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3.5. Wave Field in Crystal

Formation of the wave field has two cases in the crystal, as it already (2.2.6) described
One is mutual interference of two diffracted waves and mutual interference of two
transmitted waves connected with tie points 1 and 2 (pendellosung beat), Second is
interference with the diffracted wave and the transmitted wave connected with the same tie
point (standing wave). Conventionally. the standing wave in the crystal has been discussed in

the category of SIA. However, this study will be examine over entire region from g= 0 to 1

(i) Phase of the pendellosung beat in g= 0 and g= 1

When the difference is in the wave number of the wave from two tie points, the beat is
generated and the pendellosung beat is observed. As shown in Fig 2.8(a),(b) and Fig.2.9(a),
(b) in g= 0, the phase of the pendellosung beat is reverse at the diffracted intensity and the
transmitted intensity. On the other hand, as shown in Fig.2.8(e), (f) and Fig.2.9(e), () in g= 1,
the phase of the pendellosung beat is the same at the diffracted intensity and the transmitted
intensity. Thus, in ¢g= 0 and g= 1, the phase of the pendellosung beat has the big difference.
Although it can understand the phenomenon that becomes an antiphase for g= 0, from the
energy conseryation, it cannot understand intuitively the phenomenon that becomes an in-

phase for g= 1. We consider the origin of this difference from equations. In g= 0 and ¢= 1,




the following relationship is obtained from (2.95) and (2.97) between the diffracted intensity
and the transmitted intensity. In (2.95) for g= 0, the diffracted intensity is the remainder
which subtracted the transmitted intensity from the remained intensity(exp) by mean-
absorption. And, in (2.97) for g=1, the diffracted intensity is the remainder which subtracted
the mean-absorption from the transmitted intensity. Therefore, the phase of the pendellosung
beat of the diffracted intensity become opposite to the transmitted intensity for ¢= 0, and is

the same for g= 1.

(i) A pendellosung beat and crystal structure factor
Assuming the period of the pendellésung beat to be / / and s have the relationship in

following equation
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(2.124)
! can be determined the high accuracy by experiment. The reason is because the period
(measured as distance) of the equal thickness interference fringes, and the period (by
measured as angle) of the pendelldsung beat seen on the rocking curve can measure with
high precision. Since / is determined precisely experimentally, s is also determined from
(2.124) precisely. Conventionally, the precision determination of the crystal structure factor
has been performed from measurement of the s with the application of SIA. Following, the

justification of the method is examined
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The following equation is established between s of this study and s' of SIA

(2.125)

—q

If | >>1%), @=0 will result. Therefore, s of this study corresponds with ' of SIA. If s

in (2.124) is s in SIA, |%, | will be obtained from the measurement value of s' Fl is
calculated from |%;.|. Thatis, if SIA, the real part of the crystal structure factor is obtained

from observation of the period of a pendellosung beat, and the imaginary part |£},| will not
be obtained. Since the pendellosung beat can also observe the diffraction of only |F},| in this
theory, the conclusion of this theory and the conclusion of SIA is not in agreement. The

amplitude of the crystal structure factor is obtained from s in this theory, and it cannot

choose and request which of |}, | or |F,,|. The error of |£,| by SIA is examined from this

theory, . The range of [F}, |/ by SIA is 0.1 or less. This is g< 0.01 and s/5'<1.005
Therefore, when |5, |/|F,|=0.1, determining |F},| from s’ obtained by (2.124) will include
0.5% of the error. The result not mean the precision determination of |F | IE 1B =1,

g=05and /s’ =1414 from (2.125). That is, |#,, | which is obtained by SIA includes

about 40% of the error
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Fig 2.21 The rocking curves of the diffracted wave in the symmetric

Laue case for sH=n. (a) ¢ = 0.01; (b) g=0.1 and (c) g = 0.5.

The rocking curve obtained by the SIA and the present theory are shown in Fig

Here, sH = n, and (a) g=0.01, (b) ¢=0.1 and (c) ¢=0.5. Solid lines shows the result obtained
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by (2.90), and, dotted lines shows the result obtained using /" of (2.50) in SIA. In (a), the
difference of the period of the solid line and the dotted line is not seen clearly. However, in
(b) and (c), the difference is clear

(iii) Pendellosung beat and anomalous transmission (disappearance of beat)

At W= 0, the diffracted intensity which changes g and s/ and was obtained is shown in

connected with two tie points differs or the absorption coefficient to two waves differs, the
amplitude of the node of beats will not become zero. In g= 0, two imaginary solutions of the
dispersion surface becomes equal, and the value of the solution is zero in =0, and is
negative fixed value in %, #0. For this reason, since two waves receive the same
absorption (the zero absorption are included), the amplitude of the node of the pendellosung
beat in the diffracted wave is zero (the thin dotted line and thick dashed line in Fig.2.22).
However, in 0<¢<1, two imaginary solutions of the dispersion surface differs, and absorption
of two waves differs. For this reason, the amplitude of the node in the beat does not become
zero (the thick dot dashed line and thick solid line in Fig.2.22). These phenomena are seen
also like the pendellosung beat on rocking curves of (a),(b) and (c) in Fig,2.8

In Fig.2.22, when sH becomes large, if ¢ approaches 1, the pendellosung beat in W= 0
disappears and, moreover, /; becomes to converge on 0.25. With increase of s#, since one

wave of the tie point is absorbed greatly and the intensity becomes weak, this pendellosung
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beat disappears (anomalous absorption). Although another diffracted wave becomes to

converges on 0.25, this diffracted wave is not absorbed (anomalous transmission). In g= 1,

=0(75=0) ==« =g=0(g=-0.005) = = =¢g=0.01 ——¢g=0.1

0.8
0.6

0.4

0.2

sH
Fig 2.22 The Pendellosung beats of the diffracted wave in the symmetric
Laue case for g= 0, 0.01 and 0.1 when § =0, W=0

even when sH changes at W= 0, the pendellosung beat is not seen. The following is
examined the reason

In g= 1, real part of solution }" in the dispersion surface is zero in |¥ |< 1. Therefore, there
is no difference in the wave number of the wave by two tie points. For this reason, the
pendellosung beat disappears in [#|< 1. The rocking curve of the transmitted intensity which
changed sH is shown in Fig.2.23, If sH increases, although the period of the pendellosung

beat in > 1 will become small, the pendellosung beat does not appear in W< 1. That is,

since the real part of the solution of the dispersion surface is zero in g= 1, the pendellosung
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beat cannot observe in /< 1. Two conclusions will be obtained from the above consideration

In 0<¢<1, if sH increases, the pendellosung beat will disappear by the anomalous absorption

And in g= 1, since there is no difference in the wave number of two waves, there is also no

pendellosung beat in W< 1

The process of disappearance for the pendelldsung beat at #= 0 to g= 0 to 1 is shown in

10°

10"

1072 [

107

JEE 1o

w

Fig 2.23 The rocking curves of the transmitted wave in the symmetric

Laue case for ¢= 1 and different values of sH

Fig.2.24. Within a crystal, (a) shows that the amplitude of the pendellésung beat does not

decrease, when there is no absorption (g= 0). However, if there is absorption in g= 0, (b) at

inside of the crystal shows that the amplitude of the pendellosung beat becomes small and

the amplitude of the node on the beat is zero. (¢) is in case of ¢g= 0.1. Only the first

pendellosung beat is visible and the amplitude of the node on the beat does not become zero
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But, the amplitude of the wave does not decrease at inside of the crystal, and it becomes
fixed value, and the anomalous transmission is shown. (d) is in case of g= 1
There is no pendellosung beat near the crystal surface. The transmitted wave decreases

N \ Crystal surface . \
1

S S

(@) ¢=0 (x:=0) (b) ¢=0 (g=-0.05)

. \ Crystal surface \ >

(c)g=0.1 (d) g=1

Fig 2.24 The Pendellosung beats in the crystal when /=0

remarkably near the crystal surface, and the diffracted wave increases. When sH increases

p=

from 3or more in Fig.2.7, the intensity converged on fixed value like (c), and the diffracted
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wave and the transmitted wave show the anomalous transmission

LAUE
g,

'
1
J

q=0

e

lattice plane

g=

W~ -1 W =0 W ~1

Fig 2.25 The standing waves in the symmetric Laue case.

The upper figures for ¢g=0 and the lower for g=1

(iv) Standing wave
In this section, the standing wave in the crystal is examined in g= 0 to 1. Batterman and

Cole(BC) carried out the study of what wave field is shaped on the lattice surface in the
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crystal by SIA. The wave field shown by (2.92) is given by interference with the diffracted
wave and the transmitted wave from one tie point. Approximation as SIA is not given
(2.92)

a) In case of ¢= 0

Electric displacements (2,”', D,"") in the tie point at W= 0 are calculated. If @, = and

g,=-o D =D®=F /2 are obtained from (2.73). And D’ =-D;® =E, /2 are
obtained from (2.60). Therefore, 27 =0 from R" =1 in the tie point 1. In the tie point 2,
2% =7 from R™ =—1_This result is shown in the upper row of Table 2.2

In W= 0, the field intensity /''(x) in the crystal is composition with D, (r) and

D, " (r), and obtains the following equation from (2.92)

: omi! I 4 27
I9(x) =D (%) peey = LN exp(- ’“Z, )1+ (-1)"" cos( :
2 cosb,

)] (2.126)
Where, distance x has the same direction as reciprocal-lattice vector k. The inside of [ ]
expresses the standing wave which makes lattice plane interval . In @;, =mn, the magnitude
ofthe [ ] is maximum 2 for j= | in the lattice plane, and is the minimum value 0 for j= 2
Behavior of this standing wave is shown in Fig. 2.25. That is, the standing wave of the tie
point 1 in Bragg conditions(#=0) has the antinode in the lattice plane, and the standing wave
of the tie point 2 has a node there. Conversely, on condition that &, = 0, the standing wave

of the tie point 1 has the node in the lattice plane, and the standing wave of the tie point 2

has the antinode there. That is, the relationship between the node and the antinode is
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(a) LAUE CASE (b) BRAGG CASE

lattice plane
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x € T—— X
g=1  w=0 g=0  W=0

Fig.2.26 The plane(x=0, d/4, d/2 3d/4) in the unit cell

(a) Laue case. (b) Bragg case
reversed for a,, =m.

I (x) is examined for W dependence. In order to examine behavior of the wave field of
(2.92), as shown in Fig. 2.26, four planes of x (=0, d/4, d/2, 3d/4) between lattice planes are
considered. Here, 73 is w and /“’(x) is dependent on the depth z from the crystal surface.
Ing=0andg=0.1, /9(x) isshowninFig 2.27. /" (x) of the tie point 1 is (a), (c) and

(e), and I®(x) of the tie point 2 is (b). (d) and (f). In Fig.2.27(a), / Y(0) (solid line) in

the lattice plane (x= 0) becomes large gradually, when # approaches from negative to 0, and
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itisl.0at W=0

/77(0) obtains maximum (1.457) at the positive side of W. And if Wincreases. 7" (0) will

become average value 1.0. 7" (d

2) (dotted line) in the center of lattice planes(x=d

takes the maximum value (0.043) at W=—1, and takes the minimum value 0 at W= 0. And

I''(d/2) roaches average value 1.0 at the positive side of W. In x=d/4 (dashed line)
and x= 3d/4(dot dashed line), cos(2mx/d) of (2.126) is zero. Therefore.
["'(x=d/40r3d/4) at W=0is 0.5, and shows the middle change in cases of x

0 and

x=d/2. In Fig.2.27(b), /¥ (0) of the tie point 2 has reversed change of the tie point 1 with

W. However, /'” is change which replaces /" for x= 0 and x=d/2. Moreover the phase of

I'(x) ind/4 and 3d/4 differs 7 in tie points 1 and 2
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Fig.2.27 The change of the wave field /Y(x) for x=0, d/4, d/2 and 3d/4

in the symmetric Laue case for g=0, g=-0.1 and ap=m.
The effect with absorption appears in the term of exp in (2.92). /"’ (x) which increased
sz gradually from the crystal surface is shown in the Fig 2.27 (from (¢) to (f)). Behavior of /

in tie points 1 and 2 is decreasing simply with the increase in sz like change of the Poynting
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vector,

b) In case of g= 1
If ay, =m g=1,then %, ,/'/_ . =1 . RY obtains the following relationship from (2.70)
RO =i w1y 1 (2.127)
The phase angle 2" of this R? is — R/2 (R"= R®=-i ) at W=—1. And at W= 1, the phase
angle becomes R/2 (R"=R™=;) | Therefore, these phase angles do not have difference of

2) 5

W ) I ‘
the tie point. However, at W= 0, (1)2 =0 (R"=1), and (2)£2 =n (R¥=1), these are

shown in the under row Table 2.2. In this way, 2 differs by tie points | and 2. If @, =0,
Xl 2, =—i. Therefore, at W= -1, @ 7/2, and Q' - /2 at W= l,and at
=0, Q" =7 and Q% =0 at W= 0. Thus, the phase angle of the standing wave in

@, =0 is opposite to the phase angle in @, = 7. In = 0, the amplitude of the wave field
in the crystal decreases simply as the deepness become to deep from the crystal surface, and
the phenomenon of the anomalous transmission was not looked at by the change of

thickness




In g= 1, in order to investigate the relationship between the standing wave and the

anomalous transmission, the term of exp in (2.126) will be examined. If g7—1, when W

changes with —1, 0 and 1, the term of exp of (2.92) changes as shown in Table 2.3. The wave

field of tie points 1 and 2 receives the mean absorption in [#'=1 so that it may be understood

from the imaginary part of the dispersion surface. And, the wave field of the tie point 1

receives the strong absorption which is twice the mean absorption at W= 0. However, an

absorption coefficient for the tie point 2 at W= 0 is zero and the wave field does not have any

absorption. The wave field of the tie point 2 which has the node in the lattice plane has small

absorption unusually, and the wave field of the tie point 1 which has the antinode in the

lattice plane has large absorption unusually. BC showed this effect from SIA theory. The

conclusion of BC is the same also in g= 1
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Fig.2.28 The change of the wave field /%(x) for x=0, d/4, d/2 and 3d/4
in the symmetric Laue case for g=1, and . TP1:(a)sz=1 X 107, (d)sz=2
and (e)sz=5. TP2: (b)sz=1 X 107, (€)sz=2 and (h)sz=5. Total field
(c)sz=1 X 107, (f)sz=2 and (i)sz=5. Note that there is no divergence
in the total field. (TP: Tie point).

In this following paragraph, the field intensity/"’(x) is explained as sz, x and W
dependence. Fig. 2.28 is results for g=1. Figures(a), (b) and (c) are near the crystal surface

¥ in tie points 1 and 2 diverge at ||=1. However, as composition (|[D"(x)+D(x)*) of




I™(x) and 7% (x) is shown in (c), there is no divergence at [W|=1. Since they have the
opposite phase of wave fields of tie points 1 and 2, the divergence negates each other and it
disappears

In Fig.2.28(a), /"(0) (solid line) at x= 0 in the tie point 1 becomes large gradually as W’
approaches from —2 to —1, and after diverging at =1, it will becomes 1 (antinode) at #= 0
and will diverge again at W= 1, then approaches 1. Although 1%(d /2) (dotted line) at
x=d/2 shows the same change as x= 0, it will become zero at W=0. 7""(d /4) (dashed line)
at x=d/4 changes from maximum to the local minimum value, when W changes —1.0,and 1,
and if  becomes large further, will approach average value 1.0. 7'7(10 *3d [4,W) (dot
dashed line) at x=3d/4 changes conversely with W to 1"(107°,d /4, W) in [W]<1. That is,
there is the relationship of /"(107.3d /4, W)=1"(10",d /4-W) in |W|<]

The W dependability of / *(x) in the tie point 2 carries out change which / U(x) in the
tie point 1 reverse with 7, as shown in a Fig 2.28(b). However, field intensities in x= 0 and
x=d/2 interchanges, and that in x=d/4 and x=3d/4 also interchanges. And, composition of
two wave fields with tie points 1 and 2 is a constant value 1.0 to I, as shownin (¢c), 1" (x)
at sz=2 are shown in (d), (e) and (f), and at sz=5 are shown in (g). (h) and (i). As sz>2,
I'"(x) in the tie point 1 decreases remarkably, and it is not seen in (g), except |W]=1
However, as shown in (e) and (h), 7' (x) of the tie point 2 at a near #= 0 does not

decrease, even when sz increases . Therefore, the most of field intensities in (f) and (i) is the
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component of the tie point 2

The above dependability of x and sz is understood from change of the standing wave in the

crystal surface and the term of the absorption for every tie point shown by the following

explanation in ¢= 1. Since the standing wave of the tie point 1 has an antinode in the lattice

plane, its absorption is larger than the mean absorption. For this reason, the standing wave

decreases quickly as sz increases (anomalous absorption). On the other hand, since the

standing wave of the tie point 2 has the node in the lattice plane, even when sz increases, it

does not almost have absorption. Therefore, almost all X-rays penetrate the

crystal(anomalous transmission). This result is the same as that of the conclusion by BC.

However, the result of this paper is obtained by the dynamical diffraction only due to g, .

and is not the dynamical diffraction which contained y, and g, in gz, like SIA

Moreover, the studied result of this paper showed the following facts: the anomalous

transmission (Borrmann effect) is produced by y,,, and it is not based on the synergistic

effect of y,, and y, . In0<g, the conclusion that the wave of the tie point 1 is carried out

the anomalous absorption, and the wave of the tie point 2 is carried out the anomalous

transmission, it is the same in the analysis of the Poynting vector and the standing wave. The

analysis by the Poynting vector is convenient to examine the relationship between the

dispersion surface and the energy flow, although the vector is averaged in minimum-space

On the other hand, since the analysis by the field intensity does not average minimum-space,
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the information in the unit cell is obta
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2.4. Diffracted Wave and Transmitted Wave in Bragg case

At present, the thickness dependability to the X-rays of the limited thick crystal is treated,
and the diffracted intensity and the transmitted intensity using (2.83) are examined. And, the
equation of the diffracted-intensity when the crystal thickness becomes semi-infinite was in

agreement with FK’s equation

2.4.1 Rocking Curve

q. H, g, and & are parameters like Laue case in examination of the rocking curve

(i) Dependence on ¢
a) In case of = 0

Fig 2.29 shows the rocking curve of the diffracted and the transmitted intensities for in
sH=n. In this figure, dotted lines does not have absorption and thin solid lines have
absorption. In case of y, #0, g is set to —0.1 like Laue case. The rocking curve of the
diffracted intensity without absorption is symmetry to W= 0, shows the maximum at W= 0,
and has the pendellosung beat in |W)> 1.

Like the case where no absorption is, the rocking curve of the diffracted intensity with
absorption is symmetrical with W= 0, shows the maximum at #= 0, and has a pendellosung
beat in [W]> 1. The diffracted intensity with absorption is a little small as compared with the
case where no absorption is. Although, the intensity of the node of the pendellosung beat
without absorption is zero, the node with absorption is not zero. The rocking curve of the
transmitted intensity without absorption is the minimum at W= 0, and it is symmetry to W= 0

and shows the pendellosung beat in |[W]> 1.
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Fig.2.29 The rocking curves in the symmetric Bragg case for
¢=0.0, 0.1, 0.5 and 1.0 when sH=mr and 6 =0

(a)Diffracted waves. (b)Transmitted waves

Although rocking curves of the transmitted intensity with absorption shows the change
similar to rocking curves without absorption, the transmitted intensity wave is small. The

diffracted and the transmitted intensities with absorption is shown in following equations
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from (2.73) for ¢=0

P, sin “(sH Re \““»(J—) +sinh” (sH Im \/“(y))
= — — ==, (2.129a)

P P

, Jo

L —exp(—u,H')-——— (2.129b)
F, P,

Where, there is the relationship of the following equation

I . o L -
tle= 7[(\\”()\' —W? — g*)cos(2sH Re/Q) + (O +W~ + g~ ) cosh(2sH Im/O)]
(g Re\,f‘z_l WiIm \@ )sin(2sH Re V‘E)) + (W Rc\s@ + glm \“"(j))sinh(Z‘\'H Im \;v(j),
(2.130a)
r 1 a h i 1 r——
Re 40 = :(Q, HyOr) | . ImyQ@ (:(—(j, +4O) (2.130b)
JOP=[07+0717%, (Q =W'-g*-1, 0, =2gW) (2.130c)

In this equation(2.130), there are the following conditions from the continuity of the
complex plane

(If(Q, #0,0, > 0), Re;/Qand Im4JO,

J (0, > 0,0, <0), ReyJOand —Im /0. (2.131)

(0, < 0,0, <0), —Re,[Qand Im /0.

If there is no absorption for (2.129 a), Im \,f(_j is zero and the following equation will be

obtained
i sixf(.\'/l\/”?* 1) (> 1)
L 1 > |~
RE W —1+ sin®(sH{W>—1)
[ — (2.132)
[ sinh® (sHA1-W?) o
o= === ([m<1)

1= W? + sinh* (sHV1-W")
This is the equations (3.143, 3.144) of Zachariasen [12] known well. In [#|> 1, the period of

the pendellosung beat of the diffracted and the transmitted waves satisfy sHNW? —1 =nzx
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(n:integer)
b) In case of ¢=0.1 and ¢=0.5

When set to ¢> 0, rocking curves of the diffracted and the transmitted intensities is
asymmetry to W= 0, and it very difference to compare at g= O(see Fig.2.29). Since the
asymmetry of this rocking curve is reversed to #= 0 when & changes from 0 to n. Fig.2.29
shows the rocking curve for 6= 0. The diffracted intensity for g= 0.1 becomes large
gradually, when W changes from —4 to —1. The intensity becomes large rapidly at W= —1,
and it shapes a peak. And, in W>—1, it becomes small gradually. The half value width of the
rocking curve is smaller than that for g= 0. Although the pendellosung beat for g= 0.1 is
visible to W<-1 side, the amplitude is smaller than that for g= 0. In > 1 side, the beat does
not look almost again.

On the other hand, the rocking curve of the transmitted intensity in W<-1 is larger than
W> 1 side. And the intensity becomes large gradually as W approaches from the minus side
to —1. The peak with the anomalous transmission is visible between W= -2 and —1, and its
intensity became the minimum near at #= 0, While W increases in the plus side, the rocking
curve becomes large gradually, and the pendellosung beat is visible to W<-1 side.

The rocking curve of the diffracted intensity for ¢g= 0.5 becomes a little weaker than that
g= 0.1. However, the tendency of change is the same as that for g= 0.1 almost. The half
value width of the peak is narrower than g= 0.1, and the peak position carried out small
movement at W= 0 side.

The rocking curve of the transmitted intensity becomes large gradually when W
approaches from minus side to —1. The peak with the anomalous transmission is shaped
W~ —1. If W becomes large from W= —1, the rocking curve will become small abruptly.

And the pendellosung beat is not seen. Rocking curves in g= 0.1 and 0.5 are examined in
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detail in the section of the dispersion surface,
c) In case of g= 1

In g=1, the rocking curve (thick solid lines) of the diffracted and the transmitted intensities
becomes symmetry like g= 0 to W= 0. Moreover, these rocking curves has the sharp peak at
W= 0. This phenomenon greatly differs that for g= 0. The peak of the transmitted intensity is
the anomalous transmission. If the crystal thickness is the same, the half value width of the
peak for the diffracted and the transmitted intensities of Bragg case narrow to compared that

of Laue case.

(ii) Dependence on the crystal thickness

In order to examine the dependence on thickness, let s/ be the parameter like Laue case
The rocking curves of the diffracted and the transmitted intensities with s# in g= 0, 0.5 and
1 are shown Fig.2.30.
a) In case of g= 0

In the paragraph, the examination is the case when the absorption is not neglected, and is
g =-0.1. When increase sH from #/2 to 37/2, the diffracted intensity at = 0 also increase
from 0.7 to 0.82. When sH becomes large, the minimum value of the transmitted intensity
becomes small rapidly at W=0 and the bottom of the valley becomes flat.

When sH changes from 1, 2 to 3, the period of the pendellosung beat is set short to 1/2
and 1/3, and the amplitude of the beat becomes small.
b) In case of g= 0.5

The conditions of the examination are g,=—1 and §= 0. In this case, the rocking curve of

the diffracted and the transmitted intensities is asymmetrical, and the peak is always in the

minus side of W. If sH increases, the peak becomes high and will become sharp in the
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rocking curve of the diffracted intensity. The rocking curve of the transmitted intensity

becomes weak according to the increase in sH, and the peak becomes sharp. The

pendellosung beat is seen in the rocking curve of the diffracted intensity in the minus side of

. The period becomes short according to increase of sH
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Fig.2.30 The rocking curves in the symmetric Bragg case for several sH

when 8=0. (a)(c)(e);Diffracted waves. (b)(d)(f); Transmitted waves
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thickness are examined in this paragraph for g=1. The diffracted and the

intensities are shown by following equations at W= 0

h_(_H \"‘
P, \1+sH) ’
B (1
£, IS

Consequently, total P is obtained by the following equation
q ) 3 g eq

1+ sH®

D

T (+sH)

transmitted

(2.134)

(2.135)

NORMALIZED INTENSITY

Fig 2.32 The change of the intensity with crystal thickness in

the symmetric Bragg case for =0 when ¢ =1 and g,=1.0.

The result depend on sH of (2.133), (2.134) and (2.135) is shown in Fig2.32. T

o0 sH>6, the

diffracted intensity(dashed line) becomes large quickly with increasing sH. After that, it

approaches 1 slowly with increasing sH#. On the other hand, the transmitted intensity will

become small quickly. If sH becomes large, Intensity approaches O gradually after that.
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These intensities are both 0.25 at s#=1.When sH increases from 0 to 1, total P becomes
small gradually and shows the minimum value (0.5) at sH=1. After that, P becomes large
gradually as the diffracted intensity with increasing s/, and approaches 1. The diffracted
intensity which comes out from the upper surface of the crystal and the transmitted intensity
which comes out from the under surface are equal at s//=1 by which the total P takes the
minimum value. The condition of sH=1 shows the crystal thickness from which the
absorption becomes the maximum.
d) Semi-infinite crystal

In the thick crystal (semi-infinite crystal), the reflection from the under surface of the
crystal is neglected. Therefore, the diffracted wave is obtained the following equation only in

consideration of one tie point in (2.83a)

: 12
— . (2.136)
W+ /g't‘/a ‘

Py _ s
]—) = (1-2psind)

IW t ig'i\/(]: is as follows, when \E = Re\/a—o—ilm\/@ and +sign takes only a
required term in (2.136), and it obtains the following deployment

W +ig+Q| = (4* + B +W* + g"
+ {[(A: +B)" +W? + g% | ~[(1-2q)* +4p* cos® (5]}“‘
=[(1-2q)* +4p* cos® 8]"*[IT + (IT* = 1)""]. (2.137)
Where, there is the following relationship

2 2312 |, a2
L i s @.138)
[(1-2¢)* +4p° cos’ &]'°

A=W?*-g*+2q-1, (2.139)
B=2(g'W— pcosd). (2.140)




After all, the diffracted intensity for the semi-infinite crystal in Bragg case is shown by

P -
7;:;\-[117(11-—1)'-]. (2.141)

U SZpeine) 2.142)

T [(1-29)° +4p® cos® 8]
This equation (2.141) is the same one as that of the equation (12) of FK [10]. If there is no
absorption, since p=g'=0 for symmetric reflection, equation(2.141) is the same one as that of
the equation (3.155) of Zachariasen[12], or the equation (19.76) of Miyake[1]. And the
rocking curve obtained from equations under this condition shows top hat type. The
equation (2.142) is applicable to the semi-infinite crystal. However, the equation (2.83) is
applicable from the crystal with limited thickness to the semi-infinite crystal. Thus, the
equation (2.83) is very convenience to the study of the dynamical diffraction with resonance

scattering in Bragg case

(iii) Dependence on g (g4)

In sH=m, the rocking curves with the diffracted and the transmitted intensities which were
obtained by changing in ¢ and g are shown in the Fig.2.33. In g= 0, g changes from -0.10 to
-0,13, and g, changes from -1.0 to -1.3 in g#0. The rocking curve of the diffracted
intensity becomes small gradually as increasing |g| from 0.10 to 0,13(a). That of the
transmitted intensity becomes small similarly

In g = 0.5 and 1, when g, changes from ~1.0 to —1.3, the rocking curve of the diffracted
intensity will become small gradually. And the half value width of the peak becomes large.
The tendency is the same also in the rocking curve of the transmitted intensity. If gy increases,

the peak position on the rocking curve of the diffracted intensity will move to #= 0 side
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In ¢= 1, if |gy| increases, the rocking curve of the diffracted and the transmitted intensities

will become small,. And, the half value width of the central peak becomes large gradually
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The rocking curves of diffracted and transmitted waves in the symmetric

Bragg case for several g (go) when sH= wand 6=0. (a)(b)q=0;(c)(d)¢=0.5:(e)(Hg=1

(iv) Dependence on phase difference &
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Real part

(a) g=0| g=0.0

o

2 10

(c)g=0.01]

Fig 2.35. The dispersion surface in the symmetric Bragg case. The solid and
the dashed lines are the real and the imaginary part of the curves. =0

(a)g=0,g=0.(b)g=0,g=-01. (c)g=0.01,g=-1.0. (d)g=0.5,

go=-1.0.(e) ¢=1, go=—1.0. (f) g=1, go=—-1.2.
In g=0, the real part of the dispersion surface in [#]>1 shapes hyperbola in X-}” plane, and,
in |[#]<1, the imaginary part shapes ellipse in X-Z" plane. The tie point is only one at |#|=1

However, in the case of g= —0.1, the tie point is in a point at = 0, in all the other regions of

W, there are two solutions in the real and the imaginary parts. In case of g= 0, since the
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imaginary part in |#]>1 is 0, the node of the pendellosung beat of the diffracted intensity is 0,
and the transmitted intensity is | when the node of the pendellésung beat of the diffracted
intensity is 0.(dotted line in Fig.2.29). However, in case of g = —0.1, the imaginary solution
is not zero. For this reason, since the wave from the under surface of the crystal becomes
weak, the diffracted intensity is not zero in the node of the pendellosung beat of the

diffracted wave(thin solid line in Fig.2.29)

(ii) In case of g= 1
In go= -1.0, the following equation is obtained with the equation (2.143) for the
dispersion surface

(Y'sin@,)* —(Z'sin@,)* —(Xcosh,)* =0, (2.1453)

o 1 -
FZsint G = S 4 X cosél, (2.145b)

This equation satisfies X=}1"=7"=0. And the complex dispersion surface of simple shape is
shown in Fig.2.35(e). It differs in g= 0, if || approaches zero, both |¥°| and [Z’| will
approach zero remarkably. For this reason, the rocking curve of the diffracted and the
transmitted intensities has the sharp peak in the center, as Fig 2.31(e),(f) showed. As shown
in Fig.2.35(f), ¥ for g/=—1.2 shows the same change as g = —1. However, although |Z’|
shows the minimum value at = 0, |Z’| is not zero. For this reason, as Fig.2.33(e),(f) showed,
the peak shape of g;= —1.2 becomes broader than that of g;=~—1

Two real parts of the dispersion surface exist for g= 1. Therefore, the pendellosung beat

exists really as shown in Fig. 2.30
(iii) In case of 4=0.01 and ¢=0.5
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Dispersion surfaces for g= 0.01 and g= 0.5 at & =0 are shown in Fig.2.35(¢c),(d). In
! &

dispersion surfaces for g= 0 and ¢= 1, the real and the imaginary parts were symmetry to W=

W
—
Crystal surface
7z P 7z AP PP PP PP P P
Y'a 2'

Y

28 X. 1)

\

Fig.2.36 The relationship of the Poynting vector and the dispersion surface

in the symmetric Bragg case when there is no absorption.
0. In (c) and (d), however, these dispersion surfaces are asymmetrical to W= 0. The
dispersion surface for g= 0.01 is ¥’=Z"=0 at W=-1, and the real part of the dispersion
surface in W <1 is almost equal to that in case there is no absorption. }” is not zero in #>-1
and Z’ is also not zero in #<—1. On the other hand, although the real part of the dispersion
surface at g= 0 (a) is zero at |W|= 1, in g= 0.01, both }” and Z* not zero

As the above description, the reason from which the intensity becomes the maximum at
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near W=1 is understood from the shape of the dispersion surface in the diffracted and the

transmitted intensities for g= 0.01 (see Fig.2.29). Therefore, behavior of rocking curves of

the diffracted and the transmitted intensities for g=0.5 is explained from the characteristic of

the dispersion surface like that for g= 0.01

2.4 3. The Direction of Energy Flow

In this section, it is examined that the relationship between the real part of the dispersion
surface and the direction of the Poynting vector .S in symmetric Bragg case like Laue case
As shown in Fig.2.36, here, 4 is an angle between § and the diffraction lattice plane, and o'is
the angle between the tangent in the tie point and axis X [19]. And it calculates the angle y

between the real part of the dispersion surface and the Poynting vector [20]. In symmetrical

Bragg case, since fFis zero, the following relationship is obtained

sin@, =sinf, = cosf, , (2.146a)

cosf, = —cosf, =sinb, (2.146b)

Differentiating (2.143a) with respect to X, and the following equation is obtained

)sin® 4, =0 (2.147)

Y dZ

Xcos® 8, = (Y'—
) ax dX

The following equation is obtained from a equation (2.143b)

2L 2 07 0, 4y 0080520 (2.148)
ax dx ER

is obtained from the equation (2.147) and substitutes the result to (2.148). And the
(4

following equation is obtained from @Y'/dX = tano
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XY'cosl, — Z'k,

tano = “cot b, (2.149)

(¥Y?+2")siné,

Moreover, the following relationship is obtained from Fig.2.37 for symmetric reflection

sin(@, +4) |D’ 2715(
(6, Uil (2.150)
sin(@; —4) |D;’[

Here, j is the number of the tie point. The following relationship is obtained from this
equation

24012

IE!I]J:E\M 'Ilmﬂ[):‘ (2.151)

| e
Consequently, tany by the angle between the real part of the dispersion surface and the
Poynting vector .§ is given by

tany = tan(4+ o) (2.152)
When changing ¢ from 0 to 1, yis shown in Fig.2.37

In g= 0 without absorption, the Poynting vectors are directed along the normal to the
hyperbola. This result is the same as that of the proof of Kato [15] and Hung[19]. However,

the real part of the dispersion surf?

e is set to }'=0 in |W|<1. The real part of the dispersion

surface and the Poynting vector are parallel in the place without intersect perpendicular

That is, in this total-reflection region, the direction of the Poynting vector is parallel to the
lattice plane, and there is no inconsistency in this conclusion. y approaches 90" gradually as

%, component increases in |W]<1, when there is absorption. And, in g= 1, the deviation of

yfrom 90" is the smallest
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Fig 2.37 The variation of ¥ with respect to ¥ for different values of

g in the symmetric Bragg case
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Fig.2.39 The change of the wave field /(x) for x=0, d/4, d/2 and 3d/4
in the symmetric Bragg case for ¢=0 and a;,=7C . (a)g=0. (b)g=-0.1
(ii) In case of g= 1
Phase €2 of the standing wave for ¢= 1 is shown in the right side of the lower row

Table.2.2. When W changes with —1, 0 and 1, €2 changes with -0.712 7, 7 and 0.712 &




The calculated result about /(x) is shown in Fig.2.40. Here, @, = m. In the lattice plane at
x= 0, since the standing wave is the node in this case, 7(0)=0 at #= 0. On the other hand,
I(d/2) in middle takes the minimum value at W= 0. When W changes with —1, 0 and 1, /(d/4)
at x= d/4 decreases sharply from large value to small value at W= 0. Moreover, /(3d/4)
shows the change with reverse /(d/4) to W= 0. That is, /(3d/4,W) =I(d/4, -W). In g= 0, the
standing wave at W= 0 was not able to have an antinode or a node in the crystal surface or
the center between lattices, respectively. However, the standing wave for g= 1 has the node

in the crystal surface, and has the antinode in the center between lattices

—_—0 —— = d/4 cxnmsaennens 4/ - = 3d/4

4

b
3
3
s

sz=1 X 10°

(o5}

FIELD INTENSITY

W

Fig.2.40 The change of the wave field for x=0, d/4, d/2 and 3d/4

in the symmetric Bragg casefor g=1 and o= n

Conventionally, behavior of the X-ray standing wave was investigated from observation

of secondary radiation, such as fluorescence X-rays and secondary electron. And, the
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position of the impurities atom or the adsorption atom in the crystal surface etc. has been
determined. Although these studies by the standing-wave method have been performed by it
¢<<1 in Bragg case, if we use the phase change of the standing wave to g= 0 to 1, probably,

the field of the study will be expanded.
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Table 2-2. The phase factor @ for W=-1,0 and 1. The upper column for g=0 and the

lower for g=1. The values of

0.712n and 0.712n are numerically obtained

Symmetric Laue case Symmetric Bragg case

[ (semi-infinite)

tie point| W=-1 0 ] W=—1 0 I
q=0 1 0 0 0
-n - /2 0
a, =n 2 s T i
|
q=1 1 — /2 0 /2
—=0.712 s 0.712 &
a == 2 — /2 T /2

Table 2-3. The damping factor of the wave field given by eq.(2.92) at W =-1, 0 and 1

for two tie points in the symmetric Laue case

g=1 Change of term exp(4nk,,, ‘:) for symmetric Laue case

tei point W=—1 W=0 W= 1
1 exp(- uzlcos 0 5) exp(-2 u z/cos F ) exp(- p z/cos O )
2 exp(- u z/cos &) 1 exp(- /L z/cos O 5)
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APPENDIX A: Relationship among W, Incident Angle ¢ and Glancing Angle «,.
In symmetrical reflection, supposing «,, is the glancing Angle in Bragg condition,

following formulae are satisfied in Laue case

a B @ il é, (al)
2 2 '
Therefore
40=0,—-a (a2)

The following conditions are satisfied in Bragg case

a t AN 0.’: (‘1-;)
Therefore
Ab=a,—0, (a4)

In Bragg case, A6 neglects the refractive index. @ and «, of Laue case and Bragg case

are shown in the following figure

A0=06,-a A4 6= a6,
A8
01; K,
1\:
(a) Laue case (b) Bragg case




APPENDIX B: Energy Flow of Electromagnetic Field
Generally, the energy flow in a electromagnetic field is expressed as follows as a Poynting
yector

C

Sk (ExH*). (b1)
4

Where, * is the complex conjugate. The .§ is energy which passes unit time and unit area
through a surface perpendicular to E and H (density of energy flow). Since almost all is 1,

a equation (bl) is as follows
8=-"(DxH¥, (b2)
4
Since both time change and periodic space change are contained in D and H, generally, these
sets as follows
D =exp(2 mivt)Z D, exp[-2 mi(k, -1)]. (b3)
H =exp(2mivt) X H, exp[-2 7 i(k, -r)] (b4)
A time average of \§ is as follows by using these D and H
§=—"_Re(Dx H¥) (bS)
8
The following related formulae are known in vector analysis
K.,D,*=H, *xk, (b6)
K, (k, x D,*) = k, x (H, *xk,)
_ /(,if{,‘ * (b7)

By using (b6), (b7) and &, LH, ., (bS) will become as follows

S =S ReSE— (D, x(k, x D, *)exp[2 mi(k, —k,) 7] (b8)
S n h h U":J { z A J




Since the real part of the term of (k, —k,)-r (h#h') corresponds to the lattice period of

e of a dynamical diffraction,

the wave field in a crystal, if it takes a space average in the rz
it will become zero. However, since the imaginary part remains, it sets with & -r.IfA"and
h after the space average are placed with A, (b8) is as follows in consideration of &, LD,

= c k
expl4n(k, rr)];

k I):;\j (b9)

h

ST

In two- wave approximation, since only the diffracted wave and the transmitted wave are

examined, (b9) becomes a equation (2.88)
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absorption edge. And in -2.8eV, IRIs becomes the minimum, and it will become large if the
energy approaches the absorption edge further. A dotted line shows the integrating reflecting
powers(IRPs) which are calculated by using SIA’s equations, and a solid line shows the
result which are calculated using the theory of this paper. A dotted line becomes zero at
+1.3eV. Since there is the diffraction only due to /", even when fJ + f.. is zero (the
minimum value is shown). There is no sharp valley which the open circles shows in the

measurement result by the actual crystal.

x 107

INTEGRATED REFLECTING POWERS

! I Il Lt L L C |

-10 -8 -6 -4 -2 0 2 4
Ge K-Edge
RELATIVE ENERGY(eV)

Fig.3.1 The calculated IRPs in atomic units (solid line) and the measured IRIs
in arbitrary units (open circles) of the Ge 844 reflection near the K-absorption
edge in the symmetric Bragg case. The measured IRIs are scaled so that the
minimum intensity is the same as the calculated one.

The above conclusion is applied also to Fig.1.7. In Laue case, the shoulder structure seen
below of the K-absorption edge corresponds to the condition f; +f, =0 from the

measurement of integrated reflecting powers of Ge 844. The position from the K-absorption
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Fig 3.4 The measured rocking curves for GaAs 200. (a)at point A ,
(b)at point B and (c) at point C in Fig 3.2. The thick lines are
the curve of the transmitted beam and the thin lines that of

the diffracted beam

(ii) Yield curves of fluorescence X-rays

a) Fxperiment
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A=25ImJ0 - M,

B =2sIm \,"’(j) + M,

M=py-u,',

MS2 = M* +(25Re[0),

Fl= 2[‘11'(\\/{)‘:' W? 1)~ 4WsRe /0 Im V@]‘

F2 4[‘\ Re JO(JOF -W* - 1)+ ;rmm\@] .

F3=(2sIm /0 - ,u')[zw Re/0—|J/OF W - 1],

Fa=(2sIm O + u )[21'1'Rc\,’gﬂlv'r(j}’ W2+ 1].







¢) Discussion
The calculated fluorescence X-rays yield curves in Fig.3.7 are in good agreement with the
experimental result of Fig.3.6
<In case of g= 1>
The linear absorption coefficient # for [#]<1 when g= 1 is shown in the following
equation

(

-v'l-W‘j (.16)

2w

Zoi
Here, the plus sign is taken for the tie point 1, and minus sign for the tie point 2. Then for the
tie point 1, Ul and for the tie point 2, U<,

X-rays corresponding to the tie point 2 show the anomalous transmission, and X-rays
corresponding to the tie point 1 show the anomalous absorption. The calculated results of
fluorescence X-ray yield in the entrance side are shown in Fig.3.8 for each tie point. The thin
solid line shows the sum of the fluorescence X-ray yields for two tie points. The intensity
curve of the fluorescence X-rays for the tie point 2 has a deep valley at W= 0, while the
intensity curve of the fluorescence X-rays for the tie point 1 is flat. The valley structure in

the yield(/) near W= 0 is attributed to the influence of the anomalous transmission from the

experimental (Fig.3.6) and the calculation(Fig.3.7).
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Fig 3.8 The fluorescence yield curves when g=1

<In case of g= 0.5>
Similarly, in case of g= 0.5, the X-rays for the tie point 2 show the anomalous
transmission, and X-rays for the tie point 1 show the anomalous absorption. The valley
structures in the curves A and C in Fig.3.6 and the curves A and C in Fig.3.7 are due to
anomalous transmission. As shown in Fig.2.6, the asymmetry in the rocking curve of the
transmitted beam was reversed when & changes from 0 to 7. The reversal of the asymmetry

in the fluorescence yield curves A and C in Fig.3.6 is due to the change of & from 0 to 7.
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visible in the rocking curve of this diffracted beam. In case of &= 0 (thick solid line), the
rocking curve of the transmitted beam serves as a valley in the central region at W=0, and the
anomalous transmission is not seen. However. the intensity of the tail region of the rocking
curve for W< 0 is higher than that of the region for #> 0. And in case of 6=z, the intensity

of the tail region for W<0 is lower than that for W>0 being opposite to the case of 5= 0.

SH=1/2

0.8

Fig.3.9 The calculated rocking curves in the symmetric Laue case for ¢=0.05,
go=-1 and sH= n/2. The thin solid line is the curve of the diffracted beam
The thick solid and dashed lines are the curves of the transmitted beam for
8= 0 and 8 = m, respectively.
The calculated value of y, and y, near the Ga K-absorption edge of GaAs are shown

in Fig3.10. The solid lines represent the values of /' determined from measurement of
XANES and f calculated using the dispersion relation in chapter I. The dashed lines

represent those values obtained by the method of Parratt and Hempstead with the oscillator
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strength of Cromer[11] (PHC). The dotted lines represent the calculated value by Sasaki[12]
using the program of Cromer and Liberman[13](CLS). The energy points where y,.
becomes zero differs in these three methods. The solid line becomes zero about —8.0eV from

the edge, the dashed line at —3.7eV and the dotted line at OeV. The measured rocking curves

are shown in Fig3.11. The open circles(a) correspond to the energy at —5eV from the edge

-8¢V  -3.7eV 0eV

R oy

0 ¥ =
An =0
=Bl
A hi
1 I { | I 1 1

-2

-20 -15 -10 -5 0 5 10 15 20

ENERGY(eV)

Fig.3.10 The Fourier coefficients of X-ray polarizability for GaAs 200.
The solid lines, the dashed lines and the dotted lines show the curves
obtained by the method of K&F, PH and CLS, respectively.
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and the open triangles(b) —9¢V. In (a), the intensity in the high angle side is larger than that
in the low angle side, while in (b) the intensity in the low angle side is larger than that the
high angle side. This clearly shows that & changes from 0 to =, when the energy of X-rays
changes from —9eV to —5eV below Ga K-absorption edge. And, in this energy range, there is

the dynamical diffraction only due to y,, and gz, =0.

x10°

o
wn

—o— _5eV
—— 9eV

NUMBER OF PHOTONS

0 IS e i 21
A46(°) %107

Fig 3.11 The measured rocking curves of the transmitted beam for GaAs
200 for (a)-5eV and (b)-9eV from the Ga K-absorption edge.

(ii) The measured and the simulated rocking curves for GaAs 600

Observation of the phase change in the diffracted intensity in Bragg case has been
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Fig.3.13 The calculated rocking curves of the diffracted(a) and the transmitted (b)
beams in the symmetric Bragg case for GaAs 600 of thickness 134um. The
arrows in (a) indicate the peak positions. The upward arrows in (b) indicate the

higher intensities than the average and the downward arrows the lower intensities

rocking curve is about 6x10 *deg.(Fig3.13). This calculated half width is smaller by about
1/10 than the measured value. Under the experimental condition, the tendency of the peak

shift of the diffracted beam cannot be distinguished clearly in the rocking curves of (a) - (c).
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As for the rocking curves of the transmitted beam, the intensity in the low angle side is
larger than the high angle side in Fig.3.14(a). However the asymmetric tendency is reversed

in (¢). In (b), the intensities in the low angle side and high angle side are almost the same.
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Fig.3.14 The measured and the simulated rocking curves for GaAs 600. The dashed
and the solid curves corresponding to the diffracted(left scale) and the transmitted
(right scale) beams, respectively. (a),(b) and (c) are experimental results. (d),(e) and
(f) are the convoluted curves by using anomalous scattering factor of KF.
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Fig3.16 is the topographies taken for ¢ = 1(a), and g ~ O(b). The pattern of the
photograph come from dislocations. The white part in the photograph (a) is a part where the
X-ray intensity is strong according to Borrmann effect, and two black spots are visible
clearly. However, in (b), the contrast of the photograph is weak. As for the dislocation
image of the transmitted beam in case of ¢ ~ 1, the contrast was enhanced according to

Borrmann effect in comparison with the image of ¢ ~ 0.
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Fig 3.15 Schematic diagram of the measuring system for the topograph
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3.6.2 Experiment

The experimental system and the experimental method are the same as that of Section 3.3
The transmitted rocking curves are shown in Fig. 3.17(a), which were measured at the
indicated energies below the Ga K-absorption edge. In Fig. 3.17(c), those measured above
the edge are shown. The data have been normalized by the integrated reflecting power of the
diffracted beam. In Fig. 3.17(a), the transmitted rocking curve shows a valley for X-ray
energy @ = 10357.2 eV, but a peak instead of the valley for @ = 10365.6 eV. As is well
known, the peaks are due to anomalous transmission.

In the rocking curves of the transmitted beam when ® = 10357.2 €V, it is seen that the
intensities in the low angle side are higher than those in the high angle side. In contrast, when
® > 103572 eV, the intensities in the high angle side are higher than those in the low angle
side. The reversal of the asymmetry is due to the change of the phase of the crystal structure
factor [2].

Here we can see clearly that the changes of the transmitted rocking curves below the Ga
K-absorption edge due to the anomalous-scattering are very remarkable. On the other hand,
above the edge, the central peak gradually increases with increasing the X-ray energy as
shown in Fig. 3.17(c). The intensities of the tail in the high angle side are higher than those in
the low angle side. But we are not able to see the obvious changes like in

Fig 3.17(a).
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Fig.3.17 The rocking curves of the transmitted beam for GaAs 200
(a) The measured rccking curves and (b) the fitted ones below the
Ga K-absorption edge, (c) the measured rocking curves and

(d) the fitted ones above the edge.




3.6.3 Fitting Analysis
The procedure in the profile fitting method is as follows. We denote the normalized intensity
(w,A46) and that of the

of the measured rocking curve of the transmitted beam as 7

obs

(w,460) . Here, A0 is the shift from the Bragg angle.

cal

calculated rocking curve as /
I, (@,A8) can be written approximately in the form: The rocking curve /_,(@,A46) ofthe

transmitted beam is given by the following equation

[ (0,40) = J% (0,460 - x)g(x,0)dx B347)
Here, P,/Py@, Af) is calculated using the dynamical theory assuming that the incident beam
is an ideal plane wave. P, is the intensity of the transmitted beam and P; that of the incident
beam. The intensity of dynamical diffraction is given by (2.82b). g(x, o ) is a convolution
function which is used in order to take the dispersive angle of the incident wave into account
so that the calculated results can be compared with the experimental ones. To approximation,

we adopt a Gaussian function, i.e

| Seis

f 2
ey 3.18
$0i) orm e\pk U:J ! )

Therefore we can write [.{@, 40 ) = 1..{A0, f(®), f(®), o). The profile fitting has been
carried out in order to bring /. into accord with L., the normalized intensity of the
measured rocking curve of the transmitted beam, by a trial and error method with which we
repeatedly adjusted the values of /(®), /(@) and o until the deviation can be evaluated as its
minimum value.

The fitted results are shown in Fig. 3.17(b) and (d). In this way, we obtained the values of

fo.'(@) and £, " (@) within 1% of the error which are shown in Fig. 3.18, and o= 0.0011°

+0.0003°.




3.6.4 Results and discussion

By making a comparison between the measured rocking curves and the fitted ones (refer to
Fig.3.17), it is clear that the measured result is generally in good agreement with the fitted
result, but the agreement above the Ga K-absorption edge is not as good as that below the

edge.
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Fig.3.18 The values of f " and /™ of Ga near the Ga K-absorption edge.
The squares are the present result, the thick solid lines are the FHKO result,
the thin dashed lines are the PHC result and the thin solid lines are the CLS

result. The abscissa is the energy from the Ga K-absorption edge.




Fig. 3.18 shows the values of (@) and /(@) obtained from the fitting together with those
of FHKO, PHC and CLS. The results of curve fitting are in agreement with the results of
FHKO. Furthermore, above the edge, two peaks in the curve of f(@) are seen both in the
results of FHKO and the present fitting, which can be explained as XANES. In the energy
region from the edge to —10 eV, the /(@) values of FHKO are slightly less than

those of PHC or CLS. A similar tendency is seen in the present result. Above the edge, the
f(w) values of FHKO are more or less larger than those of PHC and CLS. This tendency is
the same as the present one. Accordingly, very close to the edge. the calculated anomalous
scattering factors by PHC and CLS methods are not suitable to explain the phenomena for a
real crystal.

In order to improve the accuracy of anomalous scattering factors, we have two
possibilities. One is to use the incident beam of smaller dispersive angle. In the present
experiment, if the incident monochromatized beam is an ideal plane wave, the full width at
half maximum (FWHM) of the calculated rocking curves of the diffracted beam of GaAs 200
is about 1 second (see Fig. 3.19). But the observed FWHM is about 6 seconds, 6 times
larger than that of the ideal case. The main reason why this FWHM broadens is the intrinsic
width of the monochromatized beam, Kohra and Kikuta[16] had held down the dispersive
angle of the monochromatized beams to about 0.1 seconds which were much smaller than
that of the diffracted beam from the sample. Thus, they were able to deal with the rocking
curves without convolution and investigated the slight difference between the results of the
caleulation and the measurement. In the present experiment, we cannot deal with the rocking
curves as Kohra and Kikuta[16] did, because the dispersive angle of the monochromatized
beam is much larger than that from the sample. But we can use the rocking curves of the

transmitted beam instead of those of the diffracted beam, because the change of the




transmitted rocking curves is conspicuous as compared with that of the diffracted ones
The other possibility is to use a thinner sample erystal, which enhances the change of the

transmitted curves above the absorption edge
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Fig.3.19 The rocking curves for the diffracted beam of GaAs 200 at
10387.6eV. The thick solid line is measured one, the dashed line is the
calculated one for an ideal plane wave and the thin solid line is the

calculated one with convolution.

3.7 Summary
In 3.1, integrated reflecting powers are measured for Ge 844. /" from the measurement,

it is found that and |f'| become equal and f° + f'=0 at —2.8eV below Ge K-absorption
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/" (@) . These peaks correspond to XANES. f'. (@) should good agreement with the
calculated result. Then rocking curves were measured using the incident beam with the
dispersion angle also of 6 times larger than the half width of the diffracted beam from the
sample. Nevertheless, the measured results of anomalous scattering factors comparatively
high accuracy were obtained. If the dispersion angle of the incident beam is made smaller
than the half width of the diffracted wave from the specimen, the accuracy in the
measurement of the anomalous-scattering factor will be improved remarkably

As mentioned above, it was shown in experiments of chapter III that the dynamical

diffraction only due to g,

L hi

is observed not only in a monatomic crystal, but also a biatomic

crystal. It was also shown that in a biatomic crystal the dynamical diffraction only due to
X, is observed. The validity of the present theory was shown in the case when the changes
in y, and y, were large. As for the rocking curve of the dynamical diffraction only due
to x, inBragg case, the half width of the rocking curve is quite small compared with that
only due to x,,. Therefore, in order to investigate in detail the result considered in this paper,
the resolution of the experimental equipment of the conventional dynamical diffraction is not
enough. In order to carry out the study of the dynamical diffraction only due to y,,
considered in this paper in detail, the improvement in the resolution of an optical system

must be achieved
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APPENDIX C: Fluorescence X-rays

In order to calculate and translate, P, /P, and P,/ F, is follows
symmetrical reflective conditions

P, 1-2psinS[ (aimfa-m: s i (B R r :

; ; e U t ¢ 2e " cos(2szRe4/0) (cl)

I 4o

A R SO
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2 4]./0 S
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(c1) and (c2) are calculated us and

yield intensity 7/, is calculated using (3.4)

and the fluorescence X-ray










CHAPTER IV CONCLUSION AND FUTURE VIEW

4.1 Conclusion

In the treatment of the conventional dynamical diffraction, the ordinal scattering was
subjective and the X-ray resonance scattering was auxiliary. However, SR appears now
and the dynamical diffraction which united the energy of the incident X-ray with the
energy of K-absorption edge of a atom which constitutes a crystal come to be obtained.
For this reason, in the dynamical diffraction, there is a case in which a X-ray resonance
scattering becomes subjective from a normal scattering. In this paper, I considered and
analyzed from sides of the theory and the experiment including the case which a X-ray
resonance scattering becomes subjective

The conventional dynamical theory (SIA) to which approximation of [y, |>|z,| is

applied is not helpful at all in the study of the dynamical diffraction by the X-ray
resonance scattering accompanied in the case of x, =0. For this reason, Fukamachi and
Kawamura presented a theory to calculates the exact dynamical diffraction which does
not carry out approximation like STA. In this study, T extended the dynamical diffraction
by the X-ray resonance scattering on the basis of the theory of Fukamachi and
Kawamura, and derived the formula of the diffracted intensity for a finite thickness crystal
in Laue case and Bragg case

I examined the phenomena which is anticipated by the fundamental equation: such us
the complex dispersion surface, the poynting vector, and the wave field in a crystal. I
obtained the results which cannot be expects at all by SIA, newly, the similarity between
the dispersion surface of Bragg case of g= 0 and Laue case of ¢= 1, the fact that the

poynting vector does not intersect perpendicularly to the dispersion surface, and the
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