

FAST MULTIPLE-PRECISION ARITHMETIC 0 .. DISTRIBUTED

MEMORY PARALLEL CO!VIPUTERS AND ITS APPLICATIONS

5t'lllJ .:c 'J ru!~9u~mm~:iHt;., ~~~fi!i-&:~r• t -t-<!)JZ.ffl

by

Daisuke Takahashi

~;jijc:j')-

A Dissertation

Submitted to

The Graduate School of

The University of Tokyo

in Partial Fuliillrnent of the Requirements

for The Degree of Doctor of Science

in [nformation Science

December 1998

Abstract

This thesis proposes highly efficient parallel algorithms for the multiple-precision addition, sub­

traction. multiplication , division and square root operat ion on distributed memory parallel com­

pulers.
It is well known that the fast Fourier transform (FFT) based multiplication can be used to

implement multiplication of n-digit numbers in O(n logn log logn) operations. The conventional

FFT-based algorithms m ultiply two n-digil numbers to obtain a 2n-digil result. ln the multiple­

precision floating point multiplication, we need only the returned r esult whose precision is equal

to the multiple-precision float ing point number. T his fact is exploited in our "dividing method"

which is faster than the conventional FFT-based multiplication algorithm for the multiple­

precision floating point numbers.

For an arbitrary-precision FFT- based multiplication, the number of points N in FFT is

not necessarily 2"'. This t hesis proposes high performance radix-2, 3 and 5 parallel 1-D FFT

algorithms for N = 2P3q5r on distributed memory parallel computers. Experimental resul ts of

2P3q5r point parallel 1-D FFTs on distributed memory parallel computers are reported.

A paraJlel implementation of the real FFT-based multiplication is presented. This t hesis

proposes a parallelization of releasing propagated carries and borrows in the multiple-precision

addition, subtraction and multiplication. In t he parallel implementation of t he Newton iteration

based multiple-precision division and square root operation. t here is a trade-o.ff between load

balance and communication overhead on distributed memory parallel computers. An efficient

data distribution for th e multiple-precision division and square root operation, is presented. A

multiple-precision parallel division by single-precision integer, which is much faster than the

multiple-precision division by a multiple-precision number, is proposed.

Moreover, improvements of the Gauss-Legendre algorithm and Borweins' quarticaJly conver­

gent algorithm for 1r calcu lation are proposed. The improved Gauss-Legendre algorithm is up

to 1.08 times faster than the original Gauss-Legendre algorithm, and t he improved Borweins'

quartic ally convergent a lgorithm is up to l. 78 times faster than the original Borweins' quartically

convergent algorithm.

Finally, this thesis shows how more than 137 billion decimal digits of t be square root of 2

and more than 51.5 billion decimal digits of 1r are computed on the distributed memory parallel

computer HITACHI SR2201 (1024 PEs) . According to these results for the calculation of the

mathematical constants, it is shown fhat our multiple-precision parallel a ri th metic algorithms

are quite useful for computing highly accurate mathematical constauts.

Acknowledgments

First of all, I would like to express my appreciation to Professor Yasumasa Kanada for his

support and discussions on this research.

I am grateful to Associate Professor Hiroyuki Sato for quite good comments about the

manuscript. I appreciate discussions with members of Kanada laboratory.

I would like to thank Dr. Arthur Norman at Cambridge University. He gave me appropriate

comments about multiple-precision arithmetic algorithms. I am pleased to acknowledge Dr.

Aad van der Steen at Utrecht University for valuable comments about paraUel FFTs. I wish to

thank Dr. Yasunobu Torii at Fujitsu Ltd. He gave me suggestive comments and advised me to

investigate the paraUel division by short integer.

1

Contents

1 Introduction

1.1 Overview

1.2 Sequential Multiple-Precision Arithmct.ic

1.3 P arallelization of Multiple-Precision Arithmetic

1.4 Organization .

2 Fast Multiple-Precision Multiplication B ased on Dividing Method

2.1 Introduction ..

2.2 Multiple-Precision Multiplication Based on the FFT

2.3 The Dividing Multiple-Precision FFT-based !vlult iplication

2.3.1 Multiple-Precision Mu!Liplica.tion Based on Dividing Method

2.3.2 Multiple-Precision Square Operation Based on Dividing Method .

2.4 Experimental Results .

3 Implementation ofRadi.x-2, 3 and 5 1-D FFT on D istributed Memory Parallel

8

9

10

11

13

13

14

15

15

18

20

Computers 24

3.1

3.2

Introduction .

The Four-Step and Si_x-Step FFT Algorithms .

3.2.1 The Four-Step FFT

3.2.2 The Six-Step FFT .

24

25

25

26

3.2.3 An Extended Three-Dimensional Four-Step FFT 26

3.3 Parallel FFT Algorit hm 27

3.3.1 Algorithm (1) 27

3.3.2 Algorithm (2) 30

3.3.3 Adaptability of Parallel FFT Algorithms to Processor Architecture 31

3.4 Radix-2, 3, 4 and 5 FFT Algorithm on a Single Processor 31

3.4.1 The Radix-2 FFT 32

3.4.2 The Radix-3 FFT 32

3.4.3 The RadLx-4 FFT 33

2

3.4.4 The Radi..x-5 FFT

3.4.5 Arithmetic Operation Counts .

3.5 Experimental Results of the P arallel FFT .

3.5.1 Experimental Results on the HITA CHI SR2201

3.5.2 Experimental Results on the IBM SP2 . . .

4 Fast Multiple-Precision Addition, Subtraction and Multiplication on Dis­

tributed Memory Parallel Computers

4.1 Introduction

4.2 Parallelization of the Multiple-Precis ion Addition , Subtraction and Multiplication

by Single-Precision Integer

4.3 Parallelization of the Multiple-Precision Multiplication .

4.3 .1 Multiple-Precision Multiplicat ion Algorithm ..

4.3.2 Parallelization of the Multiple-Precision Mult iplication.

4.4 Experimental Results .

5 A Multiple-Precision Division by Single-Precision Integers on Distributed

Memory Parallel Computers

5.1 Introduction .

5.2 Algorithm

5.3 Experimental Results

6 Fast Multiple-Precision Calculation of Division and Square Root on Dis-

34

35

35

35

37

39

39

40

42

42

44

44

48

48

49

52

tributed Memory Parallel Computers 56

6.1 Introduction 56

Newton Iteration .. 57
6.2

6.3

6.4

Parallelization of the Multiple-Precision Addition, Subtraction and Multiplication 57

Parallelization of the Multiple-Precision Division and Square Root Operation 58

6.4.1 Arithmetic Operation Counts . 58

6.4.2 Communication Time on Parallel Processing (Normalization) .

6.4.3 Total Computational Time

6.5 Experimental Results

7 Calculation of J2 to 137,438,950,000 Decimal Digits on the Distributed Mem-

59

60

60

ory Parallel Computer 66

7.1 Introduction_

7.2 The Newton Iteration for Square Roots

7.3 1\'lultiple-Precision Arithmetic ..

3

66

67

67

7.4 Results

8 Improvement of Algorithms for rr Calculation

8. 1

8.2

Introduction .

The Ga uss-Legendre Algori t hm

8.2.1 Improvement of the Gauss-Legenclre Algorithm

.3 Borweins' Quartically Convergent Algorithm

68

70

70

70

72

73

8.3.1 Improvement of Bonveins ' Quartically Convergent Algorithm 73

8.3.2 Improvement in the Final Iteration of Borweins' Quartically Convergent

Algori thrn . . 7 5

8.4 Experimental Results
77

9 Calculation ofrr to 51,539,600,000 Decimal Digits on the Distributed Memory

Parallel Computer 79

9.1 Introduction . 79

9.2 Multiple-Precision Arithmetic

9.2.1 Multiple-Precision Addition, Subtraction and Multiplication

9.2.2 Multiple-Precision Reciprocal .

9.2.3 Multiple-Precision Square Root

9.2.4 l\·1ultiple-Precision Reciprocal 4-th Root ..

9.3 Results of 1f 51,539,600,000 D cimal Digit Calculation

10 Conclusion

4

81

81

82

82

82

83

86

List of Tables

2.1 Execution time of" x /2 (i11 seconds). Underscored results are the minimum

calculation time for ach division.

2.2 Execution time of rr x -rr (in seconds) . Underscored results are the minimum

calculation time for each division.

2.3 Execution time of real FFT (CPU TIME, N = 2'n).

3.1 Number of real operations for small-n transforms [83).

3.2 Performance of parallel FFT algorithm (1) on the IDTACID SR2201

3.3 Performance of parallel FFT a lgorithm (2) on the IDTACHI SR2201

3.4 All-to-all communication performance on the HITACHI SR2201

3.5 Performance of parallel FFT algorithm (1) on the lBl\11 SP2

3.6 Performance of parallel FFT algorithm (2) on the IBM SP2

3.7 All-to-all communication performance on the IBM SP2 .

4.1 Execution time of multiple-precision parallel addition (r.+ /2) (in seconds), N =

number of decimal digits.

4.2 Execution t ime of multiple-precision parallel multiplication (rr x /2) (in seconds),

22

22

23

31

36

36

37

37

38

38

46

N = number of decimal digits. 47

5.1 Execution t ime of multiple-precision parallel division by a single-precision integer

(rr/2) (in seconds) , N =number of decimal digits.. 54

5.2 Execution time of multiple-precision parallel division by a single-precision integer

(r./3) (in seconds), N =number of decimal digits .. 55

6.1 Execution time of multiple-precision parallel division (/2/rr, block distribution)

(in seconds), N =number of decimal digits. . 62

6.2 Execution time of multiple-precision parallel division (/2/1r, cyclic distribution)

(in seconds) , N = number of decimal digits.

6.3 Execution time of multiple-precision parallel square root (,JF.. block distribution)

(in seconds), N = nu mber of decimal digits.

5

63

64

6.4 Execution time of multiple-precision parallel square root (ft. cyclic distribution)

(in seconds) , .V = number of decimal digits.

7.1 Frequency distribution for .f2- 1 up to 100,000,000,000 decimal digits.

.1 Comparison with the number of operations i:n each iteration of the Gauss-Legendre

algorithm

8.2 Comparison wilb the number of operations in each iteration of Borweins' quarti-

65

68

73

cally convergent algorithm. . . 75

8.3 Comparison with the performance of the Gauss-Legendre algorithm (in seconds). 78

8.4 Comparison with the performance of Borweins' quartically convergent algorithm

(in seconds) 78

9.1 Historical records of the 11' calculation by computers.

9.2 Frequency distribution for 11'- 3 up to 50,000,000,000 decimal digits.

9.3 Frequency distribution for 1/11' up to 50,000,000,000 decimal digits.

6

80

85

85

List of Figures

2.1 Illustration of the dividing method.

2.2 Efficiency of the dividing method (multiplication).

2.3 Efficiency of t he dividing method (square).

15

19

21

3.1 Performance of FFT kernel (radix-4) (HITACHI SR2201 lPE). 29

4.1 Multiple-precision sequential addition. . . . 41

4.2 Multiple-precision parallel addition. 42

4..3 Parallel normalization with the carry skip method. 43

4.4 Execution time of multiple-precision parallel addition (1r + Vz), N =number of

decimal digits 46

4.5 Execution time of multiple-precision parallel multiplication (1r x vf'i.) , N =number

of decimal digits. 47

5.1 The communication diagram for equation (5.14). 51

5.2 Execution time of multiple-precision parallel division by a single-precision integer

(7r/2), N =number of decimal digits. 54

5.3 Execution time of multiple-precision parallel division by a single-precision integer

(7r/3), N =number of decimal digits. . . 55

6.1 Execution time of multiple-precision parallel division (vf'i./7r, block distribution),

N = number of decimal digits.

6.2 Execution time of multiple-precision parallel division (fi/r. , cyclic distribution),

N = number of decimal digits. . .

6.3 Execution time of multiple-precision parallel square root (,fi, block distribution),

N = number of decimal digits.

6.4 Execution time of multiple-precision parallel square root (,jii, cyclic distribution),

N = number of decimal digits.

7

62

63

64

65

Chapter 1

Introduction

1.1 Overview

Nnmerical computations on modern compnters are generally performed with arithmetic oper­

ations of int, float and double datatypes. 32-bit int datatype can only express numbers in the

range of -231 ~ 231 - 1. The precision of 32-bit float datatype is about 6 decimal digits and

the precision of 64-bit double datatype is about IS decimal digits in IEEE 754 representation.

Although quad precision is supported on several computers with software. its precision is at

most 33 decimal digits.
In most scientific computations, these precisions are suffi cient enough. However, for an

arbitrary-precision computation, we need an efficient software of the multiple-precision ari h­

metic. This thesis proposes para llel algorit hms for t he multiple- precision arithmetic on dis­

tributed memory parallel computers.

Application fields of the mult iple-precision ar ithmetic include

• RSA cryptosystem [64, 46],

• Integer factorization [23, 63 , 80],

• Mersenne prime search [53, 62],

• Highly accurate calculation of ma thematical constants (-rr, e, ,;2, etc.) [61, 67, 32 , 2, 7,

8, 41, 76, 78], and

• Symbolic and algebraic computation [37, 31].

Two factors may set a limit to the very high precision with which mathematical constants

can be calculated:

(a) The efficiency of the algorithms used.

(b) The total amount of memory a\'ailable.

8

The typical CPU-intensive calculations that have been performed are integer factorization

and Mersenne prime sea1·ch wlllch are performed on large lusicrs of workstations or personal

computers. For 10 to 100 billion digit mathematical constants calculation , above factor (b) is

critical, since so the m achines with tb.e order of 0.1 TB (TeraBytes) to l TB are needed.

To perform the multiple--precision calculation at lllgh speed , vector processing oriented im­

plementations have been proposed [41. 24 , 11]. The processing speed and main memory size of

the vector computers are becoming saturated.

Therefore a parallel processing by a distributed memory parallel computer is one of the

solutions [or the very high precision calculation. However. b ecause of communication overhead

and load imbalance, it is not easy to obtain its peak performance. Thus ii is quite important to

develop parallel algorithms that can be implemented effi.ciently on distributed memory parallel

computers.

1.2 Sequential Multiple-Precision Arithmetic

The multiple-precision sequential algorithms are described in references [5, 45]. The arithmetic

operation count of n-digit multiple-precision sequential addition, subtraction and multiplicat,ion

by single-precision integer is clearly O(n).
A key operation in the fast multiple-precision arithmetic is the multiplication, by which sig­

nificant time in the total computation is spent. The multiple-precision multiplication of n-digit

numbers requires O(n2) operations by using ordinary multiplication algorithm [45]. Karatsuba's

algorithm [43, 45] is known to reduce the number of operations to O(n
10

g>
3

) .

On the other hand , it is well known that the multiple-precision multiplication of n-digit

numbers can be performed in O(nlognloglogn) operations by using the Schonhage-Strassen

algorithm [66, 5, 45] which is the algorithm based on the fast Fourier transform (FFT) [27, 22,

5 , 86]. In the multiple-precision multiplication of several thousand decimal digits or more, the

FFT-based multiplication is the fastest.

These conventional FFT-based algorithms multiply two n-digit numbers to obtain a 2n-digit

result 182, 41, 8, 19]. However, in the multiple-precision floating point multiplication, we need

only the returned result whose precision is equal to the multiple-precision floating point number.

This fact is exploited in our "dividing method" wlllch is faster than the conventional FFT­

based multiplication algorithm for the multiple-precision floating point numbers. In references

[47, 48, 56] , algorit hms for the multiple-precision floating point multiplication arc shown. Haw­

ver, they use the ordinary O(n2) multiplication algorithm or Karatsuba's O(nlog,J) algorithm

which is asymptotically slower than the FFT-based multiplication algo rithm. We show that the

overall ari thmetic operations for the multiple-precision FFT-based multi plication are reduced

by decomposition of th e full length FFT-based multiplication into shorter lengt h FFT-based

9

multiplication.
The multiple-precision division and square root operation take considerably longer Lime to

compute than t he addi tion, subtraction and multipLication. There are a number of ways to

perform division nnd square root operation [45j. It is well known that the multiple-precision

division and square root operation can be reduced to the multiple-precision addition , subtraction

and mu ltiplication by using the Newton iteration [45j. Tbis scbeme requires O(NI(n)) operations,

where lvf(n) is the number of operations for n-digit mu ltiplication.

Several software packages are available fo r the multiple-precision computation [21 . 24, 9, 36,

69. 11. 12j. Brent's MP multiple-precision package [21J is probably the most wide ly used of

tbese packages at present, due to its greater functionality and efficiency. D. M. Snrith made a

similar package which features improved performance for certain transcendental functions [69].

Another package available at some sites is MPFU 1 made by D . H. Bailey [llj. One of the key

features in the M.PFUN package is that package is optimized for vector supercomputers and

RISC processors.

1.3 Parallelization of Multiple-Precision Arithmetic

Parallel implementation of the multiple-precision arithmetic on a shared memory machine was

reported by K. Weber [8 7]. Weber modified t he MPFT.JN package 1111 to run in parallel on a

shared memory multiprocessor. However, a complete solution of the sequential bott leneck in

the normalization of the result (carry/borrow propagation) is not pre ented, and t he multiple­

precision division is also not discussed. T his thesis shows that these pro pagation operations can

be parallelized by the carry skip method [5 2J.

Parallel implementation of Karatsuba's multiplication algorithm was proposed by G. Ce­

sari and R. Maeder [25] on a distributed memory parallel computer. In the multiple-precision

multiplication of several thousand decimal digits or more, the FFT-ba.sed mult ipLication is the

fastest. FFT-ba.sed multiplication algorithms are k-nown to be good candidates for the parallel

implementation. B. S. Fagin [33, 35J used t he Fermat number transform (F T) [60 , 1, 2, 5 J

for large integer multiplication on the Connection Machine CM-2. However, FNT uses many

modulo operations which are slow because of integer division.

This thesis proposes the real FFT-ba.sed multiple-precision parallel multipl.ication on dis­

tributed memory parallel computers. In this scheme, a high performance parallel 1-D FFT

rout ine is needed. Many papers have proposed parallel 1-D complex and real FFT algorithms

with radix-2 173, 6, 40, 4, 38] . However, for an arbit rary-precision FFT-based multiplication.

the number of points N in FFT is not necessarily 2"'- This thesis also proposes the radix-2, 3

and 5 parallel l -D FFT algorit hms for N = 2P3q5r on distributed memory parallel computers.

By using the radix-2, 3 and 5 parallel 1-D FFT, we can reduce the arithmetic operations and

10

memory size of the multiple-precision FFT -based multiplications.

Parallel computation of ../2 up to 1 million decimal digits has been performed by B. Char

et al. [26] on a network of workstations in 199-L However, they did not propose t he multiple­

precision parallel eli vision and they implemented a parallel version ofKaratsuba's multiplication

algorithm.
This thesis also proposes the FFT-based multiple-precision parallel division and square root

-operation. In the parallel implementation of the Newto n iteration based mu ltiple-precision

clivision and square root operation, there is a trade-off between load balance and communication

overhead on clistributed memory parallel computers [75]. This is because the Newton iteration

is performed by doubling the precision for each iteration. This thesis proposes an efficient data.

distribution for the multiple-precision division and square root operation.

On the other hand, the multiple-precision div ision by single-precision integer is a lso used in

the multiple-precision arithmetic, which is much faster than the clivision by a multiple-precision

number. Although several multiple-precision arithmetic packages [21, 24, 11] include a routine of

t he multiple-precision division by single-precision integer, the multiple-precision parallel division

by single-precision integer has not been presented so far.

This thesis proposes the multiple-precision numbers can be divided by single-precision integer

in parallel. Although this "division by short integer" includes a first-order recurrence. we can

apply the parallel cyclic reduction method [39].

1.4 Organization

This thesis is organized as follows. Chapter 2 studies a fast multiple-precision multiplication

based on the d ividing method.

Chapter 3 gives an implementation of radix-2 , 3 and 5 1-D FFTs on distributed memory

paral.lel computers. Experimental results of iV = 2P39 5' point FFTs on the distributed memory

parallel computers HITACHI SR2201 and IBlV! SP2 are described.

Chapter 4 studies a fast multiple-precision addition, subtraction and multiplication on dis­

tributed memory parallel computers. A parallel implementation of the real FFT -based multi­

plication is presented, because a key operation in the fast multiple-precision arit hmetic is the

multiplication. ·w e also propose a parallelization of releasing propagated carries and borrows in

the multiple-precision addition. subtraction and multiplication.

In Chapter 5. a multiple-precision parallel division by single-precision integer is presented.

Chapter G studies a fast multiple-precision calculation of clivision and square root opera­

tion on distributed memory parallel computers. An efficient data distribution for the multiple­

pr cision division and square root operation by using the Newton iteration is discussed.

Chapter i describes the calculat;ion of -/2 up to 137,438.950,000 decimal digits have been

11

computed and verified on a dislributed memory parallel computer. The calcu lation is based on

the classical 1\ewton iteration for the reciprocal of the square rool. Since the Newton iteration

has the second order convergence nature, it can be performed by doubling the precision for each

iteration.
Chapter gives improvements of the Gauss-Legendre algorithm and Borweins' quanically

convergent algorithm for 1r calculation. in which the number of the multiple-precision multipli­

cation and square operation is reduced.

Chapter 9 focuses on the calculation of rr up to 51,539.600,000 decima.l digits. Calculation

is based on Borweins quartically convergent formula. Correctness of the calculation was veri­

fied through arithmetic-geometric mean formula discovered independently by R. P. Brent and

E. Salamin in 1976. Details of the computation and statistical tests on the first 50 billion digits

of.,- are exp.lained.

Chapter I 0 gives conclusion of this thesis.

12

Chapter 2

Fast Multiple-Precision

Multiplication Based on Dividing

Method

2.1 Introduct ion

Many multiple-precision multiplication algorithms have been proposed [45]. The multiple­

precision multiplication ofn-digit numbers requires O(n2
) operations by using ordinary multipli­

cation algorithm [45]. Karatsuba's algorithm [43] is know"ll to reduce the number of operations

to O(n10g' 3).

Schi:inhage-Strassen's O(nlognloglogn) algorithm [66, 45] is knO\\"ll as the fastest multiple-

precision algorithm. However, this algori thm may not be able to exploit computers with fast

6.oating point hardware and needs binary to decimal radix conversion for the fi nal result.

D. H. Bailey also used discrete Fourier t ransform with three prime modulo computation fol­

lowed by the reconstruction through Chinese Remainder Theorem for his 29 million decimal

digit.,- calculation [].

On the other band, the multiple-precision multiplication algori thm using the real fast Fourier

transform (FFT) [14] i known as another fas t multiplication algorithm [82 , 41, 19]. In t his

chapter. we discuss this algorithm.

These conventional FFT-based algorithms multiply two n-digit numbers to obtain a 2n-digit

result. In the multiple-precision floating point mult iplication, we need only the returned result

whose precision is equal to the multiple-precision 6.oating point number. Vie will call it "short

product" here. In [47, 4 , 56]. algorit hms for multiple-precision float ing point mul tipl ication

are shown. They used the ordinary O(n2) multiplication algorithm or Karatsuba's O(n
1•g, 3

)

algorithm. However. in the mu ltiple- precision multiplication o{ seYeral thousand decimal digits

13

or more, tbe FFT-based multiplication is the fastest. We show that Lhe overall arithmetic

operations for the multiple-precision FFT-based multiplication are reduced by decomposition

of the full length FFT-based multiplication into shorter length multiple-precision FFT-based

multiplication.
For simplicity. we usc the slwrt product which do not provide exact rounding. lt is not hard

to e:xtend the multiple-precision multiplication wit.h exact rounding [47, 48, 56] .

2.2 Multiple-Precision Multiplication Based on the FFT

Throughout the chapter, we discusses a case of the multiple-precision multiplication based on

the FFT.
Let us consider the product Z of two integers X and Y with length n and radix B. Note

that the radix B need not to be a power of 2.

2n-l

)(= L' XiB"~
i=O

2n-.l

Y = 2: YiBi,
i=O

where 0 :5 Xi < B, 0 :5 y; < B for 0 5 i < n- 1, 0 < Xn-J < B, 0 < Yn-l < B and

x; = y; = 0, for n :5 i.

Then,

(

2n-l) (2n-1) 2n-l (2n-l 2n-l

Z =X· Y = t; x;B1 ·]; y;Bj = t; B' j; XjYi-j) = ~ zkBk.

Thus, zk can be written as follows:

2n-l

Zk = Ck(x, y) = L XjYk-j, for k = 0, · · · , 2n - 2 and zzn-1 = 0.
j=O

where the subscript k - j is to be interpreted as k - j + 2n if k - j is negative.

Now. the discrete Fourier t ransform (DFT) and the inverse DFT are given by

N-1

where N = 2n.

Fk(x) = L x;e-2.,djkfN'

j=O

N-1

F -1() _ ~ "' . 2">CijkfN
k x - N ~ x1 e ,

j=O

Then the convolution theorem for discrete sequences stat.es that

F[C(x, y)] = F(x)F(y) .

Let C(x, y) denotes the convolution of the sequences x and y:

C(x, y) = r 1[F(x)F(y)].

(2.1)

(2.2)

.To XJ "'2 X3

YD y, Y2 Y3

Xol/o XQl/1 XoY2 xoy3

XJYD XJYl X1Y2 X1Y3

X2YD XzY1 X2Y2 X2Y3

X3l/D XJYl X3Y2 "'3Y3

zo ZJ Z2 ZJ

Figure 2. 1: illustration of the dividing method.

\Ve can use the FFT to calculate the DFT in (2.1) and (2.2). The arithmetic operation count

of N point FFT is O(NlogN) [27].

2.3 The Dividing Multiple-Precision FFT-based Multiplication

2.3 .1 M ult iple-Precision M ult ip lication Based on Div iding Meth od

Let us consider the multiple-precision multiplication of n-digit numbers based on dividing

method.
We show the multiple-precision FFT-based multiplication based on 4-way division between

X andY, both of which are n-digit numbers with radix B. Let us consider the multiple-precision

multiplication, such as (n-digit number) x (n-digit number) _, (n-digil number):

X= Xo. B3n/4 + XJ . Bn/2 + X2. B"/4 + XJ,

y =Yo. B3n/4 + YJ . Bn/ 2 + Y2 . B"/4 + l/3 ,

(0 ~Xi < B"f4
).

(0 ~ l/i < B" /4
).

The returned results of upper bali n-digits between X and Y are:

Z=X·Y

= p-1 [F(xo)F(yo)]· B3" / 2 + r 1 [F(xo)F(yt) + F(x1)F(yo)]· B
5
"/

4

+p-1 [F(xo)F(y2) + F(x1)F(y1) + F(x2)F(yo)] · B"

+p-1 [F(xo)F(yJ) + F(xt)F(y2) + F(xz)F(y,) + F(xJ)F(yo)] · B3
n / -1

= zo . B3» / 2 + ZJ • B5n /4 + Z2. B'' + ZJ. B3n/ 4.

The illustration of the dividing method is shown in Figme 2.1.

When each partial multiplication x;yj (0 ~ i ~ 3, 0 ~ j ~ 3, 0 ~ i + j ~ 3) is computed, it

is necessary to compute the forward Fourier transform of x; (0 ~ i ~ 3) and Yj (0 ~ j ~ 3).

If we preserve the Fourier coefficients F(x;) (0 ~ i ~ 3) and F(yj) (0 ~ .i ~ 3), total number

of the forward Fourier transform is 8.

15

SillCC the Fourier coefficients are added 1.1p a.t the same position after the inverse Fourier

transforms are computed, total number of the invers Fourier transforms is 10 (= 2::{; 1 i).

However. we can utilize the linearity of the Fourier transform. First, we compute the addition

of the Fourier coefficients at the same position. Since we compute the inverse Fonrier transform

of these data, we can reduce the number of the inverse Fourier transform to 4.

We assume that the aritl:uuetic operation count of N(= 2n) point FFT is to be Cfft. ·.N log2 N

and the arithmet ic operation count of N point Fourier coefficient product is to be Cmult · N , and

that of N point Fourier coefficient addition is to be Cadd- N.

If we do not divide the multiple-pr cision number (i.e. Uw conventional FFT-based multipli-

cation algoritl:uu) , the arithmetic operation count T;~~~~ is as follows:

The total arithmetic operation count of the multiplicabon with 4-way divining, e.g. Tfft , is

as follows:

TJJt = 3 · (4 · Cfft · ~ log2 ~)
= 3Cfft · N(log2 N- 2).

The total arithmetic operation count T-mult for the product of the Forn-icr coefficient is:

Tmult = (2:::_

4 i) · Cmult · N
•;l 4

= ~Cmult' N.
2

Hence, the total aritl:uuetic operation count Tadd for the addition of the Forn-ier coefficient at

the same position is as follows:

Tadd = (t i) · Cadd · -:
t=l

3
= ZCadd · N.

The total arithmetic operation count Tav.,-lap for the addition of the inverse Fourier transformed

data at the same posibon which is overlapped is as follows:

N
T ooer/ap = 3. Cadd. s·

Hence, the total arithmetic operation conn of multiplication with 4-way dividing, r:;;:.f' is

as follows:

16

= 3CJ[t · N(log2- · - 2) + ~Cmult · N

+~c dd · N + ~c ld · l\' 2 (1. 8 tll

mu.lt (6 5 15) 1 = T,,odiv + - Cfft + z""'"lt + SCadd !\ ·

In the same way, we s how the multiple-precision FFT-based multiplication based au d-way

division.

d-1
r ~- !.:::..!.=.!.n

X = L.. x;B • ,
d-1

Y=Ly,s"=P·n,
i=O

U; = F(x,) , vi= F(y;) , 0 $ ·i $ d- 1,

z; =F-1 [t ujvi-j1, 0$ i $ d- 1,
]=0

d-1
Z =X· Y = L z;B 2

d-}- ' ·n.
i=O

T he total arithmetic operation connt of multiplication with d-way dividing, e.g. Tfft, is as

follows:

(N N)
Tfft = 3 · d · Cfft · d log2 d

= 3cf ft · N(log2 N- log2 d).

The total arithmetic operation connt Tm·ult for the product of the Fourier coefficient is:

(

d) N
Tmult = ?= i · Cm.ult. · 'j

1=1

d+l
= -

2
- · C.uJ.t · N.

Hence, the total arithmetic operation connt Tadd for the addition of the Fourier coefficient at

the same position is as follows:

(d-1) N
Tadd = L i ' Cadd · d

1=1

d-1
~·Cadd'N.

The total ar ithmetic operation co unt Toverlap for the addition of t he inverse Fourier t ransformed

data at the same position which is overlapped is as follows:

N
TO'llerlap = (d- 1) · Cadd · U

d-1
2

d · Cadd · N.

17

Hence, the total arithmetic operation count for the mu ltiplication with d-way di vidi ng, e.g.

T:t::' . is as follows:

Then. we can compu te the optimal d, to minimize T:J:;/', i.e.

log. e 1 1
('Jd';:/') 1

"" -3CJ ft · N · d + 2Cmult · N + 2 Ca dd • N

::0.

It shows thac

d"" 6Cfft log2 e .
Cmult + Cadd '

where d is an integer value and it is independent of N.

The arithmetic operation count of N point real FFT is (5/2)N log2 N [14]. Thus, we assume

that CJ ft is 2.5.
To multiply a complex number, in general, 4 t imes real number multiplications and 2 times

real number additions ar necessary [45]. Thus, we assume that Cmult. is 3. The optimal value d

is d"' 5.41 when assuming Cadd L• 1. Thus, when we use radix-2 FFT, the opt imal valued is 4

or 8, because d is an integer.

We show the ratio of r;:;:A~/Tdl;'" when d and data point N(= 2n) are varied in Figure

2.2. The ratio T;:~':/;~/Tdl:/1 ' shows the improvement that he dividing method provides over the

conventional FFT-based multiplication algorithm. Ford= 4 or d = 8 and N = 2
9

, we can see

that t he dividing met hod is better than conventional FFT-based multiplication algorithm.

2.3.2 Mult iple-Precision Square Operation Based on Dividing Method

Let us assume that the arithmetic operation cou.nt of N (= 2n) point FFT is to be CJJc·Nlog2 N.

\Ve assu.rne the arithmetic operation count of N point Fourier coefficient product is to be

c,q.nre ·Nand assu.rne tha.t of _IV point Fourier coefficient addition is to be Cadd · N .

If we do not divide t he multiple-precision number (i.e. t he conventional FFT-based multipli­

cation algorithm), the total arithmetic operation count T~:;,;;:;-• is as follows:

1.2 --~--~--.,------,----,.-------.

1.1

-- N~29
N~2 13

N~2 17

······ N~221

.,..mull 0.9
lnodiv
T{;~lt

0.8

0.7

0.6

0.5

0.4L--~~-~--~--~--~--~
1 4 8 16 32 64

d

Figure 2.2 : Efficiency of the dividing method (mlllLiplication).

Next , we compute the case of square operation with d-way dividing. The total arithmetic

operation count of the multiplication with d-way dividing, e.g. TJ !< • is as follows:

N N
TJJL = 2d · Cfft · d log2 d

= 2Cfft · N(log2 N -log2 d).

Here, we have to take care of the symmetry of the square operation. The arithmetic operation

count Tmult for the product of the Fourier coefficient is half of that in the case of multiplication.

Thus, the total arithmetic operation count TmulL is as follows:

1{(d) d} N d .N T,m/L = 2 ~ i - 2 · Cmult · d + 2 · Csquare · d

d 1
= 4 · Cmult- /\7 + zcsquare · JV.

Hence, the total arithmetic operation count Tadd for the addition of the Fourier coefficient

at the same position is as fo llows:

Tadd = (~ i) · Cadd · ~
r.=l

= d -
1

· Cadd · N.
2

19

The total arithmetic operation count Toverlap for the addition of the inYerse Fourier transformed

data al the same position which is overlapped is as follows:

_il,f
Toverlap = (d - 1) · Cadd · U

cl-1
----;;;1 · Cadd N-

Hence, the total ari thmetic operation count in the square operation with d-way dividing, e.g.

T:;:are, is as follows:

TJ:fvu..are = Tf ft + Tmu.lt + T'rJdd + Toverlap

= 2Cfft · N(logz N -Jog2 d)+~· Cmult · N + 1Csquare · N

d-1 d- 1 +-
2
- · Cadd · N + Zd · Cadd · N

_ square (- d - 4 1 d
2

- 1)
- Tnodiv + -2Cfft . log2 d + ~. Crnult + zCsquare + ~ . Cadd N .

Then, we can compute the optimal d from

(T;,~uare) 1 "" -2Cfft · N ·
10~2 e + ~Cmult · N + ~Cadd. - N

=0.

The formu la shows that the optimal value of dis as follows :

d"" 8ctft log2 e .
Cmult + 2Cadd

Then, the optimal valued is 5.77. Thus, when we use rad.ix-2 FFT, t he optimal value of dis 4

or 8 because d is an integer .

We show t he ratio of T~'[;.;;• fT'di~uore when cl and data point N(= 2n) are varied in Figure

2.3. The ratio T~:~;:;· /TJ;~uare shows the improvement t hat the di viding method provides over

the conventional FFT-based multiplicat ion algorithm. Ford= 4 or d = 8 and N = 29
, we can

see that the dividing method is better than convent ional FFT-based multiplication a lgorithm.

2.4 Experim ental Results

To eva luate our algorithms, t he calculation of 1r x J'i and 1r x,. were performed on a main frame

machine of HITACHI MP-5800.

All routines were written in FORTRAN. The compiler used was optinilzed FORTRAN77 of

Hitachi Ltd. A5 .for a optinilzat ion option, - WO , ' opt (o(s) , approx(O))' was specified.

The execution times when number d of division and n are varied are shown in Tables 2.1

aud 2.2, respectively.

20

1.2 .----,.---~-----.--......----.----,
N=2

9

N=2'3

N=2
17

N=22>
1.1

'f.:quareO. 9

~
0.8

0.7

0.6

0.5

2 4 8

d
16

'_
\\'\
\\'-..
\\\
\\\
\\\ . , .

\ \

\'

32 64

Figure 2.3: Efficiency of the dividing method (square).

In t he cases of n = 212 and n = 216 , t he tendency of the observed values in Tables 2.1 and

2.2 is almost the same as the t heoretical one. However , in the cases of n = 28 and n = 2
20

, the

tendency of the observed values in Tables 2.1 and 2.2 is different from the theoretical one. In

the case of d = 1 (not dividing) and n = 28, the execution times are reduced in Tables 2.1 and

2.2 . By using the dividing method, in t he cases of d = 16 and n = 220
, the execution t ime is

reduced to 5.242/9 .995"" 1/1.91 in Table 2.1, and 4.197/6 .342"" 1/ 1.51 in Table 2.2.

Hereafter , we consider these causes. In the case of n = 28
, the overhead of DO-loop is

larger than in t he case of d = 1 (because the loop length of innermost loop is shortened). ln

the case of n = 220 , the cache misses occur frequently since t he memory size of the FFT is

32 MB. However , the cache misses do not occur easily in the diyjding method because the

multiple-precision numbers are divided, and working set size becomes smalL

The execution time of real FFT is shown in Table 2.3 which shows t hat the performance

decreases especially for N 2:: 219 . For computing the MFLOPS rate in Table 2.3, we used t he

theoretical arithmetic operation count of 2-.5N log2 N for N point real FFT.

In the dividing method, the arithmetic operations can be reduced and the cache miss is easily

reduced fo r large digit processing.

Table 2.1: Execution Lime of" x ,j2 (in seconds) . U11dcrscored results are the minimum calcu­

lation time for each diYisiorL

d n= 28 n = 212 n = z16 n = 220

1 7.754 X 10-4 0.01268 0.2466 9.995

2 7.920 X 10-4 0.01091 0.2149 9.047

4 9.667 X 10-4 0.01011 0.!988 7.246

8 1.313 X 10-3 0.01037 0.2047 6.266

16 2.005 X 10- 3 0.01094 0.2165 5.242

32 3.557 X 10- 3 0.01379 0.2394 5.404

64 7.104 x 1o- 3 0.02048 0.3232 6.901

Table 2.2: Execution time of r.X1r (in seconds). Underscored results are the minimum calculation

time for each division .

d n=28 n=212 n = 216 71 = z"IO

1 4 .122 X 10-4 7.234 X 10- 3 0.1435 6.342

2 4.312 X 10-<1 7.068 x Jo- 3 0.1416 6.198

4 4.900 x 1o-4 6.851 X 10- 3 0.1382 5.320

8 5.865 X 10-4 6.926 X 10- 3 0.1408 5.004

16 7.996 X 10- 4 7.560 X 10- 3 0.1460 4.197

32 1.341 X 10-3 O.Ql073 0.1916 4.466

64 2. 713 X 10-3 0.01641 0.2714 5.894

22

Table 2.3: Execution t ime of real FFT (CP U TIME, N = 2"').

m TIME (sec) MFLOPS

9 L085 x 1o-• 105.98

10 2.338 X 10- 4 109.45

11 5.110 X 10- 4 110.22

12 1.075 X 10- 3 114.31

13 2.331 X 10-3 114.22

14 5.051 X 10- 3 113.53

15 0.01078 113.99

16 0.02284 114.76

17 0.04977 111.93

18 0.1198 98.43

19 0.3929 63.38

20 1.247 42.05

21 2.899 37.98

Chapter 3

Implementation of Radix-2, 3 and 5

1-D FFT on Distributed Memory

Parallel Computers

3.1 Introduct ion

The fast Fourier transform (FFT) [27] is an <llgorithm widely used today in science and engi­

neering. Parallel FFT algorithms h ave intensively been studied [73, 6, 40, 4, 38].

For almost all scalar and vector computers, FFT algorithms with radix-2, 3 and 5 are pro­

posed [68, 84, 3]. Many vendors support paralle l 1-D complex and real FFT algorithms with

radix-2, but few vendor support radix-2 , 3 and 5 parallel 1-D complex FFT on distributed

memory parallel computers.

The parallel FFT algorithm can be derived from t be fo ur-step or si:'<-step FFT algorithms

[86]. These ideas can be adopted not only for the radix-2 parallel FFT but also for the radix-2,

3 and 5 parallel FFT. We succeeded to implement a radix-2, 3 and 5 parallell-D complex FFT

algori thm on the IDTAGHI SR2201 and the IBM SP2, and we report their perfo rmance in this

chapter.

According to theoretical analysis, we can show that the suitabili ty of the parallel F FT algo­

rithm differs between mach ines because of the variety of the CPU architecture for the processor

elements of distributed memory parallel computers.

24

3.2 The Four-Step and Six-Step FFT Algorithms

3.2.1 The Four-Step FFT

The disGrcte Fo\U·ier transform (DFT) is given by

n-1
Yk = L x;w~\ 0 :; k :; n- 1,

j=O

where Wn = e-2rifn and i = A.
lf n has factors n1 and n2 (n = n1 x n2), then the indices j and k can be expressed as:

We can define x andy as two-dimensional arrays (in FORTRAN notation):

Xj = x(jh J2), 0 :S Jl S n1 - 1, 0 :S]2 :S n2 - 1,

Yk = y(k:2, k,), 0 :S k1 S n,- 1, 0 :S k2 :S nz- 1.

(3 .1)

(3.2)

(3.3)

(3.4)

Substituting the indices j and k in equation (3 .1) with those in equation (3.2), and using

the relation of n = n 1 x nz, we can derive the following equatio n:

Tllis derivation leads to the following four-step FFT algorithm [86, 10j :

n:z-1

Step 1: x 1(j1, k2) = L x(j~, jz)~;k2 .
i2;::::.0

Step 2: x2(j~, k2) = x1(j1, k2)wf.',~',.

Step 3: x3(k2,h) =x2(it, k2).
n1-l

Step 4: y(k2, k1) = L x 3(k2 , j 1)~11k1 •
i1=0

Tl1e distinctive features of the four-step FFT algorithm can be sunnarized as:

(3.5)

• If n 1 is equal to n 2 (n 1 = n2 = .jn), the innermost loop length can be fLxed to .j7i.. This

feature makes the algorithm suitable for vector processors.

• A matrix transposition takes place just once (step 3).

• 1\vo multirow FFTs are performed in steps 1 and 4 . In this case the locality of the

memory references is low. resulting in many cache misses. The four-step FFT is therefore

not swtable for the ruse processors which depend on hjgh cache hit rates to obtain high

performance.

25

3.2.2 The Six-Step FFT

There is an algorithm known as the six-step FFT algorithm which is an cxtensi u of the fom~step

FFT algorithm [86, 10] in the following sense:

Step 1: XJ(h, JJ) = x(j1o iz).
n2-1

Step 2: xz(k2. jJ) = 2::= x1(h, jt)wf.':,k'.
j2=0

Step 3: x3(kz, j!) = xz(kz, Jt)r.v1,~~':,-

Step 4: x~(j1, k2) = x3(kz, j,).

Step 5:

n-1-J

xs(kJ, k2) = 2::= x,(j, , kz)wi/,k'·

Step 6:

The distinctive features of the six-step FFT algorithm can be summarized as:

o Two multicolumn FFTs are performed in steps 2 and 5. The locality of the memory

reference in the multicoJumn FFT is high. Therefore, the six-step FFT is suitable for

ruse processors because of the high performance which can be obtained with high hit

rates in the cache memory.

• The matrix transposition takes place three t imes.

3.2.3 A n Extend ed Three-Dimension al Four-Step FFT

\Ve can extend the four-step FFT algorithm in another way into a three-climensional formulation.

If n has factors n 1, 112 and 113 (11 = 111n2113), then the indices j and k can be expressed as:

j =j1 +J2111 +iJ111n2 ,

k = k3 + k2113 + kt712'"3 ·

We can define x andy as three-dimensional arrays (in FORTRAN notation) , e.g.,

x; = x(j1, J2, h), 0:::; Jt:::; 71] -1,

0:::; h:::; 712-1, O:Sh:Sn3-1,

Yk = y(k3. k2 , k!), 0:5 '' I :5 711-1,

0 $ kz $112- 1, 0:::; k3 :::; 713- 1.

(3.6)

(3.7)

(3.8)

Substi uting the indices j and k in equation (3.1) by those in equation (3.6) and using the

relation of 11 = 111112n3 , we can derive the following equation:

n.1-ln:z-ln3-l

y(k3, k2 , k1) = L L L x(Jt · J2, Ja)'"'~~k3 wl,.Z,";,r.v{',k2 w{,1 k3 wf,',~'{2 w~11k 1 (3.9)
Jt=O h.=O h=O

26

as:

This derivation leads to the following extended three-dimensiona.l four-step FFT:

Stez• 1:
n:t~l

~-,(h, h, k3) = 2:: x(jb h. j3)W{,~k3 ·
i:J=O

Step !l: X2Ul - i2 , k3) = X J(jl , i2, k3)w?,;~,-

Step S: x.(kJ. j), i2l = o;z(jl. h , kJ).
n:z-l

Step 4: X4(k3, il- k2) = 2:: o:3(k3, i1, iz)w!,~kz_
n=O

Step 5: x5(k3, j1 , k2) = Xt~(kJ, iJ. k2)w;1 1 k3 w~11~~2 •

Step 6:

Step 7:

The distinctive features of the extended three-dimensional four-step FFT can be summarized

• If n 1, 11.2 and n3 are equal (n1 = 11.2 = n 3 = n 113), the innermost loop length can be fixed

to n213 • So, the t hree-dimensional four-step FFT algorithm is more su itable for \'ector

processors than the "original" fo ur-step FFT algorithm.

• The matrix transposition takes place twice.

• Three multirow-Like FFTs are performed in each step, the locality of the memory references

by multirow-like FFT is again low. So, the three-d imensional four-step FFT algorithm is

not suitable for ruse processors as they depend on a high cache utilization to obtain high

performance.

3.3 Parallel FFT Algorithm

3.3.1 Algorithm (1)

The first parallel FFT algorithm we implemented is based on the six-step FFT algorithm. We

will call it a.lgoritbm (1) hereafter.

Let N has two factors N1 and N2 (N = N1 x N2). The original one-dimensional array x(N)

can be defined as a two-dimensional array x(N1, N2) (in FORTRAN notation). On a distributed

memory parallel computer which hasP processors, the array x(N,, N2) is distributed along the

first dimension N1 . lf N1 is divisible by P , each processor bas distributed data of size N/P.

We introduce the notation iir = Nr/ P and we denote the corresponding index as jr which is

indicating that the data along .lr is distributed across all P processors. Here, we use the subscript

r to indicate that this index belongs to dimension ,.. The distributed an-ay is represen ed as

27

±(
1
\\ , N2) . . -\.1 proces or m., the local index J,(m) corresponds to the global index as the cyclic

distribution:
J, = J, (rn)x P +m, OSmS P-L 1St· S2. (3 .10)

To illustrate the all- to-all communication il is convenient to decompose .V; into two dimensions

.Y, and P,. Although P; is same asP, we are using the subscript ito indicate that this index

belongs to dimension ·i.

Starling ";th the initial data ii:{i¥1 . Nz). the parallel FFT can be performed according to

the following steps:

Step J: Transpose

,;, (Jz , Jt) = x{Jt, Jz).

Step 2: Multicolumn FFTs
N2~1

• "' • J K :iz(Kz , J1) = L.- :i't(h lt)wrJ, '·
Jz=O

Step 3: Twiddle factor multiplication and transpose

:i'3(1t , Pz, Ifz) = :£3(J1, K z) = :iz(Kz. J,)w~,r<,J, .
Step 4: Rearrangement

i.(J. , J(z, Pz) = :iJ(Jt , Pz , I{z).

Step 5: All-to-all communication

:is(Jt, !?z , Pt) = x4(J! , I(z, Pz) .

Step 6: Transpose

:is{JJ , i?z) = :is(Pt, jb !?z) = :is(Jt , I(z, Pt).

Step 7: Multicolumn FFTs
N1- l

:£7(K1, I(z) = L is(Jt, I(z)w'/Jt• .
J l::;::Q

Step 8: Transpose

y(I(z , Kt) = # I<r. I{z).

In steps 2 and 7, multicolumn FFTs are performed along t he local dimensions. Computation

in step 3 is accompanied with a transposition and twiddle factor multiplication. Step 4 is a local

transposition for data rearrangement.

We note that we combined some of the operations with data movements as in step 3 to gain

efficiency in utilizing the memory bandwidth.

The distinctive feat.ures of the first parallel algorithm can b e summarized as:

• Independent .,fN point FFT is repeated .fN / P times in steps 2 and 7 for the case of

N1 = N2 = ../N.

MFLOPS

200 ~~----======:=::===========i

180

160

140

120

100

80

60 0 1 00 200 300 400 500 600 700 BOO 900 1000

Loop Length N

Figure 3.1: Performance of FFT kernel (radix-4) (HITACHI SR2201 lPE).

• The all-to-all communication occurs just once. Moreover, the input data.'!: and the output

data y are both natural 01·der.

If both of N1 and N 2 are didsible by P , the workload on each processor is uniform.

For N = 220 point FFT, the working set size is in t he order of VN(= 210
) and working set

fits entirely into the cache. Thus, the multicolumn FFTs can be performed at high speed on

cache-based RISC processors like the Power 2 processor as employed in the IBM SP2.

We now discuss the case of a (pseudo) vector processor processing element, e.g. HITACHI

SR220l.

When an n point FFT is performed on a vector processor, the innermost loop length is

1, 2, · · · , N/2 or N/2 . N/4 , · · ·, l. By interchanging the loop index, the average loop length can

be in the order of VN.
Even if the innermost loop is interchanged for speed, the average loop length in the parallel

algorithm is in the order of JV114 for an N point FFT because each processor performs an

'1 (= N2 = VN) point FFT repeatedly in this algorithm. So. even for a large N of 232 the

a\'erage loop length is 256 (= 232/ 4 = 2) which is too short and inefficient for vector processing.

Even though pipeline startup time is very short for the processing eJement of the HITACHI

SR220l as shown in Figure 3.1 because of the pseudo-vector processing [57] feature compared

to other vector processors, the minimum loop length to obtain peak performance is more than

200. So, the algorit hm (1) is not suitable for the vector parallel architecture processors.

29

3.3.2 Algorithm (2)

Let us consider how to perform long-vector FFTs on the processing elements of vector-parallel

processors.
\\"•• can adopt the idea of an extended three-dimensional four-step FFT as described in

ection 2.

Let N has factors N 1 , N2 and N3 (N = N1 x N2 x N3). Starting with the initial data

fi:(A'1, N2 . N3). the FFT can be performed according to the following steps:

St.ep 1: Multirow-like FFTs
N3-l

:it(Jt. h. I<J) = 2::= x(.J,, h h)wfJ,f('·
J.=O

Step 2: Twiddle factor multiplication and transpose

i"2(K3, J" J2) = :i,(J,, h K3)w"JJ,'JJ, .
Step 3: .M ultirow-like FFTs

N2-l

:f3(K3 , J, , K2) = 2::= :f2(K3, J, , h)wJ',K'.

Step 4: Twiddle factor multiplication and rearrangement

:i4(Po, If3, K2, J1) = x4(I<3, K2 , J1)

= :£3([{3, J,, J(2)w~(K,+K,N,)

Step 5: Transpose

:is(I(3, K2 , J, , P3) = :i4(P3, K3, K2 , J,).
Step 6: All-to-all communication

:i6(K 3, K2 , J" Pt) = i 5(K3. I<2, J, , P3).

Step 7: Rearrangement

:i1(K3, K2 , JJ) = :i1(K3, I<2, P,,],)

= :£6(!?3, K2, J,, P,).

Step 8: Multirow-like FFTs
NL-1

iJ(!?3, K2, K,) = 2::= :£7(!(3, K2 , J,)w"}j1K
1.

Jt=O

The distinctive features of this second algorithm, which we call algorithm (2) from now on,

can be summarized as:

• N 213 / P simultaneous N 113 point multirow-like FFTs are performed in steps 1, 3 and 8 for

the case of N 1 = N2 = N3 = N 113
.

• Only one all-to-all communication is required. Moreover, the input data x and the output

data y are both in natuml order.

30

Table 3.1: Number of real operations for small-n transforms 183].

Rader \\"ioograd
n

Adds il'lults Adds Mults

2 4 0 4 0

3 12 4 12 4

.J 16 0 16 0

5 32 12 34 10

3.3.3 Adaptability of Parallel FFT A lgorit hms to P rocessor Architecture

In thls section we want to analyze the adaptability of algorithm (1) and algorithm (2) to the type

of processing element in parallel computers. e.g., processing elements of the vector processor type

or of the cache-based scalar RlSC processor type. The average inner loop length is particularly

important. For the ease of analysis, we assume N1, N2 and N3 are equal (N1 = N2 = N3 = N 113
)

in algorithm (2). The average loop length in the FFTs are N 213 I P in the algorithm (2), and

JY'I4 in the algorithm (1). P is about 210 a most and N is in the order of 224 or more. The

expression N 5112 > P follows from the inequality N 213 I P > N 114
. Tb.is relation means that

algorithm (2) is suitable for vector-parallel architectures "~th the values given above for P and

N.

J\ext. we focus on the working set size of the processing element of the cache-based ruse
processor type. The working set size for the floating point operations in algorithms (1) and (2)

is to be analyzed.

In algorithm (2), the working set size is Nl P because N 213 I P simultaneous N 113-point

multirow-like FFTs are performed. The working set size is ffi in algorithm (1), because ,JN I P

.fN point FFTs are performed independently in algorithm (1). P .,; 210 and N ~ 224 Therefore

the expression ,JN > P derived from the comparison of NIP> ffi holds.

Under these conditions, algorithm (2) is suitable for parallel computers with cache-based

ruse processor processing elements.

3.4 R adix-2 , 3 , 4 and 5 FFT Algorit hm on a Single Processor

As for a single processor algorithm we used radix-2, 3, 4 and 5 FFT algorithm based on the

mixed-radix FFT algorithms ofTemperton I 4]. The Stockham FFT algorithm 172] was used for

radix-2 FFT transforms. We modified the Stockham algorithm by including Rader 's "small-n"

transform I 59] for radix-:! and radix-5.

31

The '·small-n" transform, based on the \\"PTA (Winograd Fourier transform algorithm) [88]

b)'S. Winograd , has two more additions as compared to Rader's radix-5 algorithm. By contrast,

Rader's uansform uses two more multiplications (see Table 3.1).

Therefore, Rader's "small-n" transform is more efficient when the CPU time for multipli­

cation operation is equal to that of addition operation and the multiplication operation and

addition operation can be performed simultaneously on the processing element as is the case on

the HITACHI SR2201 and illM SP2.

When performing a 2P point FFT, a radix-4. or radix-8 FFT is faster than a radix-2 FFT

[15] because of less memory access and a reduced number of floating point operations. ln the

same way, a radix-6 (= 2 x 3) FFT and a radix-9 (= 3 x 3) FFT. can he applied to 2P3q point

FFTs. These higher radix FFTs reduce the number of multiplies and the total floating point

operation count in the algorithm. However, higher radix FFTs require more registers to ho ld

intermediate results. Present day most OP Us bas insufficient registers for high radix operation.

For this reason, we only implemented the radi.x-2, 3, 4 and 5 FFT algorithm.~ for the evaluation.

3.4.1 The Radix-2 FFT

Let n = 2P , Xo(j) = "'i· 0 ::; j <nand wq = e-2-rri/q T he radix-2 F FT algorithm can be

expressed as follows:

I =n/2; m= 1

do t= 1, p

do j = 0. l-1

do k = O, m-1

co=Xt- J(k+jm)

c1 =X1_ 1(k+jm+lm)

X,(k + 2jm) =Co+ Ct

X 1(k + 2jm + m) = ~1(co- ci)

end do

end d o

I= l/2; m. = m * 2

end do

Here the variables co and c1 are temporary variables.

3.4.2 T he Radix-3 FFT

Lei n = 3P, Xo (j) = "'i · 0 ::; j < n., and wq = e- 2-,if q. The radix-3 FFT algorithm can be

expressed as follows:

32

l = n/3; m= 1

dot = 1, p

do j = 0. 1-1

do k = 0, m -1

co= x,_, (k + jm)

Ct = Xt-t(k + jm + lm)

C2 = Xt-t(k + jm. +21m.)

do= Ct + C2

d, =co- ~do
2

dz = -i (sin~) (c,- c2)

X,(k + 3jm) =co+ do

x,(k + 3jm + m) = ~,(dt + dz)

X, (k + 3jm +2m)= w;{(dt- d2)

end do

end do

l = l/3; m = m • 3

end do

Here the variables co-cz and do- d2 are temporary variables.

3.4.3 The Radix- 4 FFT

Let n = 41', X 0(j) = Xj, 0 :5 j < n, and wq = e-2~i/q_ The radix-4 FFT algorithm can be

e>:pressed as follows :

l=n/4; m=1

dot= 1, p

do j = 0, 1-1

do k = 0, m -1

co= x,_,(k + jm)

Ct = Xt-t(k + jm + lm)

C2 = Xt-I (k + jm +21m)

CJ = Xt-t(k + jm +31m)

d0 =co+c2

d1 =Co- C2

d2=ct+C3

d3 = -i(c1 - c3)

X,(k + 4jm) =do+ d2

33

X,(k + 4jm+m) = J.z<d1 +d3)

x,(k + 4jm +2m)= c..·!f(do- d2)

X, (k + 4jm+ 3m)= w~{(d1 - d3)

end d o

end d o

l=l/4; ·rn.=m•4

end do

Here t he variables co-c3 and do-d3 are temporary variables.

3.4.4 The Radix-5 FFT

Let n = 5P , X 0 (j) = Xj. 0 :S j < n , and Wq = e-2";/q. T he radix-5 FFT algori thm can be

expressed as follows:

l = n/5; m = 1

do t= 1, p

do j = 0, l - 1

do k = 0, m - 1

co= x,_l(k + jm)

C! = X t- l(k+ jm+ lm)

C2 = X t-l(k + jm +21m)

C3 = X t-l(k+ jm + 31m)

C4 = X t- J(k + jm + 4lm)

do = Cj + C4

dt = C2 + CJ

d2 = ~sin 2;l (c1 - c4)
271'

d3 = sin 5 (c2 - c3)

d4 = do + d1
,J5

ds =-(do- dJ)
4 1

ds =co- 4d•
d1 = ds + ds

ds=ds-d,
. (sin(7l'/5))

dg = - t d2 + sin(27r/S) d3

d1o = -i (~in((1r//S))d2- d3)
sm 211' 5

X,(k + 5jm) =co+ d4

34

X, (k + 5jm + m) = ~Mi + d9)

x ,(k + 5jrn +2m) = w~f (ds + dl o)

X, (k + 5jm +3m)= w~f (ds- d1o l

X ,(k + 5jm + 4m) = "'~f(d7- d9)

end do

e nd do

l=l/5; m=m*5

end do

Here the variables co-C4 and do- dro are temporary variables.

3.4.5 Arithmetic Operation Counts

Analysis of the operation count for the mixed-radix Cooley-Tukcy FFT algorithm is explained

in reference [84]. Here we adapt the formula given there to the case of N = 2''3•5r.

The number of real additions A(F) and multiplications M(N) are given by:

A(N) = 2N Gp + ~q + 4r - 1) + 2,

M(N)=2N (p+2q+¥r-2) +4.

So. the total operation count is:

(
5 14 34)

A(N)+M(N) = 2N 2p+ 3q+ 5r- 3 +6. (3.11)

3.5 Experimental Results of the Parallel FFT

To evaluate our radix-2 , 3 and 5 parallel 1-D complex FFT, p, q, ,. of N = 2p3q5r and the

number of processors P were varied. vVe averaged the elapsed times obtained from 10 executions

of complex forward FFTs. The parallel FFTs were performed on double precision complex data

and the table for widdle factors was prepared in advance.

A HITACHI SR2201 (1024 PEs, 256 MB per PE, 300 MFLOPS per PE, 256 GB total main

memory size, communication bandwidth 300 :\1B/sec both way per link , and 307.2 GFLOPS

peak performance) and an IBM SP2 thin-node system (32 PEs, 256 MB per PE, 26G MFLOPS

per PE, 8 GB total main memory size, communication band"<Vidth 40 MB/sec per link. and

.5 GFLOPS peak performance) were used as distributed memory parallel computers in the

experiment.

3.5.1 Experimental R esults on the HITACHI SR2201

Remote Direct Memory Access (RDMA) mes age transfer protocol [17] without memory copy

was used as a communication library on lhe HlTACill SR2201. AU routines were written in

35

Table 3.2: Performance of parallel FFT algorithm (1) on the HITACHI SR2201

(* means that we were not able to execuw because the ma.x.imum
available memory size of 224 .vffi per PE was insufficient).

N- 2zo. :i 5 N -2:n -32 N 225.3 N- 222.52 N- 230

p
Time GFLOPS Time GFLOPS Time G FLOPS Time GFLOPS Time GFLOPS

3.6857 0.50

16].6233 1.13 2.1 08~ 1.05

32 0.8J78 2.25 1.0615 2.09

64 0.4165 4.42 0.5401 4.11 3.0333 4.26 3.3616 4.09

128 0.22 18 .29 0.3012 7.37 1.5341 8.42 1.6971 S.ll

256 0.1295 14.20 0.2347 9.46 0.8433 15.32 0.8744 15.73

512 0.1013 18.16 0.1232 18.03 0.6775 19.07 0.5038 27.3 1 4 .6271 33.42

102< 0.0525 35.06 0.0630 35.28 0.3406 37.93 0 .3741 36.77 2.3158 66.77

Table 3.3: Performance of parallel FFT algorithm (2) on the HITACHI SR2201

(* means that we were not able to execute because the rna.ximum
available memory size of 224 lvlB per PE was insufficient).

N= 22o. 3. 5 N = 221. 32 N = 22 ~ · 3 N = 22:z .s:z N= 2 30

p
Time GFLOPS Time Gl'LOPS Time GFLOPS Time GFLOPS Time GFLOPS

3.1892 0.58

16 0.9153 2.01 1.0794 2.06

32 0.4788 3.84 0.54.20 4.10

6•1 0.2466 7.46 0.2792 7.96 1.5621 8.27 1.5624 8.81

128 0.1298 14.17 0.1638 13.56 0.7975 16.20 0.8952 15.37

256 0.0720 25.55 0.0860 25.81 0.4274 30.22 0.1160 33.07

512 0.0406 45.27 0.0517 42.9 0.2541 50.85 0.2779 49.50 2.3436 65.9

1024 0.0379 48.53 0.0465 47.76 0.1359 95 .04 0.1358 101.34 L1912 129.80

FORTRAI\. The compiler used was optimized FORTRAN77 V02- 05-/B of Hitachi Ltd. The

optimization option, - \10, 'opt(o(ss) ,split(2))' was specified.

Tables 3.2 and 3.3 show tbe results of the average execution times of algorithm (1) and

algorithm (2). The column headed by P shows tbe number of processors. The next ten columns

contain tbe average elapsed time in seconds and the average ex.ecution performance in GFLOPS.

The GFLOPS value is based on equat ion (3. 11) for a transform of size N = 2P395r.

Algorithm (2) is better than algorithm (1) ou tbe IDTACHI SR2201 as is clear from Tables

3.2 and 3.3. Tbe innermost loop length of the algorithm (2) is larger than that of the algorithm

(1). The (pseudo) Yector processor architecture of t he HITACHI SR2201 processing element is

able to take advantage of this fact.

We note t hat on the H1TACffi SR2201 with 1024 PEs. about 130 GFLOPS was realized

with size N = 230 in algorithm (2) as in Table 3.3.

36

p

16

32

Table 3.4: A.ll-to-all communicaLion performance on the HlTACHI SR2201

(* means that we were not able to execute because the ma.-x-Lmum

available memory size o[224 lvlB per PE wa.• insufficient).

i'.l = 2:!0 . 3 · 5 N ; 2 21 - 3 2 N ~ 2" · 3 N=22z. s z N;;;: 230

I'

16

32

6<

128

256

512

L02·1

1'imc MB/sec Time MB/ ><>c Time MB/ bCC Time MB/ scc Time

0.1321 238.08

0.0647 243.00 0.0773 24<1 .32

0.0353 222.64 0.04 15 227.42

0.0235 I67.5J 0.0266 177.40 0.1078 23J.:n 0.1120 234.05

0.0242 81.24 0.0258 91.40 0.0677 185.82 0.0699 187.61

0.0182 53.8 0.0217 54.37 0.0584 107.67 0 .0596 109.98

0.0122 40.39 0.0144 40.97 0.0723 43 .52 0.0753 43.54 0.2278

0.0081 30.35 0.0094 :1! .31 0.0437 35.97 0.0455 36.02 0.2439

Table 3.5: Performance of parallel FFT algorithm (1) on the IBM SP2

(* means that we were not. able to execute because the maximum
available memory size of 256MB per PE was insufficient).

~!Bf scc

147.27

68.80

N:;;;:zl7 . 3 . 5 N = 2ts , 3 2 N =222 · 3 N:;;: 2 19 .52 N = 22S

Time MFLOPS Time MFLOPS Time MFLOPS Time MFLOPS Time MFLOPS

2.1675 92 .46 2.8684 84.44

0.7222 277.50 0.9169 264.17 9.0235 158.0•1 9.2553 164.56

0.3133 639.67 0.3794 638.43 3.9170 364.07 3.5936 423.82 12.9452 308.45

0.1631 1228.75 0.1942 !247.28 1.7596 810.45 L4650 1039.63 6.5209 612.34

Table 3.4 shows the results of the all-to-all communication timings on the HITACHI SR2201.

The column headed by P shows the number of processors. The next ten columns contain the

average elapsed time in seconds and the average bandwidth in MB/sec.

3.5.2 Experimental R esults on the IBM SP2

M.Pl [54] was used as a communication library on IBM SP2. All routines were written in

FORTRAN as on the HITACHI SR2201. The compiler used was IBM XL Fortran version 3.2.

As a optimization option. -03 -qarch=pwr2 -qhot -qtune=pwr2 was specified. Tables 3.5 and

3.6 show the result of the average execution times of algorithm (1) and algorithm (2).

The column headed by P shows the number of processors. The next ten columns contain

the average elapsed time in seconds and the average e.xecution performance in .MFLOPS.

We can see that algorithm (1) is better than algorithm (2) on the IBM SP2. This is because

the working set size of algorithm (1) is smaller than that of algorithm {2). Thus. the algorithm

(1) i su itable for the parallel computers with cache-based scalar ruse processors as processing

37

p

16

32

Table 3.6: Performance of parallel FFT algorithm (2) on the IBl\l SP2

(* means that we were not able to execute because the ma.ximurn
a,·ailable memory size of 256MB per PE was insufficient).

N ; 217 · 3 · 5 N = 2HI . J2 N=222 . J N = 2'9 . 52 N :::::.226

Time

3.6705

Li•l92

0.7383

0.2431

I'

8

l6

.12

MFLOPS 'rim~;" MFLOPS Time MF'LOPS Time Mr' LOPS Time

54.53 4.7684 50.80

114..57 2.2489 107.71 19.0635 74.81 15.8133 96.31

271.45 1.003·1 2-tiAO 8.4410 168.94 7.4366 204.81 30.4703

824.39 0.3972 609.82 :l .7436 380.93 3.3936 448.80 15.0385

Table 3.7: All-to-all communication performance on the IBM SP2

(* means that we were not able to execute because the ma.ximum
available memory size of 256 MB per PE was insufficient).

~!FLOPS

131.05

265.52

N-2 17 -3-5 N = 21s. 3z N =222.J N = 219 .. 52 N:22s

Time MB/ sec Time MB/ sec Time MB/ scc Time MB/sec 'Time MB/ sL...:

0.2655 29.62 0.3184 29.64

0.1532 25.66 0.1819 25.94 0.9645 26.09 0.9963 26.3l

0.0923 21.29 0.1094 21.57 0.5680 22.15 0.5876 22.31 1.4952 22 .44

0.0611 16.08 0.0742 15.90 0.3616 17.40 0 .3770 17.38 0.9589 17.50

elements.

We note that on the IBM SP2 with 32 PEs, about 1.25 GFLOPS was realized with size

N = 218.32 in algorithm (1) as shown in Table 3.5.

Table 3. 7 shows the results of the all-to-all communication timings on the IB I SP2. The

column headed by P shows the number of processors. The next ten columns contain the average

elapsed time in seconds and the average bandwidth in MB/sec.

Chapter 4

Fast Multiple-Precision Addition,

Subtraction and Multiplication on

Distributed Memory Parallel

Computers

4.1 Introduction

In this chapter, we present efficient parallel algorithms for the multiple-precision addition, sub­

traction and multiplication of more than several million decimal <ligits on distributed memory

parallel computers.

Several software packages are available for the multiple-precision computation [21. 24 , 69, 11].

Brent's l\I!P multiple-precision package [21] is probably the most widely used of these packages

at present, due to its greater functionality and efficiency. D. M. Smith made a similar package

that features improved performance for certain transcendental functions [69].

Another available package at some sites is lvlPFUN made by D . H. Bai ley [11]. One of the

key features in the lv!PFUN package is that package is optimized for vector supercomputers and

ruse processors.

To perform the multiple-precision calculation at high speed , vector processing oriented im­

plementations have been proposed [41 , 24, 11]. The processing speed and main memory size of

the vector computers are becoming saturated. Therefore a parallel processing by a d istributed

memory parallel computer is one of the solutions for the fast multiple-precision calculation.

As for the related works, parallel implementations of the multiple-precision arithmetic on a

shared memory machine have been reported by K. Weber [7]. Weber mo<lified the MPFUN

package [ll] lo run in parallel on a shared memory multiprocessor. However, he did not present

39

3
complete parallel solution in the normalization of the resuh , e.g. carry /borrow propagation.

Parallel impl mentation of Karatsuba"s multip lication algorithm [43. 45] was proposed by

G. Cesari and R. Maeder [25] on a distributed memory parallel corup·uter. Karatsuba's algo­

rithm is known as O(n10g' 3) multiple-precision mu l ipliration algorithm. However the mu ltiplc­

preci ion multiplication of n-d igit numbers can be performed in O(n log n log log n) operations

by using the Schonhage-Strassen algorithm [66, 5, 45] which is the algorithm based on t he fast

Fourier transform (FFT) [27].
In the mult iple-precision multiplication of several thousand decimal digits or more. the FFT­

based multiplication is the fastesL FFT-based multiplication algorithms are known to be good

candidates for parallel implementation.

B. S. Fagin [33, 35] used the Fermat number transform (FNT) [60, 1, 2, 58] for large integer

multiplicatiou on the Connection Machine CM-2 . F 'T uses many modulo operations which

are slow because of integer division. Thus, we use the real FFT-based multiplication for the

multiple-precision multiplication on distributed memory parallel computers.

In the multiple-precision parallel addition , subtraction and multiplication by single-precision

integer, parallelization of releasing propagated carries and borrows is the key component in

the processing speed. Similarly to the multiple-precision addition and subtraction , a part of

normalization of results in the multiple-precision multiplication can be parallelized.

For simplicity, this chapter discusses the calculation of the multiple-precision fixed point

numbers. However, it is not hard to extend the proposed algorithm to the calculation of the

multiple-precision Boating point numbers [74] .

4.2 Parallelization of the Multiple-Precision Addition, Subtrac­

tion and Multiplication by Single-Precision Integer

The arithmetic operation counts for n-digit multiple-precision sequential addit ion, subtraction

and multiplication by single-precision integer is dearly O(n). However, a major factor to obstruct

parallelization is releasing the carries and borrows in these operatioll5 .

For example, a FORTR.A! "77 program of the multiple-precision sequential addition is shown

in Figure 4.1. Here, ICARRY is a variable to store carry and ITEMP is a temporary variable. Vole

assume that the input data is normalized as 0 ~ IRADIX- 1 and stored in arrays IA and IB.

In this program, the value of I CARRY recurrently decides the value of ITEMP at line 5. Then,

the program caOllot be parallelized because of data dependency.

An algorithm shown in Figure 4.2 enables us to parallelize releasing the carries and borrows.

We assume that the input data is normalized to 0 ~ IRADIX-1 , and input data is stored in arrays

IA and IB.

We perform the multiple-precision addition without propagation of carries at line 3. Results

40

SUBROUTINE SEQADD(IA,IB,IRADIX,N)

2 INTEGER IA(N),IB(N)

3 ICARRY=O

4 DO I=N,2,-1

5 ITEMP=IA(I)+IB(I)+ICARRY

6 ICARRY=ITEMP/IRADIX

7 IA(I)=ITEMP-ICARRY*IRADIX

8 END DO

9 IA(1)=IA(1)+IB(1)+ICARRY

10 RETURN

11 END

Figure 4.1: Multiple-precision sequential addition.

are checked with (IA(2: N) :0: IRADIX) at line 4. If the value of the each element of the array

IA(2: N) is greater than or equal to IRADIX, we have to compute the carries in line and release

the carries in lines 7 and 8. Here, IC is a working array to store carries.

At the time of releasing carries. we do not care about the propagation of the carries. Since

carries are not corrected completely, DO WHILE loop is repeated until each element in the array

IA(2:N) is less than IRADIX.
\Ye are assuming that the value of each element of the array IA bas been normalized as

o-IRADIX-1. In the case of radix= 108 , a probability of having two consecutive carries is

0.5x(1/108) 2 = 5x1o- H Thus, this algorithm performs the propagation operations successfully.

When the propagation of carries repeats like in the case of 0.99999999 · · · 9 + 0.00000000 · · · 1,

we have to use the carry skip method [52].

A Fortran 90 program of t he multiple-precision parallel normalization with the carry skip

method is shown in Figure 4.3. We are also assuming that the input data is normalized to

0- IRADIX-1 and stored in array IX. We perform incomplete normalization as 0 ~ IRADIX in

lines 3~8. The range for carry skipping is decided from line 10 to li ne 17. Note that DO WHILE

loop in line 5 is rep ated twice at most. Finally, we perform carry skipping from line 18 to line

20. Array IC is a working array to store carries.

The same methods can be applied to the multiple-precision parallel subtraction and multi-

plication by single-precision integer.

41

SUBROUTINE PARAADD(IA,IB,IC,IRADIX,N)

2 INTEGER,DIMENSION(N) :: IA,IB,IC

3 IA(l:N)=IA(l:N) +IB(l:N)

4 DO WHILE (ANY(IA(2:N) .GE. IRADIX))

5 IC(N)=O

6 IC(l:N-1)=IA(2:N)/IRADIX

7 IA(2:N)=IA(2:N)+IC(2:N)-IC(1:N- l)*IRADIX

8 IA(l)=IA(l)+IC(l)

9 END DO

10 RETURN

11 END

Figure 4.2: Multiple-precision parallel addition.

4.3 Parallelization of the Multiple-Precision Multiplication

4.3.1 Multiple-Pr ecision Mu lt iplication Algorithm

A key operation in the fast multiple-precision arithmetic is the multiplication, by which signifi­

cant time in the total computation is spent. Many multiple-precision multiplication algorithms

have been proposed [45]. In this section, we discuss the multiple-precision multiplication based

on the floating point real FFT [82, 41].

The following is the multiple-precision multiplication algorithm [82, 41]. Here. Jet us consider

the multiplication of two m x 2" bit (= m x (Jog10 2) x 2" decimal digit) integers A and B.

Step 1: Prepare two double-precision floating point arrays "~th 2 x 2n entries.

Step 2: Convert both of m x 2" bit integers into double-precision floating point numbers.

{The first half of 2 x 2" entries contain information form x 2" bits, namely, m

bit information per double-precision floating point array entry.)

Step 9: init ialize the second half of 2 x 2n entries to double-precision floating point zero.

Step 4: Apply zn+ 1 point forward FFT operations to A and B, gi,;ng A' and B' , re­

spectively.

Step 5: Perform the convolution product operations between A' and B'. gi,~ng a new

2 x 2" entry double-precision array C'.

Step 6: Apply 2"+ 1 point inverse FFT operations to C', giving C. (Now, C is the

doub le-precision floating point array of 2 x 2" entries. If operations of forward

FFT. inverse FFT and convolution product are performed in infinite precision,

42

SUBROUTINE SKIPNORM(IX,IC,IRADIX,N)

2 INTEGER,DIMENSION(N) :: IX

3 00 WHILE (ANY(IX(2:N) .GT . !RADIX))

4 IC(N)=O

5 IC(1:N-1)=IX(2:N)/IRADIX

6 IX(2:N)=IX(2:N)+IC(2:N)-IC(1:N-1)*IRADIX

7 IX(1)=IX(1)+IC(1)

8 END DO

9 DO WHILE (ANY(IX(2:N) .EQ. !RADIX))

10 IE=l

11 DO I=2,N

12 IF (IX(I) . EQ. !RADIX) IE= I

13 END DO

14 IS=1

15 DO I=2,IE-1

16 IF (IX(I) .LT. IRADIX-1) IS=I

17 END DO

18 IX(IS)=IX(IS)+1

19 IX(IS+1 :IE-1)=IX(IS+1:IE-1)-(IRADIX-1)

20 IX(IE)=IX(IE)-IRADIX

21 END DO

22 RETURN

23 END

Figure 4.3: Parallel normalization with the carry skip method.

each entry of C should be the exact double-precision floating point represen­

tation for an integer with maximum value of 2n x (2m - 1r. However, the e

representations slightly deviate from exact values in the actual operation, be­

cause infinite precision operations are impossible.)

Step 7: Convert each entry of C into integer representation, denoted by X. (Conversion

should be done with DNINT operation in FORTRAJ~. If the absolute value of

(X-DNINT(X)) is near 0 . 5DO, the multiplication is considered to be incorrect.)

Step 8: Normalize C under the suitable radix. The radix of 2m or 10m(log1o
2

) is better

for binary or decimal representation. Final result is the result of multiplication

between A and B.

43

For the floating point real FFT-based multiplication, we can use the "ba.lanced representa­

tion" 129] which tend to yield reduced errors for the convolutions we intend to perform.

4.3.2 Parallelization of the Multiple-Precision Mttltiplication

In a para.llelization of the multiple-precision multipli<:ation, steps 1 ~ 3. step 5 and step 7 of the

multiplication algorithm given in subse<:tion ,1 .• 3.1 can be parallelized with ease.

Since many parallel FFT algorithms arc proposed 186, 38, 79], we can usc an efficient parallel

FFT algorithm for steps 4 and 6.

The normalization of step 8 is essentially the same as the parallel processing of carry in the

multiple-precision addition , subtraction and multiplication by single-precision integer. Thus,

this normalization can also be parallelized with ease.

4.4 Experimental Results

To evaluate our parallel multiple-precision arithmetic algorithm, decimal digits nand the number

of processors P were varied. \\le averaged the elapsed times obtained from 10 executions of the

multiple-precision parallel addition (1r+ -/2), multiple-precision parallel multiplicat ion (1r x -/2).

We note that t he value of 1lrdigit. 7f and J2 were prepared in ad,·ance. The choice of these values

bas no particular significance here, but was convenient as definite test cases for which the results

were able to be checked for randomized test data.

A HITACHI SR2201 was used as the distributed memory parallel computer. In the experi­

ment, we used 4 PEs~ 256 PEs on the HITACHI SR2201.

:vtPI I 54] on t he HITACHI SR2201 was used as a communication library. A ll routines were

written in FORTRAN. The compiler used was optimized FORTRAN 77 \'02-06- / A of Hitachi

Ltd. The optimization option, -WO, 'opt(o(ss) , approx(O))' was specified.

The radix of the mult iple-prec ision number is 108 . The multiple-precision number is stored

with cyclic distribution in t he array of 32-bit imegers . Each inpu t data word is split into two

words upon entry to the FFT-based multiplication.

Table 4.1 shows the result of the averaged execution times of multiple-precision parallel

addition (r. + -/2). The column headed by P shows the number of processors. The ne.:<t six

columns contain the average e.xecution times in seconds. In Figure 4.4 we compare the average

execution times of multiple-precision parallel addition. For small digits of N = 220 and P > 64,

we can clearly see that communication overhead dominates the execution time.

Table 4.2 shows t he resu lt of the average execution times of the multiple- precision parallel

multiplication (1r x -/2). The column headed by P shows the number of processors. The next

six columns contain the average execution times in seconds. Figure 4.5 is th~ comparison of

the average execution times of multip le-precision para llel multiplication. \Ve can see t hat our

44

multiple-precision parallel multiplication is scalable on the IDTACHI SR2201 as is clear from

Figure 4.5.

45

Time (sec)

1

0.1

··· ..
0.01

0.0014

·· · ··· · ·-~-~2'·
··-...

...........

-. - -·-·-
""X. •••

·······
""lll •••••••••

---- ---- ---

16 32 64 128 256

Number of Processors

Figure 4.4: Execution time of multiple-precision parallel addi tion (" + ,/2), N = number of

decimal digits.

Table 4.1: Execution time of multiple-precision parallel addition (1r + J2) (in seconds), N =

!lumber of decimal digits.
(* means that we were not able to execute because the ma..ximum

available memory size of 224 MB per PE was insufficient).

P\N 220 222 224 226 228 2Jo

4 0.0159 0.0620 0.2638 * * *
8 0.0085 0.0316 0.1329 0.5316 * *

16 0.0048 0.0164 0.062 0.2665 * *
32 0.0031 0.0090 0.0324 0.1345 0.7092 *
64 0.0024 0.0054 0.0171 0.0638 0.3550 *

128 0.0024 0.0039 0.0100 0.0335 0.1800 0.5907

256 0.0030 0.0037 0.0067 0.0187 0.0898 0.2996

46

nme (sec)
1oo r-----~------~------~----~------~----~

············- ···-oc---··· ······· · -·

0.014 8 16 32 64 128 256
Number of Processors

Figure 4.5: Execution time of multiple-precision parallel multiplication (rr x J2), N = number

of decimal digits.

Table 4.2: Execution time of multiple-precision parallel multiplication {rr x J2) (in seconds),

N = number of decimal digits.
(* means that we were not able to e.xecute because the ma..x:imum

available memory size of 224]lffi per PE was insufficient).

P\N 22o zn 22• 226 228 z3o

4 0.4070 1.6910 6. 7453 • * •
8 0.2178 0. 612 3.5138 14.4982 • •

16 0.1451 0.4232 1.6907 6.6718 * *
32 0.0861 0.3036 0.8833 3.4489 14.4165 *
64 0.0532 0.1730 0.6333 1.767 6.9537 •

128 0.0406 0.1088 0.3748 1.4373 3.8784 15.2900

256 0.0358 0.0747 0.2175 0.7897 3.0539 7.6423

47

Chapter 5

A Multiple-Precision Division by

Single-Precision Integers on

Distributed Memory Parallel

Computers

5.1 Introduction

Many multiple-precision division algorithms have intensively been studied [71. 55, 70, 45].

D. E. Knuth [45] described classical algorithms for n-d.igit multiplication and division. These

methods require O(n2) operations.

It is well known that the division of two multiple-precision numbers can be performed using

the Newton iteration [11, 45]. This scheme requires O(M(n)) operations, where M(n) is the

number of operations for n-digit multiplication. Multiple-precision multiplicat ion of n-digit num­

bers can be performed in M(n) = nlognloglogn operations by using the Schonhage-St.rassen

algorithm [66, 5, 45] which is the algorithm based on the fast Fourier transform (FFT) [27].

On the other hand. the multiple-precision division by single-precision integer is also used in

the multiple-precision arithmetic, which is much faster than t he division by a multiple-precision

number. Although several multiple-precision arithmetic packages [21. 24. 11] include a routine of

the multiple-precision di,·ision by single-precision integer, the multiple-precision parallel division

by single-precision integer bas not been presented so far.

Parallel implementation of the multiple-precision arithmetic on a shared memory machine

have been reported by K Weber [87]. Weber modified the MPFUN multiple-precision aritb.metic

package [11] to run in parallel on a shared memory multiprocessor. B.S. Fagin also implemented

the multiple-precision addition [34] and mu ltiplication[33 , 35] on the Connection Machine CM-2.

4

However, they did not discuss the multiple-precision division.

In this chapter. a multiple-precision parallel division by single-precision integer is presented.

5.2 Algorithm

In this chapter, we discuss the multiple-precision arithmetic with radix b for the division of

ann-digit integer by a 1-digit integer, gi,·ing an n-digit quotient and a 1-digit remainder. For

simplicity, we assume that we are working with nonnegative integer.

Let us define ann-digit dividend u =I:;;'= I u,bn-• and a 1-digit divisor v in radix b notation,

where 0 $ U; < b and 1 $ v < b.

The quotient q can be expressed as follows:

where 0 $ q; < b.

n

q = lu/vJ = L q;bn-i,
i=l

The partial remainder ri , and t he oYerall remainder 1· can be expressed as follows:

i = 1, 2. · · · , n ,

where 0 :S r; < v.

Then, the partial quotient q; and the partial remainder r; can be expressed as follows:

q; = L(bri- 1 + u;)/vJ , i = 1, 2, · · ·, n,

r; = (br;-1 + 'U.i) mod v, i = 1. 2, · · · , n.

Note that equation (5.5) includes the first-order recurrence.

(5 .1)

(5.2)

(5.3)

(5.4)

(5.5)

The first-order recurrence can be evaluated sequentially from the definition of the recurrence

by the following serial FORTRAN 77 code:

R(1)=MOD(U(1),V)

DO 10 I=2,N

R(I)=MOD(B*R(I - 1)+U(I) ,V)

10 CONTINUE

where R and U have been declared as arrays.

This requires

(3n- 2) arithmetic operations with parallelism 1,

and

(n- l) communications with parallelism 1.

49

(5.6)

(5.7)

1\"e note t hal a unit parallel communication operation is defined as a shift of all elements of an

array in parallel to a set of other PEs.

\Ye will appl)' the parallel cyclic reduction method [39) to the equation (5.5). Let us write

the original recurrence relation for two successive terms as:

r; = (b·r;_ 1 + v;) mod v,

and

7"i-l = (br,-2 + u,_l) mod v.

By substituting equation (5.9) into equation (5.), we obtain

r, = (b2ri-2 + bu;-1 + u;) mod v

= (&(1),.,_2 + v) 1l) mod v.

(5.8)

(5.9)

(5 .10)

where equation (5 .10) is a first-order recurrence between al ternate terms of the sequence with a

new set of coefficients given by

b(l) = b2 mod v . u)'l = (bu,_ 1 + u;) mod v.

The repeated application of the above process can be summarized as follows:

{
I = 0. 1, · · · . [log2 n l
i = 1, 2, · · · ; n

where superscripts denote the level number.

b(l) = (b(l-1))2 mod u.

v)l) = (&(1-t),{;:~, + u)L-'l) mod v.

and initially

b(o) = b mod v, ul0
) = u; rood v.

(5. 11)

(5.12)

(5. 13)

(5. 14)

(5.15)

lf the subscript of any r ; and v.; is outside the defined range 1 $ i $ n, the correct result is

obtained by taking its value as zero. When l = [log2 n 1, all references to ri-2' = ,.;_2p • ., nl in

equation (5 .12) are outside the defined range, hence the so lution to the recurrence is given by

r, = u[[Jog, nl) mod v. (5.16)

The method is therefore to generate successively the coefficients b(l) and ui') defined by equation

(5.13) and (5.14) until uPog, nl is obtained. Figure 5.1 show the communication diagram for

the eva.luation of 1·;.

The average parallelism is

50

u1~1 b101 u1~l b(ol u<g) bCOl ut~) b10l u1~ b{OJ u1g1 b101 u1~l b101 u1~1 I = 0

PE1 PE2 PE3 PE4 PES PE6 PE7 PES

Figure 5.1: The communication diagram for equation (5.14).

hence, asymptotically for large n., we have:

3 flog2 n l arithmetic operations with parallelism n , (5.1)

and
[log2 nl communications with parallelism n. (5 .19)

The parallel cyclic reduction algorithm can be implemented in a parallel form of Fortran 90

as the following:

BMOD=MOD(B,V)

R(1:N)=MOD(U(1:N),V)

DO L=1,CEILING(LOG2(N))

IF (BMOD .EQ. 0) EXIT

R(1:N)=MOD(BMOD•EOSHIFT(R(1:N),-(2••(L-1)))+R(1:N),V)

BMDD=MOD(BMOD••2,V)

END DO

where R and U have been declared as arrays.

51

~When b(m) mod v (m = 0, 1 , · · ·, flog2 nl) is zero, all references to b(!) mod v (I= •n+l, m+

2. · · ·, flog
2

nl) are zero in equation (5.l:l) and ri = n\"') mod v in equation (5.12). Thus, t,he

DO loop of the above program can be interrupted when b(l) mod v = 0.

!u particular, when b is multiple of v , b(0) mod v = 0. Thus, in this case. the arithmetic

operation count of this algorithm is O(n/ P) on parallel computers which have P processors.

Also, when b is not multiple of ·u, an upper bound of the arithmetic ope ration count of this

u.lgorithm is O((n/P) logn).

finally, we can obtain the quotient q in parallel by the following fortran 90 program:

Q(1:N)=INT((B*EOSHIFT(R(1:N),-1)+U(1:N))/V)

where Q, R and U have been declared as arrays.

5.3 Experimental Results

To evaluate our multiple-precision parallel division by single-precision integer, decimal digits I ­

and the number of processors P were varied. Vle averaged the elapsed times obtained from 10

executions of the multiple-precision parallel division by single-precision integer, 1rj2 and 1r/3.

We note that the value of n-digit 1r was prepared in advance.

A HITACID SR220l was used as distributed memory parallel computer. ln the e:>q>eriment,

we used 4 ~ 256 PEs on the HITACHI SR2201. MPI [54] was used as a communication library

on the HITACHI SR2201. All routines were written in FORTRAN.

The radix of the multiple-precision number is 108 The multiple-precision number is stored

"~tb cyclic distribution in the array of 32-bit integers.

Table 5.1 shows the result of the average execution times of multiple-precision parallel di­

vision by the single-precision integer, 1r / 2. The column headed by P shows the number of

processors . The next six columns contain the average execution times in seconds. In Figure

5.2 we compare the average exe ution times of 1r /2. For N = 220 and P > 64, we can clearly

see that communication overhead dominates the execution time. Vie note that the arithmetic

operation count is O(N/ P) in the division of 1rj2, since the radi.x (= 108
) is multiple of the

divisor(= 2).
Table 5.2 shows the result of the average execution times of the multiple-precision parallel

division by a single-precision integer, 1r /3. The column headed by P shows t he number of

processors. The ne>..1: si.x columns contain the average execution times in seconds. [n Figure

5.3 we compare the average execution times of 71' /3. For N = 220 and P > 64, we can clearly

see that communication overhead dominates the execut;ion time. We note that the arithmetic

operation count is O((N f P) log N) in the division of 1r/3, since the radix (= 108
) is not multiple

of lhc diYisor (= 3).

52

The calculation of 7f/2 is up to about 8.44 times faster than that of 7r/3 when N = 2
30

and P = 256. This is because the computation of 7f /2 has less arithmetic operations O(N / P)

compared v.;lb the case of 7r/3.

53

Time (sec)
1 .-----~----~----~------~----~----~

0.1

JL.......... _____ ~=~

'','-..,,,,_-. ·-...,..___
·-·-·-. --- ----.~:.~6

....... - -·-·-. ~.............. N=~6
-11L.. -·-·- N='f!-4 --"""""-------

... .,.. .. ·-·--------
0.01 ·-... ··---~-N.":_t"" -

·······~---.t>J~~ -~. ·-----...... ______ _
.. .,. .. _

.......... -..,... ----
0.001

0.00014 16 32 64 128 256

Number of Processors

Figure 5.2: Execution time of multiple-precision parallel division by a single-precision integer

(rr/2) , N = number of decimal digits.

Table 5.1: Execution time of multiple-precision parallel division by a single-precision integer

(rr/2) (in seconds), N =number of decimal digits.
(* means that we \\-·ere not able to execute because the maximum

available memory size o[224 MB per PE was insufficient}.

P\N 2zo 2zz 2z, 2zs 2zs 23o

4 0.0078 0.0311 0.1214 • • •
8 0.0042 0.0157 0.0613 0.2442 • •

16 0.0021 0.00 0 0.0309 0.122 * •
32 0.0013 0.0043 0.0158 0.0615 0.2451 •
64 0.0008 0.0022 0.0082 0.0314 0.1222 •

128 0.0007 0.0014 0.0044 0.0162 0.0639 0.2456

256 0.0007 0.0011 0.0025 0.0083 0.0313 0.1231

54


~~~--~~---------------------------------. ... 
Time (sec) 

lo r-----~----~~----~----~------~----~ 

··- ··-. -~ x..___ ·-·-. N::;~B 

---------------M..------~----->6 ·-··--~ - - -
·-·-·- ·-..c ._ : 

0.1 - ·-·-·- ..... · -·--- -~.=7' ---------------

--~----- --- -!'!':~--- -·-·-·-..... ·-·- ·-·-·-·-·-·-

0,01 

0.0014 

········· ······-~:"~. *····. 

16 

········ ....... 

32 

·····x ..... . 

64 

Number of Processors 

---
128 256 

Figure 5.3: Execution time of multiple-precision parallel division by a single-precision integer 

{rr/3) . N =number of decimal digits. 

Table 5.2: Exec ut ion time of multiple-precision parallel division by a single-precision integer 

(rr/3) (in seconds), N = number of decimal digits. 
(* means that we were not able to execute because the ma."'dmum 

available memory size of 224 !lffi per PE was i.nsufficient). 

P \ .N 220 222 224 226 228 230 

4 0.0278 0.1096 0.434 7 * * * 
8 0.0176 0.0674 0.2679 1.0707 * * 

16 O.Ql05 0.0405 0.1599 0.6303 * * 
32 0.0065 0.0243 0.0930 0.3662 1.4537 * 
64 0.0041 0.0140 0.0534 0.2111 0.8237 * 

128 0.0030 0.0085 0.0310 0.1180 0.4647 1.8647 

256 0.0029 0.0056 0.0190 0.0687 0.2637 1.0387 

55 



Chapter 6 

Fast Multiple-Precision Calculation 

of Division and Square Root on 

Distributed Memory Parallel 

Computers 

6.1 Introduction 

In this chapter, we present efficient parallel algorithms for the multiple-precision cJjvision and 

square root operation of more than several million decimal digits on distributed memory parallel 

computers. 

The multiple-precision division and square root operation take considerably longer time to 

compute than the addition, subtraction and multiplication. There are a number of ways to 

perform cJjvision and square root operation [45]. It is well known that the multiple-precision 

division and square root operation can be reduced to the multiple-precision addition, subtraction 

and multiplication by using the 1 ewton iteration [45]. This scheme requires O(Nf(n)) operations, 

where M(n) is the number of operations for an n-cUgit multiplication. 

!vlul·tiple-precision multiplication ofn.-digit numbers can be performed in M(n) = n logn log logn 

operations by using the Scbonhage-Strassen algorithm [66 , 5, 45] which is the algorithm based 

on the fast Fourier transform (FFT) [27]. 

Parallel computation of J2 up to 1 million decimal digits has been performed by B. Char et 

al. [26] on a network of workstations in 1994. They used Karatsuba's multiplication algorithm 

[43, 45] which is the algorithm of O(nlog, 3 ). 

However, in the multiple-precision multiplication of several thousand decimal digits or more. 

the FFT-based multiplication is the fastest. Thus, a para.llelization of the multiple-precision 

56 



FFT-based multiplication algorithm is discussed in this chapter. 

6.2 Newton Iterat ion 

In division, the quotient of a and b is computed as follows . First the following Newton iteration 

is employed, which converges to 1/b: 

(6.1) 

To obtain the value of a/b. we have to calculate a· (1/b) = afb. These iterations are performed 

by doubling the precision for each iteration. 

Square roots are computed by the following Newton iteration , which converges to 1/ fo: 

(6.2) 

To obtain the value of fo, we have to calculate (1/ fo) · a = ..;a. T hese iterations are also 

performed by doubling the precision for each iteration. 

Here, we d iscuss the sequential computation time of n-digit div ision and square root opera­

tion. Let us consider ann-digit number X with radix B. 

rl-1 

X= L x;B', (6.3) 
i=O 

where 0 ::; x; < B. 
In each iteration of the multiple-precision division includes two multiple-precision multiplica­

tions and that of the multiple-precision square root operation includes three multiple-precision 

multiplications. At the i-th iteration , it is sufficient to work with accuracy of 0 (2;). In this 

sense. the Newton iteration is self-correcting. Thus, the computation time of sequential process­

ing Ts( n) is as follows: 

log2 n 

T,(n) = L CmuuM(n/2i) + M(n) 
i=O 

""(2Cm·ull + 1) · 1\!I(n), 

where C,nult = 2 (in division) or Cmult = 3 (in square root), and M(n) is the number of op­

erations for an n-digit FFT-based multiplication. Throughout this paper. •ve assume M(n) = 

n log n log log n. 

6.3 Parallelization of the Multiple-Precision Addition, Subtrac­

tion and Multiplication 

In the multiple-precision parallel addition, subtraction and multiplication by single-precision 

integer, parallelization of releasing propagated carries and borrows is the key component in the 

57 



process speed . These propagation operations can be parallelized by the carry skip method [52]. 

~!any multiple-predsion multiplication algorithms have been proposed [45). In this chapter, 

we discuss the multiple-precision multiplication by using the floating point real FFT [82, 41. 19]. 

Because many parallel FFT algorithms are proposed [86, 38, 79], we can use an efficient 

parallel FFT algorithm. 

The normalization is essentially the same as the parallel processing of carry in the multiple­

precision parallel addition, subtraction and multiplication by single-precision integer. Thus, this 

normalization can be parallelized with ease. 

6.4 Parallelization ofthe Multiple-Precision Division and Square 

Root Operation 

To compute then-digit multiple-precision arithmetic in the Newton iteration of (6.1 ) and (6 .2), 

it is necessary to perform the multiple-precision parallel addition, subtraction and multiplication 

on parallel computers which have P processors. In these operations, we can apply the parallel 

algorithm given in section 6.3. 

6.4.1 Arithmetic Operation Counts 

Arithmetic Operation Counts for Block Distribution 

Since the arithmetic operation count of n-digit multiple-precision parallel addition. subtraction 

and multiplication by single-precision integer is O(n/ P) , no consideration is done in this chapter. 

In the case of the block distribution, n-digit multiple-precision numbers are d istributed 

across aU P processors. We denote the corresponding index at processor m (0 ~ m ~ P- 1) as 

i (m = Li/rn/PlJ) in (6.3) . 
T hus, the arithmetic operation count of the block distribution T~!:f~k(n, P ) is as follows: 

(6.4) 

Arithmetic Operation Counts for Cyclic Distribution 

In the case of the cyclic distribution. n-digit multiple-precision numbers are also distributed 

across all P processors. vVe denote the corresponding index at processor m (0 ~ m ~ P - 1) as 

i (m = i mod P ) in (6.3). 

58 



Thus. the arithmetic operation count of the cyclic distribution r;::1~'"(n, P) is as follows: 

log2 P ] log2 P 1 . ] 
r;;'u~'c(n, P) = L Cmult. ?IM(2') + L C,nult. y;M(n· 2'/P) + y;M(n) 

z.=O - i=l 

1 
"=' y; (2Cmult + l )M(n). (6.5) 

By comparing (6.4) and (6.5), we can conclude that tl1e arithmetic operation count of the 

cyclic distribution is less than that of the block distribution. 

6.4.2 Communication Time on Parallel Processing (Normalization) 

We consider the communication time of the part of normalization (see Figure 4.3) in t he multiple­

precision multiplication. ' Ve assume a message passing model of computation. 

Communication Time of Block Distribution 

In the normalization of t he block distribution, the processor rn has to send the carry of one digit 

to the neighboring processor (P + m -1) mod P. 

Let u assume the latency of communication is L, the bandwidth is ~If , and the nu mber of 

iterat ions at DO WHILE loop of F igure 4.3 is Cnorm· Then t he communication time of t he block 

di tribut ion T~~(n, P ) is as follows: 

T~!':n~(n, P ) = Cnorm { (c.n.ut log2 P) (L + ~~) + (L + ~~) } 
1 

= L · { Cnorm(Cmult log2 P + 1)} + W · { Cnorm(Cn.ult log2 P + 1)} · (6 .6) 

Communication Time of Cyclic Distribution 

In t he cyclic distribution, to reduce the communication time, we realign the distributed data 

from the cycl ic distribution to the block distribution before normalization. Then, we also realign 

the distributed data from the block distribu ion to t he cyclic distribution after normalization. 

In the normalization of the cyclic distribution wit h realignment. the processor number m has to 

send the carry of one digit to t he neighboring processor (P + m- 1) mod P. 

Let us assume the latency of communication is L, the bandwidth is W , and t he number 

of iterations at DO WHILE loop of Figure 4.3 is c,,orm. Then, the communication time of t he 

realignment (cyclic+--> block) with all-to-all communication r ::;:g;:.(n, P) is as follows: 

T alig"( P)-(P J( 1 n) comm n, - - 1 L + Hi . p 2 . 

ln each iteration of (6.1) and (6.2) , the realignment with a ll-to-all communicatio n of twice 

(i.e. , cyclic--> block and block__, cyclic) are necessary. The communication time of t he normal­

ization with realignm nt from the cyclic distribution to the block distri bution T~:/.~~ (n. P ) is as 

59 



follows: 

log:! n 

T~g~;;, (n, P) = T~~~(n, P ) + C.mu!t L 2~.;~;;,(2 1 , P) + 2T;.;~:;,(n , P). (6.7) 
i=O 

By comparing (6.6) and (6.7 ), we can see that the communication time of the block distri­

bution is less than that of the cyclic distribution. 

6.4.3 Total Computational Time 

Here, we consider the total computational time of the mult iple-precision parallel division and 

square root operation. 

Total Computational Time of Block Distribution 

Total computational time of the block distribution T,b.;f~t{n , P ) is as follo ws: 

Tt.;r~t{n, P) = T~~'{;/' (n, P) + r:.;~(n, P ). (6.8) 

Total Computational Time of Cyclic Distribution 

Total computational time of the cyclic distribution ~~ic(n, P) is as follows: 

~~,'c (n , P) = ~~ic(n , P) +Ti~~.~;;,(n, P) 
log2 n 

+C.nult L 2~~;;,(2i , P) + 2T:::~;:, (n, P ). (6.9) 
i = O 

By comparing (6.8) and (6.9) , we can conclude that the total computational time of the 

cyclic distribution is less than that of tbe block distribution when 

( ) 2 ( ., 2n) 
M: n > log

2 
p LP- log2 n + W . 

6.5 Experimental Results 

To evaluate our parallel multiple-precision division and square root algorithms, decimal digit 

n of fi/-;r and fo and tbe number of processors P were varied. Vie averaged the elapsed 

times obtained from 10 executions of the multiple-precision parallel division fi/r. and multiple­

precision parallel square root fo. We note th<tt the value of n-digit 1f and V2 were prepared in 

advance. The choice of these values has no particular significance here, but was convenient as 

definite test cases for which the results could be checked for randomized test data. 

A HITACHI SR2201 was used as distributed memory parallel computer. In the experiment, 

we used 4 PEs~ 256 PEs on the HITACHI SR2201. 

60 



MPI [54J on the HITACHI SR2201 was used as a commuuication library. All routines were 

written in FORTRAl\i. The compiler used was optimized FORTRAN77 \'02 06-/ A of Hitachi 

Ltd . The optimization option, -WO, 'opt (o(ss), approx(O))' was specified. 

The ra.dil< of the multiple-precision number is 108 The m ultiple-precision number is sto red 

in the array of 32-bit integers. Each input dnta word is split into two words upon entry to the 

FFT-based multiplication. 

Tables 6.1 and 6.2 show the averaged execution times of multiple-precision division ( ../2/r.). 
The column headed by P shows the number of processors. The next six columns contain the 

average elapsed time in seconds. In Figures 6.1 and 6.2, \\·e compare the average execution 

times of multiple-precision square clivision ( ../2jr.). vVe can see that the performance of the 

cyclic distribution is better than that of the block distribution . This is mainly because the 

arithmetic operation time in the case of the cyclic distribution is shorter. In Figure 6.2. for 

small digits N = 220 ~ 222 and P > 64. we can clearly see that communication overhead 

dominates the execution time. 

Tables 6.3 and 6.4 show the result of the averaged execution times of multiple-precision 

square root ( ,;;r). The column headed by P shows the number of processors. The next sil< 

columns contain the average elapsed time in seconds. Vie ca.n see that the tendency of the 

observed results in Figures 6.3 and 6.4. is almost the same as the resu lts of Figures 6.1 and 6.2. 



Time (sec) 
1ooo .-----~------~------~-----T------~-----. 

" ··-.. ~ 
-------...... _____ r-:_;2"8 

··-:.·-··--·-----

100 
-....... ~ ....... 

'·-.... . ......,_ N=~4 ...... ___________ _ 

-.-- _f:!;_-?_- --.,. ·-------10 ··-.. 

··· · ······---~~~---.. -·- -.. __ ----··--.. ""··-.... 
·--...... . 

·····'")(···············-

16 32 64 128 256 

Number of Processors 

Figure 6.1: Execution time of multiple-precision parallel division (-./2/r., block distribution) , 

N = number of decimal digits. 

Table 6 .1: Execution time of multiple-precision parallel division ( v"i/1r. block distribution) 

(in seconds) , N =number of decimal digits. 
(* means that we were not able to execute because the ma.x.imum 

available memory size of 224 MB per PE was insufficient) . 

P\N 220 222 224 226 22s 23o 

4 11.9369 53.8865 236.8914 * • * 
8 6.5816 27.8718 124.9462 581.3678 • * 

16 4.3910 13.8523 5 .3941 256. 172 * * 
32 2.7804 10.1804 30.5462 133.3248 608.520 • 
64 L 298 5.8997 22.9757 67.7558 291.3710 * 

128 1.3968 3. 7244 13.1759 53.1426 151.6683 699.9246 

256 1.5397 3.0976 8.4494 31.6179 128.7817 351.9944 



Time (sec) 
100 

10 

·----- J'!.=i" 

············.N.:::':o 
- ·- ·--...-·- ·-·-·- ·- ·-·-·-

--~--- __ ,.. ____________ _ 

······-w. . ............... ~o;. ......... ........... ...... --w-···· 

8 16 32 64 128 256 

Number of Processors 

Figure 6.2: Execution time of multiple-precision parallel division ( fif'rr, cyclic distribution) , 

N = number of decimal digits. 

Table 6.2: Execution time of multiple-precision parallel division ( fifn: , cyclic distribution) 

(in seconds), N = number of decimal digits. 

(* means that we were not able to execute because the maximum 

available memory size of 224MB per PE was insufficient). 

P \N 220 222 22" 226 22s 2Jo 

4. 2.2126 8.1177 31.8555 * * * 
8 1.4949 4.4671 16.7328 67.2696 * * 

16 1.0720 2.7101 8.5042 31.9142 * * 
32 0.8757 1.9826 5.3389 17.3196 67.6652 * 
64 0.7423 1.3893 3.6850 10.5190 34.7479 * 

12 0.9658 1.3860 2.8254 7.8244 23.0717 78.1338 

256 1.2730 1.5582 2.3920 5.2297 15.9626 46.6842 

63 



Time (sec) 
1ooor-----~~--------r------r-.. ,-._-_--~------~~r---N-=iiD~ 

'',,,'•-...,, ______ - ··-. '""-.. ,_ N=i'" 
........ __ -- · .......... 'X·--- - -- -- -- -

'-, '•,,, N=2"6 -............. __ ....... 
-~....... '"""---------"'!(... 

·--·--. _t!~Z'· -------
~---------..... ---­ '"""·--- -- --

100 

·-... -·-
10 .. ·······-~-~.:~~ -·-

~ .__- ----
·--~---- ... 

•)(. ,, ___ _ 

8 16 32 64 128 256 

Number of Processors 

Figure 6.3: Execution time of multiple-precision parallel square root (y'?T, block distribution), 

N = number of decimal digits. 

Table 6.3: Execut ion time of multiple-precision parallel square root ( y'?T, block distribution) 

(in seconds), N = number of decimal digits. 
(* means that we were not able to execute because the ma..ximum 

available memory size of 224 lv!B per PE was insufficient). 

P \jV 22o 222 224 226 22s z:!O 

4 15.2758 70.4181 310. 4497 * * * 
8 8.4737 36.3030 162.9026 759.0732 * * 

16 5. 7397 17.9397 77.0243 336.8013 • * 
32 3.6156 13.0498 40.4459 174.3698 806.1 61 * 
64 2.3532 7.6094 29.7985 89.1936 383.0885 * 

128 1.7700 4.7694 16.9661 69.1920 200.4155 918.5154 

256 1.8889 3.9253 11.0589 40.6694 169.5797 464.0280 

64 



Time (sec) 

1oo r-------~~----"-----~------~~-.-.,-. --. --,-------~~--~N~=-~"'o 

---..... '··-~---- .. !::~::~· 
....................... ""'"·-

-~--- N=2'• -----,. ___ _ 
----""--------10 

'·, 
~-. N=Z" -----..... _ 

-~---- N=2'2 -·-·-.-·-·-·-·---·-·-·~ 
········· ..... N.:2"' 

................................... ~oe- -······ ·······--·· 

8 16 32 64 128 256 

Number of Processors 

Figure 6.4: Execution time of multiple-precision parallel square root ( v"f, cyclic distribution) , 

N = number of decimal digits. 

Table 6.4: Execution time of multiple-precision parallel square root (..fiT, cyclic clistribution) 

(in seconds), N = number of decimal digits. 
(* means that we were not able to execute because t.he maximum 

available memory size of 224 MB per PE was insufficient). 

P \N 220 222 224 226 228 230 

4 2.6253 9.3042 36.3102 * * * 
8 1.7562 5.1890 19.2272 77.3929 * • 

16 1.2796 3.1780 9.8195 36.7118 * * 
32 1.0581 2.3440 6.2100 19.9579 76.4990 * 
64 0.9245 1.6986 4.3203 12.2624 39.8957 • 

128 1.1724 1.6942 3.2651 9.0219 26.7400 89.2394 

256 1.6455 1.9596 2.9304 6.1577 18.3057 53.9143 

65 



Chapter 7 

Calculation of J2 to 137,438,950,000 

Decimal Digits on the Distributed 

Memory Parallel Computer 

7.1 Introduction 

In this chapter, we compute more t han 137 billion decimal digits of the square root of 2 to 

experiment with the mnltiple-precision parallel square root algorithm described in Chapter 6 on 

the distributed memory parallel computer. 

The computation of t he square root of 2 to high precision has a long history. R. Coustal [28] 

and H. S. Uhler [85] made use of binomial series expansions. K. Takahashi and M. Sibuya ]81] 

employed an iterative method based on the formula 

(7.1) 

which requires only multiple-precision mult iplications and additions, and Xk converges to 1/ fo.. 
M. Lal [49] employed a special method which yields one digit at a time. In the later his 

calculations [51 , 50] the Newton iteration was employed to extend t he original result. 

This Newton iteration for fo. is as follows: 

(7.2) 

where xo is an initial approximation to ..;a. 
J. Dutka [32] made use of a quadratically converging algorithm which derived from the PeU 

(Fermat) equation P 2 - aQ2 = 4 (where a is a nonsqnare positive integer) by means of recurrence 

relations involving multiplication. The approximation of fo. is represented by a su itable ratio 

of Pj Q. 

66 



For calculating more than 137 billion decimal digits of )2, we used the Newton iteration for 

the recipwcal of the square root. This algorithm is considerably better than the formula based 

on (7.2) , because of no full precision divisions are involved. 

7.2 The Newton Iteration for Square Roots 

Formula (7 .1) can be represented as: 

(7.3) 

where the multiplication between Xk and (1- a·xk)/2 can be performed with only half of the 

normal level of precision Ill] and shorten computing time. Multiplying the final approximation 

to 1/ .jQ. by a gives the square root of a. 

These iterations are performed by doubling the precision for each iteration. 

7.3 Multiple-Precision Arithmetic 

The reciprocal of the square root operation can be reduced to the multiple-precision addition , 

subtraction and multiplication by using the Newton iteration Ill, 44]. We can use the multiple­

precision parallel addition, subtraction and multiplication algorithms described in Chapter 4. 

We used the floating point ,·eal FFT-based multiplication. For the floating point real FFT­

based multiplication, we can use the "balanced representation" 129, 30] which tend to yield 

reduced errors for the convolutions we intend to perfo rm. 

A multiple-precision number is represented in the array of 32-hit integers. The radix selected 

for the multiple-precision numbers is 108 . Each input data word is split into two words upon 

entry to the FFT-based multiplication. 

Memory size of the multiple-precision FFT-based mllltiplication is much larger than the 

ordinary O(n2 ) multiplication method. For example, for performing the FFT-based multiplica­

tion between 237 "" 137 billion decimal digit numbers, at least 1. 7 TB of main memory should 

be available under the ideal conditions. It was impossible to obtain 137 billion decimal digits 

through in-core (on main memory) operations because of the ma.ximum available main memory 

size of 224 GB which we were able to use on the distributed memory parallel computer HITACHI 

SR2201. 

Thus. we performed 229 point FFT for 230 "" 1.07 billion decimal digit multiplications on 

main memory. Tben. we used Karatsuba's algorithm which requires O(n10
g•

3
) operations 143, 45] 

for 237 ::::: 137 billion decimal digit multiplications. These schemes needed about 204GB of main 

memory for the working storage. 

vVe can use the parallel aJgorithm for the multiple-precision square root operation given in 

Chapter G. 

67 



Table 7.1: Frequency distribution for ../2- 1 up to 100.000,000.000 decimal digits. 

Digit Count 

0 9999946091 

10000062987 

9999903614 

3 9999996931 

4 9999963242 

5 9999985234 

6 9999930492 

7 10000091438 

8 10000105868 

9 10000014103 

7.4 Results 

The calculation of the square root of 2 by the Newton iteration was carried out on the distributed 

memory parallel computer HITAClll SR2201 (1024 PEs, total main memory 256 GB). 

In (7.3) , the initial val ue is given by xo "" JQ.5 with a 52-bit mantissa in IEEE 754 double­

precision arithmetic. Then. Xk in (7.3) is converged to 1/Jo.5 = ../2. 

The calculation of the square root of 2 was completed in 3rd of August 1997, which took 7 

hours and 31 minutes which include the time for the verification. 

The verification method is squaring the value of ../2 and comparing it with 2 = 1.999 · · ·. The 

number obtained by squaring the approximation in the verification was one and decimal point 

followed by 237 - 30 = 137,438,953,442 nines. The results of square root of 2, which have been 

stored in the disk file , is in t he form of 1024 different files, each containing 227 = 134,217,728 

decimal digits and size of each file is 64MB , and a last file on which the first 134,217,698 decimal 

digits are correct. 

The results of tabulated frequencies for one digit string are listed in Table 7.1. 

The decimal numbers of ../2 from 137,438,953,217-th to 137.438,953,266-th digits are: 

8913458017 7391236935 4900286855 3714574742 2009047472. 

Analysis of digit sequences for 137,438,950,000 decimal digits of ../2-1 gives some interesting 

features; 

1. The longest ascending sequences are 45678901234 (from 4,027,971,080), 7 901234567 (from 

6 



21.932,314,87 , 51,177.313,690), 89012345678 (fTOm 28.522,096.911 , 56,30 .436.119. 

88.773,299,248 and 121 ,646,429,299) , 01234567890 (l1·om 8 ,055,854,279), 23456789012 

(from 33,960.124,767. 41,669,414,929. 101,708,237,670 and 104,66 ,656,044) and 

56789012345 ( from 128,693,866,283, 132,2 8.691,729) . The next longest ascending se­

quence of length 10 appears 97 times. 

2. The longest descending sequence is 321098765432 (from 31,561,102,674). The nexo longest 

descending sequence of length 11 appears 13 tirrtes. 

3. The sequence of maximum multiplicity (of 12) appears only once. This is 0 (from 

64,678,262 ,264). The next longest sequence of multiplicity (of 11 ) appears 13 times. 

4. The longest sequence of 2718281828 appears from 810,443,250, 10,855,468,69 , 

13,529 ,335,76 , 14,656,415,520, 16,095,198,868, 28,958 822,656, 64,152,793,518 Rnd 

67 ,861,907,796. The next longest sequence of 271828182 appears 114 times. 

5. The longest sequence of 14142135623 appears from 8,197,850,925 only once. The next 

longest sequence of 141421356 appears 11 times. 

6. The longest sequence of 31415926535 appears 3 times. These are from 35,921.168.408, 

65.099,003,919 and 110,305,459.937. The next longest sequence of 314159265 appears 17 

times. 



Chapter 8 

Improvement of Algorithms for 1r 

Calculation 

8.1 Introduction 

The Gauss-Legendre algorithm [20, 65] and Borweins' quartically convergent algorithm ]18] are 

often used for multiple-precision ,. caJculation. 

Although two aJgorithms include many multiple-precision multiplications and square opera­

tions, these operations can be reduced by transformation of expressions. 

ln general, it is known tha.t the arithmetic operation count of the multiple-precision square 

operation is less than that of the multiple-precision multiplication. Thus, the arithmetic oper­

ations of the calculation of r. can be reduced by replacing the mult iple-precision multiplication 

by the multiple-precision square operation as much as possible. 

Since the arithmetic operation count of n-digit multiple-precision addi tion, subt raction and 

multiplication by single-precision integer is O(n) , no consideration is done in t his chapter. 

Multiple-precision multiplication of n-digit numbers can be performed in O(nlogn log logn) 

operations by using t he fast Fourier transfo rm (FFT) [66, 45]. In the multiple-precision mult i­

plication of several thousand decimal digits or more, the FFT-based multiplication is the fastes . 

.ln tllis chapter, we use the FFT-based multiplicat ion aJgorithrn. 

8.2 The Gauss-Legendre Algorithm 

In 1976 R. P. Brent [20] and E . Salamin [65] independently discovered an approximation aJgo­

rithm based on elliptic integrals that yields quadratic convergence to 71". 

We first define the arithmetic-geometric mean agm(ao, bo). Let ao. bo and co be positive 

numbers satisfying aij = b6 + cfi. Define <Li, the sequence of arithmetic means, and b;. , the 

70 



~ ~--------------------~------------------~--

sequence of geometric means, by 

(8 .1) 

Also , define a positive sequence c, : 
( .2 ) 

·we note that two relat io.ns (8 .1), (8.2) easily follow from the following: 

(8.3) 

After i iterat ions, .,. can be approximated by -rr;: 

4al+t 
1ri = --~i =-- (8.4) 

l-~2i+1c] 
j=l 

The formula (8.4) has the second order convergence nature . Then the sequences of agm and 

agm related 7r to decimal precision n are performed by the following algorit hm [20]: 

A := 1; B := T 112
; T := 1/4; X := 1; 

whi le A- B > 10-n do begin 

Y :=A; A:= (A+B)/2; B := JB•Y ; 

T := T- X* (Y - .4.)2
; X := 2 • X 

end; 

return (.4.+B)2/(hT). 

Here, A, B , T and Y are full-precision variable and X is a double-precision variable. 

Although t he Gauss-Legendre algorithm has the operations of square root and reciprocal 

calculation, these calculations can be reduced to t he multiple-precision addition , subtraction 

and multiplication by using t he Newton iteration. The arithmetic operatio.n count of n-digit 

multiple-precision addition, subtraction and multiplication by single-precision integer is clearly 

O(n). Let the arithmetic operations of n.-digit multiple-precision multiplication is Nf(n), then 

.-can be performed in O(M(n) logn) steps [20]. 
In each iteration of above algorithm, we have to ca lculate the following values: 

ii ) b; := Ja;_ ,bi-1. 

71 



[n total. the multiplication of once, the square operation of once and the square root operation 

of once are needed in the Gauss-Legendre algorithm. Since the ari thmetic operation count of 

n-digit mult iple-precision addition. subtraction and multiplication by single-precisio n integer is 

O(n ). no further consideration is needed here. 

We note t hat square roots are computed by employ ing the following Newton iterat ion. which 

converges to 1/ ..jO.: 
Xk 2 

Xk+l = Xk + 2(1 - axk)· ( .5) 

Then, the final iteration is performed as follows [44]: 

(8.6) 

8.2.1 Improvement of the Gauss-Legendre Algorithm 

In general, it is known that the arit ltmetic operation count of the mu ltiple-precisio n square oper­

ation is less than that of t he multiple-precision mult;iplication. Thus, the arithmetic operations 

of t he calculation of 1r can be reduced by replacing the multiple-precision mul tiplication by the 

multiple-precision square operation as much as possible. 

First, b; = a~- c; is obtained from {8.2). Furthermore, bl = a;_ ,b,_t is also obtained 

from ( .1). Hence, the multiple-precision multiplication (a,_,b;-1) can be replaced to (a~- en. 
However, c1 = (a;- b;_1 )

2 is a value which should be computed in any case, the multiple-precision 

multiplication by a;_ 1b;_ 1 will be substantiaUy obtained from the calculation of a;. 
In the first iteration, a1 , b1 , c1 are respectively defined as the following: 

ao+bo 2+-/2 
a, = --2- = --4-, 

We show ~he improved Gauss-Legendre algorithm for 1r is as foUows: 

A := (2 + ../2)/4; B := 2- 114
; T .- (2../2- 1)/8; X := 2; 

while A- B > 10-n do begin 

A := (A+ B )/2; B := (A- B )2
; 

T := T - X * B; B := J A2 - B ; X := 2 *X 

end: 

return (A + B )2 /(4 * T). 

Here, A , B a.nd T are full-precision variables and X is a double-precision variable. 

(8.7) 

v\"e summarized t he comparison oft he number of operations i11 each iterat ion of the Gauss­

Legendre Rlgorithm in Table 8.1. Improved algorithm has no multiplica tion operation. 

72 



Table 8.1: Comparison wi h the number of operations in each iteration of the Gauss-Legendre 

algorithm. 

Original algorithm Improved algorithm 

Multipl ication 1 0 

Square 1 2 

Square root l 1 

8.3 Borweins' Quartically Convergent Algorithm 

Bonveins' quartically convergent algorithm [1 ] is explained as the following scheme. Let ao = 
6- 4 J2 and Yo = J2 - l. Iterate the following calculations: 

1 - (1 - y~)1 /4 
Yk+l = l + (l - YVl /4' 

Uk+1 = ak(1 + 'Yk+1 )4 
- 22

k+
3

Yk+1 (1 + Yk+l + Y~+l). 

(8. ) 

(8.9) 

Then ak converges quart ically to 1/rr. Here, precisions for ak and Yk must be more than the de­

sired digits. This algorithm was used for the main run of t he 29 million decimal d igit ca lculation 

done by D. H. Bailey [8]. 
We note that reciprocals are computed by employing the following Newton iteration, which 

converges to 1/ a: 

4-th roots are computed by the following ·ewton iteration, which converges to a.-
1
1

4
: 

Xk ( 4) xk+ 1 = Xk + 4 1 - axk . 

To obtain the value of a114 . we have to calculate a114 = (a-
1
1

4
)

3 
·a. 

8.3.1 Improvement of Borweins' Quartica lly Convergent Algorithm 

To obtain Yk+
1 

in for mula (8 .8). we have to calculate the following values: 

i) y~ , 

ii) y~ = (y~f ' 

iii) (1 _ yzJ-1 /., 

iv) (1 - yt)114 = ((1- Y2)- 1/
4 j2 X (1 - Yt)-l / -1 X (1 - Yt), 

v) (1 + (1 - Yt)l / 4) -1' 

73 

(8.10) 

(8. 11 ) 



[n total, Lhe multiplicaLion of tluee times. the square operation of three times, the reciprocal 

operation of once and the reciprocal 4-th root operation of on<:e are necessary. 

However , it has already clone by t he calculation of 1r for more than 201 million decimal d igit.s 

in 1988 which Y. Kanada [41] did and the frequency of t he multiple-precision mu ltiplication and 

square operation can be reduced by doing following improvement algorithm. 

First, (8 .8) can be transformed as follows: 

1 - (1 - Y2)t f< 
Yk+1 = 1 + (1 _ y~)ll• 

2 ( .12) 

Since (8.8) is transformed into (8. 12), the multiple-precision multiplication with (1- (1 -yk )
1
1

4
) 

can be reduced. 

Moreover, (8 .12) has the reciprocal 4-th root, we can reduce the operation of (1- yt)1
1

4 
= 

((1- y~ )- 1 1-1 ) 2 x (1 - ytJ- 11·1 x (1- yt). Thus, we can reduced the multiplication of twice and 

the square operation of once. 

Finally, to obtain Yk+l> we can reduce the multiple-precision multiplication of three times 

and the multiple-precision square operation of once. 

To obtain ak+J in formula (8.9), we have to calculate the following values: 

iii ) ak X (1 + Yk+tl\ 

In Lola!. the multiplication of twice and the square operation of tluee times are necessary. 

However. the calculation of y,,+1 (1 + Yk+J + y~+1 ) can be transformed to: 

( 
2 ) (1 + Yk+il4 - (1 + 2yf+I + Y~+l) 

Yk+1 1 + Yk+l + Yk+1 = 4 

= (1 + 2Yk+l + Yk+Jj2- (1 + 2y~+l + Yt+1) 
4 

In (8. 13) . thus. we can calculate the following values: 

(8.13) 



Table .2: Comparison with the number of operations in each iteration of Borweins' quartically 

convergent algorithm. 

Original algorithm Improved algorithm 

Multiplication 5 1 

Square 6 3 

Reciprocal 4-tlt Root 1 1 

Reciprocal 1 1 

This improved scheme has only the multiplication of once, the square operation of three times. 

Thus, we can reduce the multiplication of once. 

Furthermore, if the value of yz+J is preserved in (8.13), the calculation of y~+l is unnecessary 

in each iteration when assuming k _, k + 1 in ( .8). Hence this algorithm shows the 4-th power 

calculation can be reduced. that .is, the twice square operation can be reduced. 

As for t he iteration of once, the multiplication of four times and square operation of three 

Limes can be reduced by improving Borweins quartically convergent algorithm (refer to Table 

.2). 

8. 3.2 Improvem ent in the Final Ite ra tion of Borweins' Quartically Conver­

gent Algorithm 

In the final iteration, t he reciprocal 4-th root and reciprocal can be omi tted as foll ows in (8 .8) 

and (8.9). 

F irst, we obtain Taylor series expansion to (1- Yt)- 111 in (8.12) as follows: 

( 
')- 1/ 1 1 4 5 8 15 12 

1 - Yk = 1 + ;j"Yk + :J2Yk + 128 Yk + · ·. · 

Then , 

and 
2 ) 1 1 5 8 15 12 

Yk+l (1 + Yk+l + YkH = gYk + ()4Yk + 256 Yk + · · 

To obtain the val ue of,., only ak+l in (8.9) is necessary. Thus, in (8.8) we only 

calculate the value of a.k from (8.16) and (8.17) at the final iteration. 

75 

( .14) 

( .15) 

(8.16) 

( .17) 

have to 



(i) Case of 10-n $ vZ < 10- n/ 2 

Since y~ < 10-n. (8.16) and ( .17) can be approximated with: 

4 1 4 
(1 + Yk+t) ""1 + 2Yk> (8.18} 

(8. 19) 

Thus, the multiple-precision multiplication. square operation. 4-th root and reciprocal 

calculation are unnecessary. 

(ii) Case of 10- n/2 $ Yf < w - n/3 

Equations (8 .16) and (8.17) can be approximated with: 

4 1 4 11 
(1 + Yk+t) "" l + 2Yk + J2Yk> (8 .20} 

? 1 4 5 8 
Yk+t (1 + Yk+L + 11i:+t) "" sYk + G4'Yk· (8.21) 

Thus, the 4-th root and reciprocal calculation are unnecessary. 

(iii) Case of 10-n/3 $ Yf < 10-n/4 

Equations (8.16) and (8.17) can be approximated with: 

4 1 4 11 8 17 12 
(1 +Y<+t) ""1 + 2Yk + J2Yk + 64Yk , (8.22} 

2 1 4 5 8 15 12 
Yk+J (l + Yk+L + Yk+J) "" SYk + 64Yk + 256 Yk · (8.23) 

Furthermore. the 4-th root and reciprocal calculation are unnecessary. 

We summarize the improvement of Borweins' quartically convergent algorithm [or 7r is as 

follows: 

A:= 6-4v'z; Y := 17-12v'z: X := 2; 

while Y > 10-"/4 do begin 
2 

Y := 1- · B := Y 2
; 

1 + (1 - Y)- 114 ' 

W := (1+2•Y+B)2
; Y := B 2

; 

A := A dV- X • (W- (1 + 2 * B + Y )); 

X:= 4•X 

end; 

if Y < l0--"'' 2 then begin 

W := 1 + Y/2; A := A* W- X* (Y /8) 

76 



end 

else if Y < 10-n/ 3 then begin 

I3 := Y2 ; W := 1 + Y/2 + lh B/32; 

.4 := A*W-X•(Y/ +hB/64) 

end 

else begin 

B := Y\ W := 1 + Y /2 + 11 • B /32 + 17 * B * Y /64: 

A:= A•IF-X•(Y/8+5•B/64+15•B•Y/256} 

end: 

ret u rn 1/A. 

Here, A, B, W and Y are full-precision variables and X is a double-precision variable. 

8.4 Experimental R esults 

For evaluating the improved t"'O algorithms, m were changed and averaged CPU time as obtained 

with execution of calculation of n =2m decimal digits of,,-, We implemented the algorithm based 

on the FFT-bascd arithmetic. IDM RS6000/590 workstation was used in the experiment. 

Tables 8.3 and 8.4 show the results of each execution time of the Gauss-Legendre algorithm 

and Borweins' quartically convergent algorithm. 

We note that the improved Gauss-Legendre algorithm is up to 1.08 times faster than the 

original Gauss-Legendre algorithm. This is because the arithmetic operations of the calculation 

of 7i' can be reduced by replacing the multiple-precision multiplication with the multiple-precision 

square operation. 

Furthermore, we note that the improved Borweins' quartically convergent algorithm is up to 

1.78 times faster than the original Borweins· quartically convergent algorithm. This is because 

the improved Borweins' quartically convergent algorithm has less multiplication and square 

operation compared with the original Borweins' quartically convergent algorithm. 

77 



Table 8.3: omparison with the performance of t he Gauss-Legendre algorithm (in seconds). 

m n =2m (digits) Original algorithm lrnp·roved algorithm ratio 

10 1024 0.14 0.13 1.077 

11 2048 0.29 0.27 1.074 

12 4096 0.67 0.64 1.047 

13 8192 1.33 1.30 1.023 

14 16384 2.86 2.75 1.040 

15 32768 6.29 6.09 1.033 

16 65536 15.99 14.96 1.069 

l7 131072 39.19 36.71 1.068 

18 262144 89.98 84.78 1.061 

19 524288 217.62 203.27 1.071 

20 1048576 517.55 484.09 1.069 

Table 8.4: Comparison with the performance of Borweins' quartically convergent algorithm 

(in seconds). 

m n = 2"' (digits) Original algorithm Improved algorithm ratio 

10 1024 0.20 0.12 1.667 

11 2048 0.42 0.25 1.680 

12 4096 0.91 0.53 1.717 

13 8192 1.83 1.16 1.578 

14 16384 4.25 2.53 1.680 

15 32768 8.84 5.39 1.640 

16 65536 25.36 14.23 1.782 

17 131072 58.28 33.48 1.741 

18 262144 137.20 1.19 1.690 

19 524288 332.06 191.17 1.737 

20 1048576 795.77 469.63 1.694 



Chapter 9 

Calculation of 1r to 51,539,600,000 

Decimal Digits on the Distributed 

Memory Parallel Computer 

9.1 Introduction 

The comp utation of n with high precision has a long history [13]. Several computations have 

been performed as in Table 9.1. The development of new programs suited to the calculation of 

" and new high speed computers with large memory have thrown more light on this fascinating 

number. 

There are many arctangent relations for,. [82]. In particular, all the computations until 

1981 and verificat ion for 10,000,000 deci mal digit calculation by Y. Ushiro and Y. Kanada [42] 

used arctangent formulae such as: 

1 1 
,. = 16 arctan 5 - 4 arcta n 

239
, Machin 

1 1 1 
= 24 arctan B + 8 arctan 57 + 4 arctan 

239
, Stormer 

1 1 1 
= 48 arctan 

18 
+ 32 arctan S7 - 20 arctan 

239
, Gauss 

1 1 1 
= 32 a rctan - - 4 arctan - - 16 arctan -. 

10 239 515 
Klingenstierna 

On t he other hand, D. V. Chudnovsky and G. V. Chudnovsky computed ,. up to over 8 

billion decimal digits by using t he following algori thm which they found: 

~ = 65416 1608 
00 

( 13591409 k) (6k)! ( -1 )k 
,. 6403203/ 2 ~ 545140134 + (3 k)! (k! )3 (640320)3k' 

(9 .1 ) 

and the computer made by themselves in 1996 [16]. 

79 



Table 9.1: Historical records of the 1r calculation by computers. 

Precis1on Time Formula 
Ca.lculnto:d by M.o.china u • ud Date (calcul:~.t~d) lcheclt) (cht~ck) 

del.'!:u-e.d 

Rdtwiuncr et "'· E~IAC 19<19 (20'10) 20.11 ,: ~~~) M(M) 

Nichobnu. Jeenel NORC 1954 (3093) 3092 13 111 M(M) 
(13m 

Fo:hcu\ Po:!;&SUJ. 1907 l10021) 7480 33 I K(G) 33 ,,, 

Cr.uuy• IBM 704 195~ (10000) 10000 1 ~<tO In 
(I h qO m) 

M(M) 

F'ellon Pega.sufi 1958 (10021) 10020 33 h K(G) 
(33 II) 

Guilloud IBM 704 1969 {16167} Hll67 4 h 18m M(M) 
(4 h 18m) 

Shaub, \Vrench 18M 7DDO 1961 (100265) 100265 .. 3m S(C) (4 h 22m) 

Gu 1lloud. FilliMn: lBM 7030 1066 {2~0000) 250000 
41 h 55 I'll 

G(S) (24 h 35m) 

Guillnud. DichampL CDC 6600 1067 (500000) 500000 28 h 10m G(S) 
(16 h 36m) 

G>.uiJoud, Bouyer CDC 7£00 1973 (1 001250) 1001250 23 1 18 n' O(S) ISh 40 rn} 

M1yoshi and Kanl:l-da. FAC0~1 M-200 1981 
2000040 2000036 c:!~ ~ :: :) K(M ) 
2000000 

Guilloud 1931-82 (•) 2000050 . . 
2000050 (•) •l 

Tamura MELCOM 900U 1982 {20971!>2) 
209714'1 1 h Ho Ill 

L(L) (1 h 21m) 

Tamura and Kanada HITAC M-280H 1982 (4194304) 
419•1288 2 h 21 Ill L(L) 

{6 h 52 m) 

T'fllUtA a.nd K&nada HITAC M·280H i9SZ (8388608) 
83$8576 6 h &2m L(L) (> 30 h) 

K"""d"· o•hino HITAC M-280H 1982 (16777216) 
16777100 

{6~! ~~ ~~) l.(L) 
and Tamura 

U•hiro 10nd K~~onada IIITAC S-1H0/20 1983.10 
(10013400) 10000000 :S 24. h O(L) 
10013395 (> 30 h) 

Go•per Symboliu 3670 1985-10 (~ 17526200} 17526200 . R(B4) (28 b) 

Bailey CRAY-2 191:HI.l 
(29360 128 29360111 28h 

6"(82) 29360000 (40 h) 

KILfllldA and Tamurn. Hll'AC S-810/20 1986.0 
3:J5f>H32} 33~54<\H 6 136m 

L(L) 33554400 (23 h) 

Ka.t11Lda and TamurA Hll'AC S-810/20 1986.10 {67108861) 61108S.l9 23 h 
LCL) (35 hI S m) ........ ~"~· t-:EC SX-2 1987.1 

(134217728 134217700 35 o llSm 
L(B4 ) 

Kubo. et .. 1. 133554<100 (48 h 2 Ill 

Kanada aod Tftmura HT'r • .o\C S-820/80 1988.1 
(21)1326572) 2013'2655\ ' • ~1m t.(B4 ) 20l3:tGOOO (7 h 30m) 

Chudnov•kys 
CRAY-2 

\989.5 <?: 4.80000000) 480000000'! ~ 6 month? C(C) 
IBM -3090/VF 4.80000000 <• 

Chudno\·akys lBM-3090 1989.0 
(> 525229270) f>25229270 > 1 month•/ 

C(•) 525229270 (•) 

Ka.nto.d" a.nd Tautura H ITAC S-820/80 1980 .7 (~3GS.70912) 536870898 67 1 13m 
L(B4) 536870000 (80 h 39 rn ) 

Chudnov•kys IBM-3000 1989.8 
~ 1011196691) 10111961:>!:11. 2: :.1 n10nthi C(C) 1011196691 (•) 

Kaull..da a.nd Tamurn. HJTAC S-820/80 1989.11 
(1073741624 } 1073741799 7•1 b 30 rn 

L(B4) 107.3UOOOO (85 h 57 rn ) 

Chudnov•kY• 1991.8 l~2~20~:~~~~o 
2260000000 '260 

C(C) <• 
Chudnovlk)'• 1994.5 <?: 404.4000000) 4044.000000'1 

C(C) 4044000000'? (•) 

Tab.ha.shi 11..nd Kanada ltiTAC S-3800/480 1995.6 
{3221225472 322122M66 

c!~ ~ !i ::, B4(L) 3221220000 

Tak.n.h~hi a.nd Kan.ada UITAC S-3800/480 1996.S {:;::::~~:) ci~~ ~ ~~ :) B4(L.) 

Tak&buhi and Kanada Hil'AC S-3800/480 1996.10 (6442450944.) 6442450938 c~i ~ !~ :J B4( L} 6·442450000 

C hudnov•ky• 1996.3 (~ 8000000000) 8000000000 1 week·1 
C(C) 8000000000? <•> 

Taka.b.atbi and Ka.na.du. HITACHI SR2201 1997.4 (17170869184 ) 17179560142 (: ~ ~~ :) L(B4) 

Ta.la~ha•bi a.nd Kan11.d1> IIITACHI S lt2201 )997.1':1 (34359738368) 34359738327 16 h19m 
B4 (L) (20 h 34m) 

Taka.huhi •nd Kanada HITACHI S R2201 1997.7 \51539607552) 511':139607510 (~9 h 3 ... 84(L) 51539600000 37 h 8 m} 

M, K. G, S, L, R, 84, 82. C ar1: formulae of Maebin. Klingcnr;tiern,., Oaun. StOrmer, 11..nd Gauu·l.egendre, Ramanujll.ll . 9orwein•' q11art1c 
con~'ert;tmt. Borweiru' qua.drMie- conver«rrH, ~>.nd Chuduovakys' forrnulo.. rt!•pectively. Symbol 'x' meBns 'unknown '. Cheek. lime m"a.ra the 
additional tllnfl for lbe ca.lcu.la.ted value eheekin~~o. 

0 



___ ,.------~-~-------~-~-

In 1976 R. P. Brent [20] and E. Salamin [65] independently d.iscO\·ered an approximation 

algorithm based on elliptic integrals that. yields quadratic convergence to" (hereafter called the 

Gauss-Legendre algorithm). Later in 1983, quadratic. cubic, quadruple and septet convergent 

product expansion for r., which are competitive with Brenl's and Salamin 's formula, were also 

discovered by Borweins [18]. These new formulae are based on the arithmetic-geometric mean, 

a process whose rapid convergence doubles, triples, quadruples and septates the number of 

significant digits at each step. 
The author and Y. Kanada haYe computed 1r up to more than 51.5 billion decimal digits by 

using the formula of improved Borweins' quartically convergent algorithm [77] and verified the 

results through the improved Gauss-Legendre algorithm [77] for r.. 

To attain more speed than before, parallelization schemes to the multiple-precision addition, 

subtraction and multiplication [74] were performed on a distributed memory parallel computer. 

Multiple-precision aritlunetic algorithms are described in Section 9.2. The results of the 

calculation of" to more than 51.5 billion decimal digits are described in Section 9.3. 

9.2 Multiple-Precision Arithmetic 

9.2.1 Multiple-Precision Addition, Subtraction and Multiplication 

The improved Borwcins' quartically convergent algorithm and the improved Gauss-Legendre 

algorithm have the reciprocal. square root and reciprocal 4-th root calculations, respectively. 

These calculations can be reduced to the multiple-precision addition , subtraction and mnlti­

plicalioo by using the Newton iteration [11. 44]. We can use the multiple-precision parallel 

addition. subtraction and multiplication algorithms described in Chapter 4. 

We used the floating paint real FFT-based multiplication. Similarly to the calculation of t he 

square root 2, we can use the "balanced representation" for the floating point .-eal FFT-based 

multiplication [29, 30] which tend to yield reduced errors for the convolutions we intend to 

perform. 
A multiple-precision number is represented in the array of 32-bit integers. The radix selected 

for the multiple-precision numbers is 108. Each input data word is spli t into two words upon 

entry to the FFT-based multiplication. 

Memory size of the multiple-precision FFT-based multiplication is much larger than the 

ordinary O(n2 ) multiplication method. To perform the FFT-based multiplication of 3 x 2
34 

"' 

51.5 billion d cimal digit numbers, at least 64 GB of main memory should be available under 

the ideal conditions. It was impossible to obtain 51.5 billion decimal digits through in-core (on 

main memory) operations because of the maximum aYailable main memory size of 224GB which 

we were able to use on the distributed memory parallel computer of HITACHI SR2201. 

Thus, in Borweins' quartically convergent algorithm, we performed 3 x 2
30 

point FFT for 

81 



3 x 231 ::::: 6.4. billion decimal digit multiplications on main memory. Then. we usPd Karatsuba's 

algorithm which requires O(nlog,J) operations [43 , 45] for 3 x 234 
::::: 51.5 billion decimal iligit 

multiplications. These schemes needed about 212GB of main memory for the working storage. 

On the other hand, in the Gauss-Legendre algorill1m, we performed 3 x 229 point FFT 

for 3 x 230 ::::: 3.2 billion decimal digit multiplications on main memory. This is because the 

Gauss-Legend re algorithm requires more multiple- precision variables than Borweins' quartically 

convergent algorithm. These schemes needed about 188 GB of main memory as fo r the working 

tor age. 

9.2.2 M ultiple-Precision Reciprocal 

Reciprocals are computed using the following Newton iteration. which converges to l /tt: 

(9.2) 

where the multiplication between Xk and (1-axk) can be performed with only half of the normal 

level of precision [11] . These iterations are performed with a dynamic precision level. 

9.2.3 Multiple-Precision Square Root 

Square roots are computed by the following Newton iteration, which converges to lf,j{i: 

(9.3) 

where the multiplication between Xk and (1- axD/2 can be performed "~th only half of the 

normal level of precision. 

Then, the final iteration is performed as follows [44]: 

(9.4) 

where the multiplications to axk and xk are performed with only half of the final level of precision. 

9.2.4 Multiple-Precision Reciprocal 4- th Root 

Reciprocal 4-th roots are computed by the following Newton iteration, which converges to a-114
: 

(9.5) 

where the multiplication between Xk and (I - axZ)/4 can be performed with only half of the 

normal level of precision. 

82 



--
9.3 Results of 1r 51,539,600,000 Decimal Digit Calculation 

The calculations of,- by the Borweins' quartically convergent algorithm a nd Gauss-Legendre 

algori hm were carried out on the distributed memory paraUel computer HIT ACID SR2201 (1024 

PEs, main memory 256 GB). Tbe origi nal program is written in FORTRAN 77 with MPI [54]. 

To reduce the communication oYerhead. a Remote Direct Memory Access (RD~LI\) message 

transfer protocol [17] without memory copy was used as a communication library in optimized 

main/verification program. 

:\lain program run: 
Job star t 6th June 1997 22:29:06 

J ob end 

Elapsed time 

Main memory 

Algorithm 

8th June 1997 03:32:17 

29:03:11 

212GB 

Borweins quartically convergent algorithm 

Optimized main program run: 
Job start 1st August 1997 23:04.:15 

.Job end : 3rd August 1997 00:18:4 7 

Elapsed time : 25:14:32 

Main memory : 212GB 

.AJgorithm : Borweins' quartically convergent algorithm 

Optimized verification program run: 

Job start : 4th July 1997 22:11 :4.2 

.Job end 

Elapsed time 

Main memory 

.AJgorithm 

6th July 1997 11:19:5 

37:08:16 

188GB 

Gauss-Legendre algorithm 

The decimal numbers of,- and 1/rr from 51,539.599,951-st to 51 ,539,600,000-th digits are: 

7r : 1900691944 0299999207 6824359555 7053246569 8614212904 

1/rr : 4531204418 2539535923 9327200920 6008150624 6219272973. 

Furthermore, the distribution of the figures of 0- 9 up to the decimal point 

50,000,000,000 digits of,- and 1/rr is shown in Tables 9.2 and 9.3. 

Main computation took 18 iterations of Borweins quartically convergent algorithm for 1/'rr, 

followed by a reciprocal operation. to yield 3 x 231 =51, 539,607. 552 digits of rr. This compu­

tation wa& checked using 35 iterations of the Gauss-Legendre algorithm for 1r. A comparison 

of these output results gave no discrepancies except for the last 4.2 digits due to lhe normal 

3 



truncation errors. 

Analysis of digit sequences for 51,539.600,000 decimal digits of 1r- 3 gives some interesting 

feal.ures; 

l. The longest ascending sequences arc 45678901234 (from 2,401,798.228), 23456789012 (from 

4,055.974,863), 12345678901 (from 7,997,135.197, 47,404,247.915), 56789012345 (from 

17,664,375,855) and 9012345678 (from 29,085.092,351). The ne>.'t longest ascending se­

quence of length 10 appears 51 times. 

2. The longest descending sequence is 76543210987 (from 17,223,851,531), 09 76543210 (from 

42.321,75 . 03 ). The next Ionge t descending sequence of length 10 appears 33 times. 

3. The sequences of maximum multiplicity (of 11) appear 4 times. These are I (from 

15,647,738,228), 9 (from 27.014 ,073,304) and 6 (from 32,104,158,792 , 40 ,863,606,404). The 

next longest sequence of multiplicity (of 10) appears 39 times. 

4. The longest sequence of 271 28182 4 appears (from 45,111,908,393) only once. The ne.xt 

longest sequence of 2718281828 appears 5 times. 

5. The longest sequence of 1414213562 appears from 10.037,891,176, 12,888,529,951, 

17.404.920,660, 24,149,232,165. 31,170,773,565, 40,081,78 ,717, 46.156,779. 25 , 

47,945.472,360 and 48,610,722,512. The next longest sequence of 141421356 appears 49 

t imes . 

6. The longest sequence of 3141592653 appears 4 times. These are from 7,902.1 3,159, 

13,381,905,334, 17,387,932,7 and 45,531 ,531,119. The next longest sequence of 

314159265 appears 50 times. 

84 



Table 9.2: Frequency distribution for ,.- 3 up to 50,000 ,000,000 decimal digils. 

Digit Count 

0 5000012647 

1 49999 6263 

2 5000020237 

3 4999914405 

4 5000023598 

4999991499 

6 499992 368 

7 5000014 60 

8 5000117637 

9 4999990486 

Table 9.3: Frequency distribution for l/7f up to 50,000,000,000 decimal digits. 

Digit Count 

0 4999969955 

1 5000113699 

2 4999987893 

3 5000040906 

4 4999985863 

5 4999977583 

6 4999990916 

7 4999985552 

8 49998 1183 

9 5000066450 

5 



---

Chapter 10 

Conclusion 

This thesis has proposed parallel multiple-precision arithmetic algorithms which include the 

multiple-precision addition, subtraction, multiplication , division and square root operation. 

For the very high precision calculation of mathematical constants, multiple-precision arith­

metic algorithms are the key to reducing the e.xecution time and increasing the number of 

calculation digits. We have succeeded for parallelizing basic routines of the addition, subtrac­

tion , multiplication , division and square root operation in the multiple-precision arithmetic on 

distributed memory parallel computers. 

The presented multiple-precision parallel arithmetic algorithms make it possible to compute 

more than 137 billion decimal digits of -/2 and more than 51.5 billion decimal digits of ;r 

computed on the distributed memory parallel computer, IDTACHI SR2201 (1024 PEs, total 

main memory 256 GB). 

Contributions by this thesis are summarized as follows: 

• The conventional FFT-based algorithms multiply two n-digit numbers to obtain a 2n-digit 

result. In the multiple-precision floating po int multiplication, we need only the returned 

result whose precision is equal to the multiple-prec ision floating point number. This fact 

is exploited in our ' ·dividing method" wltich is faster than the conventional FFT-based 

multiplication algorithm for the multiple-precision floating point numbers. According to 

the experimental results of the multiple-precision multiplication and square operations on 

cache effective processors , timings were about 1/1.91 and l /1.51 compared to th conven­

tional method , respectively. These results show that the overall arithmetic operations can 

be reduced and the cache miss is easily reduced by dividing the multiple-precision number. 

• For an arbitrary-precision FFT-based multiplication , the number of points N in FFT is 

not necc sarily 2m. Tills thesis presented the radix-2, 3 and 5 parallcll-D FFT algorithms 

on distributed memory parallel computers. In our parallel FFT algorithms, since we use 

cyclic distribution, all-to-all communication takes place onlv once. Moreover. the input 

6 



data and output data are both in natural order. " 'e were able to show that the uitability 

o( the parallel FFT algorithm depends on the CPU architecture of the processing elements 

of parallel computers. It was found hat the four-step FFT-based parallel FFT algorithm 

is suitable for vector-parallel architectures and t.be six-step FFT-based parallel FFT al­

gorithm is suitable for cache-based RISC processor processing elements. Our algorithms 

have resulted in high performance 1-D parallel complex FFTs suitable for distributed 

memory parallel computers. \Ve succeeded to attain performances of about 130 GFLOPS 

on the 1024 PEs of HITACHI SR2201 and about 1.25 GFLOPS on the 32 PEs of IBt-1 

SP2. These parallel FFT algorithms are not only efficient for computing multiple-precision 

multiplication but also quite useful for other numerical computations. 

• A key operation in the fast multiple-precision arithmetic is the multiplication, by which 

significant time in the total computation is spent. A parallel implementat ion of the real 

FFT-based multiplication has been presented, because the floating point real FFT is faster 

than the FNT (Fermat number transform) for the latest distributed memory parallel com­

puters. By using the radix-2 , 3 and 5 parallel 1-D FFT, we can reduce the arithmetic 

operations and memory size of the arbitrary-precision FFT -based parallel multiplication. 

In particular, we can use the radix-2 , 3 and 5 parallel FFT-based multiplication for com­

puting more than 51.5 b illion (::::> 3 x 234
) decimal digits of,._ 

• The arithmetic operation counts for n-digit multiple-precision sequential addition, subtrac­

tion and multiplication by single-precision integer is clearly O(n). However, a major factor 

to obstruct parallelization is releasing the carries and borrows in the multiple-precision ad­

dition, subtraction and multiplication by single-precision integer. This thesis proposed a 

parallelization of releasing these propagation operations by using the carry skip method. 

Similarly to the multiple-precision addition and subtraction, a part of normalization of 

results in the multiple-precision multiplication can be parallelized. It is concluded that 

the carry skip method is quite efficient for parallelizing the normalization of the multiple­

precision addition. subtraction and multiplication. 

• ln the parallel implementation of the Newton iteration based multiple-precision division 

and square root operation. there is a trade-off between load balance and communication 

overhead on distributed memory parallel computers. This is because t he Newton iteration 

is performed by doubling the precision for each iteration. It was found that the cyclic 

distribution with realignment is quite efficient for the Newton iteration based multiple­

precision division and square root operation . 

• This thesis has been presented a multiple-precision parallel division by single-precision 

integer, which is much faster !.bart he multiple-precision division by a multiple-precision 

87 



number. In particular, when a radix b is multiple of a diYisor v, the arithmetic operation 

of then-digit multiple-precision division by single-prec ision integer is O(n/P) ou parallel 

computers which baYe P processors. When a radix b is not multiple of a divisor v, an upper 

bound of the arithmetic operation of th.is algorithm is O((n/ P) logn). It is concluded that 

the multiple-precision parallel division by single-precision integer can be derived fTom the 

first-order recurrence which is parallelized by ihe parallel cyclic reduction method. 

• Improvements of th Gauss-Legendre algorithm and Borweins· quartica1ly convergcnl al­

gorithm for r. calculation are proposed. The improved Gauss-Legendre algorithm is up to 

1.08 times fa ter than the original Gauss-Legendre algorithm. and the improved Borweins' 

quartically convergent algorithm is up to l. 78 times faster than the original Borweins' 

quartically convergent algorithm. \.Ve can conclude that these improved algorit hms are 

quite efficient for computing highly accurate r. . 

These results have contributed to an innovation for computing highly accurate mathemat­

ical constants. In 1995, more than 6.4 billion decimal digits of 7r were computed on a vector 

supercomputer HITAC S-3800/480 (32 GFLOPS peak performance in which 16 GFLOPS were 

used) within elapsed time of 116 hours and 38 minutes. However, by using our multiple-precision 

parallel arithmetic algorithms and the distributed memory parallel computer HITACHI SR2201 

(1024 PEs, 307.2 GFLOPS peak performance), more than 6.4 biUion decimal digits of 1r are com­

puted within only 1 hour 30 minutes. It foUows from this that our multiple-precision parallel 

arithmetic algorithms are quite efficient for computing highly accurate mathematical constants. 

As Table 9.1 shows, it took 12 years for extending the length of known 7r value from 100,000 

to l.OOO,OOO, 10 years from 1,000 ,000 to 10,000,000, 4 years from 10.000,000 to 100,000,000, 

2 years from 100,000,000 to 1,000,000,000 and 8 years from 1,000,000,000 to the order of 

10,000,000,000. 
A computation of 7r to up 100,000,000,000 decimal digits will not be difficult within the 20th 

century, if we consider the trend of the program for the parallel computers. 



Bibliography 

(1] R. C. AGARWAL AND C. S. BURRUS, Fast Convolution Using Fe1·mat N1Lmber Transforms 

with Applications to Digital Filtering, IEEE Trans. Acoust., Speech, Signal Processing, 

ASSP-22 (1974), pp. 87- 97. 

[2] --, Nurnbe1· Theoretic Tmnsforms to Implement Fast Digital Convolution, in Proc. IEEE, 

vol. 63 , 1975, pp. 550-560. 

[3[ R. C. AGARWAL AND J. W. COOLEY, Vectorized Mixed Radix Discrete Fourier Transform 

Algorithms, in Proc. IEEE, vol. 75, 1987, pp. 12 3- 1292. 

[4] R. C. AGARWAL , F. G . GUSTAVSON , AND M. ZUBAffi, A High Performance Pa.rallel 

Algorithm for 1-D FFT, in Proc. Supercomputing '94, 1994, pp. 34-40. 

(5[ A. V. AHO , J. E. HOPCROFT , AND J. D . ULLMAN , The Design and Analysis of Computer 

Algorithms, Adclison-Wesley, Reading, MA, 1974. 

[6] A. AVEHBUCH , E. GABBER, B . GORDlSSKY, ANDY. MEDAN , A Parallel FFT on a MIMD 

Machine , Parallel Computing, 15 (1990) , pp. 61- 74. 

[7[ D. H. BAILEY, Numerica.l R eBults on the Tmnscendence of Constants Involving 1r, e, and 

Euler's Consta.nt, Math. Comp. , 50 (1987), pp. 275- 281. 

[8[ --, The Computation of 1r to 29,360,000 Decimal Digits Using Borweins ' Quartically 

Conve1·gent Algorithm, Math. Comp. , 50 (1988), pp. 283-296. 

[9] --, A Portable High Performance Multiprecision Package. NASA Ames RNR Technical 

Report, R ! ·R-90-022. NASA Ames Research Center, Moffett Field, CA 94035, 1990. 

[10[ --, FFTs in External or Hierarchical Memory, J. Supercomputing, 4 (1990), pp. 23- 35. 

Ill] --, Algorithm 719: Multipreci.sion Translation and Execution of FORTRAN Pmgrams, 

ACM Trans. !liath. Softw. , 19 (1993), pp. 288- 319. 

[12] --, A Fortmn 90-Based Multiprecision System, ACM Trans. Math. Softw., 21 (1995), 

pp. 379- 387. 

89 



-~-----------------------------------~--~ 

[13] L. BERGGREN .. J. BoiiWEIN. AND P. BORWEIN, eds .• Pi: A So·urce Book, Springer- Verlag, 

l\'ew York , 1997. 

\14] G. D. BERGLAND. A Fast Fourier· Transform Algorithm for R eal- Valued Series, Cornm. 

ACM. 11 (1968), pp. 703- 710. 

\15] --. A Fast Fo7L7·ier· Transform Algorithm Using Base 8 Iterations. iath. Comp., 22 

(1968), pp. 275- 279. 

[16] D. BLATNER, The Joy of Pi, Walkerbooks, New York , 1997. 

\17] T. BOKU, K. ITAKURA , H. NAKAMURA, AND K. NAKAZAWA , CP-PACS: A massively par­

allel processor fo• · la•ge scale scientific calc·ulations, in Proc. 1997 International Conference 

on Supercomputing. 1997, pp. 108- 115. 

[18] J. M. BoRWEIN AND P. B. BORWEI!\', Pi and the AGM - A Study in Analytic Number 

Theory and Computational Complexity, Wiley, New York, 1987. 

\19] J. M. BoRWEIN, P. B. BoRWEIN , AND D . H . BAILEY, Ramanvjan, Mod·ular Equ£Ltions, 

and Approximations to Pi or How to Compute One Billion Digits of Pi, American Mathe­

matical Monthly, 96 (1989), pp. 201- 219. 

[20) R. P. BREKT, Fast Multiple-Precision Evaluation of Elementary Functions, J. ACM, 23 

(1976), pp. 242- 251. 

[21] --, A Fortran Multiple-Precision Arithmetic Package, ACM TI:ans. Math. Softw., 4 

(1978), pp. 57- 70. 

\22) E. 0. B ruGHAM , The FCLst Fourie•· Tmnsform, Prentice-Hall, Englewood Cliff.•, NJ , 1974. 

\23] J. BRILLHART, D. H . LEHMER, J. L. SELFRJDGE:, AND B. TUCKERMAN, Factm'izations 

of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to High Powers, Ame rican Mathematical Society, 

Rhode Is land, 2nd ed .. 1988. 

[24] D. A. BUELL AND R. L. WARD, A Mult·iprecise Integer lhithmetic Packctge, J. Supercom­

puting, 3 (1989) , pp. 89- 107. 

\25] G. CESAR! AND R. MAEDER, Performance An.a.lysis of the Parallel [( amtsuba Multiplica­

tion Algorithm for Distributed MemonJ Architectures, J. Symbolic Computation, 21 (1996), 

pp. 467- 473. 

[26] B. CHAR, J. JOHNSON, D . SAUN DEHS, AND A. P. \;yACK, Some Experiments with Pamllel 

Bignum Arithmetic, in Proc. l st International Symposium on Parallel Symbolic Computa­

tio~ 1994, pp. 94- 103. 

90 



[27] .J. W. COOLEY AND J. W. TUKEY, An Algorithm for the Machine Calc1tlation of Complex 

Fourier Series, Math. Comp., 19 (1965), pp. 297- 301. 

[28[ R. COUSTAL, Calc·ul de J2 et re.flexion sur une esperance, C. R. Acad. Sci. Paris, 230 

(1950), pp. 431-432. MR 11, 402. 

[29] R. RANDALL AND B. FAGIN, Discrete Weighted Transfwms and La1-ge-Integer /u·ith.metic. 

Math. Comp. , 62 (1994), pp. 305- 324. 

[30] R. E. CRANDA.LL, Topics in Advanced Scientific Computation, TELOS/ Springer-Verlag, 

New York , 1995. 

[31j .J. H. DAVENPORT, Y . S!RET, AND E. TOURNIER, Computer Algebm: Systems and Algo­

rithms joT A.lgebmic Computation, Academic Press, 2nd ed. , 1993. 

[32] J. DUTKA. The Square Root of 2 to 1,000,000 Decimals, Math. Comp., 25 (1971 ), pp. 927-

930. 

[33] B. S. FAG IN, La•·ge Integer Multiplication on Massively Parallel Processors, in Proc. Th.ird 

Symposium on the Frontiers of 1\l[assively Parallel Computation, 1990, pp. 38-42. 

[34.] --, Fast Addition of Large Integers, IEEE Trans. Com put. , 41 (1992), pp. 1069- 1077. 

[35] --, La'"!Je Integer Multiplication on Hypercubes, J. Parallel and Distributed Computing, 

14 (1992), pp. 426- 430. 

[36] T . GRANLUND , GNU MP: The GNU Multiple ?1-ecision Arithmetic Libra1·y, Free Software 

Foundation, 1991. 

[37J R. GROSSMAN, ed., Symbolic Computation: Applications to Scientific Computing, SIAM 

Press, Philadelphia, PA. 1989. 

[38] M. HEGLAND, Real and Complex Fast Fourier Transforms on the Fujits'U VPP 500, Parallel 

Computing, 22 (1996), pp. 539- 553. 

[39] R. v.; . Hac KNEY AND c. R. JESSHOPE, Parallel Computers , Adam-Hilger, Bristol, 19 1. 

[40] S. L. JoHNSSON AND R. L. KRAWlTZ, Cooley-Thkey FFT on the Connection Machine, 

Parallel Computing, 18 (1992). pp. 1201- 1221. 

[41] Y. KANADA , Vectorization of Multiple-Precision Arithmetic Program and 201,326,000 Dec­

imal Digits of 1f Calculation, in Proc. Supercomputing '88. vol. 2, 1988, pp. 117- 128. 

91 



[42] Y. K..;.NADA, Y. TAMURA. S. YosHINO , AKD Y. US HIRO, Calculation ofr. to 10,019,395 

Decimal Places Ba ed on the Gaus.s-Legendre Alg01·ithm and Ga-uss Arctangent Relation. 

CCUT-TR-84.-01. Computer Centre, Universit-y ofToJ,;yo, Bu.nkyo-ku, Yayoi 2-11-16 , Tokyo 

113 . . Japan , 1983. 

[43] A. KAR TSUBA A 1 D Y. OFMAN, Multiplication of multidigit rmmber·s on automata, Dok­

lady .-\kad. Nauk SSSR, 145 (1962), pp. 293- 294. 

[44] A. H. KARP AND P. l\1AilKSTE!N. High-Precision Division and Squar·e Root, ACM Trans. 

!vlath . Softw. , 23 (1997), pp. 561- 589. 

\45] D. E. KNUTH, The Ad of Computer Pr·ogmmming, Vol. 2: Seminumerical Algorithms, 

Addison-v\'esley, Reading. MA, 3rd ed .. 1997. 

\46] N. KOBLITZ, A Course in Number· TheoTy and Cryptogmphy, Springer-Verlag, New York, 

2nd ed., 1994. 

[47] W. KRANDICK AND J. R . JOHNSON. Efficient Multiprecision Floating Point Multiplication 

with Exact Rounding. Technical Report RISC-Linz Report Series Number 93-76, Research 

Institute [or Symbolic Computation, RISC-Liuz, Johannes Kepler University, A-4040 Linz , 

Austria, 1993. 

]48] --, Efficient Multiprecision Floating Point Multiplication with Optima.! Directional 

Rounding, in Proc. 11th IEEE Symposium on Computer Arithmetic, 1993, pp. 228- 233. 

[49] M. LAL, Expansion of ../2 to 19600 Decimals, Math. Comp. , 21 (1967) , pp. 258- 259. 

\50] --. Expansion of ../2 to 100,000 Decimals, Math. Comp., 22 (196 ), pp. 899- 900. 

\51] --, First 99000 Decimal Digits of ../2, Math. Comp. , 22 (1968), p. 226. 

\52] l\1. LEHMAN AND N . BURLA, Skip Techniques for· High-Speed Carry Propagation in Binary 

Arithmetic Units , IRE Trans. Elec. Comput., EC-10 (1961) , pp. 691- 698. 

\53] D. H . LEHMER. On Lucas 's test for the primality of Mersenne's numbers, J. London Math. 

Soc., 10 (1935), pp. 162- 165. 

\54] MESSAGE PASSING INTEIU'ACE FORUM, MP!: A Message- Passing interface Standard, Ver­

sion 1.1 , 1995. 

[55] C. J. MIFSUD, A M·ultiple-Precision Division Algorithm, Comm. AGM. 13 (1970), pp. 666-

668. 

\56] T. ?v1ULDERS, On Comp•uting Short Pmducts. Technical Report No. 276. Department of 

Computer Science, ETH Zurich. 1997. 

92 



[57) K. NAKAZAWA. H . ?'!AKAMURA, H. l MORl, AND S. K AWABE, Pseudo Vector Proces-

501' based on Register- Windowed Superscalar Pipehne, in Pro c. Supercomputing '92, 1992, 

pp. 642-651. 

[58] H. J. l"USSBAUMER. F(J.s l. Fouria Tmnsfo•·m and Convolution Algorithms, Springer-Verlag, 

New York . second corrected and updated ed., 1982. 

[59] C . M. RADER, Discr·ete Fourier transforms when the n·umber of data samples is p•·ime, in 

Proc. IEEE, vol. 56, 1968, pp. 1107- 1108. 

[60] --. Disc1·ete Convolution.s via Mersenne Transforms, IEEE Trans. Com put. , C-21 (1972), 

pp. 1269- 1273. 

[61] G. Vi. REITWIESN ER, An ENIAC Determination of7r and e to more than 2000 Decimal 

Place.s, Mathematical Tables and Other Aids to Computation, 4 (1950) , pp. 11- 15. 

[62] P. RTBENBOIM , The Little Book of Big Primes, Springer-Verlag, New York, 1991. 

[63] H. RIESEL, Prime Numbers and Computer Methods for Factorization, Birkhauser , 2nd ed., 

1994. 

[64) R. L. RI VEST, A. SHAMlR, AND L. ADLEMAN, A Method for Obtaining Digital Signatures 

and Public-Key Cryptosystems , Co=. ACM, 21 (1978) , pp. 120- 126. 

[65] E. SALAMIN, Computation of 1r Using Arithmetic-Geometric Mean, Math. Comp. , 30 

(1976), pp. 565-570. 

[66] A. SCBONHAGE AND V. STRASSEN, Schnelle Multiplikation gmsser Zahlen, Computing 

(Arch. Elektron. Rechnen), 7 (1971), pp. 281- 292. 

[67) D. SUANKS AI\D J. W. WRENCH, JR. , Calculation ofr. to 100,000 Decimals, :Math . Comp. , 

16 (1962), pp. 76- 99. 

[68] R . C. S INGLETON, An Algorithm for Computing the Mixed Radix Fast Fourier Transform, 

IEEE Trans . Audio E!ectroacoust .. 17 (1969) , pp. 93- 103. 

[69] D. M. SMITH. Algo1·ithm 693: A FORTRAN Package for Floating-Point Multiple-Precision 

Arithmetic. ACM Trans. Math. Softw. , 17 (1991 ), pp. 273- 283. 

[70] --, A M7Lltiple-Precision Division Algorithm, Math. Comp., 65 (1996) , pp. 157- 163. 

[71] M. L. STEIN, Divide-and-Correct Methods for Multiple Precision Divi.;ion, Comrn. ACM, 

7 (1964), pp. 472- 474. 

93 



[72] P. N. S\\'ARZTRAUBER, FFT Algorithms fo!' Vector· Computer·s. Parallel Computing, 1 

(19 4). pp. 45-63. 

[73] --, M11ltipmcessor FFTs, Parallel Computing, 5 (19 7) . pp. 197-210. 

[74] D. TAKAHASHI ANDY. KANADA , Fa.st Hi_qh-Precis-ion A1·ithrnetic on Distributed Memot-y 

Pamllel Machines, in Proc. Ninth SIAM Conference on Parallel Proces ing for Scient ific 

Computing. (to appear). 

[75] --, Fast Multiple-Precision Calculation on Distr·ibuted Memory Parallel Computer.•. in 

IPSJ SJG Notes. 96-HPC-60. Information Processing Society of Japan. 1996. pp. 31- 36. (in 

Japanese). 

[76] --. 7l' - Fast Calculation and Statist•cal Testing (3} . in Proc. 37th Programming Sym­

posium IPSJ, Information Processing Society of Japan , 1996, pp. 73- 84. (in Japanese) . 

[77] --, Improvement of Algo•·ithms for 7l' Calculation: the Gauss-Legendt·e Algo1·ithm and the 

Borwein's Quartically Convergent Algorithm., Trans. IPS. Japan , 38 (1997), pp. 2406- 2409. 

(in Japanese). 

[7 ] --, Calculation of-rr to 51.5 Billion Decimal Digits on Distributed Mem01-y Parallel Pro­

cessors, Trans. IPS. Japan, 39 (1998). pp. 2074- 2083. (in Japanese). 

[79] --.Implementation and Evaluation of Radix-IJ, 9 and 5 1-D FFT on Distributed Memory 

Parallel Compute1·s, Trans. IPS. Japan. 39 (1998), pp. 519-52 . (in Japanese). 

[80] D. TAKAHASHI, Y. TORI!, AND T. YUASA, An Implementation of Factorization on 

Massively Pamllel SIMD Computers. Trans. IPS. Japan. 36 (1995), pp. 2521-2530. (in 

Japanese). 

[81] K. TAKAHASHI AND M. S!BUYA, The Decimal and Octal digits of ,jii., Math. Comp. , 21 

(1967), pp. 259- 260. 

[82] Y. TAMURA ANDY. KANADA, Calculation of-rr to 4,194.293 Decimals Based on the Ga.uss­

Legendre Algorithm. CCUT-TR-83-01. Computer Centre, University of Tokyo, Bunkyo-ku. 

Yayoi 2-11-16. Tokyo 113. Japan, 1983. 

[83] C. TE~!PERTON. A Note on Prime Facto•· FFT Algorithms, J. Comput. Phys., 52 (1983), 

pp. 198- 204. 

[84] --, Self-Sorting Mixed-Radix Fast Fo1wir!T Transforms. J. Comput. Phys., 52 (1983) , 

pp. 1- 23. 

94 



1 5) H. S. UHLER. Many-figure app1·oximations to ,Ji, and dzstribution of digits in ../2 and 

tj,Ji. in Pro . Nat. .-\cad. Sci. U.S.A .. vol. 37, 1951. pp. 63- 67. MR 12. 444. 

I 6] C. VAN LOA!' , Computation.al FmmewoTk.• for the Fast Fourier Trnnsfonn, Sl.-\M Press, 

Philadelphia, PA, 1992. 

187) K. \~:EBER., An Experiment in High-p,·ecis'ion .4rithmetic on Shared Memory Multiproces­

sors, SlGSAi\f Bulletin, 24 (1990), pp. 22- 40. 

ISS] S. WINOGRAD , On Computing the Discrete Fourier Transfonn. i:Vfath. Comp .. 32 (1978), 

pp. 175- 199. 

g;; 





K
odak C

olor C
ontrol Patches 

B
lue 

C
yan 

G
reen 

YeUow
 

R
ed 

W
hite 

3/C
olor 

A
1 


