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Abstract

The conventional dynamical theory is developed under assumption that the
resonance (anomalous) scattering is sufficiently small compared with the normal
(Thomson) scattering. It has been very useful to the study of precise X-ray optics. By
using X-ray from synchrotron radiation, it is now possible to study dynamical diffraction
very near the absorption edge of a constituent atom in a crystal. The contribution of
resonance scattering can be changed by tuning the X-ray energy. In an extreme case, the
dynamical diffraction can be observed only due to the resonance scattering
In the conventional dynamical theory, however, a parameter in the theory diverges

when only the resonance scattering term exits without the normal scattering. Fukamachi
and Kawamura [ Acta Cryst.(1993). A49,384-388] have modified a dynamical theory to
avoid the divergence, and derived the formula which is valid in calculating the diffraction
intensity in general including the diffraction only due to the resonance scattering. In this
paper, we have carried out the following study on the basis of idea of Fukamachi and
Kawamura.
(1) At first, the principle of the conventional dynamical thory and the outline of its
development are described. Secondly, the limitation of the theory in relation to the
Borrmann effect or resonance scattering is pointed out . Thirdly, X-ray resonance
scattering and the anomalous-scattering factors are discussed
(2) The fundamental equations are derived following the method of Ewald-Laue. Then,
the equations for examining the diffracted intensity, a dispersion surface, a Poynting
vector and the wave field in a crystal are also derived. These equations are examined in
detail in Laue case as well as in Bragg case. It is suggested that the dynamical diffraction
by the resonance scattering without the ordinary scattering process.
(3) The simulated results by using the theory described in above (2) are verified by
experiments. Four experiments are carried out. The first is to determine the phase change
in rocking curves, the second is to measure the fluorescence X-rays, the third is the
improvement of topographies, and the last one is the determination of anomalous
scattering factors. Then, the conclusions are drawn, and some future views are described.

The present theory is not only applied to the Thomson scattering and the resonance
scattering of X-ray, but also to the neutron and nuclear Bragg scattering due to the

resonance scattering.
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limitation

1.1.2 Qutline of this paper

Chapter I "INTRODUCTION": At first, the principle of the conventional dynamical
theory and the outline of its development are described. Secondly, the limitation of the
theory in relation to the Borrmann effect or resonance scattering is pointed out. Thirdly, X-
ray resonance scattering and anomalous-scattering factor are discussed. Then the purpose
of present study is presented.

Chapter 1T "DYNAMICAL THEORY WITH THE RESONANCE SCATTERING": In
this chapter, fundamental equations are derived following the method of Ewald-Laue, Then,
and the equations for the diffracted intensity, the dispersion surface, the Poynting vector
and the wave field in a crystal are derived. And these equations are used to examine
dynamical diffractions involving resonance scattering in detail about both in Laue case and
Bragg case. It is found that the dynamical diffraction only due to X-ray resonance
scattering without the ordinary scattering process occurs at a certain energy near an
absorption edge

Chapter ITI "EXPERIMENTAL": In this chapter, the simulated results by using the
theory described in chapter 11 are verified by experiments. Four Experiments are carried
out. The first is to determine the phase change in rocking curves, the second is to measure
the fluorescence X-rays, the third is the improvement of topographys, and the last one is
the determination of anomalous scattering factors. Then the conclusions are drawn, and
some future views are described.

Chapter I and Chapter II are intended to review the conventional dynamical theory and
to introduce a modified theory applicable to more general cases including not only strong

absorption but also no real part of Fourier coefficient of X-ray polarizability Assumptions




and approximations were examined in detail for the basic equations of the theory which
were directly derived from Maxwell’s equation in vacuum. The theory of the second half
of the Chapter 11 after 2.2.4 is the original description by the present author. This theory is
applied to Laue Case and Bragg Case, and is examined in detail. Rocking curves as a
function of the crystal thickness has been examined, and a nontransparent effect is
presented(2.3.2). A complex dispersion surface is introduced to elucidate such phenomena
as absorption, the pendellosung beat and phase change(2.3.3, 2.4.2). In examination of
Poynting vector, the conventional concept that the direction of the energy flow is always
normal to the dispersion surface breaks down(2.3.4, 2.4.3). The disappearance of the
pendellosung beat, and the phase difference of n/2 in a standing wave are found out at a
certain condition of the constituent atom(2.3.5, 2.4.4).

Several simulations and experiments performed by the author are described in Chapter
II1. In GaAs200 reflection, the Fourier coefficient of the electric susceptibility near Ga K-
absorption edge is numerically calculated. It was found in the simulation that the phase
difference & changes from 0, m, 0to —m(3.2) as a function of X-ray energy across Ga and
As K-absorption edges. The simulated result is verified by the following four experiments:
Dthe observed rocking curves in Laue case, @the intensity changes of the fluorescence
X-rays depending on the incident X-ray energy(3.3.3). @the observed rocking curves
below Ga K-absorption edge for GaAs200 in Laue case as well as ford GaAs600 in
Bragg case(3.3.4). In topographic observation when the resonance scattering is strong in
GaAs 200, the contrast has been remarkably improved compared with that of weak
absorption(3.3.5). Rocking curves in Laue case are observed, and anomalous-scattering

factors were determined by using a profile fitting method(3.3.6).
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Fig 1.1 The X-ray scattering by the crystal

1.2 Outline of Conventional Dynamical Theory

The diffraction of the X-rays by crystal was first discovered by the experiment of
Friedrich, Knipping and Laue[2]. The process of the X-ray scattering is understood as
follows: firstly, when X-rays are incident into a crystal, the electron in a material vibrates
and the electromagnetic field is excited, secondly, the current produced by the vibration

emits an electromagnetic field[3]. An X-ray diffraction phenomenon is explained by two




alternative theories: kinematical and dynamical theory. The diffraction by a fine crystal
which has the size (several micrometers) less than an X-ray extinction distance (refer to
[2]) is interpreted by the kinematical theory, or the single scattering theory(Fig.1.1 (a))
The theory is widely used for the crystal structural analysis. On the other hand, the
diffraction of a perfect crystal which does not have defect the size of X-ray extinction
distance should be described by a multiple scattering theory(Fig.1.1 (b)). The diffraction
with such a multiple scattering is interpreted by the dynamical theory. Here, we investigate
the development of the conventional dynamical theory, and the approximation, and then

briefly describe the dispersion surface and the wave field.

1.2.1 Theories of Darwin and Ewald-Laue

The study of dynamical theory was started first by Darwin (1914)[4]. Darwin gave the
constant difference equation (Darwin's equation) from which the amplitude of the
reflection from each lattice plane parallel to crystal surfaces, and the amplitude of forward
scattering are obtained. He derived the reflection curve (rocking curve) and the integrated
reflecting power from a perfect crystal of the thickness of semi-infinity. The scatter(c ) of
a reflexion curve angle was as small as about 10 seconds, and a integrated reflecting
powers was much smaller than the measured result. Therefore the real crystal was
interpreted as an imperfect crystal[5]

On the other hand, Ewald(1917)[6] treated the interaction of dipole waves and
electromagnetic waves. The underlying idea of his theory is stated briefly as follows. Each
lattice-point of the crystal is supposed to be occupied by a dipole which can be set into
oscillation by the radiation field of any electromagnetic wave passing through the crystal.

The oscillating dipoles themselves emit radiation, which produces a radiation field. The




self-consistent electric field in which this relationship is satisfied with all the dipoles in a
crystal should be realized. Laue(1931)[7] made the theory of Ewald more simply. Ewald's
theory was taken as a set of discontinuous dipoles within a crystal. However, Laue
replaced it by the continuous and periodic polarization. And he solved the Maxwell’s
equation. The methods used by Ewald and Laue were different, but the results of them are
essentially the same. These methods can be handled simpler than Darwin's theory. For this
reason, their methods are used widely today in general studies. The method of Ewald-Laue

is used in this paper.

1.2.2 Dynamical Theory with Small Resonance Scattering.

There are two competitive mechanisms in elastic scattering of X-rays: Thomson
scattering (depends on electron density distribution, and is called normal scattering in this
paper) and resonance scattering. The atomic scattering factor in the normal scattering is
called normal scattering factor and is expressed by /" in this paper.(usually expressed by

f.). f" can be calculated by the following equation

Fos) ’»J‘p(r)exp(/s-r)dr a1

Where, p(r) is electron density and r is the distance from the nucleus. f"(s) decreases
monotonously as "s" increases. Assuming that atoms are spherically symmetric, the
magnitude of "s" is written as [s|=4zsin@/ A . Here, # is a half of the scattering angle,
and A is the wavelength of X-ray, If @ is zero, f"(0) is equal to the atomic number Z,
and is the maximum.

Conventionally, the resonance scattering is the scattering with the anomalous dispersion.

It has customarily been called anomalous scatiering. Scattering factor due to resonance




scattering is called anomalous-scattering factor. The anomalous-scattering factor is a
function of the X-ray energy( @ ) and can be expressed by the following equation
[ (@) +if (o) (12)

When @ approaches the absorption edge @ , of a scattering atom, these quantities 7' and
f" become the same order as £ (s). However, in the case of @, << @, these quantities
are quite small, and they are negligible. The X-ray resonance scattering is related to the
photoelectric absorption which is main absorption of X-rays, closely. Therefore, if the
photoelectric absorption is large, the magnitude of anomalous-scattering factor becomes
large. If the X-ray resonance scattering is small, the photoelectric absorption also becomes
small.

When atomic scattering factor f(s.®) contains the normal scattering and the X-ray
resonance scattering, it is written by the following equation

f(s,)= [f(s)+ f(@)+if"(w) (1.3)

In the diffraction experiment by the characteristic X-rays from the conventional X-ray tube,
the energy of the incident X-rays cannot always be tuned near the absorption edge of a
constituent atom in a crystal. For this reason, the diffraction by the normal scattering has
been main element and X-ray resonance scattering has been handled afterward as
correction to it. In the conventional dynamical theory, the normal scattering is first treated
and X-ray resonance scattering is treated as a correction. The atomic scattering factor is
considered as in the following approximation
b A e A (1.4)

This approximation is called small imaginary part approximarion(SIA)[8]. SIA means that
the real part of atomic scattering factors is larger than that of the imaginary part, and that

the cases of f"=0 and f'=0 are induced as the extreme. Almost all the dynamical
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effects are derived by the approximation which completely neglected absorption. Only the
asymmetry of a rocking curve and Borrmann effect are derived by the SIA theory with
absorption taken into account

If there is a X-ray source of tunable energy available, X-ray diffraction near the
absorption edge of a constituent atom in the crystal, should be studied including the case of
%0, f'<0,0r [f"|=]f"|- There are even the case that [~ + f'<0 or |f° + f'|<[f"

In these cases, it will be difficult to interpret the dynamical diffraction by SIA

1.2.3 Dispersion surface in two-wave approximation

The concept of the dispersion surface[6] is useful for explaining a dynamical theory and
the diffraction phenomena. The dispersion-surface shows the relationship between the
wave vectors and the frequencies of waves in the crystal. In the following paragraph we
overview dispersion surfaces in two-wave approximation for understanding dynamical
diffraction.

The interaction between X-rays and a crystal is well described by the so-called two-
wave approximation. The cross section of the dispersion surface in this two-wave
approximation is shown in Fig. 1.2. "O" is the origin of the reciprocal-lattice space which
is taken as the end point of the incident wave vector in the crystal and "H" the relevant
reciprocal-lattice point by one diffracted wave excited. When X-rays K, incident toward O
from point N, tie points( A, A, B, and B, ) are intersection between the dispersion surface
and a straight line v perpendicular to the crystal surface which passes along N. When
setting to K, and x; the wave number of the X-rays under a vacuum and crystal,
respectively, the relationship between K, and &g is &, =n,K, ( ny refractive-index, see

2.2.1). Two spheres with a radius of &;, centering O and H are drawn. The intersection of







hyperbola, and the imaginary part of the dispersion surface is neglected. However, in this

study, both the real part and imaginary part of the dispersion surface are important

1.2.4 Wave Field in Crystal

In two-wave approximation, four waves, k'", k¥, k" and k.”, existin the crystal.

A typical dynamical effect, such as the pendellosung beat and the standing wave are

explained by the interference of these four waves.

(i) Pendellosung beat

The pendellosung beat is induced by interference of two wave of k"’ and & ? which
are connected with the transmitted waves, or k.’ and k.” which are connected with the
diffracted waves, among waves from two tie points in the crystal, The rocking curve and
the integrated reflecting powers which were obtained by Zachariasen [9] are shown in
Figl.3. These are calculated results in Laue case without absorption. (a) is a rocking curve
obtained by carrying out small rotation of the diffraction angle near the Bragg angle. On
the other hand (b) is an integrated reflecting power of the diffracted wave. The scale of
abscissas is proportional to the crystal thickness. The increase and decrease in intensity of
(a) and (b) are pendellésung beats.

In the study of X-ray diffraction, Kato and Lang (1959) [10] observed this (b) type
pendellosung beat in the first. They found this pendellosung beat on a photograph of the
Lang camera using a Si single crystal of the wedge form whose crystal thickness
continuously changed. Then, (a) type pendellésung beats have been observed parallel with

performance enhancement of the erystal monochromator.
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Fig.1.3 Pendellosung beat in the Laue case.[9]

(ii) Borrmann effect and standing waves in crystal
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Borrmann [1] discovered the diffracted and the transmitted intensities by transmission
through crystal which are 10 to 20 times thicker than a crystal thickness forecasted by the
mean absorption (anomalous-transmission phenomenon). This effect is called Borrmann
effect. Usually, if the diffracted beam becomes strong, the part transmitted beam will
become weak by the conservation law of energy. However, in Borrmann effect, transmitted
beam also increases simultaneously when the diffracted beam increases. This effect cannot
interpreted by the dynamical theory without absorption. The Borrmann effect was
interpreted as follows by SIA with absorption. Among two tie points, the absorption of the
wave from one tie point is smaller than the mean absorption, and the wave carries out a
anomalous transmission. However, the wave from another tie point is absorbed greatly
more than the mean absorption(anomalous absorption). This effect has been analyzed from
the standpoint of the standing wave in the crystal by Batterman and Cole (BC) (1964) [11].
BC carried out the study for the wave field which synthesized the diffracted wave and the
transmitted waves for every tie point in the crystal. As a result, two standing waves with
the lattice period could be are obtained, the one wave is known to have antinodes on the
lattice plane and another is nodes. Consequently, waves with antinodes on the lattice plane
decreased remarkably as they penetrate deep through crystal surface (anomalous
absorption) and waves with nodes do not decrease almost(anomalous transmission). The
Borrmann effect will be analyzed from the imaginary part of solutions for the dispersion

surface in this paper.

1. 3 X-ray Resonance Scattering and Anomalous-Scattering Factor
In this section, anomalous scattering factors which estimates the scattering intensity for
the study of the dynamical diffraction with the X-ray resonance scattering is described

from the side of a classic theory. In this paper, atomic unit(A=m=e=1) is used for
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simplified expression of the formula
Let us assume that the electron for the scattering is bound to a nucleus by energy @
When the electron carries out the forced oscillation by the electric field( E, = Ee'*") of the

incident beam. In point A which R apart from the electron, electric-field E' of the X-rays

Fig 1.4. The electromagnetic field with the accelerating electron

emitted from the electron is shown by the following equation(see Figl .4 )
, sing \
-2 S0P 5 (1.5)

E'|=

Where, ¢ is the velocity of light and » is the position of an oscillating electron. In (1.5), if
the acceleration(#) of the electron caused by E, is obtained, the intensity of the scattering
X-rays can be calculated. Then, the displacement is examined. In Fig 1.4, the equation of

motion for the electron in points O is given by the following(James [12])

Ftk i+ r=—Ee" (1.6)

13




The solution of (1.6) is given by

1
P — a3 n ) =
0 o -0, —iko

Where, k,is the radiation damping factor caused by emission of the electromagnetic waves,

and has the relationship as follows: &, =2

If the scattering is due to free
electrons, r,,, =@ “E,” by @, =0 and &, =0. From (1.7),the relationship between
free and bound electrons is given by

r=r,, f(@)=r,[f (@) +if (®)] (1.8)

Where, f(w), f, (®) and f (@) aregiven by the following equations

f({")) s : {:)» 1 B (] ‘)a)
o' -w, —iko
N m‘((.zz‘w — @ .)
f(@)=— = (1.9b)
(0" —@, ) +k, @
ko’
flo)=— "2 = (1.9¢)

(@~ 7(.')‘1)' -+ /<>__3w"

However, in actual atoms, it is not observed f(@) as the large value which is calculated
by the (1.9). For this reason, f(@) for actual atoms is estimated by optical examination.
Let us the dipole momentum per oscillating electron is p, the relationship of p=-r will
be result. The permittivity &(@) becomes as follows

47Np | ~-Lﬂ\;’/’(m)
E @

glw) =1 (1.10)

Where, N is the number of electrons in unit volume under the same conditions. Since the

relationship of M(@) = &(®@) exists between refractive index (@) and &(w),




n(w) is given by

n(w)=1-a(w)—if(w) (1.11)

Where, a(w) and f(w) are approximated as follows

. 27, () ,
o) == (1.12a)
"
27NF (e
foy=20@) (1.12b)

@
Since a(w) and P(w) are obtainable from measurement of the reflectivity by the X-ray
mirror, f,(w) and f, (@) are calculated from the relationship of (1.12). Thus, f(@) of
the boundary electron can be calculated
On the other hand, the following relationship exists between the linear absorption
coefficient w, (@) and the refractive index #(@)

9 2a
U, (w) = —{“’lln:N(i!)); = ;”,/]((_,” (1.13)
C C

Let us the absorption coefficient per one dipole tobe (@), f, (@) will be given by

f() :{” () (1,14)

Absorption of X-rays caused by mostly photoelectric effect and it is empirically known to
become as shown in Fig.1.5. The absorption coefficient (@) has the maximum near o,
and gradually becomes smaller when energy @ becomes larger than it. Given this
experimental fact, the bound energy @, assumed in (1.6) is not discrete, and it is
continuously. Therefore, the integral form is suitable for f (w) and f (@) as

following([13] )




(@)

@,

PHOTON ENERGY (o)

Fig 1.5. The linear absorption coefficient
g/ do

: p : ,
Assuming that the oscillator density between energy @, and @, +d@, is ¢

f. (@) will be given as follows using (1.9¢)

(de/dw )k
e e e L B (1.15)

(" —w,)
Assuming that the variation of dg/dw_ is flatter than the Lorentz type function, the

integration takes a value only near the @, ~ @ . Therefore (1.16) can be established

o g
f((u)ry-tl‘L (1.16)
& [2{0]

However, when dg/dm rises rapidly at an atom absorption edge, this approximation
cannot be used. Based from u(®) and (1.14), (1.17) can be obtained for dg/dw

dg ¢ s
= = ——- (@) (1S15F)

do 27’
Therefore, if u(w) is obtained by experimentally or theoretically, dg/dw will be

determined from (1.14). Similarly, f, (@) is calculated as follows using (1.9b)

16




(dg/do Yo’ (0 -—w.") i
o AL ~dw (1.18)

'/,((u)i[ ; —
Y (o —w,) tkhk o

If u(w) is decided, dg/dw will be derived, and [ (@), f (w), namely, /(@) can be

calculated specifically.

T'he correspondence between f(@) and anomalous-scattering factor is projected. Since

becomes 1 from the hydrogen atom model for the forward scattering of X-rays, and

b

f(w) is written as follows

flw) = f(o)+if ()=1+ (@) +if"(w) (1.19)
Therefore, the following equation is obtained from (1.12), (1.15) and (1.16)
’ 5 c(dgldo Yo o -0’ -k o)
fl(w)=f (w)-1 —- w( — = dw (1.20a)
' (0" -w,") +k, o
(de | dw)k 0 7w deg
06 (G0N0 gy 70 98 (1.20b)

(@)= (@)= |

(o -0, ) +k,o 2 dw

In order to derive (1.20 a), the sum rule of Thomas-Reich-Kuhn (TRK) was used as follow

[ (g tde ydo, =1 (1.21)

As follows,the dispersion of f'(w) and f"(w) are calculated. According to the

experience, the photoelectric-absorption coefficient (@) can be approximated as follows

(@, \
| —* (w>0,)
1 (1.22)

o) = u,

\ @

=0 4 (o <w,)
Where, u, is the linear absorption coefficient at the absorption edge of energy @, . both

peoand gz, will be determined in agreement with the measurement results
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Therefore dg/dw is given by

dg ¢ ‘»,

(wzw,) (1.23)

do 2n°° "\N@/

Where, g, accompanied by K-electrons is expressed in (1.24)

8 = J ii’f"-d(u

vy deo
i (1.24)
co (@, @,
= !.J | do=g,—*
2N @ / Pr=al
Therefore, (1.25) is obtained
. o Ve 9\ P
dg _p.—1 L | (0> w,) (1.25)

do o, \No/

Approximating 1s electrons by p, =2.75, 2s by 2.33, and others by 2.5, Parratt and
Hempstead(1954)[14] integrated (1.20a) and (1.20b), they derived the equation to
caleulate f'(@) and f"(w)

On the other hand, g, is given by the TRK’s sum rule for K-electron as follows

g =gt Y By =2 (1.26)

Here, > g, is calculated from the wave function of the ground state. If ) g, is exactly

P
obtained from a quantum theory, g, is determined from an above(1.26). Cromer (1965)
[15] obtained the wave function of the ground state by Hartree-Fock approximation, and
calculated g, for K, L and M, and presented a table of the result. Cromer showed
simultaneously the table for 7' and f" of atoms to characteristic X-rays used in
experiments, such as Cr K &z, using the equation of Parratt and Hempstead. The dispersion

at the absorption edge cannot be known from f'(w) and f"(w) calculated by Cromer

However, using Cromer's g, and the equation of Parratt and Hempstead, f'(®) and
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7"(w) in the absorption edge of arbitrary atoms is calculated, Fig 1.6 is shown f'(@)
and f"(w) in K-absorption edge of germanium by using the method. (a) shows the wide
energy range and (b) near the absorption edge. f"(@) becomes large rapidly at the
absorption edge in (a), it decreases gradally from the edge according to the high energy
region. The dumping effect in the absorption edge is shown in (b). f'(@w) is always
negative in the low energy region from the absorption edge and f'(w)=-g, at @= 0. In
the absorption edge (@, =11103.6eV), f'(w) is the smallest, it increase on the higher
energy region than @, , becoming zero in the position about 1.5 times compared with @, ,
and becomes positive on the higher energy region than it. As shown in (b), in the range of
+10eV of the absorption edge, both changes of f'(w) and f"(w) are intense, especially
f"(@) radically changes and f'(@) becmes about -10 at an absorption edge

Such dispersion is generated by the resonance scattering of the boundary electron. This
effect appears most notably in the absorption edge and change most rapidly. Anomalous-
scattering factors of this paper is obtained by the method using g, of Cromer and the
equation of Parratt and Hempstead.

In addition, Cromer and Liberman(1970)[16] calculated photoelectric-absorption u by
using the relativity, and gave the anomalous-scattering factor to characteristic X-rays in
pure theory. They had been providing programs to calculate x4 By using these programs,
Sasaki (1969)[17] had computed f'(@w) and f"(w) for the wavelength from 0.10A to
2.89 A, and reported the data table. However, since the table is no correction of dumping,
the anomalous-scattering factor at the absorption edge is discontinuous. Therefore, this
paper does not use Sasaki's table.

Kramers and Kronig's dispersion relation between f'(w) and f"(w) is calculated
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from the following equation(1.27) using /" (w)

2 Fii( f
fw)=— ‘/—’Mdal (1.27)

T @ —w_

Since [f"(w) is determined from wu(w,), f'(@) is calculated also from the dispersion
relation of Kramers and Kronig. This relationship has been well established at present as
the method to know f'(@w) from f"(®) by XANES (X-ray Absorption Near Edge

Structure)

1.4 Purpose of Study
This section describes the background for this study of the dynamical theory with the X-

ray resonance scattering and the purpose of this paper.

1.4.1 Observation of Pendellosung Beat with X-ray Resonance Scattering
and Breakdown of SIA

(i) Previous works

As described in 1-2-4(i), Kato and Lang succeeded in the observation of a pendellosung
beat using a wedge type crystal whose thickness varied continuously. The pendellosung
beat will be observed if the scattering cross section o can change continuously by a certain
method even if the crystal thickness is fixed. Based on this viewpeint, Takama er
al (1980)[18] succeeded in the observation of the pendellosung beat by changes
wavelength continuously using the energy dispersive diffractometer with SSD(white X-
rays pendellosung beat). Yoshizawa et al. (1988) [19], on the other hand, succeeded in the
observation of the pendellosung beat just below Ga K-absorption edge of GaAs using the

effect which shows the remarkable change of f'(w) in the absorption edge, using the
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energy dispersive diffractometer. The beat is called the pendellosung beat of an X-ray

resonance scattering (PBXRS).
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(ii) Present work

Authers (1993) [20] observed PBXRS of Ge 844 just below Ge K-absorption edge by
using the synchrotron radiation and the energy dispersive diffractometer. A part of
measurement results is shown in Fig.1.7. Open circles are the result of the measurement
(a) is shown over the wide energy range near the absorption edge. (b) shows the narrow
range from -10eV to 4eV near the absorption edge. Solid lines are PBXRS which obtained
from SIA theory. In this analysis, f'(w) and f"(w) were calculated by the method of
Parratt and Hempstead shown in Fig.1.6. The solid line in Fig.1.7(a) well agree with the
experimental results. However, in (b), the difference is seen clearly. Shoulder structures are
looked at by the measured result at 2 places, -6eV and -2eV. The shoulder structure near —
6eV is primary PBXRS. What is the shoulder structure near —2eV? The shoulder structure
by PBXRS exists at about —4eV. And the solid line becomes zero at -1.3¢V, and -0.8¢V
shows a small peak. As shown in Figl.6, calculated results become zero at —1.3eV below
Ge K-absorption edge with Ge 844 when f° + f' changes from positive to negative. In
case of Ge 844 , f" takes the value of 9.24. On the other hand, f* varies from -7.06 to -
9.26 when the relative energy changes from -10eV to -1.3eV below the absorption edge.
Therefore, | £ + f'| becomes almost zero at -1.3eV. | f'| is larger than [ from -1.3eV
to the absorption edge. The integrated reflecting powers by SIA has | 7, | in the coefficient
In case of Ge 844, if f" -+ f' is zero, x, is also zero. And, the integrated reflecting
powers become zero. It is understood that integrated reflecting power of Ge 844 becomes
zero at —1.3eV below the absorption edge. However, the experimental result is not zero.
" is also not zero in the position at -1.3¢V below the absorption edge in Figl.6. When

[ f°+ f' | becomes zero, f" isnot zero, thus, it is very unnatural that integrated reflecting

powers becomes zero. In the kinematical theory, f" is not zero even when f° + f'
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srated reflecting powers is also not zero, Therefore the calculated result

become zero, inte

of integrated reflecting powers in Fig.1.7 is unnatural. Under these circumstances, the
shoulder structure is judged to be the cause that /" + f' becomes zero. However, SIA has
inconsistency that a diffracted intensity becomes zero at "+ f'=0. Therefore, a new

dynamical theory which is also applicable to f" + f'=0 is needed

1.4.2 Circumstances of Study
In near the absorption edge, since | /" | and | 7'| become almost equal by high order
reflection and f + f' become O as the result, it is shown that there is the dynamical

diffraction only due to f". And, when |f" + f'| became zero, integrated reflecting

]

powers by SIA had inconsistency of becoming zero, regardless of f" not being zero. For
this reason, Fukamachi and Kawamura(1993) [21] (FK) derived a new theoretical formula
which did not have to be approximated as SIA. And they examined some features of the
dynamical diffraction only due to /" . According to the result, in Bragg case of the semi-
infinite crystal, the rocking curve of only f" became sharper than the case of only
| f*+ f'| (in addition, Kato (1992) [22] derived this effect theoretically). In Laue case, the

anomalous transmission appeared in the rocking curve of only f" even though crystal is

thin, contrary to general expectation, the pendellosung beat could be noticed in the tail of

rocking curves when the absorption is large. Authors[20] identified that the shoulder
structure in the integrated reflecting powers below Ge K-absorption edge was based on
"+ f'=0 with the application using the theoretical formula of FK. Then, authors (1994)

[23] examined the dynamical diffraction of Laue case in detail by changing the ratio of

| f°+ f'|and | £"|. Consequently, the following effect appeared in the rocking curve of the




transmitted beam with the X-ray resonance scatte

1. Existence of asymmetry,
2. Nontransparent effect to which X-ray do not penetrate thin crystal at all,
3. The unusual increase of anomalous transmission in asymmetrical reflection

In addition, authors (1995) [24] studied the dispersion surface by the FK method. In SIA,
the solution in the dispersion surface used the real part, but the imaginary part used under
the necessary. However when FK method is applied, the dispersion surfaces are complex
numbers and that it is special cases that the dispersion surface becomes real number only
The shape of the dispersion surface also changed due to ratios between | /" + f'| and | /" |
remarkably, the following phenomena have understood visually in case of f" only. On
one hand is the reason which the rocking curve in Bragg case with the semi-infinite crystal
becomes sharp, on the other is the reason which both the diffracted and the transmitted
beams in symmetrical Laue case carry out the anomalous transmission of the 25% of the
incident beam

Then, authors (1997) [25] examined the standing wave in the crystal studied by
Batterman and Cole using FK method. The phase difference of m/2 in a standing waves
are found out between the case of enly f" + f' and the case of only f". The cause of
anomalous transmission in the symmetric Laue case was solved also from the standpoint of
the standing wave

The purpose of this study is to systematize the dynamical diffraction theory with the X-
ray resonance scattering by FK method. This study also experimentally analyzes the

appropriateness of this theory
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CHAPTER I DYNAMICAL THEORY
WITH RESONANCE SCATTERING
In this chapter. the general formulae of a dynamical theory are presented. They
successfully deal with the scattering factor of the constituting atom, which has a larger value

of the imaginary part comparing with that of the real part. The dynamical theory with small

absorption of Miyake (1969) [1] was taken as reference for developing theory in this paper.

2.1. Fundamental Equations
2.1.1 X-Ray Electric Susceptibility without Absorption

Miyake’s theory treats at first the perfect crystal which does not have disorder in the 3-
dimensional lattice at all. It assumes that the following Maxwell’s equation about the

electromagnetic field in a vacuum also satisfies to the electromagnetic field in the crystal

[ OE

rot H =

1

—| —+47 j(r) | 2.1

¢l ot |

Since the forced oscillation of electrons bound to a nucleus by incident X-rays

E(r,0) = E,¢**“"™*"  current density j(r) can be expressed by the sum of j (r), by

Thomson scattering, and j, (7). by the X-ray resonance scattering[2]

b
3
~

Jr)=j,(¥) + jy (r). (
In the case of @, << (see 1.3), where an X-ray resonance scattering can be neglected in
the equation of motion for electron, electrons are approximated as free electrons. (2.3)is
derived from the equation(1.6) of Chapter I
F=-E (2.3)

o1

Since r changes including ¢’ asin E, r is given by the following equation




Fe—. (2.4)

By multiplying the electron density p(r) a certain place in a crystal to (2.4), the current

density j, (r) of the place will be given by the following equation

-y p(r) CE bt
Jin=-B07= 23)
" cl
Substituting j, () in one of Maxwell’s equation.(2.1), (2.6) establishes
1 47 . | CE
tot H =—| 1= ,,'7(,1‘)}7“ (2.6)
c ® .8t
g(r) is defined as follows
T
gr)=1-—-—p(r). 2.7)
@
Moreover, the following formula is introduced
D=2k, (2.8)

The D corresponds to the electric displacement in a usual medium including change of local r
and time. Then, the D is called electric displacement for convenience henceforth. Equation
(2.6) is written as follows

12D

¢ Gt

rot H 2.9)

Since we consider only the relation between time change partial in an action of incidence X-

rays, Maxwell’s equation of the following satisfies them

divD =0, (2.10a)
. 1 2H

fotE=———; (2.10b)
c ¢l

divH =0 (2.10c)
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These are the same forms as Maxwell’s equation to the dielectric whose permittivity is &(r)
However, &(r) is a local quantity defined by (2.7) and is the quantity with the same said
also of E and j
Since p(r) is quantity depends on r locally in an X-ray domain, &(r) also serves as the
function of r again. Since £(r) is very close to 1, it sets as follows
e(r) =1+ y(r) (2.11)
Therefore y(r) is as follows from (2.7)

47
x(r) = = p(r). (2.12)
0

(r) is 4w times the electric susceptibility, this is called X-ray electric susceptibility
X I 3 ; P Y

In a crystal, the following relationship [3] exists between crystal structure factors /, and

p(r) 3]

E, \,\p[, 27i(h r)'[ (2.13)

Where, v is the volume of a unit cell. In a crystal, p(r) is a periodic function with a lattice
period, y(r) also has a lattice period. Therefore, y(r) is expanded by a Fourier series as in
the following

y(r) = Zlh C\p[fl."i(h-r)] (2.14)

7
The coefficient 7, on the right-hand side of (2.13) carries out Fourier conversion of the
p(r), and is given by the following

fh = J‘ m;:(r)exp[l.ﬂ(h»r)}./r (

2.15)

z(r) of (2.14) is given by the following equation of the same method




Xn = lf y(ryexp[27i(h-r)ly
2. (2.16)

(2.16) gives between yx, and F,. On the other hand, £, is given by the following
equation

R

= Z/ Ih)cx‘p[lw’(h-r)] (2.17)

In this equation, f,  is a normal atomic scattering factor of j-th

2.1.2 X-Ray Electric Susceptibility with Absorption
If the energy of incident X-rays is near to the absorption edge of the constituting atom in a
crystal, the resonance scattering by the electron bound to the nucleus cannot neglect
In this case, as already discussed in Chapter I, the magnitude of j,(r) in (2.1) will becomes
roughly equal to j, (r). &(r) is given by the complex number as (1.7) in Chapter I . For
this reason, z(r) is also a complex number. Assuming a real part and a imaginary part of
y(r)alsotobe x, (r) and x,(r), x(r) isgiven by the following
x(r)=x. () tix,(r). (2.18)
7, (r) and z,(r) of (2.18)are given as follows by the same method as (2.14)
2, (r)= Z'.("’ exp[- Zm(h-r)]_ (2.19a)
2= z, exp[-27i(h-r)]. (2.19b)
By analogy of (2.15) and (2.17), y, and y, of(2.19) are obtained as following equations
4

Yu = —;‘ Y. S[f '(h) + f'(m)]‘ explzm‘rh.r_ )}- I, (2.20a)




A ot i/ ‘V[‘/“”(m,l]ev\pll.-n(h r ).] T (2.20b)

Thus, y, isexpressed with f"+ f'and z, isexpressed with f". 7} is a correction term

hr
of temperature and \; means the sum of the atom in the unit cell

Both y, and z, in(2.19) are complex numbers and can be expressed as the following

A hr

relationship
Xne = lexplic, ), (2.21a)
X = X €XPUAS) (2.21b)

2.1.3 Fundamental Equations
From the Maxwell’s equation to the electromagnetic field in a crystal, the fundamental

equation of dynamical-diffraction theory is drawn as follows[1]

k’-K
——— D= D, (2.22)

Here
(2.23)

and, ky, k, are the A-th and 0-th wave-number vector in the crystal. K is the wave number of
the wave in a vacuum. g is a reciprocal-lattice vector except h points. y, . are the A-g
order Fourier coefficient of y(r). Dy and D, are k of D(r) and the g-th Fourier coefficient

And D is a component perpendicular to k, of D,

8l Lky]
In a dynamical theory, the number of fundamental equations are # when n waves exists in the

crystal, when there are n fundamental equations. In order to obtain a solution, n

simultaneous equations containing & and g are solved




2.2. Solutions of Fundamental-Equations
In this section, (2.22) is solved under specific boundary conditions. When only one wave

k propagate in a crystal, the situation is called one-wave approximation, when two waves

of k, and k, propagate in the crystal, the case is called two-wave approximation

22.1 One-Wave Approximation
When only one wave k, exists in the crystal, (2.22) is given by the following equation
(k2= K D, =Ky D (2.24)

The following is obtained from (2.24)

7/\“:
=

]‘-r,_

(2.25)

Let’s define the quantity &, as &,=|k,|. (2.25) has the following relation to refractive-
index ny of X-rays as follows
|k, =« ]

: = (2.26)

IS = - ;
| K, K 1- %

3 , . : P
Since %, is almost negative real number of the order of 107, n is slightly smaller than 1. 7

and K, are given by the following equation from (2.26), respectively

2 97

i/vfqul;l—w;(”-/ G 2.27)
K=Ky (1

i W=y T, (2.28)

Therefore, x,, and x;; are as follows




1
Ky = K(ls=nn ), (2.29a)

1 |
Ko ==Ky =E5Kakor (2.29b)

voand 7, are given by the following equation from (2.17)
X A g ) g

4 - .

X =—— 2|2+ (@), (2.30a)
vV @ / °
A

Yo = ,77,: Z«/ (@) (2.30b)
\'» @ "

Here Z is the atomic number. The ¥, becomes liner absorption coefficient z, shown by

(1.13) of Chapter 1, and the following relation.

Therefore, when the resonance scattering exists, there is always absorption of the X-rays by

the crystal

222 Two-Wave Approximation

In this section, it is discussed that one diffracted wave k;, exists in a crystal as well as the
k, which is very similar to incident rays Ky(see Fig.2.1(a)). The diffraction condition is
understood by the Ewald construction of Fig.2.1(b): The starting point of the vector A
which goes to origin O is tie point A(Ausbreitungspunkt). We name Ewald sphere the sphere
of the radius AO centering around point A. When reciprocal-lattice point H lies on Ewald

sphere, the diffracted wave of vector AH = kj, arises




(a) Diffraction

H(hkI)

RECIPLOCAL SPACE

(b) Ewald construction

Fig.2.1 The Ewald construction
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(1) Solution of two-wave approximation

The related equation which specifies the position of the tie point in reciprocal-lattice space
is drawn from the fundamental equation(2.22). As for two-wave approximation, K, and K,
are excited in a crystal. Let 0, and D, be the perpendicular components (o -
polarization) to be plane of k, and k; of D, and D,. Similarly, D, and D, be the
parallel components (m-polarization). The fundamental equation (2.22) is written by the
following equation

o -component :

Rl
- Yo p =x.D, (2.32a)
= y.D, (2.32b)

= 15 COSZ2D) (2.33a)

.33b)

(S

= ¥, c0s26, D,

Where 26, is an angle between k, and k,. In order to simplify expression of formula, &

and & of the following are introduced
Sh g

(2.34a)

(2.34b)

In order to exist the non-trivial solution for the simultaneous equations of (2.32) and (2.33),

the following equation must be satisfied




=0, (2.353)

where, polarization factor P takes one of the alternative values of 1(o-polarization) and

~nd

5 . ~ ‘ ~ "
cos28.. (m-polarization). Since terms of the equal to or more than 2™ order of ¢&;/x,, and

& [k, are negligibly, (2.35a) becomes

!

Ko 0 s 2.35b)
3 i i

(S, —iK g NSh — Ky ) =

(ii) When there is no abserption
In this section, symmetrical reflection is examined. When there is no absorption,

v =0from(2.31). and k. =0 from (2.29). Therefore, (2.35b) becomes as
Ko i

E Ly =k P (2.36)

& and &, in symmetrical reflection are given by the following , and &, and &, of this
57

formula are shown in Fig.2

=Y'sinf, + X'cosb,, (2.37a)

EAL
|

= X'cos@, — Y'sinf, (2.37b)

5 .
Here, X’ and ¥’ are bisectors of PP' and QQ'. Substituting &, and &, into (2.35b), a

following equation is obtained
X'cos™ 8, —Y'sin" 6, =—x5, Py, 1 (2.38)
4
-

In Fig.2.2, the cross section of the dispersion surface (2.38) in OHL is a hyperbola with two

asymptotic lines (PP’ and QQ'). Here, we will consider %%, without the absorption when




FU=10

In this case, j,(r) of (2.1) is neglected and x, will be given by (2.13). Therefore,

Q

P’

35
(3]

Tie points on the dispersion surface near the Laue point(L)

(i3

(2.39) will establish

Generally, £ is a complex number, if #,, and F,

parts of F;

number

express the real and the imaginary

, respectively, and ¥, %, is given by the following equation as a positive real




(iii) When absorption cannot be neglected

Let us examine the case where absorption cannot be neglected. Parameters J, g, and p are

defined as follows

(2.41)
(2.42)
p=a(1-9) (2.43)
As aresult, 7,7 of (2.35b) will be given by the following equation
F A ,;, (1-2g +2ipcos &) (2.44)
This ; (2.44) was defined by the following equation
X =l el (2.45)

q in (2.42) expresses the ratio of | % | and | ¥y |. In case of %,=0., ¢=p=0_1In the
case of |Zu|=l7ul, =P=05_ And, inthecaseof ¥,=0. p=0 and ¢=1. Therefore,

the range of ¢ is 0 to 1. g approaches from 0 to 1 as the amplitude of X increases from O

These relationship decided by the ratio of | X}, | and | % | is shown in Table 2.1

Table 2.1

q p 1-2¢q XnXo
() 5, =0 0 0 1 Xl
@) |z =2 0.5 0.5 0 iy, cosé
3) x, =0 1 0 -1 =[ s
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As shown in the table, x,% , of (2.44) is the positive real number in g= 0. However in g=
1, XuX_, is the negative real number conversely. In g= 0.5, Z¥,% . is a pure imaginary

number. In the other case of ¢, ¥,X ., is a complex number

(iv) Equation of the dispersion surface

(2.35b) is an equation which specifies the dispersion surface of the reciprocal-lattice space
with a resonance scattering. The following quantities are shown in Fig.2.3.: tie points on the
dispersion surface, the orientation of the crystal surfaces, Laue point, Bragg angle and other
orientation relations. The diagram is the cross section of the real part of the dispersion
surface of Laue case. & and & are far smaller than compared with the radius |k | of two
spheres( about 107 to 10 ). For this reason, the cross section of the sphere near the
intersection L of two spheres is approximated in straight lines. Similarly, the cross section of
the dispersion surface is approximated by a hyperbola. Each tie point is distinguished by
suffix of 1 and 2 as shown in the figure

When X-rays K incident toward O from point N, tie points are intersections between the
dispersion surface and a straight line v perpendicular to the crystal surface which passes
along N. 0, is Bragg angle. Axis X is parallel to the crystal surface and axis Y is
perpendicular to axis X. The distance &, and &, between tie points and the asymptotic

lines are given by

&, = Xsing, +Ycosb, (2.45a)
&, = Xsin@, +Y cosb, . (2.45b)

When X and Y are coordinates of tie point A. Refer to Fig 2.3 regarding &, and 6,.(2.35b)

will become as follows by substituting the relationship of (2.45)




X7 sin@, sin@, + Y7 cosf, cosf, + XV sin2f
—2iK,, c0s8, (X cos B +Vsin f)—x . (2.46)

,‘.-/.:,":(]

-2q + 2ipcosd)

(2.46) is an equation of the dispersion surface with a resonance scattering. The solutions X
and ¥ may be the complex number. However, I found that X is safely defined to be a real-
number variable. This notion is very useful tool for interpret all of experiment, because the
direction of the incident X-ray is most simply represented by real number of X. Setting
complex-number Y=V+iZ' (¥'. Z both real number)[7]. The real part and the imaginary one

of (2.46) are separately as follows

X?sin, sin@, + (Y -Z"7 )cosb, cos, + XV'sin28+2x,, 7' cosO, sin f— K,

(1-2¢) (2.47a)

Y'Z'cos®, cosé, + XZ'sin ffcos f— K, cosB, (X cos f+ V'sin )

] 2 1
*IA'H Xn PCOSO (2.47b)

Since the quadratic equation (2.47) has two solutions, straight line v and the dispersion

=
by

(S

surface generally intersect two times, and they called A; and A; as shown in Fig

(v) Shape of dispersion surface

In SIA, the equation of the dispersion surface is represented as follows

X?sin@, sing, +(Y"°—Z" )cosb, cosb, + XY'sin2f+ 2k, Z'cosO, sinff —k,,°

=), ‘ k|= |2s (2.48)

4. : \ | 25 1/




Since the treatment in SIA will be [k|< 0.1, right-hand side of (2.48) is always positive. (2,48)

represents a hyperbola

CRYSTAL /
SURFACE

Fig.2.3 Tie points and other quantities on the dispersion surface for the Laue case

However, in (2.47a)of present theory, ¢ varies from 0 to 1, and the value of (1-2¢) varies




between —1 and 1. Therefore, the real part(}”) of (2.47a) exceeds the asymptotic line and the
shape of the dispersion surface spreads more than the conventional dispersion surface, and

the shape is expected to show a versatile variation

(vi) Diagrammatic presentation of two-wave approximation
A convenient and important parameter named W exists in the conventional dynamical
theory, and it is called resonance error. W of Fig.2.3 expresses the deviation from diffraction

conditions proportional to .X. According to the definition of FK, /¥ given by as follows

| X sin26 "
g e e B (2.49)
[cos@, cosd,|"" Kk, )
Here, W is compared with SIA. The resonance error in SIA is given by
“qin 2
o X sin26, (2.50)

lcos@, cosd, | x| %

In case of ¢= 1, 7 | 7,,| because of ¥,=0. Therefore (2.49) of present theory is finite,

but (2.50) will diverge. For this reason, in SIA, the physical examination cannot perform
when g= 1

W' will diverge in case of y = 0, and one cannot perform any physical examination
However, (2.49) of FK has none of singular point and that is no trouble on handling the
equation. It is worth mentioning that Ishida et a/.(1997) [8Jused y, instead of y, in

(2.50) in order to avoid the divergence, The y, is shown in the following equation
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X =— 3f " exp(2 wik-r)T, (2.51)

Since this g, does not become zero, resonance error by Eq(2.51) is no divergence in ¢= 1.

However, in the definition of Ishida, the formulae becomes complicated and the treatment is







from the surface of the crystal incident (Bragg case, cos#, <0, Fig.2.4 (b))
A plane wave of E,exp(-2 wiK'r) is injected from above upper the crystal as shown in
Fig.2.4. A transmitted wave is connected to the incident wave at two tie points A; and A; as

following two waves

D, (r)=D," exp(2 wik,"r), (2.547)

DP((r)= D" exp(-2 ik, '*-r) (2.54b)

These two transmitted waves in the crystal are connected to the transmitted vacuum wave
E, exp(-2 iK' r) of the outside the exit surface the crystal (z=H). The diffracted wave in
the crystal also connect to the following equations at two tie points

I

D, (r)= D, exp(=2 ik, '-¥), (

D, (r)= D, exp(-2 n ik, 2.p)
These diffracted waves connect to £, exp(-2 7 iK,*r) which is the diffracted vacuum wave
outside of the crystal, on the under surface of the crystal in the Laue case and on the upper
surface of the crystal in the Bragg case

The boundary conditions in the upper surface and the under surface of the crystal are
shown in the following equation
Laue case
Upper surface  (z= 0)

P L Ehep (2.56a)

D"+ D=0 (2.56b)

D,V exp(-2 ik ""H)+ D, exp(-2 ik, Y H) = E, exp(-2 miK, H), (2.57a)




B, : exp(—2 mik, H)+ /);:“‘ exp(=2 ik, 'H)=E, exp(-2 =iK, H). (2.57b)

Bragg case
Upper surface  (z=0) :

DN £ o =F (2.58a)

(2.58b)
Under surface  (z=H)
D™ exp(—2 wik,, 'H)+D, " exp(-2'wik,, "

'H)=E,;exp(-2TiK, H), (259)

D," exp(-2 mik,, 'H)+D," exp(-2 m ik, : (2.59b)
A
V
§ 5 /A :
I, B =
, ‘.{////k‘m
e >
57
K,_— .
%
(E:) 2 (Es)
(a) Laue case
= F (Eq
(Ey)
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K
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g kTS
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(b) Bragg case

Fig 2.4 Diffraction conditions




Here, k.-, ki-. Kz and K, are the components perpendicular to the crystal surface of k., k;,

K, and K,

2.2 4. Diffraction Intensity

(1) Introductory

Using j as the number of tie point, the relationship between D, and D, for every tie
points is given by

D,? =RYD, (2.60)

When diffraction conditions' are decided A&, W will be obtained by (2.53), and .Y is decided
by (2.49) using the . Based on (2.46), ¥ coordinates of the dispersion surface is shown by

the following equation

K, X [ sin2f cosf, sinf | = .
o ls || S02B e COSGuSRP |yl (261)
2|cos@, cosb, | | | sin26, |cosé, cos, |~

In the equation, c= | is Bragg case and c= 2, Laue case. O and g’ are given by

0=W +ig)* +(-1)°(1-2qg +i2pcosd), (2.62)
g=g sinfy Cm/b],—. (2.63)
|cos@, cosd,|
g and g, will be shown by the following equations
g€=8q - (2.64)
g, =2 (2.65)
12w
2, will be examined as follows. In generally,
Hoi| 21 2 (2.66)




|&;1= 1 will result. As shown by (2.30 b), since X is always negative, &, is also negative
The correction term 7, for temperature in (2.17) is 1 at maximum, and is smaller than 1 for
the limited temperature. Therefore, assuming
| %1 1= 2z, | (2. 67)

When 7 is one or less, |&,| is larger than 1. Generally, if temperature rises, since 7

becomes small, | &, | becomes larger than 1.

& is calculated by substituting Y of (2.61) and X of(2.49) to (2.45), and is given by

Kok [0058 1)¢| W cosfy sinfl_| ) O 2.68
\ cosé, 1D T8 +H(-1)'{O . (2.68)

cos6, cos@, [

[

substituting & to |k, |-k, = & —k,,, is given by

K. 7, [cos,
PRI 5 74 K.
2 \lcosé,

[0 07 +igh + (-1’ o] (2.69)
substituting (2.69) to (2.60) and R'”’ is obtained by the following equation

= f» = (T e

RW = &b | 05 ~[(- 1) (W +ig)+(=1)'/0]. (2.70)
% Vicos6,

Since RY was obtained from the above consideration, and ), is de derived as

following.
(Laue case)

As shown in the following equation, 2" is obtained from the boundary conditions of (2.56

b) and (2.60)

D DY
D, ===~y 2.71)

Therefore, D,"” and D, are given by the following equation from (2.56 a)

19




D - o (2.72a)

/) 2)

—F, (2.72b)

Substituting R" of (2.70) to (2.72), (2.73) is obtained as DY of Laue case

(Bragg case)
Boundary conditions (2.59b) are as follows
B ==RED 2 exp[-2 wiH(k,. = —k,. )], (2.743)
D, =-ROD "V exp2 wiH(k, =k )] (2.74b)

(2.58 a) is modified as follows

: D,
DY S S =) S =
‘ ¢ R
b RV
D R =D Wexpl2 miH(k,. " =k, )=£E (2.75)
1

D is obtained equation using (2.74) and (2.75) as follow

‘ R .
D= = = (276a)
R R™ exp[2 n iH(k, k.. )]
By the same method, as D
e R ,
TR — ——F (2.76b)
R™W = R exp[-2 m iH(k,; |
Since k,."' —k,."" is the difference of tie points on ¥ coordinates in reciprocal-lattice space

as shown in Fig.2.3, the following relationship is establish

£
tans

=)/ i .77




Using (2.61), the relationship of (2.77) will become to following

y@_yo =2 g (2.78)

Ky X
S=

Tk (2.79a)
|cos 8, cosd, |

5 is shown by the following equation using | 7, | in SIA

Ko, | 2
o= - or li_" | ety
|cosf, cosb, |

For this reason, when ¢=1, since y, is zero,g' is also zero. In §'=0, it become to 0 that

the difference between two tie points shown by (2.78). However, s of this paper does not
become zero in g= 1, two solution with the hyperbola in the dispersion surface inconsistent
with result by SIA

Substituting (2.61) and (2.77) to (2.76), and D" of Bragg case is given by

(W +ig+(=1)’ \JO) exp((~1)! isHA[O.
/)“‘ = (=1) g VU € P( ) ’\7 l/,‘,)i'/.‘w (28())
+ig'—/Q)exp(—isH4/O)

(W + :-N”(ji') exp(isH 7

In an experiment, the X-ray of the limited cross section incidents into the crystal as shown
in Fig.2.5. Generally, the cross section of the diffracted wave differs from the cross section
of the incident X-ray. Therefore, let Py is the energy per unit time of the incident X-ray, Py
one of the transmitted wave, and P; one of the diffracted wave, the following relationship is

obtained also in consideration of Bragg case (cos#, <0)

5 g ? 1cosd,|
45, | By |58, | (281a)
P |E| cosé

P, |E

£ — I_" (2.81b)
P |E







> exp(isHAJO) — exp(—isH /O
Fils Al gl w dy - EPUHNDD) = SXpl sy O, __| (283a)
P, (W +ig' +O)exp(isHJQ) — (W +ig"' — Q) exp(—isH,/O)

P, 2./0 i
7;7 = exp(—u,H") B ‘ 2.83b)

i w H;f‘ ‘rv"‘(j)exp(l.VH \/‘v(j)) — (W +ig'- \/‘-(j))exp( —isH \/6)1
Here, H' is defined as follows

YR H ) f \
1‘/‘:}'0'\0” sin 3 - i‘ 1 . Iﬁ s (2.84)
cosf, cost, 2\cosf, cosé,)

H' is mean distance along which the diffracted and the transmitted waves pass within the
crystal in Laue case, and is positive. In Bragg case, however, it is an average of the
difference of the distance along which the diffracted and the transmitted waves pass within
the crystal and is negative.

The symmetrical factor a is defined by the following equation using & and &, of the

dispersion surface in Fig.2.3

cos B
M COs b @ SS)
|cosd, |

Using this a, g’ of (2.63) is expressed as follows

g=g gl (Laue case) (2.86a)
2\a

] %

8= gﬂ: ; (Bragg case) (2.86b)
2\a

General formulae that obtains the diffracted and the transmitted intensities in (2.82) and

(2.83) has the following characteristics
(1) Each expression has term exp(—isH,/Q) expressing the wave from the tie point 1 and

term exp(—«r.s‘H\/Q) expressing the wave from the tie point 2.
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(2) (1-2psind) in the diffracted intensity provides the polarity information in the crystal
by phase difference & between g, and X

(3) The denominator and the numerator of the transmitted-intensity expressions are reversed
in Laue case and Bragg case

(4) The diffracted and the transmitted intensities of Laue case, and the transmitted intensity

in Bragg case are depend on the mean absorption 4,

(iii) Integrated reflecting power

In this section, the integrated reflecting power by this paper is examined comparing with
the result of SIA. In order to measure the intencity curve (rocking curve) of (2.82), incident
X-rays are required very parallel . In the usual source of X-rays, however, the intensity
obtained by the generator is weak, and the parallelism are poor. Therefore, in conventionally,
the integrated reflecting power is measured instead of the rocking curve. Integrated
reflection intensities is obtained by multiplying the intensity of incident X-rays to the
integrated reflecting power

According to FK [10], the integrated reflecting power R;, of the diffracted wave by the

angle-dispersive method is expressed as follows

_(leoseu) "

\ cos@, / sin26,

)

[ ff aw

In many conventional textbooks, |y, | has been used instead of y, in (2.87). The energy-

dependability of the integrated reflecting power in that case is satisfactory when surv eying in

H4




a wide range. However, Ry is zero when |y, |= 0. For this reason, the precise argument

needs (2.87)

2.2.5 Energy Flow

Laue(1952)[11] pointed out that the diffracted and the transmitted waves belonging to
one tie point in a crystal without being able to exist independently. However they are united
and are transmitted. The energy flow of the electromagnetic field is expressed by a Poynting
vector, The Poynting vector of two-wave approximations is expressed by the following
equation in [APPENDIX B] when calculated by applying the FK method, referring of

Miyake [1]

== € ) | &k k,
S =—exp[4n(k, )] == |D,|"+—|D,[ (2.88)
o pl : J‘ k| TRl

The term of exp shows an attenuation by absorption and |D,_| and |D,| are the amplitudes

of the electric displacement of the diffraction and the transmitted waves. § expresses a
time-wise and space-wise averages of the Poynting vector, and is decided by the dispersion

surface and the boundary conditions.

2.2.6 Wave Field in Crystal
The general expression of the pendellésung beat and the standing wave in the crystal are

derived below

(1) Pendellosung beat
As mentioned earlier, the pendellosung beat appears in /(r) which is the sum of waves

from the tie points 1 and 2 in the crystal

Pyl
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2.3 Diffracted Wave and Transmitted Wave in Laue case

In the following, using the fundamental equations obtained by section 2.2, a diffracted
intensity, transmitted intensity, dispersion surface, Poynting vector and the wave field in a
crystal in Laue case are examined by the variation of ¢ (ratio of | %;, | and | % |), H (crystal

thickness), and & (phase difference between %, and X, )

2.3.1. Rocking Curve
The characteristic of the dynamical diffraction appears as the change of the intensity near
the Bragg condition, forever rocking curves around the zero are investigated by variable .

The conditions of the following discussion have symmetrical reflection

(i) Dependence on ¢

The range of gis 0to 1. y,x , of (2.44) is the real number of positive for g= 0, it is
the real number of minus for g= 1, and it is the pure imaginary number for g= 0.5. Rocking
curves are examined in these three cases. The diffracted intensity at W= 0 becomes zero

when ¢= 0 and sH=n, the crystal thickness is chosen with this condition

a) In case of g= 0

The condition exist two cases for g= 0, and one does not have absorption ( 7, =0) and

&
=]




another has absorption (%= 0). In g= 0, if there is no absorption, yz,= %, =0 are
satisfied. When % ,= 0 and there is the absorption, y,, is not zero. As the actual crystal,
the absorption is not zero completely. For this reason, we examine the dynamical diffraction
when the absorption cannot be neglected, and when there is no absorption. The dynamical
diffraction with the absorption at g=0 had been examined in the conventionally theory

When there is absorption for g= 0, (2.82) becomes following equations

: o

2 sin” (sHA W~ +
i = exp(—u,H") S ,,V = ). (2.94a)
P W+l
P, W* 4 cos:(;,\’}/\l;f{'ifl)

= WSS L Sllk i, 2.941
P exp(—u,H") 7 ( D)

Rocking curves of diffracted and transmitted waves in sH=n by (2.94), are shown in Fig 2.6
by the dotted lines. In this paper, g&=0.1 (x,H'= -027) is selected. When y, becomes
zero near Ga K-absorption edge of GaAs 200 reflection, g can be estimated to be about
g=0.1, by calculation using the PH method (the problem is examined by Chapter III in
detail). When the mean absorption is negligible in (2.94), the exp term is set to 1. Equations
(2.94) becomes the same as that of (3.142) of Zachariasen [12] which neglected absorption
Therefore, When x,# 0, (2.94) can be interpreted the equation that the exp term is added

to the formulaat z,=0
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Fig.2.6 The rocking curves in the symmetric Laue case for ¢ = 0.0, 0.5 and 1.0

when sH = 7t and go=-1(g=-0.1). (a)Diffracted waves. (b)Transmitted waves
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0. The ratios of the diffracted and the transmitted intensities to the incident intensity are both

about 0.25 at #= 0. This effect of the making peak at #= 0 is the Borrmann effect. The ups

and downs in the tail of the rocking curves are the pendellosung beat, and the period is 7 in

|W]> 1. These pendellosung beats are maked dents and bumps on the intensity obtained by

the mean absorption (dashed line) in transmitted intensity. Rocking curves of the diffracted

and the transmitted intensities are symmetry to W= 0

The quantity of the anomalous transmission at /= 0 is calculated. (2.96) will become

following equations when g=0 and W= 0

1)

,[;!. = %[I -2exp(2gsH) +exp(4gsH)], (2.97a)
PNl ) ;
7 :;[] +2exp(2gsH) + exp(4gsH)] . (2.97b)

Fig.2.7 shows the influence of sH in (2.97) when go=1. If sH increases, the diffracted-

intensity (dashed line) approaches from 0 to 0.25, and the transmitted-intensity (solid line)

will approach from 1 to 0.25. This phenomenon is clear also from (2.97). Therefore, if sH is

more than 6 and the crystal is sufficiently thick, 25% of both diffracted-intensity and

transmitted-intensity is both penetrated anomaly regardless of the crystal thickness. These

intensities are obtained by the anomalous transmission. That is, if the crystal is sufficiently

thick at W= 0, the half of the incident X-ray is absorbed by the crystal and the other half

penetrate it.
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Fig 2.7 The change of the intensity with crystal thickness in the symmetric Laue case

for W=0 when ¢ =1 and g,=-1.0

c) In case of = 0.5

Following, rocking curves at |75 |=[%,| (g= 0.5) are examined. Rocking curves of the
diffracted intensity are shown in Fig.2.6 (a) as the thin solid line. Rocking curves of the

2.6 (b). Here, the thin solid line is & = 0 and the dot

transmitted intensity are shown in Fi
dashed line is 5= 7. The rocking curve of the diffracted intensity has a peak at W=0, and it is

symmetry to W=0. Rocking curves of the transmitted intensity are asymmetry to W= 0. The

ve side slightly from #=0, and one of &= 7 is the positive

peak shift for 6= 0 is the neg

side slightly. In case of 8= 0, the transmitted intensity in the negative region of W is larger
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than the intensity of the mean absorption (dashed line). and in the positive region is smaller
than the mean absorption. The asymmetry is reversed in 6= m. The asymmetry of the
rocking curve by & is also examined in the dispersion surface of the paragraph (2.3.3). In
case of §= 0, the part of the intensity(Point A in Fig.2.6(b)) in the positive region of W
becomes weak remarkably. In the case of &= m, the portion is in the negative region (Point
B). This effect is called nontransparent effect in this paper. This effect will be examined in
detail later

Pendellosung beats appear over rocking curves of diffracted-intensity (a) and transmitted-
intensity (b) even though both beats are weak. The pendellosung beat of the diffracted
intensity weakly vibrates from W= 0 to the tail. In case of ¢= 0 or g= 1, the rocking curves
exist portion that diffracted intensities becomes zero. However it doesn’t exist for ¢= 0.5

This effect will be discussed later in paragraph (2.3.3)

(ii) Dependence on crystal thickness /

In (2.82), sH including thickness is used as a parameter to examine the crystal thickness

Assuming that s is constant, since sH is proportional to the crystal thickness / , sH is chosen

As in (i), three cases are considered for ¢ , namely, g=0, 0.5 and 1.Fig .2.8 shows the results

of calculations made by varying sH to /2, n and 3n/2 for each of ¢ in (2.82)

a) In case of g= 0 (g=0.1)







intensity (b) weakens as the whole affected by mean absorption (dashed lines) proportionate
to increasing thickness. As shown in (2.95), the sum of diffracted intensities and transmitted
intensities is the quantity remaining affected by the mean absorption and is constant. The
sum shows fixed value. In this case, however, the effect of the anomalous transmission does
not appear even though the crystal thickness becomes thick. In |W]> 1, the period of the
pendellésung beat shortens to 1/2 and 1/3 when the crystal thickness becomes twice and 3
times. Changing of the period of the pendellosung beat is in agreement with the result of the
conventional dynamical theory without absorption.

b) In case of ¢= 0.5 (g—1)

In this case, when crystal thickness increases, diffracted-intensity (c) will become weak
quickly in the tail of the rocking curve. However, the intensity at W= 0 does not weaken and
rocking curves shapes the peak by Borrmann effect, approaching the peak value of 0.25
When the crystal thickness increases, the transmitted-intensity (d) in [#]>1 will decrease
quickly as in diffracted intensities. However, the peak near W= 0 does not decrease. The
transmitted rocking curve is asymmetry to W= 0, and has the peak in the negative side of W
when &= 0. The peak is in the positive side of W when ¢ = n. Since the shape of rocking
curves when &= 7 is reversed one of § = 0, Fig.2.8 showed only & = 0. When sH increases,
the peak of the rocking curve of the transmitted intensity becomes sharp gradually and the

intensity approaches the constant value of 0.25 as in diffracted intensities at =0




The period of the pendellésung beat by the increase in thickness changes as in g= 0

However, the peak height of pendellésung beats is different from that when g= 0. Rocking-

curves of the diffracted intensity(c) has the peak at W= 0. and is symmetry. The intensity of

the tail becomes weak remarkably as the crystal becomes thick. The pendellosung beat of

transmitted intensity (d) is not clearly visible in the negative side of W. However, it is clear

on the positive side. Since it is large that the difference of the amplitude of waves from tie

points 1 and 2 when ¢g= 0.5, the amplitude of the pendellésung beat becomes smaller than

¢=0. This will be discussed further in the paragraph for dispersion surface in detail

In Fig2.8(d). there is the point A which the transmitted intensity becomes weak

remarkably on the positive side of . Increase of sH moves the point A in the direction in

which || increases, and the depth becomes deep gradually. In the point A, X-rays do not

penetrate completely in specific s//. The nontransparent effect to X-rays shown in Fig 2.6(b)

and 2.8(d) was discovered by the authors et al.(1994) [13] and is examined further in

paragraph 2.3.2

¢) In case of g= 1 (g—=1)

Fig.2.8(e) and (f) show change of the rocking curve when crystal thickness gradually

increase. The tail of rocking curves in diffracted intensity(e) and transmitted intensity (f)

become small rapidly, when the crystal thickness increases. By Borrmann effect, the peak of

rocking curves becomies sharp notably as the crystal thickness increases, and the intensity at
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Fig.2.9 The rocking curves of diffracted and transmitted waves
in the symmetric Laue case for several go(g) when sH= =,
8=0. (a)(b)g=0;(c)(d)g=0.5;(e)(H)g=1

W= 0 approaches 0.25. If the monochromator can develop using the anomalous transmission

in g= 1, the dispersion angle will be narrow about 1sec. The anomalous transmission by this




Borrmann effect will be examined later in detail from dispersion surfaces and wave fields in a
crystal

A pendellosung beat will become small remarkably, if the crystal thickness increases. The
period of the pendellosung beat by the increase in the crystal thickness changes as ¢g= 0 and
g= 0.5 in |W> 1. Rocking curves of diffracted intensities and transmitted intensities is
symmetry to #= 0. The minimum of the pendellosung beat for diffracted intensities becomes
zero. The minimum of the pendellosung beat of transmitted intensities is in agreement with

the intensity (dashed line) by the mean absorption.

(iti) Dependence on g( gs)

As defined in (2.65). g( go) is in inverse proportion to y, which will become small as
temperature increases as shown by (2.20b). For this reason, | g( go) | will become large as
temperature increases. In symmetrical reflection, if K, =« is approximated, wu H is as
follow from (2.31)

M, H = -2gsH cos@, (2.98)
In (2.98), if the crystal temperature rises, | g( gs)| will become large. As the result, the mean
absorption g, also becomes large. Fig.2.9 shows rocking curves of diffracted intensity (a, c,
e) and the transmitted intensity (b, d, f) is changed for ¢g=0, 0.5, and 1 assuming sH=m.

Even when g is not calculated in g= 0, g is directly obtained from (2.64). In the same
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viewpoint as (ii), rocking curves of diffracted intensity (a) and transmitted intensity (b) are
examined by change g to -0.1, -0.11, and -0.13. Intensities of rocking curves becomes
weaker slightly uniformly to increase of g

In g= 0.5 and ¢g= 1, rocking curves shown in Fig.2.9 (c). (d), (e) and (f) when |g
increases with 1.0, 1.1 and 1.3. Here, if |gg| becomes large, diffracted intensities and a

transmitted intensities will become small uniformly like g= 0. This effect is understood from

the fact that g (g,) dependence only exp(—u, H")

(iv) Dependence on phase difference &

Since the imaginary part of O in (2.62) is zero when g is 0 and 1, the dependence on &
appears in 0< g<1. When the crystal has the center of symmetry, y, and y, can express
both the real number and the Friedel's law is satisfied. In this case, the value of & is either 0
or . Although the rocking curve was symmetry to W= 0 when ¢= 0 and ¢g= 1, the other

rocking curve was asymmetry. In the further, dependence on & of rocking curves is examined

to ¢= 0.5 which is the middle of g= 0 and ¢= 1
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Fig.2.10 shows rocking curves in case of 6= 0 and &=n when ¢= 0.5 and sH=n/2. The

diffracted intensity is shown by the thin solid line and the transmitted intensity is shown by

the thick solid line and the thick dashed line. Although the rocking curve of the diffracted

intensity is symmetry to W= 0, the rocking curve of a transmitted intensity is asymmetry.

Since the rocking curve of the transmitted intensity of §= 0 (thick solid line) and that of

& =n(thick dashed line) is mirror symmetry to W= 0, namely, / (0, ¥) is equal to / (%, —W¥).

04

NORMALIZED INTENSITY
o

(=]

Fig.2.10 The calculated rocking curves in the symmetric Laue case for ¢=0.5,
go=1 and sH= 1/2. The thin solid line is the curve of the diffracted wave
The thick solid and dashed lines are the curves of the transmitted wave

for 8= 0 and & = 7, respectively

70




The asymmetry of rocking curves in transmitted intensities appears to the shift of the peak

position and to the difference of the intensity in the tail. This asymmetry is examined also in

paragraph on dispersion surfaces

¢=0(g=-0.05)

sH

Fig 2.11 The integrated reflecting power in the symmetric Laue case
as function of sH

(v) Integrated reflecting power

absorption (

“ig 2.11 shows the behavior of the term R, of the integration in (2.87) when ¢= 0, 0.01,

0.1 and 1. A horizontal axis is sH. The pendellosung beat is compared between case of no

(g= 0) and absorption (g=—0.05) when g= 0. When the crystal thickness become

S




infinitely, R will converge on ©/2 with no absorption. However, pendellésung beats with
absorption rapidly attenuates R of large |g| becomes zero if sH is infinite. The
pendellosung beat in the application limit (¢= 0.01) of SIA can are able to see until 3 period

The maximum of R in g= 0.1 is about 0.75, pendellosung beat cannot look, and the

maximum of R} in q= 1 is about 0.27

2.3.2 Nontransparent Effect

Nontransparent effects is effect that transmitted intensities becomes weaker than the
mean absorption, remarkably in 0< g<1. When g= 0, since all the energies of the incident X-
rays will become the diffracted intensity at W= 0, transmitted intensities is zero and
sH=02n-1)r/2 (n=12,-**) (see Fig 2.8). However, this is not the nontransparent effect.
There are two idea in the nontransparent effect. One is the effect of decreasing X-rays
remarkably, and another is the effect completely shuts out X-rays. This paper is based on the
opinion that the latter is the solution. Fig.2.12(a) shows rocking curves which changed sH
with 1.88, 3.49 and 4.70 when ¢=0.5, and (b) shows rocking curves which changed ¢ with
0.0099, 0.876 and 0.99 when sH =4.38. Each rocking curve of Fig.2.12 shows the
nontransparent effect. When the nontransparent effect occurs, these rocking curves have
suggested the special relationship among s/, g, and .

In order to analyze of the nontransparent effect as Fig.2.12, the wave field in the crystal

=1
(V]




sH=1.88

sH=4.38

g=0.0099 :

¢=0.99 ¢=0.876
1

L 1 1 L

(o8]
V5]

-3 -2 -1 0 1
W
(b)
Fig 2.12 The rocking curves of the transmitted wave for go=-1,6=0

when constant ¢ and sH. The three dashed lines represent exp(zw/H”)
for the sH,respectively. (a)constant g=0.5; sH=4.70(thick solid line),
sH=3 .49(thin solid line) and sH=1.88(dotted line). (b)constant s/

are examined as D, , D, and DD, Each two waves connected with transmitted waves are




in the crystal, and the sum of the two waves is shown in the following equation

D, (h) =D, (h)+iD, (h) (2.99)
As shown in the following equation, D, (k) and D, (h) of (2.99) are the amplitude of the
real part and the imaginary part of the wave D, () from every tie point, respectively

D, (h)= D" (h)+ DS (h), (2.100a)

D, (k) = DY (h)+ D2 (h) (2.100b)
When g = 0.5, D,(h) (dotted line), D, (h) (solid line) and D, (k) (dashed line) are shown
in Fig 2.13 when sH =1.50, 1.88 and 2.20. Noticing point A, the intersection point between
D, and D, is positive at s//=1.50. However, the intersection at s//=2.20 is negative. At
the midpoint of them, s#=1.88 both just cross where both are 0. The nontransparent effect is
understood to occur when the real part and imaginary part of waves in the crystal become
zero simultaneously. Therefore, it is quite natural to be called the nontransparent effect as for
this phenomenon

Furthermore, the real part and the imaginary part of D, (k) will be examined the origin

which becomes zero. Fig.2.14 shows the behaviors of the wave field in the crystal for every
tie point when sH=1.88 and &=0. Noticing lines (A-A', B-B') in which the nontransparent
effect occurs. In A-A', although the amplitude of D)’ and D]’ is equal, the sign is

opposite. In B-B!' similarly, although the amplitude of DY and DY is equal, the sign is

opposite. That is, nontransparent effect is understand to occur when real parts of the wave of




0.8

sH=1.50

sH=1.88

Fig 2.13 The variations of the transmitted wave D, (solid lines),[),(dashed lines)
and |D,|(dotted lines) for sH=1.50 (upper panel), sH= 1.88(middle panel),

and sH= 2.20 (lower panel);q=0.5, g/=1 and 6=0.

two tie points negates to each other, and imaginary parts negates under similar




circumstances
In the case of 6= 0, the reason why the nontransparent effect occurs only by the positive
side of W, because the conditions of | D”[>| D[ and | D) |>| D, | are always satisfying
However, the nontransparent effect is not always occur in the region of #> 0. The
nontransparent effect occur under specified
The nontransparent effect is generated on the following conditions. The numerator of
(2.82 b) is placed as shown in the following equation
(W + \/(j ‘)E\’pux‘HV;Q) (W - V’(j))exp(fm]l":"(_) )=x+iy (2.101)
The following equation will be obtained, placing \"“‘Q: Rev‘@ +i1lm \@ and expands
(2.89)
X+iy= Q[Im \/@ sin(sH Re V@) — Wcos(sH Re\/"‘(j))]sinh(.\li Im V@)

+2Re[0 cos(sH ReJ0) cosh(sH Im {0) .7
&« AUL)

—

i{?.[lm \@ cos(sH Re V@) + Wsin(sH Re \j(?)]cosh(.s‘H Im/O)
—~2Re J(f) sin(sH Re \/(?) sinh(sH Im \1"1(_7))}
2+ l.)'iz become zero if x=y=0. Therefore the following equation is obtained from x= 0

[W cos(sH Re[Q) — Im /0 sin(sH Re /O »] sinh(sH Im {/O)

- - i (2.103a)
= Re /O cos(sH Re/Q) cosh(sH Im Q)
And, the following equation is obtained from y=0
[W sin(sH Re \/Q) +1Im \f@ cos(sH Re /O )]cosh(.vH Im \."((:))
(2.103b)

= Re/O sin(sH Re/0)sinh(sH Im/O)
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0.6

q=0.5 .
sH=1.88 ot ! === pf

-0.2

-0.4

-0.6

Fig 2.14 The variations of the transmitted wave D,,'"(thick line) ,
D, (thick dashed line), D,,*(thin line) , D,* (thin dashed line)
and |D,| (dotted line) for sH=1.88, q=0.5, g0=-1 and 6=0

Following relationship is obtains from (2.103)

~]




: 2W 1m0
tan(2sH Re4/0) = —75

ol -w*

(2,104)

From the relationship of (2.104), in order to generate the nontransparent effect, the
conditions of sH, ¢ and W are shown in Fig 2.15.The curved number shown in the figure
expresses the sequence in which occurs the nontransparent effect under each condition. In
figure(a), the nontransparent effect from 2nd to the 4th shows the tendency that s/ becomes

the minimum for ¢g= 0.5, except the primary nontransparent effect. In figure(b), the

nontransparent effect shows the tendency that i becomes the maximum for ¢=0.5
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Fig.2.15 The conditions in which the nontransparenteffect occurs

(a) The relation between g and sH, (b) T

Dispersion Surface in Laue Case

(i) Introductory

‘he relation between ¢ and W

-G




The solution of the dispersion surface by (2.47) has been exist real parts and imaginary
parts. In conventional SIA theory, the real part of the solution only has been adopted by
neglects the imaginary part of the solution, such as total reflection region in Bragg case
when g= 0. However, the solution of the dispersion surface in this study has the natural
complex number. Therefore, the real part of the solution of the dispersion surface is treated
equally to the imaginary part. The viewpoint differs from the conventional dynamical theory
greatly

In order to consider the characteristic of the dispersion surface, the conditions of
symmetric Laue case are used for this paper (f=m/2 and —6, = 6, = 6;). Consequently,
(2.47) becomes the following equation

(Y'cosB,)* —(Xsind,)* —(Z'cosb, —k,,)’° = KorZn | (2.105a)

, e E 2 . pcosd
Y'cosB,(Z'cosb, — Kk ) = W/"’4/ =

(2.105h)

The variation of the shape of the dispersion surface is examined for g =0, 0.5 and 1

(ii) In case of g= 1

The dispersion surface not considered conventionally in ¢= 1. In this case, p on the right-

hand side of (2.105 b) is zero. Therefore, there are two cases of 1'cosé; =0 or

Z'cosB, — K, =0 _The following equation is obtained from Z'cosd,; —x, =0
. . . g B | s i
(Xsing,)* — (¥'cosb,)’ =2 " LR (2.106a)
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The following equation is obtained from }'cosé, = 0[6]

y 5 : 2 g ¢
(Xsinfy)" +(Z'cosb —x,,)" - "7?

(2.106b)
The dispersion surface obtained by (2.106) is shown in Fig 2.16 . In this figure, the
dispersion surface is shown on the 3-dimensional orthogonal coordinates with three axes (X,
V. 7). Axis X is parallel to the crystal surface, " and Z' axes cross orthogonal to X-axis
and perpendicularly intersecting each other

The real part of the solution of (2.106 a) is on plane .X—}" shifted by «, /cosé, from
Z-axis. The real part of the solution is the hyperbola in [X|2[X(|[W|=1)| and is zero in
X|<|X(|W]=1)|. The imaginary part of (2.106 b) is on plane X-Z' and the imaginary part of
the solution is the ellipse in |X[<|X([W[=1)| and is constant value «,/cosé, in
| X 2| X (W= 1)|

In order to understand the tie point on the complex dispersion surface, let us consider the

12| X((W)=1)|. and

following two cases. One case is where the normal-line v is located |X
another case is where the normal-line v is located |X|<[X(|W]=1)|
a) When normal-line v is located in | X|2| X(|W]= 1)|

The tie point in this case is shown in Fig 2.16(a). There is an intersection A, of between
the X-axis and the normal line v, which are decided by incident X-rays Ko. An A; is the point
which carried out x,, /cos#, movement on Z-axis, through the A, The straight line v is

varallel to v, through the A, two tie points are A" and A® which intersections are
P g p

81




between the real part of the solution of the dispersion surface and line v. Therefore, four

s s e W 7@ 5 e @
waves exist in the crystal, k&,'" and &,'" from A", £,” and £, from A"®

Crystal surface

@)| XA X(W|=1)|
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O)| X4 X(W =)

Fig.2.16. The complex dispersion surface in the symmetric Laue case

when g=1 and =0, Thick solid lines are the real parts, thick

dashed lines are the imaginary parts

@)

Since the imaginary part of the dispersion surface is constant value Z'=x, /cosB, ,

o=k, For this reason, no difference of the absorption in waves is caused by tie-point (1)

and (2). There are always two tie points on the real part of dispersion surface whose values
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slightly differ. Therefore, the pendellosung beat appears

b) When normal-line Vv is located in | X|<| X(|[W]=1)|
The tie point in this case is shown in Fig 2.16(b). The straight line Vv is on the plane X-Z',
and is parallel to Z-axis, and intersects perpendicularly with v, Since the real part of the
solution of the dispersion surface is zero, the intersection of between Vv, and ellipse which is
'@ Therefore, since 4. =k and k. =k

r

on an plane X-Z are tie points A", A
pendellosung beats does not exist in | X|<[ X ([W]=1)

The imaginary part of the dispersion surface is ellipse on an plane X-Z. £,. is the

distance from A" to A,and 4.’ is A’® to A, Let us consider the meaning of this solution

These have the following relationship in symmetrical reflective conditions

=k, cost, + 1" (2.107)

In this equation, j is tie-point number. The following equation is obtained from (2.61)

3

f . W= 1)
|27

(3]

(2.108)

S

g
—[w(-l)'v‘l—fﬂ"‘—_ (W]<1)
T

\
\
[

o

g of (2.108) is proportional to the absorption coefficient ;. as shown in (2.98). Therefore,

the absorption is large when k).’ is large. The average length from two tie points to X -axis

is shown in the following equation
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(2.109)

This equation (2.109) means that an average with /‘ and £%'is proportional to a mean
absorption

Following, let us consider anomalous transmission in |X|[<|X(W]=1)|. £ <& is
indicated from Fig.2.16(b). This indicates that the wave with tie-point A" is absorbed more

reatly than the wave with tie-point A”?. Since the wave with tie-point A" is absorbed

more greatly than the mean absorption, the wave indicates the anomalous absorption
Conversely since the absorption of the wave with tie-point A’® is smaller than the mean
absorption, the wave indicates the anomalous transmission. In this case in X= 0 (W= 0), Z' is
zero. Therefore, there will be completely no absorption at all. On the other hand,, the wave
will tie-point A' " receives the absorption of the twice of the mean absorption in X=0 [7].
As mentioned above, the display of the complex dispersion surface as Fig 2.16 is very
convenient to understand the dynamical diffraction by the resonance scattering. However,
the description of the figure is not easy. Therefore, the method to share ¥-axis and Z'-axis
and to use simple drawing planes can be considered. One of drawing is shown in Fig 2.17(a)
The complex dispersion surface shown in Fig 2.16 can be analogized from this figure
relatively easily. Therefore, we use the shape of Fig 2.17 for the display of the complex

dispersion surface henceforth
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Fig.2.17. The dispersion surface in the symmetric Laue case. The solid
and the dashed curves are the real and the imaginary part of the curves.

5=0. (a) ¢=1.0, gy 1.0.(b) g= 0.5, go=—1.0. (c) g=0.0, g=-0.1.
(iii) In case of g=0
Let us consider the complex dispersion surface with absorption for g= 0. If ¥'cosf, is

not zero in (Z.105), the relationship of the following equation satisfies
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(Y'cosb,)’ —(Xsinf,)’ (2.110a)

Z'cosf, —«x,, =0 (2.110b)
The complex dispersion surface of (2.110) is shown in Fig2.17(c).It will guess from the case
of g= 1. The real part of solution (the hyperbola, thick solid line) of this dispersion surface is
on the plane X-¥" shifted by &, /cos8,, Z' axis from the origin L. The imaginary part of the
solution is the straight line (thick dashed line) of the constant value which shifted by
K, / €0s8, on an plane X-Z'. The imaginary part of the solution indicates that the wave of
tie points 1 and 2 receives the same constant absorption. For this reason, there is neither the
anomalous transmission, nor the anomalous absorption. Since the real part of the solution
has two value which always differs, the pendellosung beat is observed in the entire regions of

X (W)

(iv) In case of g= 0.5

In Fig 2.17(b) shows the complex dispersion surface when ¢= 0.5, go=1, =0 or 5 =n.
Numbers in the figure expresses the number of the tie point which &= 0 represent as 1 and 2,
and 5=r are 1’ and 2°. A thick solid line shows the real part of solution, and the thick
dashed line shows the imaginary part of the solution. The real part of the solution is similar
to change of the solid line of Fig 2.17(c), and the imaginary part of solution is similar to

change of the dashed line of Fig 2.17(a). The sections of this dispersion surface are separated




in the entire regions of X () in the real and imaginary parts of solutions. In 6= 0, the
imaginary part of the solution of the tie point A*® is zero at X= 0 (/= 0) and the wave
shows anomalous transmission as in (a), does not indicate absorption. The imaginary
solution of the tie point A" proportional to absorption twice as many as the mean
absorption at X= 0. Thus, the wave with the tie point A’® indicates the anomalous

»(1)

transmission and the wave with the tie point A™" indicates the anomalous absorption when

&=0.

Let us consider the following asymmetry of the transmitted rocking curve when g= 0.5 In
the Fig.2.14, the amplitude of the wave field with tie-point 2 is larger than one with tie-point
1 in the positive side of X (W< 0), it is the contrary in the negative side of X. However, the
absorption is symmetry with X= 0. Therefore, since the amplitude of the wave field in the
crystal is asymmetry with X= 0, the rocking curve of the transmitted intensity becomes
asymmetry.

On the other hand, if 6 =n, the amplitude of the wave field with the tie point 2 is smaller
than one of the tie point 1 in the positive side of X, and the negative side is the contrary
Therefore, in the rocking curve of the transmitted intensity in §= 0, the asymmetry is
opposite that in §=n. Although the real part of the solution of dispersion surfaces of g= 0

and ¢= 1 was hyperbola, there are shown that both are conjugations to each other. By using

a complex dispersion surface as mentioned above, the absorption can be understand from
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Y2 cos® @, — X* sin® 6, — 2k, Y cosb, —x,°

= 4/\‘,‘,:];‘ (1 -2q + 2ipcosd) (2.112)
The following relationship exists among 6, /4,6, and@; in Fig 2.2
8,+B=—6+2 0,-B=—6,-= (2.113)
The following relationship is obtained from f=7/2
—sinf, =sin#, =sind,, (2.114)
(2.115)

cosf, = cosf, = cost,
Differentialing (2.48) with respect to X and the following equation is obtained, respectively

SPT (E ) CR- 7AL ) dz'

Xsin“ @, +| } '(”, Z — | cos” @, +K,, cos@ =0, (2.116a)
7 \ dX aA ‘ " dX

[r £/Z + 7 1)7 | cos 0, — K, cox/}_d) 0 (2.116b)

\ L/\ dX/ o

(s A : . xR o ’ s =
Calculating 7 from (2.116b) and substituting it in (2.116a) and the following equation is
(25

obtained

dr' _ L, XV'sin” 6, . 2117
dX Y7 cos® 8, +(x, —Z'cosly)

As shown in Fig 2.18, assuming o is an angle which shaped by the tangent in the point (X, ')

of the real part of the dispersion surface and axis X, tanois as follows
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Crystal surface

T T

Fig 2.18 Geometrical construction of Poynting’s vector S

S

and the dispersion surface.
dY >
tang = — (2.118)
dX

Let us A is an angle that shaped by Poynting vector and diffracting lattice surface, the

following equation will be established from Fig.2.18

RYF -1
tan A = 7“713110; (2.119)
R i

Where, j is the number of the tie point. Consequently, the angler between the Poynting

vector and the real part of the dispersion surface is given by the following equation [14]
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tany = cot(|o + Al) (2.120)

If changes ¢ = 0.0, 0.1, 0.5, 0. 9 and 1.0, calculating from (2.120) is shown in Fig 2.19

deg.
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90

80
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1 1 L i 1

-4 -3 -2 -1 0 1 2 3 4
w
Fig.2.19 The variation of y with respect to W for different
values of ¢ in the symmetric Laue case

a) In case of g= 0

When there is no absorption, Kato[15] has proven that Poynting vectors are the normal to
the dispersion surface. However according to this study, Poynting vectors are always the
normal to the dispersion surface if ¢ = 0, regardless of whether or not absorption functions.

This result is in agreement with the results of Kato(1958)[15], Ewald(1958)[16], and

Battermann& Cole(1964)[5]. However, the above treatment is not neglecting absorption. In




¢=0~0.1, y is within the limits of 90° to 89.4°. Therefore, in g< 0.1, Poynting vectors are
almost the normal to the real part of the dispersion surface
b) In case of 0.5<¢<1

In ¢g=0.5 and W>>1, Poynting vectors are the normal to the real part of the dispersion
surface. However, when ¥ approaches —1 gradually, y deviate from 90° gradually, and y has
the minimum value of 84.5° at W= —1.26, and y becomes large increasing # and will become
90° at W= 0. Thus, if ¢ becomes about 0.5, it cannot say that Poynting vectors are the
normal to the dispersion surface. If ¢=0.9, y will become 68.3° at |W|=1.16.
c) In case of g= 1

W>>1, as in case of

In this case, 7 shows a very big change, as shown in Fig.2.19. If
other g, =90°. However, y gradually deviates from 90° when |W¥| approaches |1|, becoming
y=0 at [W]= 1. That is, the Poynting vector and the real part of the dispersion surface are
parallel at [W|= 1. This result shows physical meaning which the energy in the crystal flow
along with diffracting lattice plane, and since X-rays penetrate the crystal, this conclusion
does not have inconsistency. As shown in Fig.2.16, the real part of solution the dispersion
surface is zero in []<1 when g= 1. On the other hand, yis 90 degrees in |¥|<1 as Fig.2.19.
That is, if [/W|<1, the Poynting vector is perpendicular to the real part of the dispersion
surface and energy flows along with the diffracting lattice plane. This result not

inconsistency physically also.




The above result in g= 0, even when there is absorption, it is shown that Poynting vectors
are the normal to the real part of the dispersion surface. Moreover, in W= 0, Poynting
vectors are the normal to the real part of the dispersion surface, regardless of ¢ value
However, excepting the above-mentioned case, Poynting vectors are not the normal to the
real part of the dispersion surface near W=|1|. The tendency becomes so remarkable that g

approaches 1

(i1) Quantitative treatment of the energy flow
This section is examined the quantity of the Poynting vector by change of ¢ and . In
(2.88), if direction z is an inward direction of the crystal, z is in agreement with crystal
thickness A on the under surface of the crystal. Therefore, magnitude SV of Poynting vector
S for every tie point is as follows in the deepness z of the crystal
C

§9 == exp(drk,,2)| D[+ DS P (2.121)
{4

i
7

The term exp in (2.121) is an attenuation from by the absorption. [ ] is in the second term
shows that the diffracted and the transmitted waves are united and propagating in of the
crystal. Expression of this equation is the same as that of the conventional equation
However, the contents in the absorption term differ as for SIA. The following equation
modifies the exp term of (2.121) and is obtained

exp(47k ., z) = exp{l.s:[‘g +(=1)" Im \(jl]} (2.122)
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Fig.2.20 The variation of the amplitude of the Poynting vector when &=0.
(a)g=0 for 5"; (b) g=0 for §¥; (c) ¢=0.5 for §"”; (d) ¢=0.5 for §;
() g=0.99 for §V; (f) 4=0.99 for S

Fig.2.20 shows S =0, 0. 5. 0.99 when sz is changed to 107, 0.5, /2, 7, and 37 /2 when ¢




is 0, 0.5, and 0.99. In this case, ¢/8n was neglected

a) In case of g= 0
As examined in 2.3.1-1i, g =—0.1 ( 7, #0) was set taking absorption into consideration
The calculation results of S and S are shown in Figs.2.20 (a) and (b) ST will
increase gradually with increasing W, conversely, S will decrease with increasing . And,
S™ and S§™ will decrease with increasing z
Reduction of S and S by increase of z is interpreted as follows. If g= 0, lm\‘az()
o)

will result, and (2.122) is shown by the following equation

exp(dk,, " z) = exp] - U‘; 1 (2.123)
cosfly )

However, k.,= K, was assumed. If z increases in the attenuation term of (2.123), §*’ and
S® will become small exponentially. Thus, z dependability of S and S is understood.
b) In case of g= 0.5
Changing sz to 10 °to 37 /2, calculation results of S’ and S§'* are shown in Fig.2.20
(c) and (d). In this case, excepting near the surface (sz=10"°), the difference in tie points 1

and 2 appears in S”. As shown in (c), S increases gradually increasing /. However, if z

increases , S will become small remarkably unlike (a). And, when z increases as

/2,8 is almost zero

(95}
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On the other hand, if sz becomes above n/2, as for S' of (d), the peak will be shaped

near W= 0. If sz increases, although the peak will become sharp gradually, the peak height

converges on constant value (0.5). Since the exp term of (2.122) is set to 1, S is not

dependent on z and becomes constant value. The reason is that 4'” by the tie point 2 on the

imaginary part of the dispersion surface located in zero at W= 0

c) In case of ¢= 0.99

In ¢= 1, since the denominator \/@ is set to v'fH"‘ -1 from (2.73), D, diverge at |[W]=1
For this reason, S is not calculated at |W|=1 (the problem of this divergence is examined the
standing wave in the crystal ). Then, this paragraph is examined SV for g= 0.99

S and S™ by change of sz are shown in Fig.2.20(e),(f). In |W}=1, there are peaks of
S and §9, forsz<n/2. § and S have the peak at near the crystal surface (sz=10)

at W= 0. However, the peak of S' at W= 0 will disappear with increasing sz, and the valley
is shaped, and S is almost zero when sz= 3m/2. S’ shows the peak like S§ at W= 0in
near the crystal surface (sz=107). The peak of S at W= 0 will become sharp with
increasing sz unlike S, and the peak height converges on constant value (0.5)

Poynting vectors S and S decrease by the mean absorption with increasing sz when
g= 0. However, in case of g #0, the change of S and S are difference with

increasing sz. If sz increases, S’ will decrease remarkably by the anomalous absorption

8 will converge on constant value (0.5) by the anomalous transmission at =0
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