06 cluster 

with localized up-spin (.A.-site) while in b1g orbital consisting of hybridized oxygen Pa and 

Cu d,'-v' orbitals in Cu02 plane at a Cu06 cluster with localized down-spin (B-site), 

consistent with the result of the cluster calculation by Kamimura and Eto[8]. In the 

superconducting regime, on the other hand, the holes itinerate alternately from the aig 

orbital at an A-site to the b19 orbital at a B-site, consistent with the experimental results 

of polarized X-ray absorption by Chen et al.[l9] . 

As for superconductivity, early experimental findings such as very small isotope 

effects, the coexistence of superconductivity and magnetism seemed to have supported 

theoretical models based on non-Fermi-liquid and/or non-phononic mechanisms. [4,5,25] 

Recently, however, some of experimental groups have suggested the phonon-mechanism 

based on their experimental results, such as ( 1) a non-zero isotope effect such as o ~ 

0.1 ~ 0.8 depending on x in the Tc versus M-"' relation in La2_,Sr,Cu04 , where M is 

the atomic mass of oxygen[26,27,28], (2) the pronounced softening of the phonon density 

of states measured by the neutron time-of-flight spectroscopy[29], (3) the anomalies in 

certain phonon branches near the zone boundary[30] , ( 4) the changes of Raman frequencies 

as well as line shapes which indicate the interaction of the Raman-active modes with 

underlying electronic continuum[31], and (5) the disappearance of the phonon structure 

in the tunneling experiments above Tc[32,33,34,35]. In this context keen attention has been 

paid recently to the electron-phonon interaction of high temperature superconductor, since 

Kamimura et al.[36,37,38,39,40] showed that even the electron-phonon mechanism lead 

to the d-wave pairing in case where the local AF order exists and also since the problems 

of the coexistence of the spin and charge orderings related to the appearance of stripes 

have been actively discussed in connection with the electron-phonon interaction[41]. It 

is another important purpose of the present thesis to show that the present electronic 

structure leads to d-wave superconductivity even in the electron-phonon mechanism. 

We calculate the strengths of the electron-phonon interactions for various phonon 

modes in La2_,Sr,CuO. and also the k, k' dependent spectral function, using the 

electronic structure calculated in Chapter 4. Based on this result , we show that 

the electron-phonon interactions which scatter the pairs of electrons from a pair state 

(k r, -k l) to a different pair state (k' r. -k' l) are repulsive for some combinations 

of k and k' and attractive for other combinations, while those containing the processes 

of virtual emissions and absorptions of various modes of phonons by a single electron 

are always attractive. We show that the calculated momentum-dependent spectral 

function o2 Fu(n, k , k') changes its sign as a function of k and k', showing the d,•-•• 

sy=etry. Then we calculate the d-wave component of the spectral function and 

the transition temperature for d-wave superconductivity, Tc. The phonon-mediated d­

wave superconductivity, which is consistent with experimental results such as Josephson 

junction 7f-tunneling experiments, is originated from the alternant appearance of the ai
9 

and the b lg orhitals an.d the different spatial distribution of Bloch wave functions for 

up-spin and down-spin holes. A preliminary result of this calculation has been published 

elsewhere[42,36,43]. 

In the present thesis, first we give a brief summary of experimental results on LSCO 

in Chapter 2. The Chapter 3 is devoted to developing the formalism of how to calculate 

the effective one-electron type band structure and the effective Fermi surface including 

many body effect. In Chapter 4, the numerical results of the effective one-electron type 

band structure and the effective one-electron type wave function are presented based on 



the Hamiltonian matrix formulated in Chapter 3. And, in Chapter 5, these results are 

applied to explain the the normal state properties of LSCO , such as the resistivity (44,45, 

46,47 ,48 ,49,50] , the Hall coefficient (44,45,46,51] and the electronic heat capacity(52,53]. 

In Chapter 6 the momentum-dependent spectral functions and the transition temperature 

for d-wave superconductivity are calculated by using the effective one-electron type band 

structure and the effective one-electron type wave functions presented in Chapter 4. We 

give a summary and a discussion in Chapter 7. 

8 

Chapt er 2 . 

Brief 
Summary of Experimental Infortnation on 
Laz- xSrxCu04 

2-1. Cry stal structure 

The crystal structure of LSCO is layered perovskite with the octahedral-type Cu-0 

networks and is in tetragonal phase at high temperature, the unit cell of which is shown 

in Fig. 2. It undergoes an orthorhombic distortion near 200K, where the Cu06 octahedra 

are rotated at about 2° in the be-plane. However, orthorhombic distortion is small and the 

crystal structure of the orthorhombic phase is not significantly different from that of the 

tetragonal phase. Thus in the present thesis, we perform the band structure calculation 

and consideration for tetragonal phase. In Fig. 2 we describe the crystal structure of 

LSCO , where a 1 , a 2 and a 3 are the lattice vectors of this system with ordinary unit cell. 

As seen in this :figure, Cu02 form a square network in each layer perpendicular to the 

c-axis (z-axis). The Cu06 octahedra are stretched along the c-axis, then Cu-0(2) distance 

is 2.39A while Cu-0(1) distance is 1.89A. The apical oxygen, 0(2) , is not positioned in 

the La-plane and the distance between Cu02-plane and La-plane is 1.86A which is smaller 

than Gu-0(2) distance. 

If we consider the antiferromagnetic system, as will be mentioned in Chapter 3, we 

must distinguish neighbouring Cu atoms with respect to spin orientation. Thus we have 

9 



c 

z 

c = 13.2A 

a= 3.78A 

Figure 2: Crystal structure with Cu06 octahedron in LSCO . Here a, , a 2 and a a are the 
lattice vectors of this system with ordinary unit cell and a , a 2 and a3 are the lattice vectors 
of AF unit cell including sub-lattices consisting of two Cu atoms. 

to consider a super-unit-cell including sub-lattices consisting of two Cu atoms. In thjs 

figure a, , a2 and a3 are the lattice vectors of tills super-unit-cell with 14 atoms involved. 

In Fig. 3 the Brillown zones of orrunary unit cell and antiferromagnetic super-urut-cell 

are shown. 
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Figure 3: The Brillouin zones of ordinary unit cell and antiferromagnetic super-un~t ce~. One 
at the outermost part is the ordlnary Brillouin zone and the inner part is the folded Brilloum zone 
for the a.ntiferromagnetic unit cell in LSCO. Here the k% axis is taken along rG1, correspondlng 
to the :z:-a.xis ( the Cu - 0 - Cu direction) in a real space. 

2-2 . Transport properties in normal state La2-xSrxCu0 4 

As well known, a parent compound of LSCO, La2 Cu04 , shows semiconducting 

behavior. With only one percent or less Sr doping, the resistivity drastically decreases to 

the order of l0-3ohm-cm and T linear resistivity is observed in a wide temperature region 

starting just above T, and extending to several hundreds degree[44,45 ,46,4 7,48,49,50]. 

Temperature dependence of the resistivity for LSCO with various Sr content observed 

by Takagi et al. is shown in Fig. 4. This linear temperature dependence of ~esistivity, 

which is a common feature of high T, cuprates, is possibly derived from the transport 

relaxation time due to the hole-phonon scattering, because of a small Fermi surface 

calculated in Chapter 4 and a two-dimensional character of LSCO. At around x = 0.05 the 

superconductivity appears. Above x = 0.15, T, decreases rapidly while the magnitude of 

resistivity is still decreasing. 

Temperatu re (K) 

F igure 4 : Temperature dependence of the resistivity for LSCO with various Sr content observed 
by Takagi et al. (see ref. (44]) 

13 



40 
.11'"0.0!1 

20 

0 ~ 
c: O.R C: .. 
' ~ g 

0 
~ 

0.1 

00 100 200 300° 
Temperature IKl 

Figure 5: Temperature dependences of Pob and p, for three compositions of LSCO observed 
by Ito et al. (see ref. [54]) 

The characteristic small deviation from linearity is observed in overdoped LSCO. 

The change in the resistivity slope in YBCO was measured at T", where a spin gap in 

NMR and neutron scattering appears[55]. This may be attributed to the crossing from 

the small Fermi surface calculated in chapter 4 to the ordinary large Fermi surface, which 

is due to the disappearance of the local AF order. 

Transport perpendicular to the Cu01 layers is controversial. The temperature 

dependence of the resistivity parallel to the c axis, p" shows non-metallic behavior even 

in the Sr content region where the resistivity in Cu01 plane is metallic[54] (See Fig. 5.). 

6 
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... .... ..... 

0.2 0.3 
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0.4 

Figure 6: Sr content dependence of the Hall coefficient RH for LSCO at BOK (circles) and 
300K (triangles observed by Takagi et al. The sign of RH is positive for x < 0.15 and negative 
for x > 0.15, respectively (see ref. [44]) 

This feature is observed in many high T, cuprates. The only exception is fully oxygenated 

YBa2Cu30 7 with T. ~ 9DK, which shows metallic-like temperature behavior, with the 

mean-free path comparable or slightly less than the inter-plane distance. However, in most 

superconducting compounds it is non-metallic. Thermally activated transport parallel to 

c-axis seems to suggest the localization of carriers in a Cu02 plane. Based on the electron 

and spin structure calculated in chapter 4, the two dimensional localization of holes may 

be explained by assuming that the local AF order is restricted in a Cu02 plane and 

holes have to be localized in a CuOz plane in order that the holes with up-spin itinerate 

alternately from the ai9 orbital in a CuOs cluster with localized up-spin (A-site) to the 

b19 orbital in a Cu06 cluster with localized down-spin (B-site) . 

The positive Hall coefficient decreases almost in proportion to the inverse of the 



Sr concentration, 1/x, in the low concentration region[44,45,46,51) (See Fig. 6). It is a 

strange character if one assumes a large Fermi surface, while it is a natural consequence of 

a small Fermi surface calculated in Chapter 4. With further doping , the Hall coefficient 

decreases more rapidly than expected from Mott-Hubbard picture and changes its sign 

from positive to negative at x ~ 0.3. The Hall coefficient shows negative temperature 

dependence in spite of the metallic resistivity in the superconducting concentration region. 

In Chapter 5 we will calculate the Hall coefficient based on the electronic structure derived 

in Chapter 4, and show that the x- and T-dependences of Hall coe:ffi.cient come from the 

characteristic features of the present electronic structure (See Chapter 4) such as the 

occurrence of a sharp peak in density of states and the drastic change of the shape of 

Fermi surfaces, which is hole-like at Ep corresponding to low Sr content while electron­

like at Ep corresponding to well over-doped region. 

However de Haas-van Alphen measurement is not yet carried out in LSCO, Kido et 

a/.[56] have carried out the de Haas-van Alphen measurement on YBa2Cu.a01 and found 

a broad band centering at 540T, which suggests the existence of a small Fermi surface. 

16 

2-3. Thermal Properties in Normal State La2_xSrxCu04 

Thermoelectric power S is large, positive, and temperature-independent in parent 

compound La,Cu0 4 [57,58,59] (See Fig. 7). In the doped LSCO , thermoelectric power is 

reduced and weakly temperature dependent. The large value. and the weak temperature 

dependence of the thermoelectric power are observed in many under-doped high Tc 

cuprates. 

300 

0 100 200 300 

T !Kl 

Figure 7: Temperature dependence of thermoelectric power S(T) relative to gold for pure 
La2Cu0 4 and two lower concentration alloys observed by Cooper et al. (see ref. [57]) 
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Figure 8: The coefficient of electronic specific heat in LSCO, "(, observed by Loram et al. (see 
ref. (60]) 

As for heat capacity, Lora.Jll et a/. presented a detailed investigation of the specific 

heat of LSC0[60] (See Fig. 8). They observed the difference in specific heat between the 

each sample and the parent compound using a differential calorimeter, and then correlated 

the anomaly at T, to give the normal state electronic term 'Yn· They observed the non-zero 

normal state electronic term 'Yn in the superconducting concentration region (0.05 < x < 

0.25), and showed the existence of large density of state at Fermi energy, consistent with 

the angle-resolved photoernission data[61 ,62), The density of states obtained from the 

experimental result of normal state electronic term In is consistent with that calculated 

in Chapter 4. (See Chapter 5) 

18 

2-4. Optical Properties m Normal State La2-xSrxCu04 

Infrared absorption and reflection measurements provide an insight into the nature 

of charge carriers and their interaction with the lattice. Uchida et a/. · obtained 

the optical conductivity spectra a(w) from the Kramers-Kl:onig transformation of the 

reflectivity spectrum(63,64] (See Fig. 9) . The spectrum of the parent compound La
2
Cu0

4 

is dominated by the optical phonons in the far-infrared region and the CT excitation 

peaked at ~ 2eV. For low-doping LSCO, a(w) seems to consist of two components, a 

narrow Drude-like peak at w ~ 0 and a broad band centered in the rnid-IR region. It 

may be possible to regard the former as coherent motion of doped holes as is expected in 

the electronic structure calculated in chapter 4. As doping proceeds , the intensity of the 

Drude peak increases and the mid-lR peak shifts toward zero-frequency. 

1.5.----.---.---r---

0 .15 
-0.20 •••• --

~·"· .. -····" .... .. 
.• ., ___ ..... 0.34 

0o~--f--~2~-.3~--d4 

l!w ( eV) 

Figure 9: Evolution of op tical conductivity with doping in LSCO observed by Uchida et a/. 
(see ref. [63]) 
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Figure 10: Infrared spectra for LSCO observed by Ohbayashi et al. (see ref. [65]) 

Relevant optical excitations are not seen in the spectrum with the polarization 

perpendicular to the Cu02 plane, consistent with the the data of c-a.xia resistivity[54] 

which is larger by orders of magnitude than the ab plane resistivity and shows a non­

metallic temperature dependence. This is an indication of confinement of the dopant hole 

within the Cu02 plane. 

Ohbayashi et a/.[65,66] observed an anomalous behavior of the infrared active mode 

at about 680 cm-1 (E. mode) in LSCO, which is observed commonly in high Tc cuprate. 

However the peak at about 680 cm-1 indicated by an arrow in Fig. 10 is clearly observed 

for La2Cu04 , its intensity decreases with increase of the Sr concentration x and it is 

almost invisible for x ~ 0.1. This clear correlation of infrared anomaly with appearance of 

superconductivity seems to provide direct evidence of the importance of electron-phonon 

20 
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Figure 11: Valence-band photoemission spectra of LSCO and Bi2Sr2CaCu20s observed by 
Fujimori et al. (see ref. [67]) 

interaction in copper oxides. 

Important information on the electronic structure of the copper oxides has been 

obtained from the high-energy spectroscopic studies such as photoemission, inverse 

photoemission (BIS), and X-ray absorption spectroscopy (XAS). The combination of 

photoemission and inverse photoemission spectra clearly shows the existence of a finite 

density of states at the Fermi level , which supports the electronic structure calculated in 

chapter 4. Fujimori [67,68] has observed , in Bi2Sr2 Ca,_, Y,Cu20 8 , that the Fermi energy 

is located at the top of the valence band as is expected. While, the EF is found to be near 

the center of the band gap in LSCO, which seems to be due to the existence of smaller 

indirect band gap. 
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Figure 12: Angle-resolved photoemission spectra near the Fermi level measured with the 
photon energy of 18e V for two high symmetry direction in the Brillouin zone, by Takahashi. 
(see ref. (61]) 

Fujimo,ri observed valence-band photoemission spectra of La1.92Sro.o8Cu04 [67] (See 

Fig. 11). He finds that the parent compounds of the copper-oxide superconductors prove 

to be charge-transfer insulators , in which the band gap is of the oxygen p-to-Cu d charge 

transfer type, and that an extra hole in LSCO is more than 90% oxygen p-like. 

Angle-resolved photoemission spectroscopy is a very powerful experimental method 

to study the energy band structure in a crystal. Takahashi et al. observed two dispersive 

bands which cross the Fermi level midway between f-point and the zone boundary 

in Bi2S~2Ca1-z Y .,Cu20s[6l ], consistent with the result obtained fro~ combination of 

photoemission and inverse photoemission spectra. (See Fig. 12) 
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Figure 13: Fluorescence yield photoabsorption spectra for Ehilc and Eh.lc as a function of 
Sr content observed by Chen eta/. (a) Low-energy region of the 0 K-edge absorption; (b) the 
LJ white line region of the Cu L-edge absorption. (see ref. (19]) 

Polarized X-ray absorption spectroscopy provides a direct information on the nature 

and the symmetry of the unoccupied electronic state above Fermi level. Recently Chen 

et al.(l9] (See Fig. 13) performed polarization-dependent X-ray absorption measurements 

for 0 K- and Cu L-edges in LSCO. In a shoulder area of the doping-independent Cu 1
3 

line, they observed the doping-induced satellite peak (L;) for both polarization of E.lc 

and Ellc. According to Kamimura, Ohura, Eto and Chen(21,70], the appearance of the 

doping-induced satellite peak for both polarization at the same energy has suggested that 

a state of dopant holes must consist of high-spin and low-spin states , since the polarization 

E.lc and Ellc detect low-spin and high-spin states respectively. This is the basis of the 

present calculation of electronic structure given in Chapter 4. 
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Figure 14: Resonant Raman spectra of YBa2Cu30s showing Raman forbidden, infrared active 
LO modes (wavy arrows). (see ref. [71]) 

The Raman scattering spectra give the evidence of strong electron-phonon 

interactions. Cardona et a/.(71 ,72] observed Raman forbidden, infrared active modes 

in resonant Raman spectrum (See Fig. 14). The peaks of infrared active B
2

u modes are 

at 145, 282, 367, 670 cm- 1
, for LSCO with superconductor composition[73;74j. The 

appearance of the infrared active modes in the Ramam spectra indicates the loss of 

inversion symmetry caused by the .local distortion. 
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2-5. Magnetic Properties m Normal State LSCO 

The parent material La2Cu04 is an antiferromagnet with TN=240K and the peak 

in the temperature dependence of the susceptibility appears near 2401<[44] . The peak 

disappears with doping, indicating the suppression of the antiferromagnetic order above 

the well-over-doped region. The susceptibility increases with increasing temperature for 

LSCO with low Sr content . For higher doping, a broad peak in temperature dependence 

appears. This broad peak disappears and the susceptibility decrease monotonously with 
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Figure 15 : Normal-state magnetic susceptibility of LSCO observed by Torrance et a/. (see 
ref. [47}) 
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Figure 16: Doping dependence of the wave vector for the spin correlations in LSCO observed 
by Endoh et al. (see ref. [76]) 

increasing temperature, in over-doped region. As for the x dependence, the low 

temperature susceptibility increases with increasing x for 0.04 ::; x ::; 0.25, and decreases 

for 0.25 ::; x ::; 0.33[47] (See Fig. 15). This x-dependence of the susceptibility coincides 

fair ly well with the 'Pauli-para' spin susceptibility of dopant holes calculated by using 

the effective one electron type conduction band in Chapter 4-. However ' Pauli-para' 

spin susceptibility is small at small Sr content region compared with experimental data, 

Matsuno and Kamimura[75] argue that the clifference is due to the strong suppression 

of 'Pauli-para' spin susceptibility by the interplay between the nature of the spin-fixed 

energy band derived in Chapter 4 and the electron-electron interaction. 

Neutron inelastic scattering experiment is very powerful , because it can give us 

its magnetic excitation spectra at any fixed point of momentum and energy space. The 

spatial extent or correlation length ( of the spins within the Cu02 plane can also be 

obtained from neutron inelastic scattering experiment[76,77] (See Fig. 16). The thermal 
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evolution of the inverse correlation length, " = C 1 , established the magnetic roll of the 

hole doping, which frustrates the antiferromagnetic squared lattice. The observed "is the 

sum of K.o and K.(T), where the former, "o, is temperature invariant, determined by the Sr 

content x and proportional to the average hole pair eli stance, i.e. (I a = 1/ y'X, and the 

latter, K.(T), is just the thermal evolution for the undoped crystal La2 Cu04 • The survival 

of local AF order of localized spin also supports the present electron and spin structure 

characterized by the alternant appearance of 1 A1g and 3 B1g multiplets. 

Another important aspect of neutron scattering in LSCO is the appearance of 

the incommensurate peak[76,78]. Possible interpretation of the incommensurate peak 

is given in Chapter 4. The incommensurability or the shift of the wave vector, fl.q, 

apparently develops with the appearance of the superconductivity and shows the nonlinear 

x-dependence. 

For YBCO, a gap-like structure develops at low temperatures as was first reported 

by Grenoble group[79,80]. Spin gap Ea = 0.028eV is observed below and above Tc in 

YBCO with unpolarized neutron scattering. Spin gap seems to be a natural consequence 

of the present electronic structure calculated in chapter 4. The AF magnon energy is the 

minimum at f-point in the Brillouin zone which corresponds to (0, 0, 0). When k vector 

changes clirectly from r to fl. point which corresponds to ( 1r l2a, 1r l2a, 0) , the magnon 

energy increases monotonously. Let us introduce the coherence length .X, which represents 

the scale of local AF correlation region. Then, for the case of local AF order, the magnon 

energy is meaningful only when k vector lies outside a radius 21r I .X, around the r point. 

Consequently the spin gap, i.e. a minimum energy to fjjp a clirection of single spin in t he 

local AF order, is to be observed. 
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Figure 17: Temperature dependence of l/T1 (=2W) of 63 Cu observed by Kltaoka et al. (see 
ref. [81]) 

NMR studies are playing an important role in clarifying separately the electronic 

stat of oxygen site and that of copper site in the Cu02 plane. The main features of 

nuclear spin relaxation rate in LSCO, as well as in other high Tc cuprates, are the absence 

of the Hebel-Stichter coherent peak below Tc and the temperature dependent Korringa 

ratio 1fTT1 above Tc[Sl] (See Fig. 17). The deviation from Korringa low of 63 Cu spin 

relaxation rate reveals the anomalous enhancement due to the AF fluctuation of the 

localized spin of Cu, showing that the AF spin correlation is significantly developed in 

low concentration region as clarified by the neutron scattering experiment. Th~ fact that 

1/T1 decreases markedly without a coherence peak just below T<> has been interpreted in 

terms of d-wave superconductivity model[82]. 
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2-6. Anomalies m La1.s7sMo.125Cu04 

In LaunBao.mCu04 (LBCO), curious disappearance of bulk superconductivity 

in a narrow range of x near 0.125 is observed[83 ,84,85] (See Fig. 18). Suppression of 

Tc is also reported in the same concentration range for LSOO, but the degree of the 

suppression is small compared with LBCO. These anomalies are accompanied with the 

structural transition from the mid-temperature orthorhombic (OMT) phase to the low­

temperature tetragonal (TLT) phase at temperature Td2 ~ 60K. The structure of TLT 

phase is different from that of a high temperature tetragonal (THT) phase which appears 

at higher temperature than Td1 ~ 200K in Lal.B75Bao.125 Cu04 . 

0.05 0.10 O.J5 0.20 0.25 
Compoa!Uoo [x] 

Figure 18: Transition temperature Tc (triangles) and the fraction of TLT phase present in 
low-temperature observed by Axe et al., where circles and rectangles reveal X-ray and neutron 
data respectively. (see ref. (83]) 
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In the TLT phase the electrical conductivity becomes non-metallic and the density 

of states reduces , which is suggested by the enhancement of thermal-conductivity and 

the linear coefficient of the specific heat. Investigation through the partial substitution 

of Ni, Zn and Ga for Cu [86] shows that this low temperature structural phase transition 

originates from electronic instability related to the hole concentration of x = 0.125 rather 

than from something based on the Ba concentration. And it is consistent with the 

interpretation based on the electronic structure calculated in chapter 4. 

2-7. Superconducting Properties of La2_xSr.x Cu04 

As is well known, superconductivity in LSCO appears at x ,..., 0.05 and the transition 

temperature T. increases for 0.05 ~ x ~ 0.15 (under-doped region) then it decreases[44] 

(See Fig. 19). 

A number of tunneling spectroscopy experiments have been performed for 

Bi2Sr2CaCu20v. Kitazawa et al. have proved that the surface BiO layer is essentially 

serniconductive with a certain energy gap in room temperature[87], by performing 

scanning tunneling spectroscopy (STS) which can probe the local density of states specific 

to each atomic site or atomic layer. It strongly supports the two-dimensional conduction 

in the Cu02 network. 
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Figure 19: Sr content dependence of the superconducting transition temperature Tc for LSCO 
observed by Takagi et a/. (see ref. [ 44]) 



Miyakawa et ai.[33,34,35,32] observed phonon structures on tunneling conductance 

spectrum, suggesting the superconductivity mediated by phonons. As for LSCO Ekino 

et a/.[88] observed the well distinguished phonon structures in the superconducting 

La1.8sSro.1sCu04 which correspond to the generalized neutron phonon density of states, 

suggesting the phonon mechanism of superconductivity[88] . As for the energy gap, the 

data of tunneling spectroscopy is still controversial. The obtained values of 2D../ k8 Tc are 

scattered from 5 ~ 6[88] to 9[87]. 

The previously observed small oxygen isotope effect or the absence of it in various 

high Tc cuprates[89,90,91] has been considered as an important evidence for non-phononic 

superconductivity. However , the oxygen isotope effect has been reported for LSCO. 

Particularly the value of Ct in the relation of Tc ~ M-a varies in the region of 0.1~0.8 , 

depending strongly on the hole concentration x, with the maximum et values (~ 0.8) 

found for x near 0.1 2(92]. 

Recently keen attention has been paid to the symmetry of superconducting gap, i. e 

whether it is s wave-, or extended s wave- , or d wave-symmetry. Several phase-sensitive 

experiments have supported d wave-symmetry for YBa2Cu3 0 7 (YBCO). Recently the d­

wave symmetry for YBCO was established by several new pairing symmetry experiments, 

for examples, tricrystal ring experiment based on macroscopic coherence effect[93,94]. 
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Chapter 3. 

Formalism of How to Calculate the Electronic 
Structure of Laz-xSrxCu04 

3-1. Introduction 

In the copper oxides, there exist areas in each Cu02 layer in which the localized 

spins form an antiferrom.agnetic (AF) short range ordering[76,77]. Here we call these 

areas "spin-correlated regions" . The size of each spin-correlated region is characterized 

by the spin correlation length. Then, following the results of Kamirnura and Eto, a dopant 

hole wi th up-spin in the spin-correlated region occupies an aig orbital which consists of 

a Cu d,, orbital and the in-plane oxygen Pu and apical oxygen p, orbitals, at a Cu06 

octalledron with localized up-spins , forming the Hund 's coupling triplet state, 3B 1g, while 

it occupies a bonding b1g orbital which consists of the in-plane oxygen p .. orbitals and a Cu 

d.,._Y, orbital at a Cu06 octalledron with a localized down-spin, forming the Zhang-Rice 

spin-singlet state(95], 1 A1g. 

As a result the dopant holes move resonantly from a Cu06 octahedron to a 

neighboring Cu06 octalledron in a Cu02 layer by a transfer interaction of about 0.3eV. 

Such coherent motion of dopant holes is possible when the spin correlation length is 

much larger than the distance between neighboring copper sites , and the magnitudes 

of transfer interactions between neighboring Cu0 6 cluster are larger than the energy 

difference between 1 A1g and 3 B1g multiplets. As a result an exotic metallic state is created 

for LSCO with hole concentration, x ::5 0.2. 

It is now well established that the parent compounds of high Tc cuprates are charge­

transfer insulators, in which the states near band gaps are of the ligand p-to-metal d 
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cha.rge-transfer type[69] . Then the dopant holes have mainly Op" cha.racter, while the 

localized spins have mainly Cu dz>-~> character. In other word it is necessary to take at 

least two bands, one for localized spins and one for dopant holes, in order to construct 

an appropriate model for high Tc cuprates. In the present treatment the band for the 

localized spins consists of a bjg orbital and that for dopant holes consists of b1g and 

a.i8 orbitals. And the upper Hubbard bj
8 

band is fully occupied by holes and the lower 

Hubbard bi
8 

band is empty even in the doped LSCO as well as the undoped La2 Cu04 • 

Here 'upper' (or ' lower ') means that the electron energy of the Hubbard band is higher 

(or lower). 

In order to solve the Hamiltonian (1.1) we first separate a system of the localized 

spins which occupy the upper Hubbard big band and form the antiferroma.gnetic ordering 

due to the superexchange interaction between the localized spins, J in Eq.(l.l), from 

a hole carrier system. Then we treat the the exchange interaction between t he spins 

of a dopant hole and a localized spin in Eq.(l.l) , Li,m Km8im · S; , in the mean field 

approximation by replacing S ; by its average value (S;). In the present treatment the 

values at T =OK are taken as the average values of (S;), that is + 1 for A-site and -1 for 

B-site. Thus the effect of the localized spins is dealt with like a molecular field acting on 

a dopant hole. 

In order to derive the effective one-electron-type Hamiltonian for the dopant holes, 

we determine the 'molecular field' of the localized spins so as to reproduce the first 

principles calculation for a Cu06 octahedron by Kamimura and Eto[8] . In doing so, 

we determine the effective-one-electron type Hamiltonian in a periodic system so that the 

energy of 3B1s and 1 A1s multiplet states calculated by using the effective one-electron­

type Hamiltonian coincides with that of first principles calculation by Kamimura and Eto, 

and further assumed that the lifetime broadening effect due to the finite spin correlation 

length is neglected. 

In this context the calculation of the effective one-electron-type band structure of 

the carrier system is performed by renormalizing the effects of the the exchange integral 

between the spins of a dopant hole and a localized spin into the carrier states. In doing 
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so we first note that the holes which. are accommodated in the anti bonding bjg orbitals 

are localized at Cu site by the strong U effect and the spins of localized holes in b}
8 

orbitals are coupled antiferromagnetically due to the superexchange interaction between 

the localized spins, J in Eq.(l.l). Since the dopant holes move coherently over a long 

distance, alternating from the high-spin 3 B18 multiplet to the low-spin 1 A1g multiplet and 

then to the high-spin 3B1g multiplet in the 'molecular field' of the localized spins, we take 

a unit cell so as to contain two neighboring Cu06 octahedra with up- and down-localized 

spins called A- and B-sites. And in order to realize the alternant appearance of b18 and 

a.ig orbitals through 0 p" orbitals, we take into account the Cu02 network structure 

explicitly and consider the 34 x 34 dimensional matrix (H( k)), where 2p,, 2p" and 2p~ 

atomic orbitals for each of eight oxygen atoms and 3d,., 3d,., 3d,., 3d,'-•' and 3d,, 

atomic orbitals for each of two Cu atoms in the unit cell are taken as the basis functions. 

This Hamiltonian matrix H(k) consists of two parts; the one-electron part H 0 (k) , and 

the effective interaction part H;no(k) which comprises the many-body interactions such 

as the exchange interaction between carriers and localized spins in Eq.(l.l) and Hubba.rd 

U interaction for the localized holes in bj
9 

orbitals. 

Then, in the case of a dopant hole with up-spin , the energy of bjg state in a Cu06 

cluster with localized up-spin (A-site) is taken to be so high that the big state at A-site 

is filled with holes even in undoped La2Cu04 , while that in a Cu0 6 cluster with localized 

down-spin (B-site) is so low that the big state at B-site is empty. The difference between 

the energy of big states at A-site and B-site is due to the strong U effect. Further the 

energy of ai8 state at A-site is taken to be higher than that at B-site by Hund 's coupling 

energy, while the energy of b1g state at B-site is taken to be higher than that at A-site 

by the spin-singlet coupling in 1 A1g state, so as to reproduce the characteristic electronic 

structure where up-spin carriers take the 3B1g state at A-site and the 1 A1g state at B-site. 

In this chapter the energy of bjg, b1g or a.ig state indicates the energy for a electron but 

not a hole. 

In this way we can include the many-body interaction effects of the Hubbard U 

interaction for the localized holes in bj
9 

orbital as well as of the exchange interaction 

35 



in Hamiltonian (1.1) in the the 34 x 34 dimensional effective interaction part Hint(k). 

Further all the matrix elements related to the transfer interactions which appear in the 

one-electron part of the 34 x 34 dimensional Hamiltonian matrix, H 0 ( k ), can be estimated 

from the Slater-Koster (SK) parameters. In the present calculation we have used the 

values of the SK parameters fitted to an APW band calculation[96) by DeWeert et a/.[97) 

and thus the one-electron part of the Hamiltonian, H0(k) , reproduces the APW bands 

well. 

ln order to obtain ii;n,(k), we first construct the eigenstates localized at A-site or 

B-site by taking the linear combination of the doubly degenerated eigenstates of H0 (k 0 ), 

where vector k0 indicates (f.;, f.;, 0). The resultant eigenstates are L:1 cos(f.;x1 + f.;Ytl'Pal 

and L:1 sin( f.;x1+ f.;YI )'Pal, which we regard to be localized at A-site and B-site respectively, 

where 'Pal are the Wannier type eigenstates of H0(k0). 

If we take these functions as a basis function, the effective interaction part Hint( k ) 

is obtained, by setting the energy of the big state at A-site, that of big state at B-site, 

that of b1g state at B-site, that of aig state at A-site and that of aig state at B-site so as to 

reproduce the energy difference between multiplet 3 B1g and 1 A1g calculated by Karnimura 

and Eto[8). Then by a unitary transformation we can obtain the expression of Jiin,(k0 ) 

with the ordinary basis of Wannier type atomic functions. 

The method described above is similar in its idea to the (LDA+U) method developed 

by Anisimov et a/.[98] for cop_per oxides, but the interactions are treated more accurately in 

the present method. As described above, all the matrix elements in the 34 x 34 dimensional 

Hamiltonian matrix (H) become one-electron type, and thus we can diagona.lize it easily. 

In this way we can obtain a band structure including the many-body effects in a molecular 

field approximation for LSCO. The obtained band structure for up-spin dopant holes is 

shown in Fig. 20 in Chapter 4, where the Brillouin zone is also shown in the inset. 

The same shape of the band structure is also obtained for down-spin dopant holes. 

Here one should note tha.t the Hubbard bands for localized big holes are removed from 

the band structure in Fig. 20. In un-doped La2Cu04 all the bands except for upper 

Hubbard bis band are occupied by electrons and the localized big holes have mainly Cu 
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d character, while the dopant holes have mainly 0 p. character. Thus the present theory 

shows definitely that La2Cu04 is a charge transfer type insulator, consistent with the 

experimental result.[44) . 
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3-2. Slater-Koster Method 

The Slater-Koster method, in which the analytical form of the tight binding (TB) 

Hamiltonian is fitted to the first principle band calculation, can be used to give insight 

into difficult problems which are intractable with a standard first principle calculation 

method. Therefore, it has been used to consider the structural phase transition associated 

with a charge density wave[99], the phonon spectra and the electron-phonon mediated 

superconductivity in high Tc cuprates[lOO,lOlj etc.. In the present paper we use the 

Slater-Koster method as a starting point for a many-body calculation of the electronic 

structure of LSCO. The Slater-Koster (SK) method was applied to LSCO by DeWeert et 

a/.[97] . They determined the on-site elements and the overlap integrals so as to fit the 

analytical form of the tight binding Hamiltonian to the first principle APW calculation. 

They performed the augmented-plane-wave (APW) calculation to generate the eigenvalues 

En(k) and the angular moment= components, Qnlm(k) which mean the fraction of 

electronic charge in the n-th band for the 1-th angular moment= component of the m-th 

basis atom. In the Slater-Koster fits they identify the angular momentum components as 

the squares of the norms of the coefficients of TB wave functions in terms of atomic-like 

orbitals. In order to generate the TB band with a proper angular momentum character, 

they minimize the functional F = Lk,n[fn(k)j2, where 

fn(k) = [e;Pw(k) - E~K(k)[ + L::[Q~~w (k)- Q~~(k)[/W 
lm 

where the superscripts APW and SK denotes the first principle calculated values and the 

Slater-Koster values, respectively, and W is a weight used to adjust the relative importance 

of En(k ) and Qnlm(k) in their fit. Thus the SK method affords a basis for a 'tight binding' 

Hamiltonian as a starting point for many-body calculations. In this section we will give a 

formalism of a 'tight binding' Hamiltonian for the undistorted crystal structure by using 

the Slater-Koster parameters. 

In the tight-binding model, the Bloch functions are constructed from the atomic 

orbitals cp.(r- R,,.) as 

(3.1) 

where R ,,. = R 1 + T,. represents the position of the 1-1th ion in the lth unit cell, T,. the 

position of the 1-1th ion in the unit cell, N the total number of unit cells in the crystal, k 

a wave vector and a specifies an orbital. 

Neglecting the overlap integrals, the energy eigenvalues and the wave functions are 

obtained by solving the following equation, 

(3.2) 

where H0 (k) is the Hamiltonian matrix and i the unit matrix. The energy eigenvalues 

E~k and the wave functions W~k ( T) are represented by using the transformation matrix 

[J 

Eo(k) = U-
1
(k)Ho(k)U(k) 

w~k(r) = L::u,. •. n( k)<I>~.k(r), ,.. 

where E0 (k) = E~ki. The matrix elements of the Hamiltonian H0 (k) is defined by 

(3.3) 

(3.4) 

(3.5) 

where H. represents the one-electron Hamiltonian which is regarded to include a part of 

electron correlation because the Slater-Koster (SK) parameters are determined so as to 

reproduce the electronic energy and the wave functions of first principle band calculation. 

This Hamiltonian matrix H0 (k) is expressed by taking the atomic orbitals as bases in the 

following way, 

(3.6) 

where 

(3.7) 



Purther all ·the matrix elements related to the transfer interactions which appear 

in the Hamiltonian matrix (H 0 (k)) are expressed in terms of the SK parameters which 

represent the transfer integrals between two atomic orbitals, c,. at the origin and c;,. at 

an arbitrary position R, where c and c' represent s, p and d, and m denotes the magnetic 

quantum number of the orbital angular momentum with respect to the direction of R. The 

SK parameters are conventionally symbolized as t(cc'o-), t(cc'1r) and t(cc'c5) corresponding 

tom= 0, ±1 and ±2, respectively. 

In the present paper we restrict the basis functions to include 2p,, 2py and 2pz 

atomic orbitals for each oxygen atom and 3dy., 3d,., 3d••, 3d,•-u• and 3dz• atomic 

orbitals for each Cu atom in the unit cell. Then the Hamiltonian matrix is expressed 

by 17 SK parameters if we consider only first neighbor interactions. They are listed in 

Table 1. In this table, {or instance, t( dda) represents the transfer integrals between two 

neighbouring Cu d orbitals with the magnetic quantum number m = 0 of the orbital 

angular momentum with respect to the Cu-Cu direction. The Hamiltonian matrix is I Table I I 

shown in Table 2, and the expressions of its matrix elements are given in Appendix A. I Table 21 
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on-site parameters 
0(1) :in plane E! 
0(2) :apical E'; 
Cu Ed:u 

Ed%'-•' = Ed•' 

first-neighbor parameters z 

Cu-Cu t(dda) 
t(dd7r) 
t(ddo) 

Cu-0(1) t 1(dpa) 
tl(dp7r) 

Cu-0(2) tz(dpa) 
t2(dp7r) 

0(1)-0(1) t 1(ppa) 
tl (pp7r) 

0(1 )-0(2) t2(ppa) 
t2(pp1r) 

0(2)-0(2) t 3 (ppa) 
ta(pp7r) 

Table 1 : Slater-Koster parameters 
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3-3. Computation Method 

High-energy neutron scattering studies have shown a persistence of 2D 

antiferromagnetic spin correlation in the superconducting state of LSC0[77], and 

the ARPES results by Aebi et a/.[102] have proved the prediction of a viz x viz 
antiferromagnetic local order by Kamimura and Suwa. In this context we calculate a 

new electronic structure in the superconducting concentration region in which, if the 

localized spins form antiferromagnetic ordering in a spin-correlated region the carriers 

take the 3 B19 high-spin multiplet state and the 1 A19 low-spin multiplet state alternately 

in this spin-correlated region. In tbis respect a unit cell is taken so as to include two 

neighbouring Cu06 octahedra with locaJized up- and down-spins. Tbis unit cell is called 

"antiferromagnetic unit cell", and two neighbouring Cu06 octahedra are called A-site and 

B-site, respectively. 

The Hamiltonian matrix H(k) consists of two parts; the one-electron part H 0(k ), 

and the effective interaction part flin,(k) , as described in Section 3-1. In the 

antiferromagnetic unit cell, the one-electron part Hamiltonian matrix H0 ( k) is expressed 

by 34 x 34 matrix as 

(3.8) 

where fl~A(k), il~A(k), if~8 (k) and fl~8 ( k) are the 17x17 matrices which represent 

Hamiltonian matrix components between A- and A-sites, B- and A-sites, A- and B-sites, 

and B-and B-sites, respectively. Their elements are defined in Table 3, and the expressions 

of its matrix elements are given in Appendix B. In the present calculation we have used I Table 31 
the values of the SK parameters fitted to the APW calculation[96] by DeWeert et al[97]. 

Those values are given in Table 4 .. 

Now we will take into account the many-body interaction terms of Hamiltonian (1.1) 

in the 34 x 34 dimensional effective interaction part flint(k). In order to renormalize the 
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effects of the the exchange integral between the spin of a dopant hole and localized spin, I< 
in Eq. (1.1), and the Hubbard U-like parameter into the carrier states, we first construct 

the antibonding bj& orbital at A-site and B-site mainly consisting of a Cu d,>-y> atomic 

orbital, the bonding b1g orbital at A-site and B-site consisting of the 0 Pu orbitals in a 

Cu02 layer hybridized by a Cu dz•-y> atomic orbital , and ajg orbital at A-site and B-site 

consisting of Cu dz2 orbital hybridized by Opu orbitals in a Cu02 layer and Opz orbitals 

of apical oxygen. The antibonding b~g orbitals at A-site and B-site are accommodated 

by up-spin and down-spin holes, respectively, due to the Hubbard U interaction and 

the superexchange intez:action. Then the aj, state at A-site and the b1g state at B-site 

constitute the 3B1, high-spin multiplet and the 1 A1, low-spin multiplet, respectively, with 

the localized b~, holes. 

We construct localized states at A-site and B-site, by taking linear combination 

of the doubly degenerated eigenstates of the one-electron Hamiltonian Ho(ko) where 

vector ko indicates (f.;, f.;, 0). This is possible because the eigenstates [ko) and [- ko) 

are degenerate, reflecting the fact that the difference between two wave vectors , ko 

and -ko, coincides with a reciprocal lattice vector. The resultant eigenstates are 

Ll cos(f.;x1 + f.;y1)cp.1 and I:;1 sin(f.;x1 + f.y,)r.Pah respectively, where 'Pal are the Wannier 

type eigenstates of H0 (k0 ) which are localized at /th-site and constructed with the linear 

combinations of atomic orbita.ls. Strictly speaking, these eigenstates are not localized only 

at a particular site, but we will consider these eigenstates as those localized at A-site and 

B-site. Using the transformation matrix U(ko) which yields such localized eigenstates, 

Ho( ko) is diagona.lized; 

fJ-1 
(ko)Ho(ko)U(ko) = Eo(ko)- (3.9) 

The eigenstates of Eo are expressed as linear combinations of atomic orbitals localized 

at A-site or B-site; for example, aj, orbital at A-site, aig orbita.l at B-site, big orbita.l at 

A-site, big orbital at B-site, and so on. ln order to construct, for example, a~g orbital 

at B-site, in numerical calculations we take a linear combination of two degenerate aig 

orbitals which correspond to the eigenstates [ko) and I - ko) so that the component of 
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Cu dz 2 orbita.l at A-site disappears. 

If we renormalize the effects of the exchange interaction between the spin of a dopant 

hole and a loca.lized spin, ]{ in Eq. ( 1.1) into the carrier states, then, in the case of a 

dopant hole with up-spin, the energy of a electron in aj, state at A-site is taken to be 

higher than that at B-site by Hund's coupling energy which is 2eV [103]. On the other 

hand, as regards the energy of b1g state at B-site, it is first taken to be higher than that 

at A-site by the energy of the spin-singlet coupling in 1 A,, multiplet which is 4eV [103]. 

Then we have to proceed to include the effects of the crystalline potentia.! in LSCO, in the 

energy of b1g state. Those are such as the energy difference between the 3B1g and 1 A1g 

multiplets due to the effective Madelung energy which has been included in the cluster 

calculation by Kamimura and Eto [103]. ln this context, we have added 2eV to the on­

site energy of the b1, orbital leaving the on-site energy of the ai, orbital unchanged. As 

a result the energy of b18 state at B-site which is the sum of the spin-singlet coupling 

energy, 4eV, and the on-site energy of b1g orbital, 2eV, becomes 6eV. Thus the up-spin 

carriers take the 3 B1, state at A-site and the 1 A1, state at B-site for the k-va.lues in the 

underdoped region. LasUy the energy of bi, state in a Cu 0 6 cluster with localized up­

spin (A-site) is taken to be higher than that in a Cu06 cluster with localized down-spin 

(B-site) by Hubbard U parameter, which is taken as lOeV in the present treatment in 

order to separate the localized spin band bi, from the hole carrier system. 

Then the total Hamiltonian H( k) is constructed with the one-electron part and the 

effective interaction part, and the effective interaction part has the eigenvalue of the big 

state at A-site which is +lOeV, that of big state at B-site -10eV, that of b1, state at 

B-site +6eV, that of aj8 state at A-site +leV and that of ajg state at B-site -leV. Here it 

should be noted that H(k) is the Hamiltonian matrix for a electron but not a hole. Then 

the total Hanllltonian H(k) should be transformed by transformation matrix U(k0 ), as 

- - 1 - .- - -
U (ko)H(ko )U(ko) = Eo(ko) + E;0 ,(ko). (3.10) 

47 



where 

+10 
-10 

-1 

A-site bis 
B-site big 

A-site ais 
B-site ajg 

+6 B-site b1g 

(3.11) 

with the energy being measured in eV. By inverse transformation we can obtain, 
- ... - --1 Hw1(k0 ) = U(k0 )E;.,(k0 )U (k0 ). The similar calculation with respect to k~=(f;;, - f;;, 0) 

gives H;.,.(k~) as well. 

Then, using the approximation that the effective interaction term Hint have 

matrix elements only between nearest neighbor atomic orbitals, we can represent the 

k dependence of the effective interaction part of the Hamiltonian matrix, iim1(k), as is 

shown in Appendix C. Then we can determine (aik~;;nlb) and (aiH:dlb), where 'even' 

and 'odd' mean that the interchanging of the two atomic orbitals, a and b, produces +1 

and -1 in sign, respectively. In this way we can include the excltange interaction terms 

of Hamiltoruan (1.1) and the Hubbard U interaction for the localized holes in bj9 orbital 

in the the 34 x 34 dimensional effective interaction part H;.,(k ). As for the value for the 

difference between fa;, and fb,, in Eq. (1.1), it is taken so as to reproduce the energy 

difference between multiplets 3B1g and 1 A1g calculated by Karnirnura and Eto[8]. 

As described above, all the matrix elements in the 34 X 34 dimensional Hamiltonian 

matrix (H) become one-electron type on the result of the mean field approximation, and 

thus we can diagonalize it easily. In this way we can obtain a band structure including the 

many-body effects dealt with like a molecular field acting on the dopant holes for LSCO. 
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Chapter 4. 

The Numerical Results of the 
Structure and Renormalized 

Electronic 
Fermi Surface 

of La2- xSrxCu04 

4-1. Effective One-Electron Type Band Structure 

In the previous section, all the matrix elements in the 34 x 34 dimensional 

Hamiltonian matrix H( k ) have been expressed as one-electron type, due to the molecular 

field approximat ion. By diagonalizing it, we have obtained a one-electron type band 

structure including the many-body effects in a mean-field sense for LSCO. T he obtained 

band structure for up-spin dopant holes is shown in Fig. 20, where the Brillouin zone is I Fig. 20 1 

also shown in the inset. The same shape of the band structure is also obtained for down-

spin dopant holes. Here one should note that the energy in this figure is taken for electron 

energy and the Hubbard bands for localized b~g holes are removed from this figure. 

In the undoped La2CuO• all the bands except for upper Hubbard bj'g band are 

occupied by electrons so that La2Cu04 is an insulator. In this respect our band structure 

is completely different from the ordinary energy band obtained by the local density 

approximation (LDA). The localized holes are acco=odated in the upper Hubbard bjg 

band which consist mainly of dx' -•' orbitals forming AF spin ordering, while the dopant 

holes in the highest band in Fig. 20 marked by # 1 have mainly 0 Pu character. T hus 

the present theory shows definitely that La2Cu04 is a charge transfer type insulator, 

49 



0 

,--.... 0 

> ,.....-! 

Q.) 0 '--' ;;...., 00 
b.O 
1-4 
Q.) 0 
~ <:0 
~ 

#1 
-/ ~ 
~ / ~ 

= ~ 

0 
~ 
~ -=:::;: -~/ /' 

0 
C"' 

0 

L ~ 

~ ~ 
0 (1r,O,O) (0,0,0) 

(0,0,0) (7r/2,7r/2,0) (0, 0,7r) 

F. ure 20: The many-body-effect included band-structure for up-spin dopant holes, ?btained 
•g mil · . H f by solving the effective one-electron-type 34 x 34 climensional Ha to~1an matnx. or ~ 

antiferromagnetic unit cell, where the ordinary Brillouin zone corresponcling to an orclinar! urut 
cell consisting of a single Cu06 octahedron is shown in the upper part of the figure . The highest 
occupied band is marked by #1. The 1'.1.-point corresponds to (~/2a, 1rj2a, 0) , while the 
G1-point to (1rja, 0 , 0). In this figure the Cu-0-Cu distance, a, 1s taken to be uruty. 

consistent with the experimental result[67 ,44]. 

Now let us introduce holes into this undoped L~Cu04 . Then doped holes are 

accommodated in the highest band in Fig. 20 marked by# 1 (referred as the conduction 

band hereafter). The wave function of the conduction band for up-spin holes consists of 

ais orbitals at A-site and b1g orbitals at 8-site, as will be shown in Section 4-2. Besides the 

localized bis holes in the upper Hubbard bauds, ais orbitals at A-site and b1g orbitals at B­

site form the 3 8 19 high-spin multiplet state and 1 A19 low-spin multiplet state, respectively. 

Thus the present calculated results realize the electronic structure, where the carriers take 
38 19 high-spin state and 1 A19 low-spin state alternately in the spin-correlated region. 

In the present calculation we have assumed the long range AF order, while the 

results of neutron inelastic scattering experiments[20] suggest that the localized spins are 

fluctuating and there is no long range AF order in the superconducting regime although 

the local AF order has been observed. Thus it is necessary to discuss how the fluctuation 

of localized spins affect the experimental properties of LSCO. Let A, be the characteristic 

length within which the coherent motion of a dopant hole is retained due to the local AF 

order. Then the simplest picture for the electronic states with the fluctuation effect taken 

into account, is that the holes in the present conduction band have coherence within 

an area whose radius is the spin correlation length A,. In other word the holes have 

coherence within a time T, defined as VFT• = A., where VF is the velocity of the holes near 

the Fermi surface. As regards the angle resolved photoemission (ARPES) or other optical 

phenomena the effect of non-existence of long range AF order is considered to be small, 

since the time scale of optical measurement is shorter than the characteristic frequency 

1/r,. It does not affect seriously the transport properties when the mean free path is 

smaller compared with ,\, due to strong electron-phonon interaction. On the other hand 

it affects seriously the thermal properties because the characteristic time scale is much 

longer than T,. The Fermi surface is affected by it and becomes to have fiojte lifetime. It 

also affects seriously the superconductivity and reduces Tc by eliminating the cont ribution 

from the retarded effective pair interaction of time argument larger than r, as is shown 

in section 6-5. 
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4-2. Features of the Conduction Band and Density 
of States 

When Sr are doped, holes begin to occupy the top o£ the conduction band at 6. 

which corresponds to (1r f2a, 1r f2a , 0). At the onset concentration of superconductivity, 

x
0

, the Fermi level is located at the energy of E = 9.04eV which is a little higher than 

that of the G1 point, where the Gt point in the Brillouin zone corresponds to ( 1r /a, 0, 0) . 

The characteristic feature of the conduction band is the existence of the flat band along 

the line G 1 to 6.. This is consistent with the angle-resolved photoemission data by Shen 

et a/.(104] and Desseau et a/.(105], who observed an extended region of flat band very near 

EF around M point, which corresponds, in the present notation, to G1 in the Brillouin 

zone, (1r fa, O, 0). 

In Fig. 21 the wave functions of an up-spin carrier in the antiferromagnetic unit cell [Fig. 21 [ 

are shown for 6. and G1 points, where the right hand side of the figure corresponds to a 

Cu06 cluster with localized up-spin (A-site) while the left hand side to a OuOs cluster 

with localized down-spin (B-site) in the antiferromagnetic unit cell, and the figure of an 

orbital is drawn in a large size when the probability of finding a hole in the orbital is 

large. The mixing ratio of the in-plane Op, apical Op, Cu dx2 
- y2 and Cu dz 2 orbitals 

in the wave function for five k values along the line G1 to 6. in the Brillouin zone are 

shown in Table 5, where the provability o£ finding a hole in each atomic orbital is shown. 

One can see from Fig. 21 and Table 5 that, in the concentration below the onset of J Table ~ 
superconductivity, the holes with up-spin are acco=odated in b1g orbital constructed 

mainly from the oxygen p, orbitals in a Cu02 plane, consistent with the result of the 

cluster calculation by Karnimura and Eto(8], while in the superconducting concentration 

region the holes hop coherently from a;g orbital at the A-site to b1g orbital at the B-site. 

The calculated result shows that mixing ratio of the 1 A1g state to the 3B 1g state 

for the k value of (37r/8, 51f /8, 0) in the underdoped regime of LSCO is 7 to 1, as shown 
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(kx, ky, k,) in-plane Op apical Op dx2 y• dz~ 

(~r.,~7r,O) 0.61 0.0 0.39 0.0 

a7r,~7r,o) 0.58 0.003 0.37 0.05 

(t7r,17r,O) 0.49 0.01 0.33 0.17 

(}7r,~7r,O) 0.41 0.02 0.29 0.28 

(0,1r,O) 0.38 0.02 0.28 0.32 

Table 5: The mixing ratio of the in-plane Op, apical Op, Cu dx2 - y 2 and Cu dz 2 

orbitals in the wave function for five k values along the line Gt to 6. in the Brillouin zone. 

iu Table 5. Thus, although we have mentioned that the alternating appearance of the 

Zhang-Rice singlet 1 A1g and the Hund 's coupling triplet 3B1g is the characteristic feature 

of the electron:ic structure of the underdoped superconducting regime of LSCO, the result 

of Table 5 indicates that the weight of the 1 A1g state is about seven times stronger than 

that of the 3B1g· This result is consistent with the experimental one by the polarized 

XAS by C. T . Chen et a/.[19] They have observed the doping-induced satellite peak(L;) 

fot· both polarizations of the electric vector of X-ray, E, parallel and perpendicular to 

the c-axis, in the shoulder area of the doping-independent Cu L3 line, where the L3 line 

corresponds to the transitions from Cu 2p core level to the upper Hubbard Cu dx'-v' 

band. Since the Ellc and the El.c polarizations detect the existence of aig and b1g states, 

respectively, the appearance of the doping-induced satellite peak for both polarizations at 

nearly the same energy has suggested that the state of dopant holes must consist of both 

a;:g and b1g states. According to Karnirnura, Ohura and Chen[106] , the large difference in 

the intensities between E.l_c and Ellc polarizations is due to the large difference between 

the components of b1g and a~g in the wave functions for the wave vectors on the Fermi 

surfaces [1 06]. 

Reflecting the alternate appearance of aig and b1g orbitals among A and B sites, 

the top of the conduction baud in Fig. 20 appears at the 6. point in the Brillouin zone, 

where the 6. point corresponds to ( 1r /2a, 1r /2a, 0). The conduction band is approximated 

in the following form, 

Ek= A [cos(akx + aky) +cos( -akx + aky)] 

+ B cos( akx + aky) cos( -akx + akv) 

+ c a a c 
cos(akx + aky) cos( -akx + aky) cos zkx cos zku cos zk• 

+ D a a c 
[cos (akx + aky) +cos( -akx + aky)] cos zkx cos 2ky cos 2k· 

+ Eo ( 4.1) 

Here a and care the lattice constants of the tetragonal unit cell, where a = 3.78A and 

c = 13.25A. The values of coefficient A to Eo in Eq. ( 4.1) are determined so as to reproduce 

the numerically calculated conduction band. The value of A to E0 thus determined are 
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Figure 22: The density of states of LSCO a.s a function of energy. The solid lines a.re the 
calculated one of the #1 ba.nd in the renormalized ba.nd structure[23,25]. The energy 1S measured 
from the top of the ba.nd. Holes enter from the top . 

A= -0.3311 eV, B = -0.3936 eV, C = -0.0006 eV, D = -0.0047 eV and E0 = 8.647 

eV. The lower energy region of the conduction band does not fit well to the one calculated 

numerically. However, this disagreement does not influence the following calculation 

because only the upper energy region of the conduction band above E :2: 8.9eV contributes 

to the electronic structure for the hole concentration region of :z; ::; 0.4. 

We have also calculated the density of states of the conduction band in LSCO. The 

calculated density of states is shown as a. function of energy in Fig. 22, where the origin I Fig. 22 j 

of the energy is taken at the top of the conduction band at the 11 point. The density of 

states for the conduction band has a. sharp peak at EF corresponding to x ~ 0.3 in L~_, 

Sr,CuO • . The appearance of this sharp peak is due to a. modified type of a saddle point 

singularity at G1 point, as described below. The energy of the conduction band near 

the G1 point increases towards the 11 point (along the direction of (±1, ±1, 0)), while it 

decreases towards t he r point (along the direction of (±1, 0, 0) or (0, ±1 , 0)) . 
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4-3. Fermi Surface Structure 

We have constructed the Fermi surfaces, based on the calculated energy of the 

conduction band shown in Fig. 20 This Fermi surface is completely different from that 

of an ordinary Fermi liquid calculated by the local density approximation (LDA) , as 

already pointed out by us[36,43] , because the conduction band in the present result is fully 

occupied by electrons in the undoped case while the LDA band always yield a metallic 

state. Further a carrier system with up or down spin has a respective Fermi surface, 

although their shape and their poshion in k-space are the same. The Fermi surface is 

constructed, by connecting the points in the k-space at which the Fermi distribution 

function shows discontinuity. In Fig. 23 the Fermi surface structures thus obtained for [Fig. 23 [ 

x = 0.05, 0.1, 0.125, 0.15, and 0.2 are shown , where one Fermi surface consists of two 

pairs of extremely fiat tube, which are di.J:ected along bisectors between kx and ky axis and 

are orthogonal to each other and displaced by Q1 = (7rja,1rja,O) or Q2 = (-1rja,1rja,O) 

due to the folding effect based on the antiferromagnetic unit cell. Although four fiat tubes 

are shown in this figure, two of these are the Fermi surfaces translated by reciprocal lattice 

vector. Then we should say ' two pairs of flat tube' instead of 'four fiat tubes '. 

It should be noticed that the appearance of the center of the Fermi surfaces at the 

6. point is due to the alternant appearance of 1 A19 and 3B19 multiplets among A and B 

s.ites . Let us assume, for example, a simple folding of a b1g band in the presence of the 

AF order. Then the dopant holes are accommodated from the top of the upper branch 

of the folded b1g band at f -point which corresponds to the k value of (0, 0, 0), since the 

undoped La2Cu04 is a charge transfer type insulator and both the upper and the lower 

branches of the folded b lg bands are fully occupied by electrons in the undoped case. 

Therefore the center of the Fermi surface is at r-point in this case. On the other hand, 

according to the present calculation, the b1g and a}g bands split into four bands in the 

presence of AF order. The upper two. bands among the four bands corresponding to a 
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character consisting of als orbitals at A-site and b1g orbitals at B-site and the character 

of lower two bands consist of ajg orbitals at B-site and b1g orbitals at A-site. Since both 

the blg and the ats bands are fully occupied by electrons in the undoped La2Cu04 , the 

dopant holes are acco=odated from the top of the highest band, and thus the character 

of the highest band is not pure h1g orbitals, but the mixture of two kinds of orbitals a• ' lg 

and blg· Therefore, the result of the present calculation that the 6.-point is the top of 

this highest band is not obtained by a simple folding of a_ energy band in the presence of 

the AF order. Thus in order to obtain the present Fermi surface structure, it is essential 

to take account of the alternating appearance of b1g and a~g orbitals for a dopant bole in 

addition to big orbital for a localized spin. 

The cross-section of each Fermi surface 1s very small as seen m· F ig. 23, and 

the dispersion of the conduction band is relatively flat . This unique feature of 

the Fermi surface structure is consistent with the experimental results of the angle­

resolved photoemission (ARPES) for the superconducting Bi2Sr0.97Pr0.03Cu06+5 (Bi 

2201) compounds which includes a single Cu02 layer in a unit cell, like LSC0[107] . 

Fermi surface structures for BhSr2CaCu20 8+5 (Bi 2212) determined by angle-resolved 

photoemission[102,104,105,1 08,109] are also very alike to the present result, although the 

Fermi surface structure for Bi2212 is more complicated due to the existence of two Cu0 2 

layers in a unit cell. Shen et a/.[104] and Desseau et a/.[105] have mapped out the near·EF 

electronic structure and Fermi surface of Bi 2212 by angle-resolved photoemission. They 

have observed an extended region of the flat Cu02 derived bands very near EF around 

M point, th.at is the G1 point in our notation, and the strong tendency of the nesting 

of the Fermi surface for a nesting vector Q near (1r, 1r) which is responsible for many 

of the anomalous physical properties of the hole-type cuprates. In particular, Aebi et 

a/[102,108] has found a c(2 x2) superstructure on the Fermi surface suggesting the short 

range antiferromagnetic correlation. In fact , their Fermi surfaces with superstructure 

are shown in Fig. 24, where the calculated Fermi surface is also shown schematically for I Fig. 24 1 

comparison. It is easily seen from Fig. 24 that the ARPES results by Aebi et a/. coincides 

well with the calculated Fermi surface. This means that our p.rediction of a y'2 x y'2 
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FERMI SURFACE (X=O. 0 5) 

Figure 23: (a) The Fermi surface for x = 0.05 calculated for the #1 ba.nd. Here two kinds 
of Brillouin zones a.re also shown. One a.t the outermost part is the ordinary Brillouin zone a.nd 
the inner part is the folded Brillouin zone for the a.ntiferroma.gnetic unit cell in LSCO. Here the 
kz a.x.is is taken along rGt. corresponding to the x-a.xis ( the Cu - 0 - Cu direction) in a. real 
space. 

FERMI SURFACE (X= 0. 1 0) 

Figure 23: (b) The Fermi surface for x = 0.1 calculated for the #1 band. Here two kinds 
of Brillouin zones are also shown. One a.t the outermost part is the ordinary Brillouin zone a.nd 
the inner part is the folded Brillouin zone for the a.ntiferroma.gnetic unit cell in LSCO. Here the 
k., a.xis is taken along rG1, corresponding to the x-a.xis ( the Cu - 0 - Cu direction) in a rea.! 
space. 



FERMI SURFACE (X=O. 12 5) 

Figure 23: (c) The Fermi surface for x = 0.125 calculated for the #1 band. Here two kinds 
of Brillouin zones are also shown . One at the outermost part is the ordinary Brillouin zone and 
the inner part is the folded Brillouin zone for the antiferromagnetic unit cell in LSCO. Here the 
k% axis is taken along rG1 , corresponding to the x-axis ( the Cu - 0 - Cu direction) in a real 
space. 

. , 

FERMI SURFACE (X=O. 1 5) 

Figure 23: (d) The Fermi surface for :>: = 0.15 calculated for the #1 band. Here two ltinds 
of Brillouin zones are also shown. One at the outermost part is the ordinary Brillouin zone and 
the inner part is the folded Brillouin zone for the antiferromagnetic unit cell in LSCO. Here the 
kx axis is taken along fGt, corresponding to the x-axis ( the C11 - 0 - Cu direction) in a real 
space. 



FERMI SURFACE (X=O. 20) 

Figure 23: (~) The Fermi surface for x = 0.2 calculated for the #.1 band . . Her~ two kinds 
of Brillouin zones are also shown. One at the outermost part is the ordinary Bnllown zone and 
the inner part is the folded Brillouin zone for the antiferromagnetic unit cell i~ LS?O. ~ere the 
k~ axis is taken along rG1 , corresponding to the x-axis (the Cu · 0 · Cu ditectwn) m a real 
space. 

antiferromagnetic local order has been proved experimentally. Further Marshall et a/.[110] 

have also observed a small Fermi surface structure for the underdoped Dy concentration of 

Bi2Sr,Ca1_, Dy,Cu2 0 8+6 with Tc = 65K , consistent with our prediction of a small Fermi 

surface. Here it should be remarked that the present Fermi surface structure is completely 

different from that obtained by simply folding a large Fermi surface due to the long range 

antiferromagnetic ordering, but that it is a reflection of the alternant appearance of the 
1 A1g and 3B1g multiplets as mentioned before. 

Although the present calculation is based on a periodic system with the 

antiferromagnetic order, in a real system the spin correlation length is finite so that 

the appearance of the small Fermi surface structure has a finite lifetime. As a result 

various phenomena based on the present small Fermi surface structure are expected to 

have lifetime effects. For example, the outer edge of each section in the Fermi surface 

structure shown in Fig. 23(a)-(e) is not sharp compared with its inner edge due to the 

above lifetime effect, so that it might be very difficult to see both edge of each section 

in the Fermi surface clearly in the angle-resolved photoemission experiments. This is 

one of the reasons why the angle-resolved photoemission experiments can not determine 

clearly whether the Fermi surfaces are large or small. When the spin-correlation length 

becomes smaller, the regions of antiferromagnetic ordering become comparable to the 

mean-free path of carriers from the over-doped to the well over-doped region. In this 

case dynamical effects might make the boundary of the Fermi surfaces vague and the 

folding effect due to the local AF order on the Fermi surfaces may disappear and thus the 

present narrow Fermi surfaces may change into a large Fermi surface. This may explain 

the " cross-over phenomena " observed in various normal state transport properties. In 

connection with the appearance of the small Fermi surface one might have a question 

on whether the Fermi surface should include the contribution from the localized spin or 

not in connection with Luttinger's theorem[lll] . The present small Fermi surface does 

not include the contribution from localized spins. However, this does not contradict the 

Luttinger theorem because the antiferromagnetic ordering exists locally in the present 

case. 
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Figure 24: AR.PES data of Aebi et al on Bi 2212, showing the Fermi surfaces. The wea.ker 
line and the stronger line observed in the measurement are distinguished by the thin solid line 
and the thick solid line respectively. The Fermi surface calculated for # 1 band is also shown 
schematically by dotted line for convention. 

FERMI SURFACE (X=O. 1 0) 

Figure 25: (a) The Fermi surfaces in the kx-kv plane for z = 0.1 with the folded Brillouin zone 
for the antiferromagnetic unit cell in LSCO, and schematical view of the nesting vectors Q..,, 
and the AF spanning vector Q AF . 
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Figure 25: (b) Incommensurability 6 in r.l.u. Circles are the calculated results. 

A possible explanation of the origin for incommensurate peak observed in the 

inelastic neutron scattering experiment[ll2,78] might also be given by the unique shape 

of the present Fermi surface. We have already pointed out a possibility of nesting between 

Fermi surfaces with different spins for the nesting wave vector of Q..,, which is deviated 

from commensurate wave vector ( -rr, 1r, 0) by (.S·rr, 0, 0) as seen in Fig. 25(a). Th.is nesting I Fig. 25 I 
may be related to the appearance of incommensurate peak in the spin excitation spectra 

of LSCO observed by neutron diffraction experiments[112,78]. The incommensurability 

8 observed in neutron diffraction experiments for LSCO is determined from the nesting 

wave vector Q.., for the calculated Fermi surfaces, and the results are plotted with open 

circles in Fig. 25(b ), for various Sr-concentration. It shows non-linearity consistent with 

the experimental results by Endoh et.a/.[76]. 

The 1/8 anomalies in La1.875B<I{).125 Cu04 may be explained on the basis of the present 

Fermi surface. In Fig. 26 the Fermi surfaces in the k:c-ky plane is shown together with 

the Fermi surfaces trans lated by 'nesting' wave vector 1r j2a. These figures clearly show 

that the Fermi surfaces may nest by the 'nesting' wave vector 1r /2a for the concentration 

region x = 0.125 ~ 0.15, despite of the shape of the Fermi surface for wh.ich nesting seems 

improbable. Because the density of states near the corner of the Fermi surface is large as 

is easily k""Ilown from the small dispersion near G1 along both the line G1 to t> and that 

G1 to r in Fig. 20, an effective 'nest ing' effect is expected to be large. The nesting of the 

Fermi surface with the 'nesting' wave vector 1r /2a creates an energy gap at the part of 

Fermi surface and causes an suppressing effect on the appearance of superconductivity. In 

Lal.875Ba0.125Cu04 , the 1/ 16 of total La atoms are substituted by Ba. As the substitution 

of Ba for La is accompanied with a displacement of apical oxygen, it creates a potential 

with the local periodicity 4a if the dopant Ba atoms are in local order. The potential 

with periodicity 4a hybridizes the two holes whose wave vectors are different from each 

other by the wave vector 1r f2a, and thus cooperate with the 'nesting' of Fermi surface for 

creating an energy gap at the Fermi surface. 
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FERMI SURFACE (X=O. 0 5) 

Figure 26: (a) The Fermi surfaces in the k:-ky plane for x = 0.05 with the folded Brillouin 
zone for the antiferromagnetic unit cell in LSCO. The Fermi surface drawn with thin solid line 
shows the Fermi surfaces transrated by 'nesting' wave vector 7f /2a. 

FERMI SURFACE (X=O. 075) 

Figure 26: (b) The Fermi surfaces in the k%-k~ plane for x = 0.075 with the folded Brillouin 
zone for the antiferromagnetic unit cell in LSCO. The Fermi surface drawn with thin solid line 
shows the Fermi surfaces transrated by 'nesting' wave vector r. j2a. 



FERMI SURFACE (X=O. 1 0) 

Figure 26: (c) The Fermi surfaces in the kr-ky plane for x = 0.1 with the folded Brillouin 
zone for the antiferromagnetic unit cell in LSCO. The Fermi surface drawn with thin solid line 
shows the Fermi surfaces tra.nsrated by 'nesting' wave vector 1r /2a. 

FERMI SURFACE (X=O. 12 5) 

Figure 26: (d) The Fermi surfaces in the k.,-kv plane for x = 0.125 with the folded Brillouin 
zone for the a.ntiferromagnetic unit cell in LSCO. The Fermi surface drawn with thin solid line 
shows the Fermi surfaces tra.nsrated by 'nesting' wave vector 11' /2a. 



FERMI SURFACE (X=O. 1 5) 

Figure 26: (e) The Fermi surfaces in the k.,-k, plane for x = 0.15 with the iolded Brillouin 
zone for the antiferromagnetic unit cell in LSCO. The Fermi surface drawn with thin solid line 
shows the Fermi surface transrated by 'nesting' wave vector 1r /2a. 

FERMI SURFACE (X=O. 20) 

Figure 26: (f) The Fermi surfaces in the k.,-k, plane for x = 0.2 with the folded Brillouin 
zone for the antiferromagnetic unit cell in LSCO. The Fermi surface drawn with thin solid line 
shows the Fermi surfaces transrated by 'nesting' wave vector 1r /2a. 



4-4. Conclusions 

In this chapter the effective one-electron-type band structure is derived, hy 

renormalizing the effects of the exchange integral between the spins of a dopant hole 

and localized spin, J( in Eq. (1.1), and the Hubbard U-like parameter in Eq. (1.1) into 

the carr·ier states. In doing so we obtain the effective one-electron type band structure 

in which the antibonding big orbitals which have a main character of Cu dzLy> atomic 

orbital are localized at Cu. site by the strong U effect and the spins of localized holes in big 

orbitals are coupled antiferromagnetically by the effect of the superexchange interaction 

between the localized spins, J in Eq. (1.1), and in the concentration below the onset of 

superconductivity the holes with up-spin are accommodated in b1g orbital constructed 

mainly from the oxygen p. orbitals in a Cu02 plane, consistent with the result of the 

cluster calculation by Kamimura and Eto[S], while in the superconducting concentration 

region the holes itinerate from a~g orbital at the A-site to b1 g orbital at the B-site. 

The calculated density of states has a sharp peak at EF corresponding to x ~ 0.3 

in La2_z SrzCu04, which is due to a modified type of a saddle point singularity at G1 

point. We have constructed the Fermi surfaces by connecting the points in the k-space 

at which the Fermi distribution function shows discontinuity based on the calculated 

conduction band shown in Fig. 20. This Fermi surface is completely different from that 

of an ordinary Fermi liquid, that calculated by the local density approximation (LDA) 

and that obtained by a simple folding in the presence of the antiferromagnetic order , as 

already pointed out by us[36 ,43], because all the bands except for the upper Hubbard b~g 

band are fully occupied by electrons in the undoped case. The Fermi surface structure are 

consistent with the experimental results of the angle-resolved photoemission (ARPES) 

for the superconducting Bi2Sr0 .97Pr0.03Cu06+S ( Bi 2201 ) compounds which includes 

a single Cu02 layer in a unit cell, like LSC0[107] , angle-resolved photoemission for 

Bi2Sr2CaCu20 +S ( Bi 2212 ) [102,104,105,108,109]. Thus our prediction of a v'2 x v'2 
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antiferroma.gnetic local order has a support experimentally. 

Possible explanations of the origin for incommensurate peak observed in the inelastic 

neutron scattering experiment and that for the anomalies m· La Ba CuO al 1.875 0.12s 4, are so 

explained successfully in connection with the characteristic feature of the Fermi surfaces 

calculated in this chapter. It should be noticed that though various physical quantities 

appear in the present theory the values of these quantities are all determined theoretically 

by cluster calculations and/or band calculations. 
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Chapter 5. 

Properties of Normal State in La2-xSrxCu04 

5-l. Introduction 

It has been often said that the normal state properties of La2-xSrxCu04 are 

anomalous. The normal state properties of La2- xSrxCuO. are not only of fundamental 

interest in themselves , but also important for understanding the nature of the 

superconductivity, because the feature of electronic structure is often concealed behind 

the co=on feature of superconductivity. 

Among a.ll, the resistivity shows T-linear dependence down to Tc [44,45,46,4 7,48,49, 

50], which has been explained qualitatively by Micnas et al.[11 3] and Ushio et al.[lO] in 

terms 0 ( a small two-dimensional hole Fermi surface and a phonon-limited resistivity. 

Their argument is also valid for the present electronic structure and Fermi smfaces . 

Since the resistivity is governed by the electron-phonon scattering with small momentum 

transfer reflecting the small Fermi surface, the linear temperature dependence of the 

resistivity appears in a wide temperature region. In Section 5-2 we calculate the phonon­

limited resistivity after the method in Ref. [10], based on the present effective-one-electron­

type-conduction band calculated in chapter 4. 

Hall coefficient decreases more rapidly than the 1/x behavior, changes its sign from 

positive to negative around x=0.3 and also shows anomalously large T-dependence[44, 
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45,46,51]. Schimizu and Kamimura [7] have calculated the Sr concentration dependence 

of the Hall coefficient in the normal state of La2_xSrxCu0 4 for zero temperature. Ushio, 

Schimizu and Kamimura [12] have extended the theory to finite temperatures and showed 

that the observed anomalous behavior in both x and T dependences of the Hall effect 

can be explained by the small Fermi surface. In Section 5-3 we apply their theory to the 

present effective one electron band. 

Electronic heat capacity in La2_xSrxCu04 is interested in its value in 

superconducting phase [52,53,114]. However we have considered that the electronic heat 

capacity should be zero in superconducting phase and are here interested in the electronic 

heat capacity in a. normal state. Recently Loram et a/.[60] have presented a detailed 

investigation of the normal state electronic specific heat in LSCO using a differential 

calorimeter. We compare it with the calculated electronic specific heat based on the 

present electronic structure in Section 5-4. The calculated results of electronic heat 

capacity agree with that of experimental results by Loram et a/.[60] in underdoped region. 

The thermoelectric power is also calculated for the conduction band. However the 

large absolute values of thermoelectric power is obtained because of the singular energy 

dependence of the density of states, the calculated results does not agree so well with the 

experimental result by Cooper et a/.[57]. ln this context one should take into account 

that the AF spin correlation length become shorter with increasing temperature and the 

crossing behavior is expected when the present conduction band 'vith small Fermi surfaces 

change into the ordinary LDA band structure with large Fermi surfaces. ln this chapter 

we calculate the normal state properties using the present effective one-electron type band 

structure. 

79 



5-2. Resistivity 

The temperature dependence of the resistivity in the normal state of La2-xSrxCuO. 

has been reported by Takagi et a/.(44]. It shows a linear temperature dependence above 

T
0

, which has been explained qualitatively by Micnas et a/.(113], and later by Ushio and 

Karnimura[lO], in terms of a small two-dimensional hole Fermi surface. In this section the 

phonon-limited resistivity is calculated from the variational expression for the resistivity 

of metals[ll5], by using the energy band expressed by Eq.(4.1). The expression for the 

resistivity is given by [116], 

(5.1) 

with 

[JJ dSk dSk' ] -
1 

A= (v k · u)(vk' · u )(vk · vd--
vk vk ' 

(5.2) 

Here 9k ,k' is the electron-phonon matrix element which we have assumed to be l9k,k 'J 2 = 

(Nf2Mwq) · (C · q)l in the present calculation with C being a constant whose dimension 

is energy, v k = 8Ek f8 k , fdSk denotes an integration over the Fermi surface, 1iwq is the 

phonon energy and u is the unit vector in the direction of the external electric field which 

is parallel to the x-ax:is. Since the phonon dispersion along the c-axis is small(117], it has 

been assumed to be two dimensionalandmaybeexpressed by 1iwq = v,·q1. = v,·.Jq; + q~, 

with the sound velocity v, = 5 x 105 cmfs [117]. The calculated results are shown in 

Fig. 27. Because the resistivity is governed by the electron-phonon scattering with small 

momentum transfer due to the small Fermi surface, a linear temperature dependence of 

the resistivity appears in a wide temperature region, consistent with the experimental 

data of resistivity in normal state of La2_xSrxCu0 4 by Takagi et a/.(44]. 

For the values of x above 0.2, the experimental data of resistivity deviates upward 
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Figure 27: T_he calculated temperature dependence of the resistivity for LSCO with various 
bole concentration. 



from the linear dependence in a low temperature region. The discrepancy may also be 

removed by taking into account the decrease of correlation length and the resultant large 

Fermi surface of LDA band in the well-over-doped region. The arguments in this section 

is also valid for a small Fermi surface obtained by a simple folding in the presence of the 

AF order. 
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5-3. Hall effect 

The Hall coefficient RH in the normal state of LSCO for finite temperatures can be 

calculated from the formula given in Schimizu and Karnimura's pape1· (Eq.(ll) in Ref. (7]), 

by substituting - !f- for the a-function [12,118]. Its expression is given in Ref. [12] as 
k 

follows: 

k dk{}Ek [{}EkozEk- 8Ek ozEk] (-of) 
RH = 4tr

3 
BZ okx okx ak; Oky Ok:Oky {}Ek (5.3) 

ec [ { dk (8Ek) z (-_fl_)]z ' 
laz okx 8Ek 

where Ek represents the energy dispersion of the effective one-electron type conduction 

band calculated in chapter 4. 

Let us calculate both the Sr concentration dependence and the temperature 

dependence of RH, using the effective-one-electron-type-band structure calculated in 

chapter 4. In doing so we note that the calculated Fermi surfaces change drastically 

at x - 0.3, that is, the four flat tubes of the Fermi surface calculated for x 5 0.3 in 

Fig. 23 merge into one " large electron-type Fermi surface " shown in Fig. 29 for x ~ 0.3. 

Even in the concentration region x 5 0.3 this electron-type Fermi surface contributes to I Fig. 291 

Hall effect at finite temperature and leads to the large T-dependence of RH and to the 

negative value of Hall coefficient RH shown for 0.25 5 x 5 0.3 at 80K in Fig. 28. The 

results thus calculated are given in Fig. 28, where the experimental data by Takagi et I Fig. 281 

al. [44] are also shown for comparison. It is seen from this figure that the calculated Sr 

concentration dependence of RH for T=80K and 300K agree with the experimental results 

by Takagi et al fairly well. 

The calculated Fermi surfaces are valid for the hole concentration from underdoped 

(x 5 0.15) to overdoped region (0.15 5 x 5 0.2), but not valid for well over-doped region 

(x ~ 0.2) , because the concept of the renormalized band structure shown in Fig. 20 may 
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Figure 28: The calculated concentration dependence of the Hall coefficient RH for T=BOK 
and T=300K , together with the experimental results by Takagi et al .(26] 

FERMI SURFACE (X=O. 3 5) 

Figure 29: The Fermi surface for x = 0.35 calculated for the #1 band. Here two kinds of 
Brillouin zones are also shown. One at the outermost part is the ordinary Brillouin zone and 
the inner part is the folded Brillouin zone for the antiferromagnetic unit cell in LSCO. Here the 
k. axis is taken along TG1, corresponding to the :t-axis ( the Cn · 0 . Cu direction) in a real 
space. 



not hold for the well-over-doped region, when the spin-correlation length becomes smaller 

than the band mean free path of carriers and the conduction band calculated in chapter 4 

change into the ordinary LDA band. Therefor the calculated results in Fig. 28 are valid 

only for x :<:; 0.2 and the Hall coefficient shows the crossing from the present calculated 

value in Fig. 28 to that of LDA band. 

The Hall coefficient at high temperature, T;<.600K, observed by Nishikawa et 

al., Takeda et a/. and Sera et a/.[119,120,121] is small and insensitive to the doping 

concentration. This suggests that a small Fermi surface changes into a large Fermi surface 

of ordinary LDA band by the temperature dependence of the local antiferromagnetic order. 

In other words the present conduction band in local AF order changes into the ordinary 

LDA band structure by the disappearance of local antiferromagnetic order due to localized 

spin at T;<.200K. 

The fact that the decrease of RH shows 1/ x behavior in the low hole concentration 

region, is also derived from a small Fermi surface obtained by a simple folding in the 

presence of AF order. On the other hand, the more rapid decrease of RH than 1/x 

behavior and the anomalously large T-dependence can not be explained by a simple 

folding of b1g band in the presence of AF order. 
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5-4. Electronic heat capacity 

As is well known, the electronic heat capacity is linearly proportional to T at 

sufficiently low temperature in normal state, and expressed as 1T . In superconducting 

phase the parameter 1 approaches to zero, because of the energy gap of superconductivity. 

In La2-xSrxCuO. , the electronic heat capacity attracted much interest because non zero 

electronic heat capacity is reported in superconducting phase at the early time. Recent 

experimental results, however, have reported a smaller value of electronic heat capacity 

in superconducting phase[53], so that the electronic heat capacity has been thought to 

be zero in the superconducting phase. We think the electronic heat capacity to be zero 

in the superconducting phase and our main interest in this section is the electronic heat 

capacity in the normal state. The parameter 1 at OK is given by the following expression, 

(5.4) 

where p(J.L) denotes the density of states at Fermi energy J.l · Now we calculate the electronic 

heat capacity by this equation based on the calculated renormalized energy band. 

The x dependence of the electronic specific heat is calculated based on the electronic 

structure derived in chapter 4 and compared with that observed by Lor am et a/.(60]. We I Fig. 30 I 
have calculated the normal state electronic specific heat at 50K by using the density of 

states which gets blunted by Fermi distribution function at 50K. In Fig. 30 we show the 

electronic specific heat thus calculated. In this figure the experimental results by Loram et 

a/. are also shown by crosses for comparison. We notice in this figure that the theoretical 

results coincide well with experimental results in the concentration region x :<:; 0.2, while 

the magnitude of the calculated electronic specific heat is larger than observed one around 

x = 0.25. Since the spin correlation length decreases sharply in the well-over-doped region 

above x ~ 0.2 and becomes smaller than the band mean free path of carriers, the concept 

of the effective one-electron type band structure shown in Fig. 20 may not hold for the 

well-over-doped region. 
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Figure 30: The electronic specific heat of LSCO as a function of hole concentration x. T~e 
solid lines are the calculated one of the #1 band in the renormalized band structure(23,25] while 
the crosses are the experimental data by Loram et al.[48] 

5-5. Thermoelectric power 

Thermoelectrical power shows, as is well known, anomalously large absolute values 

for the Sr concentration region x :::; 0.2 and the temperature dependence is rather flat 

in a wide temperature region[57,58,59]. It is also worth wh.ile to notice that the sign of 

thermoelectric power is stili positive at the Sr concentration region where the sign of the 

Hall coefficient is negative. The most simple expression for the thermoelectric power S is 

obtained by putting the total electric and thermal currents to bo zero and by using the 

Boltzmann equation as follows, 

S - aq 
(5.5) 

(5.6) 

We calculate the thermoelectric power by this expression, assuming the conduction band 

in chapter 4. The calculated concentration dependence of thermoelectric power S is shown 

in Fig. 31. The calculated thermoelectric power agrees fairly well with the experimental J Fig. 31 J 

data by Cooper et a/.[57]. It is worth while to notice that in the present calculation the 

large absolute values of thermoelectric power is obtained because of the singular energy 

dependence of the density of states and the resultant large T-dependence of chem.ical 

potential f.l· 

However the temperature dependence of thermoelectric power does not show 

quantitative agreement with experimental result by Cooper ei a/.[57]. The d.isagreement 

may be ascribed to the d.isappearance of the local AF spin correlation with increasing 

temperature and also to the crossing from the present conduction band to the ordinary 

LDA band structure with large Ferm.i surface, at the hole concentration, x ~ 0.2. 
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Figure 31: The calculated temperature dependence of thermoelectric power S(T). 

Chapter 6. 

Electron-Phonon Interaction of La2_xSrxCu04 

6-1. Introduction 

As regards the sy=etry of Cooper pairs, various experiments such as NMR, 

tunneling spectroscopy and others have been done, and most of the experiments support 

d-wave SJ=etry. Recent experiments of high accuracy photo-emission spectroscopy[l04] 

suggest that the superconductivity gap practically disappears in the planer direction which 

is in 45° from a- and b-axes. From this fact, the sy=etry of Cooper pair is restri cted to 

either extended s-wave or dx>- y>-SY=etry. In order to distinguish these two SJ=etries 

we need to know the phase of the gap rather than the magnitude of the gap. Such 

experiments was done by use of Josephson junction and it is now generally believed 

that Cooper pairs of hole-doped high Tc cuprates have dx> - y>-sy=etry from 1r-junction 

experiments[l22]. 

More attention has been paid recently to the electron-phonon interaction, since 

non-zero isotope effect was reported by Crawford[26,27] (i.e. a ~ 0.1 ~ 0.8, Tc ~ M-" , 

where M is the atomic mass of oxygen), suggesting the phonon mechanism of high 7~ 

superconductivity, and Kamimura et a/.[36,37,38,39 ,40] showed that even the electron­

phonon mechanism lead to the d-wave pairing, in case where the local AF order existed in 

cuprates . They have shown that the electron-phonon interactions which scat ter pairs of 
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electrons from one pair state (k T, -k !) t o a different state (k' T, -k' !) are repulsive for 

some combinations of (k, k' ) and attractive for other combinations, while that contains 

the processes of virtual emissions and absorptions of various modes of phonons by a single 

electron are always attractive. This leads to the d-wave symmetry of superconductivity. In 

the following sections we wi ll discuss electron-phonon interaction, calculate the spectral 

function, clarify the occurrence of the d-wave symmetry and calculate the transition 

temperature T, in LSCO, by using the electronic structure calculated in Chapter 4 

92 

6-2. The Spectral Functions, a 2 Fn(D, k, k') and 
a 2 FTl (D, k , k') 

All relevant properties of the electron-phonon systems, including superconductivity, 

are derived from the electron-phonon spectral function a 2 F , which is defined as follows, 

(6.1) 

(6.2) 

Here a
2Frr(!1, k, k') and a 2 Fu (!1, k, k') are the spectral functions which are related to 

the processes of virtual emission and absorption of various modes of phonons by the 

interaction with a single electron and the scattering processes of a pair of electrons from a 

pair state (k T, - k 1) to a different pair state (k' T, -k' l), respectively. Further p(EF) is 

the density of states at the Fermi energy. The electron-phonon interaction matrix element 

between the k and k' states with spin o- , V.'"(k , k'), is defined by 

Iii "' V,'"(k, k') t ( t ) '( k' ) ( 
e-p = L.. JNw"~ ak.ak'u bq., + b_q., u k- - q- K , 6.3) 

Kkk'q-,u q 

where bq., is an annihilation operator of phonon mode 1 with momentum q , wq the 

phonon frequency of the wave vector q in the AF Brillouin zone, N the total number of 

AF unit cells in a crystal, and 6(k- k'- q- K) takes the value 1 only when k- k'- q 

coincides with a reciprocal lattice vector of the AF unit cell, K , and 0 otherwise. The 

spectral function a 2F11 (!1, k, k') causes a mass enhancement of electron states near the 

Fermi surface and a finite lifetime of quasi-particle states. On the other hand, the spectral 

function a 2F 11(n, k , k') contributes to the formation of the Cooper-pair. These two kinds 

of spectral functions are different from each other in the present case due to the fact that 

the wave function for up-spin carriers differs from that for down-spin carriers, although 

they are the same in the ordinary case. Frequently this electron-phonon spectral function 
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is averaged over either one of k and k' or both of the k and k' values in the electron 

states ( k, k') on the Fermi surface, as is shown below, 

a2Fu(!1, k) = -
1

- l:a2 F11 (!1, k, k' )o(Ek'- EF), 
p(EF) k' 

a 2 Fu(!1) = ~)2 L a2Fu(!1,k,k')o(E~ -EF)6(Ek' -Ep). 
p(EF kk' 

(6.4) 

(6.5) 

In the present paper we pay attention to the spectral function defined on the Fermi surface 

and averaged over kz-axis. This spectral function is denoted by a2 F11(!1, ll, ll'), which is 

defined as follows, 

(6.6) 

Here p(EF) and E'k are the density of states of hole carriers at the Fermi energy and the 

energy of the renormalized band dispersion at a wave-vector k , respectively, both of which 

have been calculated in Chapter 4. Following the method of Motizuki et a/.[99,100,101], 

we will derive the expression of a spectral function for a tight binding model in the next 

section. 
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6-3 Electron-Phonon Interaction in a Tight Binding 
Model 

In this section we describe the formalisms of how to calculate the spectral functions 

based on the renormalized tight binding Hamiltonian given in Chapter 4. With the use 

of the electron-phonon coupling constant Vu~(k,k') defined in Eq (6.3), the momentum­

dependent spectral function for a singlet Cooper pair, a 2 Fu(.O., ll, 0'), is expressed as 

follows, 

_1_ L: L: V;'(k,k')Vj'(-k,-k') 
p(EF) kk'q ., 2Nwq 

xo(k- k'- q- K)6(E~- Ep)o(Ek'- EF)o(.O. -wk'-k) 

k k' 
xo(ll - tan-1 f )o(ll'- tan-1 t ). 

z z 
(6.7) 

In the present thesis we calculate the momentum-dependent spectral function by 

averaging with respect to phonon frequency w-q; in other words by replacing 8(!1-wk, -k) 

by the phonon density of states P(.O.). The obtained expression is given as, 

Here ( · . . ) ••. means the average over k. and k~ on the Fermi surfaces, where kvf kz = tan ll 

and k~ f k~ = tan ll'. 

Now we calculate the change of the energy bands when the ions are displaced by a 

small amount from their equilibrium positions R1~, 6R1~· In calculating the energy bands 

for a displaced structure we adopt the Frohlich approach that one uses the atomic wave 

functions which move rigidly with ions. Therefore the basis function in the displaced 

structure becomes cp.(r- R1~ -8R1~) and the Bloch function in the displaced structure 
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is constructed a.s follows, 

~~.k (" ) = ~ ~e;k.Jl."cp.(r -R1~- SR 1,.), (6.9) 

where R ,,. = R 1 + 7",. represents the position of the JL-th ion in the 1-th un.it cell, 7" ~ the 

position of the JL-th ion within the unit cell, N the total number of the uni t cells in a 

crystal, k a wave vector, and a specifies an atomic orbital. Then the matrix elements of 

the Hamiltonian is defined by 

(6.10) 

where H. represents the effective one-electron Hamiltonian derived in Chapter 4. This 

Hamiltonian matrix is expressed by inserting Eq.(6.9) into Eq.(6.10) a.s follows; 

(6.11) 

where 

(6.12) 

The matrix element H1,.,l'ub is a function of R which is the difference between the position 

vectors of the two ions. In the following we calculate the renormalized energy bands and 

expand them in terms of the atomic displacements SRI,. or their Fourier transformations 

uq,. defined by, 

SR" = -
1
- "' e;qR,"u" (6.13) 

I~ .,fji -7 q,.' 

where a indicates x, y and z. By expanding the energy bands up to the first order in 

SRf~ or uq"' the Hamiltonian matrix element H,aub(k , k' ) is expressed a.s 

H,., 6(kk' ) = H~"""(k)Skk' + L L:r:.(JLak , vbk' )u'q,.,Sk-q ,k' · 
q Ili a 

(6.14) 

Here HZaub(k ) is the Hamiltonian matrix element for an undistorted structure and 

r:,(JLak , vbk') is a quantity related to the derivative of a transfer interaction or an on-site 

energy with regard to a displacement. Definition of r:,(Jl.ak, vbk') is given as follows, 

~[S,. •• T:' au'b(k')- S,.u,T;.u'b(k)] for Jl-
1a =f v'b, 

r: (JL' ak v' bk' ) ~T;::u'b(k'- k) for Jl-
1
a = v'b, (6 .15) 
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where 

{6.16) 

(6. 17) 

(6.18) 

(6.19) 

Then the electron-phonon interaction in Eq. (6.8) is calculated on a tight binding model 

a.s follows; 

(6.20) 

(6.21) 

e~ = 1 for the case where 1 is 1st-mode and thus q = k - k' 

= -1 for the case where; is 2nd-mode and thus q = k- k'- K . 

(6.22) 

where [A(k')]u•on' is the (v'bn')-th element of the transformation matrix in the und.istorted 

structUTe, e.,,.o(q) the polarization vector of Jl.·th atom for a phonon mode 1 with a= 

x, y,z, and J( the reciprocal lattice vector of the AF unit cell. The detailed expressions 

of the electron-phonon matrix elements at Jl.·th atom between k and k' states are given 

in Appendix D. 

In advance of the calculation of the spectral function, we will explain in Appendix E 

why the electron-phonon interactions which scatter pairs of electrons from one pair state 

(k j, -k L) to a different pair state (k' j, -k' L) are repulsive for some combinations of 

(k , k' ) and attractive for others in the present model. 
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6-4. Calculated Results of the Spectral Function 

Following the method of Motizuki et al.[99,100,101], we have approximated the band 

structure numerically calculated in Chapter 4 in a tight binding analytical form, and 

calculated the spectral function a 2F11 (n, 0, 0'), by using the expressions of g~(k, k' ) and 

v -r ( k, k' ) based on the tight binding model which are given in Appendix D. In the present 

theory, as the origins of the electron-phonon interactions g~(k, k') we consider the change 

of both the transfer interactions and the on-site energies due to the displacement of atoms 

for each phonon mode[71,117]. The change of the on-site energies has not been taken into 

account in the treatment of Motizulci et al. In the present treatment, the derivatives 

of transfer integrals between Cu and 0 in Cu02 plane are taken into account through 

the derivatives of the Slater Koster parameter, t~(dpu) = dt1 (dpu)fdR = 2.6eVA-1 , 

calculated by DeWeert et al.[97]. As for the effect of the displacement of atoms upon 

the on-site energies in the tight binding band, we calculate the change of the energies of 

the 1 A19 and 3 B19 multiplets, dEA,,/dR and dEe,,/dR, by using the calculated results 

of energy difference with respect to the distance of Cu and apical 0 by Ka.nllmura and 

Eto[S]. From the result of Kamimura and Eta we find that E~,, = dE8 ,,/dR=2.8eV A -l 

and E~,, = dEA,,/dR=2.2 eV A->, where Ee,, and EA,, denote the on-site energy of 

3B1g and 1 A1g , respectively. 

As examples of the calculated results , we present the calculated results of the spectral I Fig. 3~ 

functions a 2Fn(!1,0 ,0') for an A19 phonon mode in Fig. 32(a), that for an E, phonon 

mode in Fig. 32(b) and the calculated results of a 2 F11 (l1, 1!, I!') for an A19 phonon mode in 

Fig. 32(c) for La2_%SrrCu04 . The momentum-dependent spectral functions for a singlet 
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(0,1!") 

(0, 1r) 

Figure 32: (a.l) The IJ and IJ' dependence of the momentum-dependent spectral function 
a 2 Fu(fl, 1!, IJ') calculated for an Atg phonon mode shown in the inset of the figure for fixed 
values of !1. In this figure a 2 FH(!1, IJ , IJ') is shown for 0 $ 1J::; "/2 and 0 $ IJ' $ "/2 



mode9 z 

k (0,7r) 

k' 
(-7r,O) 

Figure 32: (a.2) The 8 and IJ' dependence of the momentum-dependent spectral function 
a2Fu(l1,11,8') calculated for an A1g phonon mode shown in the inset of t~e figure for fixed 
values of !1. In this figure a2 Fu (!1, II , 8') is shown for 1r /2 :$ II :$ 1r and 0 :$ II $ 1r /2 

mode 9 

(Alg) 
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La 

k (0, 7r) 

Figure 32: ( a.3) The II and II' dependence of the momentum-dependent spectral function 
a2 Fu ( !1, 8, II') calculated for an A1g phonon mode shown in the inset of the figure for fixed 
values of !1. In this figure a 2Fu(l1,8,11') is shown for 1r :$11 $ 37r/2 and 0 :$ !J' :$ 1rj2 
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Figure 32: (a..4) The () and ()1 dependence of the momentum-dependent spectra.! function 
a 2 Fu(fl, II, 9') calculated for a.n A1g phonon mode shown in the inset of the ,figure for fixed 
values of 11. In this figure a 2 Fu (11, 8, 9') is shown for 3., /2 $ II $ 21r and 0 $ II $ ., /2 

mode 11 z 

( 0, 7r) 

Figure 32: (b.l) The II and 8' dependence of the momentum-dependent spectra.! function 
cr

2 FT!(n, 8, 8') calculated for a.n Eu phonon mode shown in the inset of the figure for fixed values 
of 11. In this figure a2Fu(11,8,8') is shown for 0$8::;; "Tr/2 a.nd 0::;; 8'::;; 1rj2 
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Figure 32: (b.2) The 8 and 8' dependence of the momentum-dependent spectral function 
a.2 Fn(fl, 8, 9') calculated for an Eu phonon mode shown in the inset of the figure for fixed values 
of fl. In this figure a.2 Ft!(fl, 8, 8' ) is shown for rr /2 :$ 8 :$ rr and 0 :$ 8' :$ tr /2 

, 
mode 11 z 

(0, 7r) 

Figure 32: (b.3) The 8 and 8' dependence of the momentum-dependent spectral function 
a.

2 
Fu(fl,8, 8') calculated for an Eu phonon mode shown in the inset of the figure for fixed values 

of fl. In this figure a.2Fu(fl, IJ,8') is shown for rr :$8:$ 3rr/2 and 0:$81 :$ rr/2 
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Figure 32: (b.4) The (J and IJ' dependence of the momentum-dependent spectral function 
a2 Fr 1 ( !1, (J , 0') calculated for an Eu phonon mode shown in the inset of th~ figure for fixed values 
of !1. In this figure n2FTJ(!1,1J , IJ') is shown for 31r/2 :5 () :5 21r and 0$ IJ :5 "lr/2 
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Figure 32:(cl) The() and()' dependence of the momentum-dependent spectral function 
a

2 
Fn(!1, O, 0') calculated for an E.. phonon mode shown in the inset of this figure, for 

fixed values of !1. The spectral function a 2 Fn(!1, 0, II') is shown for 0 ..S: II :::; 1r /2 a.nd 
0 :::; ()' :::; 7r /2 . 
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Figure 32:(c2) The (J and(}' dependence of the momentum-dependent spectral function 
a2 Fn(!1, 0, 0') calculated for an Eu phonon. mode shown in the inset of this figure, for 
fixed values of !1. The spectra.! function a2 Frr(!1 ,9,9') is shown for 7r/2 :$; 9 ~ 1r and 
0 ~ (}' ~ 7r/2 
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Figure 32:(c3) The (J and 0' dependence of the momentum-dependent spectral function 
a

2 
Fn(!1, 0, 0') calculated for. an Eu p~onon mode shown in the inset of this figure, for 

fixed values of !1. The spectral function a 2 Fn(!1, (}, 0') is shown for 1r < (J < 37r/2 and 
0 :::;: (}' :::;: 1r /2 - -
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Figure 32:(c4) The() and()' dependence of the momentum-dependent spectral function 
a 2 F11 (!l, IJ, IJ') calculated for an Eu phonon mode shown in the inset of this figure, for 
fixed values of !l. The spectral function a 2Fn(!l,9,9') is shown for 3tr/2 ~ () ~ 2tr and 
0 ~ ()' ~ tr/2 

Cooper pair, a
2 
Fa(!l, 9, 0'), shows a sharp k-dependence and a d~' -•' symmetry. The 

sharp peaks of the spectral function at G1 points i.e. (±:n"/a,O, O) and (O, ±tr/ a,O), are 

due to the appearance of the van Hove singularity in the density of states (DOS) at G
1 

points. The 11-dependence of the spectral functions may be more easily understood from 

Fig. 33 and Fig. 34, where the calculated results of the spectral functions a 2 Fll are shown I Fig. 33 1 

as a function of e for fixed values of n and 11' for an Atg phonon mode in which the apical I Fig. 34 1 

oxygens move vertically for a Cu02 plane (Fig. 33) and for an Eu phonon mode in wh.ich 

the oxygens move within a Cu02 plane (Fig. 34). 

Then, by summing up the contributions from all the phonon modes in Table 6 to 

the spectral function, we have calculated s-wave component of spectral function a 2 Fffl(n) 

and d-wave component a 2Fg)(!l) , wh.ich are defined as , 

1 00 

a
2
Fu(!l,IJ,O') = 

2
,. I:0:2F~~)(!l)cosn0 cos nO'. 

n=O 
(6.23) 

As will be explained in Section 6-5 and Appendix F, the d-wave component a2 Fif)(!l) I Table 61 

contributes to the appearance of d-wave superconductivity. As a result we find that , for 

phonon modes in wh.ich oxygen and copper ions vibrate with.in a Cu02 plane such as a 

breathing mode, the d-wave component in the spectral function is negative (repulsive) 

and the s-wave component is very small. Thus the in-plane modes do not contribute 

to the formation of Cooper pairs. On the other hand, for the phonon modes in which 

the apical oxygen ions move vertically for Cu02 plane, the d-wave component of the 

spectral function, a 2 F{fl(!l) , has a positive (attractive) sign. In Fig. 35 we show the 

calculated results of the total contribution for the d-wave components of the spectral 

function, a
2 Fnl(n), from all the phonon modes of LSCO. We can obtain the value of [Fig. 35 1 

electron-phonon coupling constant for d-wave pairing, Ad by integrating the positive part 

of the calculated d-wave component of the spectral function a2 F{Il(!l) over the phonon 

frequency n by the following expression. 

la
oo 1a2p(2\n) 

Ad = 2 2 Tl d!l. 
0 !l (6.24) 

The value of Ad thus calculated for x = 0.15 is 1.96. From this we find that LSCO is 

the superconductor of a strong coupling. We also show the calculated results of the total 
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Figure 33: The 8 dependence of the momentum-dependent spectral function a 2Fu(!2,8,8') 
calculated for an A1g phonon mode shown in the inset of the figure for fixed values of n and 8', 
in octahedral type cuprates. In this case 8' is taken a value near G1 point. 
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calculated for an Eu phonon mode shown in the inset of the figure for fixed values of fl and 8' 
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with x = 0.15, due to the contribution from all the phonon modes m LSCO. 

La' La" Cu 0(1) 1 0(1)2 0(2)' 0 {2)2 mode 
La (100) {100) (100) (100) (100) (100) (100) Eu 

(010 010) (010) (0102_ (010) J010 J010 Eu 
JODI 001) (OOlJ {001) _(001) (001 (001 A2u 
_(_100 1 002_ (100 (1 00 En 
{010 (0 1 0) (010 (0 1 0) E; 
{001 (00 1) (001) (00 1 A19 Cu {~00) (;!.00) {100) (100) (100) (~00) (i!OO) Eu 
(Ol!O) {0~0) (010) (010) (010) {0~0) {0~0) Eu 
{00~) (00~) (001) (001) {001) {00~) {00~) A2u 

0{1) s (100) _i100) Eu 
{010) (010) Eu 

0(1) b {200) (100) (100) Eu 
(020) (010) (010) Eu 
{002) (001) (001) A2u 

(001) {001) B,. 
0{2) s {001) (001) {001) {001) A2u 

_1001 (001) (001 (001 A19 0{2) b {100) (100) (100) (100) Eu 
JOlO 0102_ J010 JOlO Eu 
J100 {100) (100) {100) En 
{010) {010) {010) (010 Eg 

Table 6: Normal modes corresponding to A-line, (0,0)-+(1r,O), for LSCO. The mass ratio to 
satisfy the orthogonality relation are omitted in the table. See S. Mase etal., Phonon 
Dispersion Curves of High Tc Superconductors I. (Lal-zSrzh Cu 0 4, J. Phys. Soc. Jpn. 
57 (1988) 607. 



contribution to the spectral function which causes a mass enhancement of the electronic 

states, a 2 Ff~l(n), in Fig. 36 . 

In the present electron and spin structure characterized by the alternant appearance 

of the ais and the b1g orbitals and the different spatial distribution of Bloch wave functions 

for up-spin and down-spin dopant holes, VJY(k , k') is different from V(( k, k') and thus 

a 2Fu(f1,0,8') changes its sign as is shown in Appendix E. This situation makes the k 

dependence of a 2Frl(f1, 1J ,O') much sharper and stronger than in the case of an ordinary 

unit ceU, and this characteristic k dependence produces the large d-wave component of 

the spectral function. In the ordinary case, a d-wave component is always small because 

of the positive definite k dependence of a 2Fu(f1,B,B'). Thus the present electron and 

spin structure is a key factor in creating d-wave pairing in the phonon mechanism [40]. 

116 

00 

0 
0 

0.0 20 40 60 80 100 
Phonon Energy 0 (me V) 

Figure 36: The spectral function, which contributes to mass enhancement , a2Ff~l(n), 
calculated for LSOO with x = 0.15, due to the contribution from all the phonon modes 
in LSOO. 



6-5. The d-wave Superconductivity and the 
Transition Temperature of LSCO 

Recently Ushio and Kamimura[18] have extended a McMillan 's simplified version of 

the Eliashberg gap equation to the case of a complicated band structure, in which the 

density of states near the Fermi level is exceedingly large. Now we follow their treatment 

to calculate Te as a function of hole concentration x. In the usual McMillan equation 

which determines Te, the integral over the energy is taken from 0 to WD, but in the 

present case, in which the holes have coherence only within the spin correlated region, 

the lower limit of the integral becomes w, as was discussed by Matsuno et.a/.[36]. Here 

the cut-off parameter w, is defined by the relation w, = VF(J.., with VF being the Fermi 

velocity and J.., the characteristic length for the coherent motion of a hole which should be 

proportional to the AF correlation length determined by the neutron inelastic scattering 

experiments, AAF· The new cut-off parameter w, appeared in the present theory is clearly 

unfavorable to the occurrence of superconductivity, because it excludes the contribution 

from a certain energy region across the Fermi surface. In other words, because of the 

relation w, = VF/ J..., when A, becomes shorter, physical quantities which contributes 

superconductivity become smaller, and thus Te becomes lower. We take into account the 

effects of J.., by substituting dw' · w12 J(w'2 + w~) for dw' in the integration over energy. 

The linearized Eliashberg equation for d-wave superconductivity is derived in 

Appendix F. By using the Eq.(8.32) and Eq.(8.33) in Appendix F, we obtain the set 

of equations which determine the transition temperature of d-wave superconductivity, Te, 
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as follows[36,18 ,124], 

A' f"'D dw'~ fp(w'Z(O)) + p( -w'Z(O))] 1 ( w' ) 
lo wl2 + wt 2pF w' tanh 2ksTc ' (6.25) 

Z(O) 1 + Ao r= dw' w'2 [p(w'Z(O)) + p( -w'Z(O))] WD 

lo w12 +w; 2p, (w' +wv)l' (6.26) 

where 

A' = Ad- fl. 
Z(O) ' (6.27) 

with p(w) being the energy-dependent density of states, PF the density of states at Fermi 

level, and fl.• being the effective Coulomb repulsion term. As seen from Eq. (6.25) and 

Eq. (6 .26) (from Eq. (6.26), it is apparent that Z(O) > 1), the normalization factor 

Z(O) has a reduction effect of Tc, i.e. a 'bare' Cooper pair coupling constant Ad is 

reduced to A' in the Tc equation Eq. (6.25). In addition, we note that unlike ordinary 

Eliashberg equation, thew-dependence of the density of states p appears in Eq. (6.25) as 

P = p( w Z ( 0)). This term is important for the present case because it is favorable for the 

occurrence of superconductivity, since the large peak value of the DOS can contribute to 

the integral of Eq. (6.25) even if the Fermi level is somewhat distanced from the peak of 

the DOS. 

In the present section, we have applied the above set of equations (6.25)-(6.27) to 

the conduction band of LSCO calculated in Chapter 4. Although the value of Ad depends 

on x, it is nearly proportional to Pf'(x). So that, in the present calculation, we have used 

the approximation that Ad(x) =AdoPF(x)/PFo where Ado and PFo are the values of Ad(x) 

and PF(x) corresponding to optimal doping, i.e. x = 0.15. In doing so, we have used a 

calculated value for Ado, i.e. Ado = 1.96, following Section 6-4. For a value of the effective 

Coulomb repulsion constant fl·, we have adopted a value of fl.• = 0, because the holes 

with up-spin and down-spin occupy different orbitals at the same Cu06 cluster so that the 

Coulomb repulsion energy between those holes with different spins is expected to be small 

in itself and its d-wave component becomes smaller. We have used the value WD = 50meV 

considering that the various optical modes contribute to the d-wave paiTing. 

The cut-off parameter w, in Eq. (6.25) depends on the bole concentration x 
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through .X, and VF as seen from the relation w, = vF/ .X,. For a value of vF we have 

used the calculated value of the Fermi velocity averaged over the Fermi surface, i.e. 

vF(x) ~ 1.1 x 10-7cm/s for x = 0.15. As regards the x-dependent spin correlation length 

AAF, Mason et a/.[78] and Yamada et a/.[125] have recently reported independently by the 

neutron inelastic scattering eJ.."j)eriments in LSCO that, below Tc the spin correlation 

length increases with increase of hole concentration up to the optimal doping. In 

particular, Mason et a/. have reported an extraordinarily long correlation length, in excess 

of 50 A. In the overdoped regime, our theory predicts the decrease of the spin correlation 

length. Assuming the .X,(x) to be similar in shape to the spin correlation length .XAF(x) 

but different in the magnitude, we have calculated Tc as a function of hole concentration 

x. The magnitude of .X, was determined so as to reproduce the experimental Tc-X relation. 

The calculated To is shown as a function of x in Fig. 37(a) , with the experimental data 

by Takagi et a/.[44]. The calculated To in the whole concentration region agrees very well 

with that of experimental result by Takagi et al. 

According to Matsuno et a/.[124], Te suddenly decreases and Tc becomes zero as 

a ratio wofw, reaches the value r 0 which is given as 7'o = exp[1/ Ad] Thus in the Sr 

concentration region x ~ 0.05 where Ad is small, the calculated transition temperature 

T0 vanishes by the reduction effect of .X, . In the region 0.05 ~ x ~ 0.15, the transition 

temperature Te increases with increasing x, because both DOS and .X, increase. The 

transition temperature Tc takes a maximum value at x = 0.15. Then Tc decreases from 

its maximum with further increasing x. The decrease of T0 in the region x ~ 0.15 mainly 

comes from the fact that the coherence length .X, decreases in this region. According to 

the present calculation, Tc in the well-over-doped region (x ~ 0.25) is zero. 

The assumed coherence length )., represented by thin line in Fig. 37(a) is 

considerably larger than the reported AF correlation length AAF· In the present 

calculation, however·, the electron-phonon interaction due to the change of the distance 

between 0 -0 , La-Cu, La-O etc. are not taken into account, and so the value Ado = 1.96 

may be underestimated. Thus it is not surprising that we had to take much larger value 

for .X, compared to AAf. We have also calculated the transition temperature Tc with 
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the effective electron-phonon coupling constant Ado = 2.4 which is 20% larger than the 

calculated value. The result is shown in the Fig. 37(b) with the coherence length >.,(x) 

which is used in this calculation. In this case, A, is comparable to the AF correlation 

length observed by neutron inelastic scattering experiments, AAF· 

In the ordinary BCS theory the zero-temperature energy gap parameter 6.(0) and the 

transition temperature Tc are related by a relation of ~=3.5, while the experimentally 

reported ratio for cuprates vary from 5 to 9. Thus it is interesting to calculate the energy 

gap parameter 6.(0) based on the present electronic structure. The energy gap parameter 

6-(T) is calculated from the following gap equation, 

l _ A' fwo dw' ~ [p(w'Z(O)) + p( -w'Z(O))]l tanh(__§___) 
- lo w'2 +w~ 2pF E 2ksT ' 

where 

(6.28) 

(6.29) 

(6.30) 

The calculated results for the zero temperature energy gap parameter 6-(T = 0) = Cl.(O) 

gives the ratio of ~ = 4.1 for x = 0.15." 

• Note added in proof: In this section 8(0) is the energy gap parameter averaged with respect to 0. And 

we obtain the relation 2" mr:"(o) - ~8(0)- 6. 
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6-6. Conclusions 

In tills chapter we have calculated the electron-phonon interaction in La2_zSrzCu04 

and then the spectral function, by using the renormalized electronic energy band and 

their structure obtained in Chapter 4. First we have showed that the electron-phonon 

interadions wlllch scatter pairs of electrons from one pair state ( k i, -k l) to a 

different pair state (k' i, -k' l) are repuls ive for some combinations of (k, k') and 

attractive for other combinations. Then we have calculated numerically a 2 Fn (n, 0, 0') and 

a 2 .F11(n, 0, 0') which contribute to mass renorrnalization and gap formation, respectively. 

The calculated momentum-dependent spectral function for the singlet Cooper pairs, 

a 2 F11 (0,0,0'), exhibits a sharp k-dependence and ad-wave symmetry. The calculated 

d-wave component of the spectral function, a 2 Fn\n), is large and the calculated s­

wave component of the spectral function, a 2 F}~l(n) is almost zero. This leads to 

the occurrence of d-wave superconductivity in LSCO. In general the ordinary phonon­

mediated interaction always favors s-wave symmetry, then the fact that d-wave symmetry 

is favored in the present calculation is unique to our model where such pairing interaction 

originates from the different spatial distribution of Bloch wave functions for up-spin and 

down-spin dopant holes. From the calculated d-wave component of the spectral function, 

the electron-phonon coupling constant for d-wave pairing is estimated as 1.96 for optimal 

doped LSCO , suggesting that LSCO is a strong coupling superconductor. 

The transition temperature for superconductivity with d-wave symmetry is also 

calculated. The large electron-phonon coupling constant and the property of d-wave 

coupling that the Coulomb repulsion effect is almost negligib le enable us to obtain 
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very lllgh superconducting transition temperatW"e. However, in the present model, the 

existence of the condition that a Cooper pair must be formed within the range of spin 

correlated region reduces T,. Thus T, is determined mainly by three key factors; the 

electron-phonon coupling constant Ad, the density of states at Fermi energy p(EF) and 

the coherence length .A, wlllch is the scale for antiferromagnetic domain. 
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Chapter 7. 

Summary 

We have constructed the effective one-electron-type band structure by renormalizing 

the effects of the exchange interaction between the spin of a carrier hole and a localized 

spin and the Hubbard U interaction for localized holes into the electronic state of the 

carriers. Important calculated results are listed below. (1) In undoped La2Cu04 , all 

the calculated bands are occupied by electrons and thus La2Cu04 becomes an insulator. 

(2) The top of the highest band is at fl.-point and the calculated Fermi surface is small 

with finite lifetime, and this is consistent with AF super-structure for Bi2Sr2CaCu20s+6 

(Bi 2212) determined by angle-resolved photoemission[l04,105,102,108,109], (3)The wave 

function of the conduction band consists of the b19 orbital at the low hole concentration 

region. While, in the superconducting region, holes itinerate from the a.i
9 

orbital at A-site 

and the b19 orbital at B-site, consistent with the polarization-dependent X-ray absorption 

measurements {or 0 K-edge and Cu L-edge in LSCO by Chen et a/ .. 

We have also e:>:plained various anomalous features of normal state properties of 

LSCO by using the effective one-electron-type energy band. The density of states 

calculated from conduction band in Chapter 4 is consistent with the observed x­

dependence of the electronic specific heat. The prediction of the small Fermi surface 

is also consistent with the linear temperature dependence of the resistivity down to Tc , 

the x-dependence of Hall coefficient which decreases more rapidly than the 1/x behavior 

and changes its sign around x = 0.3, and the large T dependence of RH. The shape of the 
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Fermi surface is discussed with respect to the possible occurrence of the inco=ensurate 

peak of the neutron scattering and the instability at x = 0.125. 

Assuming a realistic electron-phonon coupling term, we have calculated the spectral 

functions and showed the occurrence of d-wave superconductivity due to the present 

electronic structure that the wave function for up-spin dopant holes differs from that for 

down-spin and the ajg and the b1g orbitals appear alternately. We have also calculated the 

transi tion temperature of d-wave superconductivity. The key factors of the high transition 

temperature are the large electron-phonon coupling constant, laJ·ge density of states near 

the Fermi energy, the large coherence length >., of the optimal doped LSCO, and the 

negligibly small Coulomb repulsion effect due to both the property of d-wave pairing 

and the different spatial distribution of Bloch wave functions for up-spin and down-spin 

dopant holes at the same Cu06 cluster. 

Finally we would like to make a remark for the experiment which would confirm the 

validity of the present theory, especially the characteristic features of the wave functions 

mentioned before. We would expect that the atomic site STM ex-periments with extremely 

strong magnetic field might detect the difference of the wave functions of up-spin and 

down-spin dopant holes. lf the strong magnetic field is applied parallel to z-axis, the 

number of the up-spin dopant holes increases and that of down-spin decreases. The 

difference between the number of up-spin dopant holes and that of down-spin is nearly 

1% with the applied magnetic field H ~ lOT. Then the the number of the ajg holes is 

increases at A-site and decreases at B-site, while that of the b11 holes increases at B­

site and decreases at A-site. Assuming that the tunneling probability of a.i. orbitals is 

different from that of b1g orbitals, the difference between A-site and B-site is expected to 

be observed by the atomic site STM experiments. 
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Appendix A. The Matrix Elements of 17 x 17 
Hamiltonian Matrix 

The matrix elements of the Hamiltonian matrix shown in Table 2, are expressed with 17 

SK parameters as 

E1 = E; 

E2= E; 
E3 = Edz~ + 2 t(dd-rr)(cos k,.a +cos kya) 

E4 = E<~.zy + 2 t(dd-rr) cos kya + 2 t(ddli) cos k,.a 

Es= E<~.zy + 2 t( dd7r) cos k,.a + 2 t( ddli) cos kya 

Es= 
3 1 

Edx'-~' + [ 2 t(ddu) + 2 t(ddli) J (cos k,.a +cos k,a) 

1 3 
E<~.z' -•' + [ 2 t(ddu) + z t(ddli) J (cosk,.a + coskya) 

k,.a k a 
T1 = 2 [ t,(ppu) + t1 (pp7r) J cos 2 cosT 

12 = -2 [ t,(ppu)- t 1 (pp7r) J sin k;a sin k;a 

k,.a k a 
4 t,(pp7r) cos 2 cos+ 

2 [ /~ tz(ppu) + (1 -l~) tz(pp7r) J cos k;a e' 0.364k,cf2 

Ts = i 2/tn, [ tz(ppu)- tz(pp7r) J sin k,.a e' o.364k,cf2 
2 

T~ 

2 t2(PP'/r) cos k,.a e' 0.3e4k,c/2 
2 

2 [ n~ tz(ppu) + (1- ni) t2(PP'/r)] cos k;a ei 0.364k,c/2 

ka 
2 [I~ t2(ppu) + (l -In t2(PP7r) l cos -t"-e' o.364k,c/2 

T~ = i 2Z1n1 ( t 2(ppu) _ t2(pp7r) J sin kya e' o.J64k,c/2 
2 

T.' 6 
ka 2 t2(PP7r) cos -Lei 0.364k,c/2 
2 

128 

T; 

Ts 

Tg 

TIO 

Tn 

T,2 

T,3 

T,. 

T1s 

T{J 

r;. 
T{s 

Tta 

T11 

T1s 

where 

2 [ ni t2(ppu) + (l- nD t2(pp7r) J cos k;a ei 0.364k.cf2 

4 ( /~ t3(ppu) + (1 -I~) t3(pp7r) J cos k,.a cos kya ei 0.272k,c/2 
2 2 

4 ( n~ tJ(ppu) + (l- n~) t3(pp7r) J cos k,a cos kya e' 0.272k,c/2 
2 2 

-41~ [ t3(ppu) - t3(pp7r) J sin k,.a sin kya e' 0.272k,c/2 
2 2 

i 412n2 [ t3(ppu) - t3 (pp7r) ] sin k,.a cos kya e' o.272k.c/2 
2 2 

i 412n2 [ t3(ppu)- t3(pp7r) J cos kxa sin kya e' 0.272k, c/2 
2 2 

i .J3 t1 (pdu) sin kxa 
2 

. ( d ) . kxa = -l t1 p u srn -
2 

= i 2 t1(pd7r) sin k,.a 
2 

= - i V3 t 1 (pdu) sin kya 
2 

= -i t1(pdu) sin kya 
2 

= i 2 t 1 (pd7r) sin k"a 
2 

t2(pd7r)ei 0.364k,c/2 

t 2(pdu)e' 0.364k,cf2 

v'3 2 [ -t( ddu) + t( ddli) ] (cos k,.a - cos kya) 

11 = 0.5a 

j(0.5a)2 + (0.364c/2)2 

0.364c/2 

n, = j(0.5a) 2 + (0.364c/2)2 

12 = 0.5a 

j2(0.5a)2 + (0.272c/2)2 

n2 = -r==~o~.2~72~c~/2~=== 
j2(0.5a)2 + (0.272c/2)2 
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Appendix B. The Matrix Elements of 34 x 34 
Hamiltonian Matrix 

The matrix elements in Table 3 are expressed with SK parameters; as follows. For on-site 

elements of H~A(k) and H~8 (k), 

Et= E1 
p 

E2 = E2 
p 

Ea= Etku 

E4= Etku 

Es = Etku 

Ea = Ed~'-y' 

E7= Edx'l-yliJ 

for the diagonal elements of H~8 (k) and .iJ~A(k) , 

E1 =0 

E2 = 0 

E 3 = +2 t(dd7r)(cos kxa +cos kya) 

E4 = +2 t(dd7r) cos kya + 2 t(dd6) cos kxa 

Es = +2 t( dd1!") cos k~a + 2 t( dd6) cos kua 

3 1 
Ea = + [ 2 t(dd<7) +2 t(dd6)] (coskxa+coskya) 

l 3 
E7 = + ( 2 t(dd<7) + 2 t(dd6)] (cos kxa +cos kya) , 

for the off-diagonal elements of H~A(k) and H~8(k) 

130 

(8.3) 

(8.4) 

l [ ( ( ) ·~ ·~ ·~ ·~ 2 t1 pp<7) + t1 pp11" ] ( e' 2 e-• ' + e-• , e' 2 ) 

'7' l [ ( ) ( ·~ ·~ ·~ ·~ 
-'2 = - 2 t1 pp<7 - t 1 pp11") ] (e' ' e-• ' + e-• ' e' 2 ) 

( ) ~~ ·~ ·~ ·~ 
t1 pp11" ( e' ' e-• ' + e-• 2 e' 2 ) 

[ 1; t 2 (pp<7) + (1 -I;) t2(pp11") ] e-i~ e' o.as<k,c/2 

-/1n1 [ t 2(pp<7)- t2 (pp11") ] e-•~ e' 0.364k,c/2 

T7 [ n; t2(pp<7) + (1- n;) t2(pp11") ] e-i~ e' 0.364k,c/2 

T~ [ 1; t2(pp<7) + (1 -ID t2(pp11") ] e-•¥ e' o.364k,cf2 

T~ -11n1 [ t2(pp<7) _ t2 (pp11")] e-i¥e; 0.364k,cf2 

T; [ n; t2 (pp<7) + (1 _ n~) t2 (pp11")] e-i¥ ei 0.364k,cf2 

Ts [I~ ta(PP<Y) + (1- I~) ta(pp11") ] (e'¥ e-i¥ + e-•~ e;¥)e' o.272k,c/2 

[ n~ t3 (pp<7) + (1 _ n~) ta(pp11") J (e'~ e-•¥ + e-•¥ e•¥ )e' o.272k,c/2 

-/~ [ t3 (pp<7)- ta(pp11")] (e•¥e-•¥ + e-•~e•¥-)e' 0.272k,c/2 

/2n2 [ ta(pp<7)- t3(pp11")] ( -e•~ e-•¥ + e-•¥ e•¥-)e' 0.272k,c/2 

v'3 -i~ - 2 t1 (pd<Y)e 2 

1 ib.!! 

2t 1(pd<7)e- 2 · 

- t 1 (pd11")e-•~ 
v'3 ·~ 2 tt(pd<Y)e-• ' 

1 ·~ 2t1 (pd<7)e-• ' 

·~ - t 1 (pd11")e-• 2 
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and for the off-diagonal elements of H?w(k) and ii~A(k) 

1 ·~ ·~ ·!e ·~ T1 = - [ t1(ppcr) + t1(pp7r)] (e' 2 e' 2 + e-• • e-• • ) 
2 

1 ·~ ·~ ·~ .. ~ T2 =- [ t1(ppcr)- t1 (pp7r)] (e' • e' • + e-• • e-• • ) 
2 

k a ·~ ·~ ·~ ·~ T3 t1(pp7r) cos-x-(e' 2 e' 2 + e-• 2 e-• 2 ) 

2 

T, [ /~ t2(ppcr) + (1- /~) t2(PP7r)] el~ ei 0.364k,c/2 

Ts = II n, [ tz(ppcr) - t2 (pp7r) ] ei ~ el 0.364k,c/2 

Ts = t2(pp7r)ei~ el 0.364k,c/2 

Tr = [ ni t2(ppcr) + (1- ni) t2(pp7r)] el~ el o.364k,c/2 

T~ [ li t2(ppcr) + (1 - li) t2 (PP11") ] e;¥ el 0.364k,cf2 

T~ 

T~ = t2(pp7r)el¥ el 0.364k,c/2 

T'-1 - [ ni t2(ppcr) + (1- ni) t2(pp7r)] e;¥ el o.364k,cf2 

[I~ ta(ppcr) +(1-m ta(pp7r) ] (e;~ e;¥ + e-i~ e-1¥-k o.as4k,c/2 

[ 2 ( ) (1 2) t ( ) ] ( 1...._. ;¥ + -1~ e-1¥-)e' 0.272k,c/2 n2 t3 ppcr + - n2 3 pp7r e 2 e e 

12 [ ( ) t ( ) ] ( 1...._. i~ + -i~ -1¥-)ei 0.212k,c/2 T10 = 2 t3 ppcr - 3 pp7r e 2 e 2 e e 

Tn = /2n2 [ ta(ppcr) -ts(pp7r)] (e1¥e1¥- e- 1¥e- 1¥)e1 o.mk,c/2 

~~ ~~ -i~ -i~) i 0.272k~c/2 T12 = lzn2 [ t3(ppcr)- ta(pp7r)] (e 2 e 2 - e 2 e 2 e 

v'3 .~ 
T13 2 t1(pdcr)e 2 

1 ·~ T14 = - 2t 1 (pdcr )e' 2 

T15 = t 1(pd7r)e1¥ 
v'3 ·~ r;J =- 2 tl(pdcr)e' 2 

1 . ·~ r;. =- 2t1(pdcr)e' 2 

·~ r;. = tl(pd7r)e' 2 
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J3 2 [ -t(ddcr)+t(ddo)] (cosk,.a-cosk.a), (8.6) 

where 

11 = 0.5a 

jco.5a)2 + (0.364c/2)2 

0.364c/2 

n
1 

= jco.5a)2 + (0.364c/2) 2 

1 _ 0.5a 
2

- j2(0.5a)2 + (0.272c/2) 2 

0.272c/2 

n
2 

= j2(0.5a)2 + (0.272c/2) 2 • 
(8.7) 
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Appendix C. The k Dependence of the Effective 
Interaction Part of the Hamiltonian 

By using the approximation that the effective interaction term ifin, have matrix 

elements only between nearest neighbor atomic orbitals, we can represent the k 

dependence of the effective interaction part of the hamiltonian matrix, if int(k ), as follows, 

for the matrix elements between A-site and A-site, or between B-site and B-site, 

for 0 (1)
1
-0(1)

1 H~~'(k) = S.b + A.b 

for 0 (1/-0 (1)2 H~~'(k ) = SabCOSkz~k" + Aabsinkz~ky 

for 0 (1/ -0(2)1 H~'b'( k ) = (Sab + Aab)e-ik,af2ei o.364k,c/2 

for 0(1)'-0(2)2 H~'b'( k) = (Sab + A.b)e- ik.af2e-i 0.364k,c/2 

for 0 (1)1 - Cu H~'b'(k) = (S.b + A.b)e- ik,a/2 

for 0 (1)2 - 0 (1)2 H~~'(k) = S.d Aab 

for 0 (1)2-0 (2)1 H~'b'(k) = (Sab + Aab)e- ik, af2ei 0.364k,c/2 

for 0 (1)2 -0(2)2 H~'b'( k ) = (Sab + A.b)e-ik,af2e- i 0.364k,c/2 

for 0 (1) 2-Cu H~i,'(k ) = (Sab + Aab)e-ik,a/2 

for 0 (2) 1- 0 (2) 1 H~'b'( k ) = S.b + A.b 

l )2 · () kr-ky · kz-ky) ' 02"2k /2 for 0 (2) -0(2 H~'b' k = (Sab cos -
2
- + Aab sm -

2
-. - e' · ' .c 

H~i,'( k ) = (S.b + A.b)e- • o.384k,cf2 

for 0 (2)2 -0(2)2 H~i,'(k ) = S.b + A.b 

for 0 (2)2-Cu H~~'(k ) = (Sab + A.b)e' o.364k,c/2 

for Cu-Cu H!'b'(k ) = Sab + Aab 
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(8.8) 

and for the matrix elements between A-site and B-site, or between B-site and A-site, 

for 0(1)' -0(1)1 
H~i,'(k ) = S.b + Aab 

for 0 (1) 1 - 0 (1)2 
H~'b'( k) = S kr + ky . k, + ky 

ab cos -- + Aab sm--
2 2 

for 0 (1) 1-0(2)1 
H~i,' ( k) = (Sab + A.b)eikza/2ei 0.364k,cf2 

for 0 (1 )1-0(2)2 
H!'i'( k ) = (Sob+ Aab)eik,af2e-i 0.364k,cf2 

for 0 (1)1 - Cu H!'b'(k ) = (Sab + Aab)eik,a/2 

for 0 (1?-0 (1)2 
H~'b' (k ) = Sab + A.b 

for 0 (1)2 -0(2)1 
H~'b'( k) = (Sab + Aab)eik,af2ei 0.384k,c/2 

for 0(1 )2 -0(2)2 
H~'b'( k) = (Sab + Aab)eik,af2e-i 0.364k,c/2 

for 0 (1)2 -Cu H~i,'( k) = (Sab + Aab)eik,o/2 

for 0 (2) 1 - 0 (2)1 
H~'b'(k) = S.b + Aab 

for 0 (2)1- 0 (2) 2 
H~'b'(k) = ( S b cos k, + kv + A sin k, + kv )e' o.mk.c/2 

a 2 ab 
2 

for 0 (2)1 - Cu H!'b'(k) = s.b + A.b 

for 0 (2)2 -0(2? H~'b' ( k) = S.b + Aab 

for 0 (2)2-Cu H~i,' (k) = s .b + A.b 

for Cu-Cu H!'b' (k) = S.b(cos k,a +cos kva) + A.b(sin k,a +sin kva) 

+S~b(cos kza- cos k. a) + A~b(sin k, a- sin k. a) 

(8.9) 

where a and b denote 2p,, 2p, and 2p, atomic orbitals for each of eight oxygen atoms 

and 3dy., 3d,. , 3d,., 3d,'-v' and 3d,, atomic orbitals for each of two Cu atoms in the 

antiferromagnetic unit cell. 
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Appendix D. The Explicit Forms of the Electron­
Phonon Interaction 

ln this appendix the explicit forms of the electron-phonon interaction g:(kk') are 

given for J.l = Cu, 0(1)1
, O(l)z, 0 (2)1 and 0(2)z which are the copper atom, the oxygen 

atoms in Cu02 plane and the apical oxygen atoms, respectively. 

g"0 u(kk') = -~ [ A;(k),aA(k')IT1~1a( k')" +A "(k),A,(k'),aT~1a(k) 
+A;(k )17A(k'),T{,u(k')" +A •(k)1A,(k')11T1~17 ( k ) ], 

g"0 (1J'(kk') = + ~ [ A;(khA(k'haT1\ 6 (k') +A "(k)laA,(k'hT~,a(k)" 
+A,"( k hA(k')17Tf.17(k') +A "(k).rA,(k'),T1~dkt ], 

g"cu(kk') = - ~ [ A,"( k ),aA(k')sTl,1a(k')* +A "(k)sA,(k')isTl,la(k) 

+A;(k h 7A(k')sTJ',17(k' )" +A "( k )sA,(k' )l1TJ',1r( k )], 

g"o<q'(kk') = + ~ [ A;(k )sA(k' ),6Tf.16 (k' ) +A "(k)IaA.,(k').T.",ls(k )" 

+A;(k )sA(k' )11TJ', 17(k' ) +A "( k )17A,(k')sTJ',17(k )"], 

g•0 u(kk') = -~ [ A,"(k)HA(k' )sT:,17(k' )* +A "(k)sA,(k')IrT9,17(k) 

+A,"(k)I7A(k')nT{2,17(k')" +A "( k )12A,(k')17T{z,11(k )], 

g'oczJ'(kk') = + ~ [ A.'(k )sA( k'),.T9.dk' ) +A "(k)11A,(k')gT9,11(k )" 

+A,"(k)nA(k')I1T;,~7(k'- k) + A;(khaA(k')Ia19,~ 6(k' - k )J, 

g'o(zJ'(kk' ) = + ~ [ A;(k)1zA(k') 11T{2,17(k') +A "( k )11A,(k' ),zT{2,dk )" 

+A;(k )11A(k')nT{{,11(k'- k ) + A;(khaA(k'),a1?'{,16(k'- k)J , 

(8. 10) 

where A(k); is the i-th element of the transformation matrix and A,(k ); is defined as, 

A,(k); -A(k ); when 1 is 2nd-mode and i is B-site 

A( k ); otherwise. 

(8.11) 

The matrnc elements of the transfer interactions in Eq.(8.10), between an A-site and 

another A-site or between a B-site and another B-site, T;: .•• ,b(k ), are e>:pressed as follows, 

T"s,Is( k) = T"o(I)'y Cux'-v'(k ) = 

T"s,Ir(k) = T"o(I)'y Cuz'(k) 

T'g,a( k ) = T'o(2)1z Cuz>( k ) 

T{z,dk ) = 1"o(z)'• c...,,(k ) 

T;~a(k) = T*o(2Jl• Cur'-u'( k ) 

r;~1(k) = T*oc2J'• cw•( k) 

.;; t~(pdu)e-;-"t" = -T{6,1(k)*, 

1 ·~ - 2 t;(pdu)e-•' = -Tt'1,1(k )", 

J3 I (pd ) _;!!.<: T" (k)' -2 tl 0' e ' = - 1s,s , 

1 J ·~ - 2t1(pdu )e-· ' = -Tt1 ,5 (k)" , 

t~(pdu)e-i k,0.364cf2 = -T{7,9 "(k) , 

t~(pdu )e1 
k.o.364012 = -T,'1,1z.( k ), 

E~,,e-; k,0.364c/2 = Tt{.ia(k ), 

E' e -i k,0.364cf2T:','" (k) s1, 12,11 

(8.12) 

where f;(pdu) is the derivative of transfer integral between a Cu d orbital and a 

neighbouring 0 p orbital. Th.e transfer integral t;(pdu) have been defined in section 3-2. 

For the matrix elements between A-site and B-site, those are expressed as 

T\Ia(k) = T"o(I)'x eur' - Y'(k) = 

T~,17(k) = TO(l)'.: Cuz2(k) 

T"s,Is(k) = T"o(l)'u Oux'-y'(k ) = 

T\n(k) = T"o(IJ'u c...,,(k) 

J3 ·~ ( ) 
2 t;(pdu) e' ' = -Tf6,1 k •, 

1 ·~ -2 t;(pdu)e' 2 = -Tf7,1(k)*, 

v'3 I i~ • -2 t1(pdu)e ' = -'l;t'6 ,5 (k) , 

1 ·'!>.! - 2 t~(pdu)e' 2 = -Tf1 ,5(k)', 

T'9,)7(k) = T0(2)'x Cuz'(k) = 0 

T{2,17( k) = T'o(z)', C"'' ( k) = 0 

= -T{1,9 "(k), 

= -T{r,12.(k). 

(8.13) 



Appendix E. 

Repulsive Electron-Phonon Interaction between Up­
and Down-Spin Carriers with Different Wave 
Function 

As we mentioned before in Chapter 4, the wave function for up-spin carriers is 

different from that for down-spin carriers, which makes the electron-phonon coupling 

constant for up-spin carriers different from that for down-spin carriers. Now we will 

explain why V((k , k') is different from vt(k, k' ). Any phonon mode in the ordinary 

Brillouin zone becomes to have two branches, as a result of folding it into the AF Brillouin 

zone. One branch corresponds to "acoustic type mode" in which the motion of the two 

neighbouring Cu06 octahedra with localized up- and down-spins is the same except for 

the phase factor exp(iq. a ), while the other to "optic type mode" in which the motion of 

the two neighbouring Cu06 octahedra is opposite except for the phase factor exp(iq ·a) . 

If we denote the positions of two atoms in the 1-th AF unit cell whose distance is separated 

by a , the translation vector from one Cu atom to a neighbouring Cu atom, by R,,., and 

R1~2 , then R 1" 2 = R 1,u +a. The displacement of the atom at R1~2 , liR1~2 , is related to 

that at R,,,1 , 8R,,. 1 , as 

(8.14) 

where the sign + and - correspond to "acoustic type phonon mode" and "optic type 

phonon mode" respectively. Here it should be noted that a is non-primitive translation 

vector in the AF unit cell though it is primitive translation vector in the ordinary unit 
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cell. While, by using Bloch theorem, the wave functions for up- and down-spin carriers 

are written as 

wkr(r) =exp(ikr)uk,(r) 

Wk/r) = exp(ikr)uk
1
(r) 

(8.15) 

(8.16) 

where uk1(r) and uk1(r) have the periodicity of the lattice of the AF unit cell. In the 

present model, the effective Hamiltonian for up- and down-spin carriers, H.rrr ( r) and 

Helfl(r) , satisfy the relation Hei!J(r + a)= Hetrr(r), then 

(8.17) 

This leads to the relation 

(8.18) 

From Eq. (6.3 ) (8.14) and (8.18) it is clear that Vf(k, k') and Vl(k, k') satisfy the 

following relation; 

\l((k, k') = ± exp(iK · a)V! (k, k') , (8.19) 

where K = k- k'- q and a = (a, 0, 0). The vector K takes a value of mQ
1 
+ nQ

2 
= 

(1r fa, 1rja, O)m + ( -1rja, 1rja, O)n, with m and n being integers. And exp(iK ·a) takes a 

value of +1 or -1, depending on whether a scattering process is normal or umklapp. 

For the electron-phonon interaction matrix element in the case of an ordinary unit 

cell without the AF order, V\k, k'), we have 

(8.20) 

and in this case the spectral function a.2 Fu(!1, 0, 0') is always positive, i.e. attractive, for 

any combination of k and k'. In the case of the AF unit cell which we are considering in 

this paper, however, we have 

VJ(k, k' )V!(-k, -k') = ±exp(iK · a ) jV((k , k')j2 
(8.21) 

and a.2FTJ.(!1 , 1i ,O') changes its sign according to the sign of ±exp(iK · a). 
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Appendix F. 

D-wave Component of a Spectral Function and D­
wave Superconductivity 

In order to study the possibility of the occurrence of d-wave superconductivity, we 

have to solve the k-dependent Eliashberg equation. Let a set of functions, FJ(k)'s, be 

complete and orthonormal when integrated on the Fermi surfaces. It is clear that FJ(k)'s 

reflect the sy=etry of the band structure. In terms of this set of functions we can write 

6(w , k ) L6J(w)FJ(k) (8.22) 
J 

Z(w,k) L ZJ(w)FJ(k) (8.23) 
J 

a.2 F 11 ( n, k, k') L a.2 F11JJ1(!1)FJ(k)FJI(k') (8.24) 
JJ' 

o? Fu (!1 , k, k') L: a.2 Fr1JJI(!1)FJ(k)FJ'(k'). (8.25) 
JJ' 

With the use of these expansion coefficients of the gap function ~(w,k), the 

renormalization function Z(w, k) and the spectral functions a.2 F,,,,(!1, k, k') , we obtain 

the following linearized Eliashberg equation for anisotropic superconductivity. 

1
00 looo p(w'Z(w')) 

[1- ZJ(w)]w = L dw' d!1 (E ) a.2FTTJJ•(!1)I(w,w',!1) 
J ' -oo 0 P F 

(8.26) 

[6(w)Z(w)]J =- L:1"" dw' f"" d!1 p(w~~(~')) a.2 Fl!JJ'(!1)I(w,w', !1) 6 J'\w') 
J' - oo Jo p F w 

(8.27) 

where 

l(w ,w',!1) 
1 - f(w') f(w') 

w-!1-w'+w+!1-w' (8.28) 
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f(w) 
1 + eXP(w' / kT) 

(8.29) 

(8.30) 

Here p( w) is the renormalized density of states of the hole carrier at energy w. As we 

have already noted in Chapter 6, the spectral function which appears in the formula for 

the renormalization function Eq.(8.26) , must be o 2 FrrJJ•(!1) because this term contains 

the processes of virtual emissions and absorptions of various modes of phonons by a 

single electron, while the spectral function in Eq.(8.27) is a.2 FuJJ•(!1) which contains 

scattering processes of a pair of electrons from one pair state (k T, -k 1) to a different 

state (k' T, -k' 1). 

From the two dimensional properties of LSCO, it seems to be an adequate 

approximation to take cos nO's as the complete and orthonormal set offunctions, FJ(k)'s, 

where(}= tan- 1 (kvfkx)· Then the linearized Eliashberg equation becomes, 

1
00 lo"" p(w'Z(w')) [1- Z,.(w)]w = L dw' d!1 (E ) a:2Fnnn•(!1)/(w,w',!1) 

n.' -oo 0 P F 
(8.31) 

1
00 '1"" p(w'Z(w')) 2 1 ~n•(w') [6(w)Z(w)],. =- L dw d!1 (E ) a F11nn•(!1)!(w,w ,!1)--,-

n' -oo 0 p F W 

(8.32) 

where 

6(w,O) L Cn6,.(w) cos( nO) (8.33) 
n 

Z(w,O,O') L CnZ,.(w) cos( nO) (8.34) 

a:z Fu (!1, 0, O') L c,.c,.o:2 Fnnn•(!1) cos nO cos nO'. (8.35) 
nn' 

where 0,. = 1/ .j2:;r for n = 0 and On = 1/ .,fi for n # 0. In Chapter 6 we have calculated 

the spectral function and shown that among the components of the spectral function, 

a2 Fnnn•(!1)'s and a 2Funn'(!1)'s, all terms are small and negligible except for a.2 F110,0 (!1) 

and a 2 F 112,2 (!1). Following the eXPressions in Chapter 6, we include the normali.zation 

factor Cn in the expressions of a.2 F and for simplicity we use the notation a2 Fi~>(n) and 

to2Fn>(n) for o 2Fno,o(!1) and a 2Frtz,z(!1) respectively. Hereafter we use this notation. 

Then we obtain the following equation, 
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j oo 1 [ "" p(w1Z(w1
)) 2 (0) 1 

[1- Z0 (w)]w = -oo dw lo dfl p(EF) a Fn (fl)I(w,w, fl) (8.36) 

j oo r= p(w1Z(w1))a2 Fn)(fl) I ~2(w1) 
~2 (w)Z0(w) =- -= dw

1 Jo dfl p(EF) 2 l (w ,w , fl)~ 

(8.37) 

Note that the component of the spectral function which connects the s- and d-wave 

symmetry, a2 Fw,o(fl) , vanishes from C4 symmetry, and that the d-wave component of 

the spectral function a 2 Fn)(fl) is large while the s-wave component a 2 F~~l(fl) is negligibly 

small, as we have seen in Chapter 6. The d-wave component a 2 F{fl(fl) contributes to 

the fOl'mation of d-wave pairing as is known from Eq.(8.37). These results establish the 

appearance of the d-wave superconductivity in LSCO system. 
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