

水晶振動子を用いるバイオセンシングシステムの開発

村松安安

学位論文

水晶振動子を用いるバイオセンシングシステムの開発

村松 宏

水晶振動子を用いるバイオセンシングシステムの開発

第一	章	緒論	ð																								
1.	1	緒言	r																								1
1.	2	従来	の	生亻	と学	計	測	法																			3
1.	2.	1	微	生物	勿計	測	法																				3
1.	2.	2	バ	イス	ナセ	2	サ	-	お	よ	v	バ	1	オ	セ	2	サ	-	た	5	る	免	疫	測	定		5
1.	2.	3	ゲ	11	上反	応	を	伴	う	生	化	学	反	応	٤	そ	Ø	計	測								6
1.	3	水晶	振	動于	Fの	化	学	計	測	~	Ø	応	用														7
1.	3.	1	水	晶拔	長動	子	Ø	化	学	計	測	~	Ø	応	用	Ø	原	理	2	ガ	ス	セ	ン	サ	-	~	Ø
		応	「用																								8
1.	3.	2	液	体中	中に	お	け	る	水	晶	振	動	子	Ø	挙	動	٤	電	気	化	学	計	測	~	Ø	応	用
																											9
1.	3.	3	水	晶携	長動	子	Ø	免	疫	測	定	~	Ø	応	用											1	0
1.	4	本研	究	の目	目的	お	よ	T	意	義																1	1
1.	5	用語	ik.	21	17																					1	3
第二	章	水晶	振	助子	ーを	用	61	る	バ	1	オ	セ	v	サ	-	Ł	そ	Ø	病	原	性	徴	生	物	Ø	計	測
	~	の応	用																								
2.	1	緒言																								1	4
2.	2	実験	方言	去																						1	5
2.	2.	1	実	険装	是置	お	よ	v	試	薬																1	5
2.	2.	2	水	晶振	貢動	子	表	面	~	D	抗	体	n	固	定	化										1	6
2.	2.	3	微	生物	の計	測	~	0	適	用																1	7

2.3 結果および考察

17

17

2		3		1		水	晶	振	動	子	Ø	選	択	お	よ	T	発	振		路	Ø	検	討							1	7
2		3		2		抗	体	固	定	化	法	n	検	討																1	9
2		3		3		C		a	1	b	i	с	a	n	s	濃	度	測	定	F	お	け	る	反	応	時	間	Ø	検	討	
																														2	0
2		3		4		C		a	1	b	i	с	a	n	S	Ø	濃	度	測	定										2	1
2		4		結	言																									2	1
第	E	章		水	晶	振	動	子	を	用	61	る	バ	1	才	セ	ン	サ	-	に	5	3	生	体	物	質	Ø	測	定		
3		1		緒	言																									2	3
3		2		実	験	方	法																							2	4
3		2	•	1		実	験	装	置	お	よ	v	沽	薬																2	4
3		2		2		水	晶	振	動	子	Ø	液	体	中	で	Ø	挙	動	Ø	検	討									2	6
3		2		3		I	g	G	濃	度	D	測	定																	2	6
3		2		4		I	g	G	サ	ブ	ク	ラ	ス	Ø	分	析														2	7
3		2		5		E		c	0	1	i	濃	度	Ø	測	定														2	7
3		3		結	果	お	5	V	考	察																				2	8
3		3		1		各	種	水	溶	液	中	で	Ø	発	振	周	波	数	Ø	変	化									2	8
3		3		2		Ł	1	I	g	G	濃	度	Ø	測	定															3	1
3		3		3		プ		テ	1	ン	A	固	定	化	量	٤	Ł	1	I	g	G	結	合	量	の	検	討			3	3
3		3		4		I	g	G	サ	ブ	ク	ラ	ス	Ø	分	析														3	4
3		3		5		E		с	0	1	i	濃	度	0	測	定														3	5
3		3		6		ポ	IJ	ス	Ŧ	V	2	粒	子	を	用	5	た	発	振	唐	波	数	変		. m	增	幅	t n		3	6
3		4		結	言																									3	7

第四章	溶液中の水晶振動子の特性の解析とその粘性測定への応用
4.1	緒言 3.9
4.2	理論 4 0
4.2.	1 水晶振動子における電気 - 機械変換モデル 40
4.2.	2 水晶振動子の抵抗R」と液体の粘性に関する関係式の導出
	4 1
4. 3	実験方法 4.3
4.3.	1 実験装置および試薬 43
4.3.	2 電気的等価回路定数の算出 4 4
4.4	結果および考察 4 6
4.4.	1 水晶振動子バイオセンサーにおける等価回路定数の変化
	4 6
4.4.	2 水-エタノール混合液における発振周波数および共振抵抗
	R1の変化 47
4.4.	3 グリセリン水溶液を用いた粘度センサーとしての評価
	5 0
4.5	結言 5 1
第五章	水晶振動子粘度測定システムのエンドトキシン濃度の測定への
応	5用
5.1	緒言 53
5.2	実験方法 5 4
5.2.	1 実験装置および試薬 54
5.2.	2 共振抵抗および共振周波数の測定法 5 5
5.2.	3 カブトガニ血球抽出物のゲル化反応の測定 5 5

5.	3	結果お	よび	考察																					5	6
5.	3.	1 ゲ	儿化	反応	に	伴う	抵	抗	R	1 2	< #	ŧŧ	長月	司礼	皮引	数	Ø	変	1	Ł					5	6
5.	3.	2 I	ンド	トキ	シ	ン濃	度	測	定	Ø	た	め	Ø	指	標	σ	力相	臾	討						5	6
5.	3.	3 I	ンド	トキ	2	ン濃	度	٤	ゲ	ル	化	時	間	Ø	対	応	5 1	IJ	係						5	7
5.	3.	4 I	ンド	トキ	シ	ン濃	度	٤	共	振	抵	抗	R	10	כת	畏	大	変	51	Łi	速	度	0	D \$	对历	Ċ,
		関係																							5	8
5.	3.	5 I	ンド	トキ	シ	ン濃	度	٤	L	き	51	值	時	間	0	文	t A	5	¥	係					5	8
5.	3.	6 I	ンド	トキ	シ	ン濃	度	٤	共	振	抵	抗	変	化	量	ŧ	5 4	Ł	v	共	1	辰)	周	波	数	Ø
		変化量	との	対応	関	係																			5	9
5.	3.	7 I	ンド	トキ	シ	ン濃	度	-	ゲ	JL	化	時	間	Ø	+	+	- 1)	ブ	V	-	- :	2	Э	ン	力
		ーブ																							6	0
5.	4	試作機	の製	作																					6	0
5.	5	結言																							6	1
第六	章	水晶振	動子	によ	る	フィ	ブ	IJ)	-	ゲ	2	濃	度	σ	沮	IJŹ	Ē								
6.	1	緒言																							6	3
6.	2	実験方	法																						6	4
6.	2.	1 実	験装	置お	よ	び試	、薬																		6	4
6.	2.	2 7	イブ	1)	-	ゲン	濃	度	Ø	測	定														6	5
6.	3	結果お	よび	考察	ŧ																				6	5
6.	3.	1 ゲ	儿化	反応	に	伴う	共	振	周	波	数	変	化	0	応	~ 徑	3.44								6	6
6.	3.	2 ゲ	儿化	時間	0	測定	:																		6	7
6.	3.	3 P	ルミ	ナ粒	子	を用	141	る	周	波	数	変	化	0	埠	1	TH								6	7
6.	3.	4 7	ルミ	ナ粒	子	を用	In	る	凝	固	時	間	0	測	定	-									6	8
6.	4	結言																							6	9

第	t	;章	È	天	然	脂	質	被	覆	水	晶	振	動	子	に	よ	る	匂	51	物	質	0	計	測								
7		1		緒	言																									7	0	
7		2		実	験	方	法																							7	1	
7		2		1		実	験	装	置	お	5	T	試	薬																7	1	
7		2		2		実	験	操	作																					7	2	
7		3		結	果	お	よ	v	考	察																				7	3	
7		3		1		天	然	脂	質	Ø	匂	51	物	質	た	対	す	3	応	答	性									7	3	
7		3		2		各	種	天	然	脂	質	に	お	け	る	匂	51	物	質	~	D	応	答	パ	タ	-	2	٤	そ	Ø	標	
					準	化																								7	7	
7		3		3		7	y	L	ク	チ	2	-	7	V	ス	テ		-	ル	混	合	膜	Ø	匂	61	物	質	に	対	す	る	
					応	答	性																							7	9	
7		3		4		応	答	パ	タ	-	ン	Ø	比	較	法	Ø	検	討	2	測	定	結	果	~	Ø	適	用			8	0	
7		3		5		共	振	抵	抗	,	共	振	周	波	数	変	化	Ø	匂	61	物	質	12	対	す	る	依	存	性	Ø	違	
				41	٤	11	次	元	ĸ	タ	-	ン	~	Ø	展	開														8	3	
7		4		結	言																									8	4	
第	八	章		結	論																									8	7	
参	考	文	献																											9	5	

謝辞 101

第一章 緒論

1.1 緒言

微生物、生体高分子および有機物質等を対象とする生化学関連の計測
手法は、バイオプロセス、臨床検査、環境計測等の分野に広く応用され
ている。これらの計測手法には、①酵素の特異的な触媒反応を利用する
もの、②抗体の特異的な分子識別能を利用するもの、③分子の吸着能や
分子の大きさを利用するものがある。

これらの分析手段のうち、酵素を用いる方法は、一般に、酵素反応を 色素の酸化還元反応にリンクさせ、反応した色素を吸光度法によって測 定する方法である。また、酵素反応に基づく分析法の中には、カスケー ド機構に起因するゲル化反応を利用する方法もある。この場合にも透過 光量という光学的な指標が用いられる場合がある。

抗体を用いる分析法では、抗体にラジオアイソトープ、蛍光色素、酵素を修飾した標識抗体が使用されている。この標識抗体を用いて、抗原 抗体反応を行った後、抗原抗体結合物の標識物質の活性を測定すること によって、抗原濃度の定量が行われている。近年、ラジオアイソトープ に変わって、蛍光色素、酵素が盛んに用いられるようになってきたが、 これらの測定においても、主に、光学的な測定手段が用いられている。

分子の吸着能や分子の大きさを利用する分析法には、液体クロマトグ ラフィーやゲルろ過法等の方法がある。これらの分析において、最もよ く用いられている検出方法は、紫外域における吸光度を測定する方法で ある。

ー般に、こうした従来の光学的な手法を中心とする分析方法には、① 操作が煩雑である、②装置が大型になり易い、という問題点がある。-

- 1 -

方、近年、活発な研究開発が進められているパイオセンサーは、①測定 システムが小型化できる、②迅速な測定が可能である、③オンライン計 測が可能である、という特徴を持っている。

バイオセンサーは、基本的に、酵素や抗体など生体高分子の固定化膜 と、この膜で変換された情報をさらに電気信号に変換するトランスデュ ーサーとから構成されている。これまでに利用されているバイオセンサ ーのトランスデューサーには、電気化学デバイス、温度センサー、光セ ンサー等がある[1-4]。

これらのバイオセンサー用トランスデューサーに対して要望されてい ることの一つに、汎用性がある。例えば、酵素サーミスターは、パック グランドの温度変化を厳密にコントロールしなければならないという問 題もあるが、全ての酵素反応が、熱変化を伴うことを考えると、汎用性 のある方法であるといえる。

このような汎用性のある測定の指標の一つに、重量変化が挙げられる。 特に、微量の重量変化を計測できる素子として、水晶振動子がある。水 晶振動子は、表面の微少な重量変化を検出することが可能であり、これ までにガスセンサーとして応用されている[5-14]。近年、水晶振 動子は、液体中でも発振が可能であることが明らかとなっており[15 -17]、液体中における水晶振動子の発振周波数は、液体の粘性によ って変化することが示されている[18-21]。このような粘性とい う性質も、計測において、一つの汎用性のある指標と考えられる。

この水晶振動子は、電気化学的な計測にも応用されている。これは、 水晶振動子のセンサーとしての有用性を示す一つの例と考えられる[1 6,22-29]。

最近では、この水晶振動子や水晶振動子と同じ圧電素子の一種である

SAWデバイスを用いて免疫測定を試みた研究が、いくつか報告されて いるが[30-35]、測定条件や測定システムの構成には、改良の余 地があると考えられた。

このような知見をもとに、本研究では、水晶振動子を検出素子とした パイオセンサーおよび化学計測システムの開発を行い、汎用性のある計 測手段を提供すると供に、これらの理論的な解析に関しても検討を加え ることにした。本章では、まず、従来の生化学計測法の中で、本研究と 関係のある微生物計測法、パイオセンサーおよびパイオセンサーによる 免疫測定法、ゲル化反応を伴う生化学反応とその計測法について述べる。 さらに、これまでに行われている水晶振動子の化学計測への応用に関し て、その原理とガスセンサーへの応用、液体中における水晶振動子の挙 動と電気化学計測への応用、水晶振動子の免疫測定への応用について述 べ、最後に、本研究の目的と意義をまとめる。

1.2 従来の生化学計測法

1. 2. 1 微生物計測法

微生物計測は、食品プロセスにおいては、食品中の微生物汚染の計測、 臨床検査においては、病原菌の検査という点で特に重要である。

従来の微生物計測法では、寒天プレートを用いて試料中の微生物の培養を行い、微生物濃度を調べ、顕微鏡観察によって、微生物の同定を行うのが、一般的であった。さらに、詳細な微生物の同定の手法としては、 免疫的方法と化学的方法がある。免疫的方法は、抗血清を添加して、微 生物の凝集や沈降を観察するものである。<u>E.coli</u>、<u>C.albi</u> cans等の抗血清が、市販されている。化学的方法は、微生物の持つ

- 3 -

- 2 -

脂質や糖質の分析またはDNAハイブリダイゼーション等の手法を利用 したものである[36]。

こうした従来の方法に対して、より簡便な方法による微生物計測の試 みがなされている。その一つは、微生物の持つ酵素によって、蛍光色素 の変換反応を行い、蛍光測定を行う方法である。Snyderらは、こ の方法によって<u>B.globili</u>の濃度の測定を行い、検出限界は、3 ・10⁴cells·ml⁻¹であったと報告している [37]。

また、微生物は、直接電極上で電極反応を起こすことから、電気化学 的な電位走査で得られる酸化ビークから微生物濃度の測定が可能である ことが報告されている。松永らは、この方法で、 10⁷-1.9・10⁸ cells・ml⁻¹の間で、<u>S.cerevisiae</u>について、電流値 と微生物濃度の間に直線関係が認められ、さらに、ビーク電位のシフト からグラム陰性菌とグラム陽性菌の判定ができたと報告している[38]。

さらに、 徴生物の持つ酵素、補酵素の酸化還元反応にともなって、酸 化還元されたメディエーターを電気化学的に測定する方法も報告されて いる。 西川らは、 DCIP (2,4-dichlorophenol-indophenol)を用いた 測定を行うことによって、 <u>E. coli</u>が、10⁴ cells·ml⁻¹まで 測定可能であったと報告している[39]。

抗体を利用した測定法としては、有機膜に微生物に対する抗体を固定 化し、微生物との反応前後の膜電位を測定することによって、微生物濃 度の測定と同定を行う方法も報告されている。松岡らは、抗<u>Candi</u> <u>da</u>抗体を固定化したセルローストリアセテートを主成分とする有機膜 の膜電位を測定することによって、<u>C.albicans</u>の濃度を10⁴ -5・10⁵ cells・ml⁻¹の間で測定できることを示した[40]。 しかし、これらの方法は、センサーとして自動化するのは難しく、検 出感度も十分とはいえないと考えられる。

1. 2. 2 バイオセンサーおよびバイオセンサーによる免疫測定

バイオセンサーは、基本的に、化学物質を特異的に認識する生体高分 子固定化膜とその膜で生じた変化を電気信号に変換するトランスデュー サーから構成される。

代表的な酵素センサーは、固定化酵素膜と酸素電極、 p H センサーな どの電気化学デバイスとから構成されている。この固定化酵素膜の種類 を替えることによって、種々のセンサーが開発されている。この酵素膜 の代わりに抗体を固定化した膜を用いて、免疫センサーの開発も行われ ている[1]。

こうした免疫センサーの原理の一つに、膜電位の変化を測定する方法 がある(Fig.1-1(a))。この方法は、固定化された抗体に対応する抗 原が、抗原抗体反応によって結合したときに、抗原の持つ電荷によって、 膜電位が、変化することを利用したものである。前述の微生物計測法の 中にもこの原理を用いたものがある。この膜電位を測定する方法におい て、アルブミン、IgGなどを抗原として固定化することによって、血 清に含まれる特定の抗体の濃度測定も可能である[1]。

一方、酵素を利用した免疫測定法も考案されている。この方法は、抗 体固定化担体と酵素標識した抗原または抗体を用い、競争反応法あるい はサンドイッチ法による反応の後に、固定化膜上に存在する酵素の活性 を電気化学デバイスによって測定するものである。ここで競争反応法と は、抗原試料と既知量の酵素標識抗原を混合し、抗体固定化膜に対し競 争反応を行わせるものである(Fig.1-1(b))。この場合、膜上の酵素 活性から試料の濃度を計算することができる。また、サンドイッチ法と

- 5 -

- 4 -

は、抗体固定化膜に対し抗原試料の結合反応を行わせ、その後、結合し た抗原試料に対して標識抗体の結合反応を行わせるものである (Fig. 1 -1(c))。この場合も、膜上の酵素活性から抗原試料の濃度を求めるこ とができる[1]。

最近では、光ファイパーを検出素子に用いた免疫測定法が報告されて いる。この方法は、光ファイパー端面に抗体を固定化するとともに、蛍 光標識した抗体を用い、試料抗原に対して、上記のサンドイッチ法と同 様の反応を行わせた後、光ファイパー端面上の蛍光測定を行うものであ る。この測定法によって、比較的高感度な免疫測定が可能であると報告 されている(Fig.1−1d)[1]。

これらの測定法の問題点としては、次のような点が挙げられる。表面 電位を測定する方法では、非特異吸着、その他不確定な電極界面の変化 の影響を受けやすく、電位が不安定になりやすい。また、標識試薬を用 いる方法では、試薬を使い捨てにすることになり、再使用可能という、 従来のバイオセンサーの特徴が生かせないことになる。また、特に電気 化学デバイスを用いる方法は、感度的がやや劣るという点が挙げられる。 光ファイバーを用いる方法は、紫外光の光源が必要であるため、システ ムの小型化が難しいという問題点がある。

1. 2. 3 ゲル化反応を伴う生化学反応とその計測

自然界には、多くの種類のゲルおよびゲル化反応が存在する。これら のゲル化反応の反応機構は複雑であり、一部が解明されているにすぎな い。これらのゲル化反応のいくつかは、実用的な分析へ応用されている。 その代表的なものは、カブトガニ血球抽出物のエンドトキシンによるゲ ル化反応である。この反応は、エンドトキシンの微量分析に利用されて いる [41-44]。カブトガニ血球抽出物は、多段階で増幅する酵素 反応系(カスケード機構)を含んでおり、エンドトキシンが、そのトリ ガーとなることが知られている(Fig.1-2(a))。エンドトキシンは、 パイロジェン(体内発熱物質)の一種であり、医療、医薬品の分野で重 要な検査項目となっている。

また、血液凝固反応系の凝固反応も各種の血液凝固因子の分析に応用 されている。この血液凝固反応もカスケード機構によって構成されてい ることが明らかにされている(Fig.1-2 (b))。この中で、フィブリ ノーゲンは、凝固したゲルの骨格となる成分であることが知られている。 酵素(トロンピン)を用いてた凝固反応によって、フィブリノーゲンを 定量する方法が報告されている[45-48]。このフィブリノーゲン の定量は、血液中の血栓の存在を調べる上できわめて有効な方法になっ ている。

これらの凝固反応の計測には、これまで手作業によって凝固を判定す る方法が広く行われていたが、特に、エンドトキシンに関しては、これ に変わる光学的な測定方法が開発されている[50]。この方法は、凝 固にともなって、試料の濁度が変化することを利用したものである。し かし、光学的な方法は、試料の汚れや塩析などの影響を受けるなど、直 接的なゲル化の測定でないため測定される変化量との対応性に不安があ り、さらに、測定には十分な量の試薬を必要とするという問題点がある。 したがって、今後、少量の試料で測定可能で、ゲル化反応を直接に計測 する方法の開発が、必要であると考えられる。

- 7 -

1.3 水晶振動子の化学計測への応用

- 6 -

1. 3. 1 水晶振動子の化学計測への応用の原理とガスセンサーへの 応用

水晶振動子は、水晶の圧電効果を利用したデバイスであり、きわめて 高精度な基準信号源として広く電子機器に利用されている。水晶振動子 の中で代表的なものが、ATカット水晶振動子である。ATカット水晶 振動子は、Fig. 1 – 3 に示すように、薄い水晶板の両側に電極が設置さ れている。このATカット水晶振動子は、温度センサー、圧力センサー、 ガスセンサーなどのセンサーとしても広く応用されている。この水晶振 動子のセンサーとしての応用の原理は、大きく分けると、水晶自身の物 理的特性の変化を利用するものと、水晶振動子表面への物質の吸着や接 触による共振周波数変化を利用するものとがある。化学物質の計測には、 主に、後者の原理が適用されている。

Sauerbreyは、水晶振動子表面の振動の式をもとに次のよう な式を導いている[51]。

 $\Delta F / F = -\Delta m / \rho d A \qquad (1-1)$

ここで、F:基本周波数、ΔF:周波数変化、Δm:重量変化、ρ:水 晶の密度、d:振動子の厚さ、A:振動子の面積である。

この式は、 Δ m (重量変化) が ρ d A (水晶の 重量) に対して十分小 さい場合に成り立つことが実験的に確かめられている。

水晶振動子ガスセンサーは、この原理を応用した代表的なセンサーで ある。このガスセンサーの原理は、水晶振動子表面に感応膜を被覆し、 この感応膜にガスが吸着することによって、水晶振動子の発振周波数が 変化することを利用したものである。Kingらは、水晶振動子表面を ガス吸着性の薄膜でコーティングすることによって、湿度の測定やキシ レンなどの炭化水素ガスの濃度の測定が可能であることを示した[5, 6]。ガスセンサーの開発は、近年、Guilbaultらによって精 力的に行われている。これまでに、種々の薄膜について、ガスセンサー としての特性が調べられている[7-14]。

最近では、このガスセンサーを匂い物質の計測へ利用することが、注 目さつつある。水晶振動子を用いた匂い物質の計測は、まだ十分な研究 が行われていない段階であり、今後の詳細な研究が期待されている。

 3.2 液体中における水晶振動子の挙動と電気化学計測への応用 従来、水晶振動子は、液体に接した状態では、機械的な抵抗が大きす ぎて、発振できないと考えられていた。ところが、実際には、液体に接 した状態でも発振が可能であることが、野村らによって示された[15]。 液体の種類によって、発振周波数が変化することが示され、液体クロマ トグラフィーの検出器としての応用も検討されている[16]。

この液体中での発振周波数について、Kanazawaらは、液体中 で横方向に弾性的に振動する平板のモデルから、次のような関係式を導 いている[18]。

 $\Delta F = -F^{3/2} (\eta \rho_{\perp} / \pi \mu \rho_{\alpha})^{1/2} (1-2)$ ここで、F:発振周波数、 ΔF :発振周波数変化、 η :液体の粘性、 μ :水晶の弾性、 ρ_{\perp} :液体の密度、 ρ_{α} :水晶の密度である。

このように、発振周波数変化ΔFは、 (ρη)^{1/2} に比例して変化す る。この関係は、実験的に得られた結果とよく一致することも報告され ている。

このように、水溶液中での発振が可能であることから、微量のイオン の検出を行った報告もある。この方法は、水溶液中の金属イオンや陰イ オンを水晶振動子上に析出させ、これにともなう水晶振動子の発振周波

- 8 -

数変化を測定するものである。[21-24]。

さらに、水晶振動子は、電解重合膜の形成や電極表面の吸着反応につ いての研究に応用されている。この方法は、水晶振動子の二つの電極の うち一つを電気化学測定系における作用極として使用し、反応と同時に 発振周波数変化を測定するものである。[26-29]。

液体中における水晶振動子は、センサーとして応用される可能性が数 多く考えられ、今後の研究が期待されている。

一方、高周波領域の液体の粘弾性を測る方法としてねじれ振動子が用 いられてきた[52,53]。しかし、このねじれ振動子は、円筒状で 側面に四つの電極を配置するという形状であり、液体中での使用には難 がある(Fig.1-4)。したがって、ねじれ振動子のセンサー素子とし ての利用は、ほとんど進んでいないのが現状である。これに対して、水 晶振動子は、ATカット型の場合、板状であるため扱い易く、安価に入 手可能であることから、今後の応用展開が期待されている。

1.3.3 水晶振動子の免疫測定への応用

水晶振動子の免疫測定における最初の報告は、Schmolkaらに よる抗BSA (Bovine Serum Albumin)抗体測定用センサーに関するもの と考えられる[30]。このセンサーは、抗原(この場合、BSA)を 水晶振動子表面に固定化して、その抗原に特異性のある抗体の濃度を測 定するものである。

この他にも、水晶振動子を用いた免疫測定に関する報告がなされてい るが、いずれも発振周波数の測定は、水晶振動子を液体から出して、空 気中で行なわれている。このため測定精度が十分でないという問題があ った。液体中で水晶振動子を発振させながら免疫測定を行った研究も最 近発表されている。この中で、IgG濃度の測定が、検討されているが、 十分な感度は、得られていない[32,33]。

SAW(Surface Acoustic Wave)デバイスは、水晶振動子と動作原理は 異なるが、同じ圧電体を用いたデバイスであり、センサーとして類似し た特性を持っている。SAWデバイスには、発振用と受信用の2組の対 になったくし型電極が、水晶板上に配置されている(Fig.1-5)。S AWデバイスでは、この発信用の電極から発生した音波が、水晶板上を 伝わり、受信用電極で検出される。この時、SAWデバイスは、特定の 周波数だけを通過させる特性を持っている。このSAWデバイスを用い た免疫センサーについても既に報告されている。この中で、抗ヒトIg Gを固定化したSAWデバイスの発振回路が、0.0225-2.25m g・m1⁻¹のヒトIgG濃度の間で濃度に依存して変化することが示さた。 [31,34]。

このような抗体を圧電素子表面に固定化した免疫センサーは、結合し た抗原を解離させることによって、繰り返し使用が可能である。また、 容易に測定を自動化することが可能である。こうした点から、今後の感 度の向上や新たな利用法が期待されている。

1. 4 本研究の目的および意義

本研究の目的は、理論的な考察を踏まえ、水晶振動子をトランスデュ ーサーとするバイオセンサーおよび化学計測システムを開発することに ある。各章における目的および意義は、以下の通りである。

(1)第二章では、水晶振動子をバイオセンサーとして使用する上で必要な基礎的検討を行う。さらに、これを踏まえ、抗体を水晶振動子表面に固定化した微生物センサーの開発を行う。水晶振動子を用いた微生物

センサーは、これまでに例がなく、徴生物の濃度測定と同定が同時にで きるセンサーの開発は、意義のあることと考えられる。

(2)第三章では、水晶振動子パイオセンサーの液体中での連続測定へ の応用を目指し、免疫測定用フローシステムの開発を行う。この測定シ ステムを用い、プロテインAを表面に固定化した水晶振動子によって、 IgG濃度の測定を行うとともに、IgGサブクラスの成分の分析への 適用を行う。さらに、ポリエチレン粒子を用いた感度の向上法について、 <u>E.coli</u>の測定を通して検討を行う。水晶振動子パイオセンサーを用 いる成分分析法や感度の向上法については、これまで報告がなく、水晶 振動子センサーの発展性を明らかにする上で、以上の点についての検討 は、意義のあることと考えられる。

(3)第四章では、水晶振動子の電気的等価回路定数の物理的意味について考察するとともに、水晶振動子の水中での挙動について、この等価回路定数をもとに検討する。さらに、水晶振動子バイオセンサーの測定結果についても考察する。一方、新たに共振抵抗の粘性に対する関係式を導き、実験的な検証を行う。この章における理論的な検討は、水晶振動子のセンサーとしての応用性を広げる上で重要である。ここで得られる粘度測定の指標は、第五章以降の水晶振動子の化学計測へ応用される。 (4)第五章では、水晶振動子の粘度測定デバイスとしての機能を利用し、パイロジェンの一種であるエンドトキシンの濃度を測定するシステムの開発を行う。この測定システムは、カブトガニ血球抽出物のエンドトキシンによるゲル化反応を粘性変化として測定するものである。共振抵抗および共振周波数の測定結果をもとに、エンドトキシン濃度を求めるために最も適したゲル化時間の算出法について検討する。この中で特に、一定のしきい値に達するまでの時間または粘度変化の最大変化速度 を指標とすることにより、測定時間の短縮が可能であることを示す。本 法は、従来法の欠点を克服するものであり、実用手化につながる技術と して、特に、意義のあるものと考えられる。

(5)第六章では、反応速度の速いゲル化反応を計測することのできる システムを構築し、血液凝固因子の1つであるフィブリノーゲン濃度の 測定に適用する。温度変化に起因する周波数変動をアルミナ粒子の添加 によって改善できることを示し、本システムが、汎用性の高い凝固反応 の測定装置であることを明らかにする。フィブリノーゲンの分析は、臨 床検査において重要であり、本システムの臨床検査への応用の可能性を 示すことは、意義のあることと考えられる。

(6)第七章では、水晶振動子を用いた匂い物質の測定について検討を 行う。匂い物質の検出には、感応膜として各種の天然脂質を使用する。 匂い物質の識別について、嗅覚で識別される傾向と測定結果との関連性 から考察を加える。匂い物質の計測については、まだ、十分な研究が行 われていないため、ここで、匂い物質の計測について検討を行うことは 意義のあることと考えられる。

以上のように、水晶振動子を用いたバイオセンサーおよび化学計測シ ステムの開発を行うことは、分析化学分野の発展および食品、医療、環 境計測などの分野の進展に大きく貢献するものと考えられる。

1. 5 用語について

本論文において、発振周波数とは、発振回路を用いて測定された周波 数を意味し、共振周波数とは、インピーダンスアナライザーを用いて測 定された周波数を意味する。

(a) Membrane potential type

Fig. 1-1(1) Typical immunosensor.

(b) Competitive reaction type (c) Sandwich method type

Fig. 1-1(2) Typical immunosensor.

(d) Optical fiber type

Fig. 1-1(3) Typical immunosensor.

Fig. 1-2(1) Coagulating reaction based on cascade reaction. (a) Coagulating system of *Limulus* amebocyte lysate

Fibrin (cross linked)

Fig. 1-2 (2) Coagulating reaction based on cascade reaction: (b) Coagulation system of blood

Fig. 1-3 Schematic diagram of AT-cut quartz crystal.

Fig. 1-4 Schematic diagram of torsionally vibrating orystal.

Fig. 1-5 Schematic diagram of surface acoustic wave (SAW) device.

第二章 水晶振動子を用いるバイオセンサーとその病原性微生物の計測 への応用

2.1 緒言

既に、第一章でも述べたように、従来の微生物計測法には、顕微鏡に よる直接観察法、免疫的方法、化学的方法、さらに、電気化学的方法が ある。この中で、抗体の特異性を利用した免疫的な方法が、最も確実に 微生物を識別する方法である。一方、水晶振動子によって、微量な重量 変化が可能である。このことから、本章では、水晶振動子を検出素子と し、免疫反応を利用する、新しいバイオセンサーの開発についての検討 を行う。

本センサーの原理を簡単に述べると、次のようになる。水晶振動子表 面に微生物に対する抗体を固定化し、微生物表面の抗原と抗原抗体反応 を起こさせる。これによって、微生物が、水晶振動子表面に結合し、重 量変化を生じる。この重量変化を水晶振動子の発振周波数の変化として の測定するのである。

本章では、抗体として、抗<u>Candida</u>抗体を用い、病原菌の一種 である<u>C</u>.<u>albicans</u>の計測について検討する。本システムでは、 抗原抗体反応を利用するため高い選択性が期待される。

水晶振動子をパイオセンサーとして使用する上で重要なことは、水晶 振動子の安定性である。すなわち、測定の際に、測定対象物以外のもの に起因する発振周波数の変動を抑えることが重要である。このためには、 使用する水晶振動子の選択および発振回路の検討が必要である。また、 水晶振動子表面への抗体の固定化法の検討も、免疫センサーの性能を向 上させる上できわめて重要である。水晶振動子の電極は、直接固定化担 体として使用されるため、電極の材質について検討することも必要であ る。金属電極上への固定化に関しては、既に、白金電極上に固定化を行 った報告があるので、本章では、この方法を参考に検討を進める。この 報告では、白金麦面を陽極酸化したのち、アミノシラン処理によって、 酵素の固定化を行っている[54]。また、ESCA (Electron Spect roscopy for Chemical Analysis)を用いて電極表面の酸化物層の分析を 行った研究も報告されている[55,56]。このような表面分析法は、 電極の材質や処理法を検討する上で、有効な手段である。本章において も、AES (オージェ電子分光法)を用いて、電極表面の状態について 検討を行う。

本章では、以上の項目について、水晶振動子バイオセンサーの開発の ための基礎的検討を行い、続いて、水晶振動子を用いる微生物計測につ いての検討を行う。

2.2 実験方法

2.2.1 実験装置および試薬

本実験には、ATカット,基本周波数9MHzの水晶振動子を使用した。この水晶振動子の水晶板の大きさは、8mm×8mm×0.18mmである。 固定化担体として用いる電極の材質としては、次の4種類について検討した。

①真空蒸着によって形成されたAg電極の上にPd-Niメッキしたもの、

② P d - N i メッキされた電極をさらに0.5 M 水酸化ナトリウム中で、
 4 m A · c m⁻²の定電流で陽極酸化したもの、

③Ag電極上にさらにSiO₂をスッパタリングしたもの、
 ④Agペースト.

発振周波数の測定には、TTL-ICを用いた発振回路と周波数カウンター(Iwatsu、SC-7201)を使用した。発振回路の回路図をFig.2-1に示す。

抗<u>Candida</u>抗体としては、は、Iatoron Labora tories (Tokyo)で販売されている<u>Candida</u> che ck No. 4を使用した。<u>Candida</u> <u>albicans</u>の培養に は、グルコース2%、ペプトン2%、イーストエキス1%を含む、pH 7の培地を用いた。培養条件は、30℃、48時間とした。

Saccharomyces <u>cerevisiae</u>についても同じ条件 で培養を行った。微生物の前処理には、遠心分離器を用い、微生物をp H7、0.05Mのりん酸緩衝液で洗浄した。この操作を2回繰り返し、 リン酸緩衝液に懸濁した微生物を測定に使用した。

水晶振動子電極表面の分析には、オージェ電子分光法(AES)を用 いた。AES装置には、ALVAC HI、Super Sam 59 0Aを用い、加速電圧および電流をそれぞれ、3.0kVと1.4Aとし て測定を行った。エッチングガスには、アルゴンを用い、10mm²あた り、2kV、5mAの条件でスパアタリングし、エッチングを行った。

2.2.2 水晶振動子表面への抗体の固定化

水晶振動子表面の抗体の固定化には、 γ – aminopropyltriethoxysila ne(γ – A P T E S) とグルタルアルデヒド(G A)を使用した。処理 の手順は次のようになる。水晶振動子の電極を γ – A P T E S の 2 % ア セトン溶液中に浸し、1時間処理した。これによって、電極表面にアミ ノ基が生成される。アセトンによる洗浄後、乾燥させ、この際に、発振 周波数の測定を行った。このときの発振周波数をFiとした。さらに、グ ルタルアルデヒド(GA)の5%水溶液中で3時間処理を行い、続いて、 pH7のりん酸緩衝液で十分に洗浄した。この処理によって、表面にア ルデヒド基が生成し、このアルデヒド基と抗体の持つアミノ基との結合 によって、抗体の固定化が可能になった。抗<u>Candida</u>抗体(10 mg protein・cm⁻³)の固定化条件を室温で30分間として、 固定化を行った。未反応のアルデヒド基を処理するため、0.5Mグリシ ン水溶液中で、30分間処理を行った。さらに、非特異的な吸着物を除 去するため、0.5M塩化ナトリウムで洗浄を行った。

2.2.3 微生物計測への適用

まず、表面に抗体を固定化した水晶振動子をスターラーで攪拌されて いる微生物懸濁液に浸した。一定時間放置し、固定化された抗体と微生 物表面の抗原との間で、抗原抗体反応を行わせた。反応後、水晶振動子 を0.5 M塩化ナトリウムで洗浄し、さらに、水洗した。空気中で乾燥し、 再び発振周波数を測定した。このときの発振周波数をF₂とした。発振周 波数変化(ΔF=F₁-F₂)を測定データとして用いた。

比較のため、微生物濃度を血球計数盤によって計測した。電極上に結合した微生物は、蛍光色素である4,6-diamino-2-phenylindole dihydro chlorideによって核染色を行い[57]、蛍光顕微鏡で観察した。

- 17 -

2.3 結果および考察

2.3.1 水晶振動子の選択および発振回路の検討

水晶振動子は、水晶の結晶面に対して、ある角度でカットした水晶片 から製造される。水晶片は、適切な形状に加工され、電極が付けられ、 水晶振動子として完成する。一般に使用されている水晶振動子の中には、 厚み滑り振動を行うATカット水晶振動子や音叉振動を行う音叉形水晶 振動子、さらに、輪郭滑り水晶振動子、GTカット水晶振動子など、多 くの種類の振動子がある。このうちガスセンサーとして、一般に用いら れているものが、ATカット水晶振動子である。ATカット水晶振動子 は、温度変化による発振周波数の変化が少ないこと、板状で扱いやすく、 安価に入手できるという特長を持っている。本研究においてもこの点か ら、ATカット水晶振動子を使用することにした。

水晶振動子の感度については、既に示した Saue breyの式(式 1-1)からある程度の計算が可能である。すなわち、基本周波数 9 M Hzの水晶振動子は、1 ngの重量変化に対して、約1 Hzの周波数変 化を生ずることになる。式1-1からわかるように、振動子の基本周波 数が大きければ、重量変化に対する周波数変化も大きくなる。したがっ て、基本周波数が大きい方が、検出感度は向上する。ただし、ATカッ ト水晶振動子の共振周波数は、振動子の厚さによって決定される。この ため振動子の厚さが薄くなると、共振周波数は増加するが、機械的な強 度は低下する。

すなわち、水晶振動子をセンサーとして使用する場合、水晶振動子の 基本周波数をなるべく高くする方が望ましいが、逆に、水晶振動子の機 械的な強度は、低下してしまうという問題がある。さらに、水晶振動子 と今回使用した発振回路とのマッチングについての実験の結果、9 MH zの水晶振動子が、最も安定に発振することが確認された。これらの知 見から総合的にみて、9 MH z 程度の基本周波数を持つ振動子が、最も 適していると判断した。

発振回路についても、各種の発振回路を作製し、検討を行った。第3 章以降で、水中において発振を行うことを考慮すると、使用する回路は、 水中で安定に発振できる必要がある。本章の実験では、発振回路として、 トランジスタを用いた回路、CMOS-ICを用いた回路、TTL-I Cを用いた回路、それぞれ数種類について検討を行った。この結果、Fi g.2-1に示すTTL SN7400を用いた回路[24]が最適であ ることが明らかになった。

3.2 抗体固定化法の検討

本実験では、水晶振動子の電極として、Ag電極上にPd-Niメッ キしたもの、さらにPd-Ni電極を陽極酸化したもの、Ag電極上に SiО₂スッパタリングを行ったもの、Agペーストの4種類の電極につ いて検討を行った。通常、水晶振動子の電極に使用されているAg電極 については、徐々に酸化が進んでしまうという問題点があるため、今回 は使用しなかった。4種類の電極について、 2・10°cells・c m⁻³の<u>C.albicans</u>懸濁液中に浸漬し、反応を行わせた後、電極 表面に結合した微生物の密度を測定した。その結果をTable2-1に示す。 Table2-1から、微生物の結合量は、Pd-Niメッキ後、陽極酸化を 行った電極で、最も多いことが示された。この陽極酸化の効果を確認す るため、Pd-Niメッキした電極およびPd-Ni電極をさらに陽極 酸化した電極について、AESによる深さ方向の元素分析を行った。こ の結果が、Fig.2-2(a)、(b)である。Fig.2-2において、縦軸 は、それぞれの元素のスペクトルに対応する時間あたりのエネルギー強 度を示しており、元素分布の指標となる。横軸は、スッパッタ時間であ り、試料はスッパッタによって徐々に削られて行くことから、深さ方向 の状態を表している。Fig. 2 - 2 から、陽極酸化した電極表面で酸素元 素の量が増加していることが示された。また、深さ方向の酸素の分布も 陽極酸化によって、拡大していることが示された。これは、陽極酸化に よって、表面の荒さが増したためと考えることができる。さらに、陽極 酸化した電極の表面で、Ag濃度の増加が認められた。これは、下層の Agが拡散したためと考えられる。また、このPd-Ni電極のサイク リックポルタモグラムを取ったところ、顕著な酸化ピークが観察された。 以上の結果を総合して考えると、陽極酸化によって、PdO、NiO2、 Ag2O、AgO等の酸化物が形成されるとともに、表面の粗さが増した ものと考えられる。この結果、γ-APTESの結合量が増し、これに 伴い、抗体結合量が増加し、結果的に、微生物結合密度の増加につなが ったものと考えられる。

Table 2 - 1 では、S i O 2をスッパタリングした電極も比較的高い密度で微生物が結合することが示された。しかし、S 0 2をつけた水晶振動子では、溶液中で発振させた場合、発振周波数が不安定になりやすいという問題が認められた。このため、以降の実験では、P d - N i 電極を陽極酸化したものを使用することにした。

 3.3 <u>C.albicans</u>濃度測定における反応時間の検討 Fig.2-3は、<u>C.albicans</u>5·10°cells·cm⁻³の懸 濁液について、抗原抗体反応の時間と発振周波数変化(ΔF)の関係を 示したものである。この発振周波数変化は、グルタルアルデヒドおよび 抗体固定化に伴う周波数変化を含んでいる。反応時間ゼロ(反応を行わ なかった場合)における発振周波数変化は、約150Hzであった。Fi g.2-3から、△Fの値は、反応時間の増加に従って増加していること が確認された。反応時間が約30分ほどで、△Fの増加は鈍くなり、十 分な変化が得られることから、以降の実験では、反応時間を30分に定 めた。

2. 3. 4 <u>C.albicans</u>の濃度測定

Fig. 2 - 4 は、C.albicansの濃度に対する発振周波数変化を 示したものである。Fig. 2 - 4 におけるC.albicansの濃度範囲 は、 $1 \cdot 10^{s} - 5 \cdot 10^{s}$ cells · cm^{-s} である。Fig. 2 - 4 より、 発振周波数が微生物濃度に依存して変化することが確認された。Fig. 2 - 4 において、抗体の固定化に起因する発振周波数変化を破線で示した。 また、C.albicansと同じ酵母であるS.cerevisiaeについて実験を行った結果、微生物濃度に依存した周波数変化は、認め られなかった。わずかに認められる周波数変化は、非特異的な吸着によ るものと考えられる。

さらに、水晶振動子表面に結合した微生物をDAPIによって、核染 色し、蛍光顕微鏡によって、水晶振動子表面に結合した微生物密度の測 定を行った。この微生物密度と使用した懸濁液の微生物濃度との関係を Fig. 2 – 5 に示す。Fig. 2 – 5 から、この微生物密度は、懸濁液濃度に 対し、ほぼ直線的な関係を持つことが示された。この結果から、懸濁液 の微生物濃度、表面に結合した微生物密度および発振周波数変化の間の 対応関係を確認できた。

2.4 結言

本章では、水晶振動子バイオセンサー開発のための基礎的知見を得た。

さらに、水晶振動子の表面に抗体を固定化し、微生物濃度の計測に適用 した。すなわち、微生物懸濁液中で、抗原抗体反応を行わせ、水晶振動 子表面に微生物を結合させ、発振周波数変化を測定することによって、 特定の微生物濃度の検出と濃度の測定が、可能であることを示した。本 章で得られた知見を要約すると以下のようになる。

(1)抗体の固定化を行う水晶振動子の電極として、Pd-Ni電極に 陽極酸化処理したものが、安定性および抗体結合能において優れている ことが示された。この陽極酸化処理の結果は、AES分析によって、表 面の粗さの増加と酸化物の増加に起因していることが示された。

(2) 微生物測定のための反応時間は、約30分が適当であることが示 された。

(3)抗<u>Candida</u>抗体を固定化した水晶振動子は、10^e-5・1 0^scells・cm⁻³の<u>C</u>.<u>albicans</u>を測定可能であり、<u>S</u>. <u>cerevisiae</u>には応答しない、特異性の優れたセンサーである ことが示された。

(4) 懸濁液の微生物濃度、水晶振動子表面に結合した微生物密度およ び発振周波数の変化の間には、良好な対応関係があることが示された。

Fig. 2-1 Oscillating circuit.

Fig. 2-2 (a) Depth profile obtained by Auger Electron Spectroscopy (AES) for a non-treated Pd-Ni electrode: Sputtering time corresponds to the depth. Ar was used for sputtering gas and applied power was 2kV, 5mA/10mm². N is number of auger electron and E is applied energy.

Fig. 2-2 (b) Depth profile obtained by Auger Electron Spectroscopy (AES) for an anodically oxidized Pd-Ni electrode: Sputtering time corresponds to the depth. Ar was used for sputtering gas and applied power was 2kV, 5mA/10mm². N is number of auger electron and E is applied energy.

Fig. 2-4 Correlation between cell concentration and resonant frequency shift (30-min reaction time) for *C. albicans* (O) and *S. cerevisiae* (\Diamond). Dashed line indicates the contribution of frequency shift for immobilized antibody.

Table 2-1 Effect of electrode surface and pretreatment on the number of binding cell for a *C. albicans* of $2 \cdot 10^8$ cells cm⁻³ using a 30 min reaction time.

Surface	Number of binding cells (cm ⁻²)
Pd-Ni	1.3 • 107
Pd-Ni with Anodic oxidation	3.7 • 107
Ag paste	7. 2 · 10 *
SiO ₂ sputtered	1.5 • 107

第三章 水晶振動子を用いるバイオセンサーによる生体物質の測定

3.1 緒言

第一章でも触れたように、現在行われている免疫分析法には、ラジオ イムノアッセイ、フルオロイムノアッセイ、エンザイムイムノアッセイ、 ラテックスイムノアッセイ等がある。これらの方法には、自動化が難し いという問題点がり、さらに、抗体等の試薬を使い捨てにしてしまうこ とから、経済性にも問題がある。このようなことから、これらの測定法 に対して、操作が簡便で、自動化および再使用が可能である、という特 徴を持つ免疫センサーの開発が強く望まれている。

一方、第二章において、水晶振動子の種類の選択、電極の材質および 抗体の固定化のための電極処理の方法など、水晶振動子バイオセンサー を製作するための基本的な項目について明らかにした。これをもとに、 本章では、繰り返し使用が可能で、自動化可能なフローシステムの実現 に重点を置いてを検討を進める。また、既に報告されている圧電素子を 用いた免疫測定法では、十分な感度が得られていないが、本章では、実 験システムや方法の改善を行い、より高感度な免疫センサーの開発を行 う。

本章で、実際に適用する系には、 I g G を特異的に結合するタンパク 質であるプロテインAを使用する。プロテインAは、 微生物の持つ膜タ ンパクであり、 I g G との結合、 解離を可逆的に行うことができる。こ のため、プロテインAは、 I g G 分離用アフィニティークロマトグラフ ィーへの応用にも用いられており、 再使用可能なセンサーの実現に適し た生体素子といえる [58-63]。

操作の簡便化と自動化を実現するため、コンピューターによってコン

- 23 -

トロール可能なフローシステムを構築する。このフローシステムとプロ テインAを表面に固定化した水晶振動子を用いて、IgG濃度の測定に ついて検討する。さらに、この測定システムを用いて、IgGサブクラ スの成分分析への応用についての検討も行う。

この他に、フローシステムを利用した、<u>E.coli</u>の濃度測定につい て検討を行う。<u>E.coli</u>の濃度の測定を通して、抗体を固定化したポ リスチレン粒子を用い、測定の高感度化について検討を行う。この方法 は、ポリスチレン粒子を水晶振動子表面の<u>E.coli</u>に結合させて、重 量を増加させ、周波数を増幅させるものである。

3.2 実験方法

3.2.1 実験装置および試薬

本実験で使用した水晶振動子は、第二章と同じATカット、9MH 2 の水晶振動子である。第二章と同様に、蒸着によって形成した銀電極上 にPd-Niメッキを行い、0.5M NaOH中で、4mA・cm⁻²の 条件で陽極酸化処理を行った。

本実験に用いた試薬のうち、プロテインA(アフィニティ精製品)は、 UCB-Bioproducts, S.A.より入手し、ヒトIgGおよ びヒトγーグロブリンは、Miles Scientificより入手 した。また、マウス-γーグロブリンとヒトアルブミンは、Coope r Biomedical, Inc.より入手した。<u>E.coli</u>には、 ATCC11775を使用し、ブイヨン寒天プレート上で25℃, 16 時間培養後に使用した。<u>E.coli</u>懸濁液の濃度は、濁度計によって求 めた。抗E.coli抗体は、Diagnostics Pasteur より入手した。0.5 μmおよび1 μmのポリスチレン粒子として、コパ スフィアーズMX粒子(Covalent Technology Co rp.製)を使用した。抗体とポリスチレン粒子を1時間混合して、ポリ スチレン粒子表面に抗体を固定化した。抗体固定化後、ポリスチレン粒 子をリン酸緩衝液で遠心分離器を用いて洗浄した。

水晶振動子へのプロテインAの固定化法は、第二章の方法と同様である。すなわち、γ-APTES 5%アセトン溶液中で、25℃で1時間処理を行い、アセトンによる洗浄後、5%グルタルアルデヒド水溶液中で、3時間処理を行った。次に、プロテインA溶液(1mg・cm^{-®}, pH 7、0.05Mリン酸緩衝液)中に浸漬し、水晶振動子表面のアルデヒド基とプロテインAのアミノ基とを反応させて、固定化を行った。固定化反応の条件は、25℃、1時間である。さらに、0.1Mグリシン水溶液中で、30分間処理し、未反応のアルデヒド基をブロックした。抗<u>E.coli</u>抗体の固定化も同様の方法で行った。

一方、比較のため、プロテインAの固定化法として、トレシルクロラ イドを使用する方法について検討した。この方法は、1.2%ピリジン、 5%トレシルクロライドのアセトン溶液中で、30分処理を行った後、 リン酸緩衝液で洗浄し、抗体溶液に浸漬(1時間)して、固定化を行う ものである[64]。

実験装置の概要をFig.3-1に示す。このフローシステムは、水晶振動子、アクリル樹脂製のフローセル、ペリスタポンプおよび電磁弁より 構成されている。水晶振動子は、フローセルの中に固定されている。実 験装置は、この他、恒温槽、発振回路、周波数カウンターおよびデータ 収集・システム制御用のコンピューターから構成されている。発振回路お よび周波数カウンターについては、第二章で使用したものをそのまま使 用した。コンピューターは、PC-9801E(日本電気製)を使用した。ペリスタポンプは、アトー AC-2120、電磁弁は、The L ee Co.の121618Hを使用した。コンピューターによって、ペ リスタポンプと電磁弁をコントロールして、半自動的に実験が行えるよ うにした。

恒温槽中に保持されているフローセルには、発振周波数測定中は、一 定温度に保たれた蒸留水が流れるようにした。フローセルには、pH2. 4,0.1 Mグリシン塩酸緩衝液、0.5 M NaClまたは試料溶液が、 必要に応じて、導入されるようになっている。

3.2.2 水晶振動子の液体中での挙動の検討

蒸留水、エタノールまたはNaC1水溶液中に、水晶振動子を浸漬し て発振周波数の変化を測定した。

3.2.3 IgG濃度の測定

はじめに、グリシン塩酸緩衝液をフローセル流し、プロテインAを固 定化した水晶振動子の表面の吸着物を除去した。次に、フローセルの中 を蒸留水で置換し、30℃の蒸留水を0.7ml・min⁻¹で導入しなが ら、発振周波数を測定した。発振周波数の変化がなくなるまで測定を行 ない、このときの周波数をF1とした。次に、フローセルから蒸留水を排 出した後、セルにヒトIgG試料溶液を移送した。一定時間、セル中で パブリングによる攪拌を行いながら反応を行わせた。ここで、ヒトIg G試料溶液は、ヒトIgGをpH7.0,0.05Mリン酸緩衝液で希釈 したものである。サンプル溶液を排出し、0.5M NaC1水溶液によ って洗浄し、非特異吸着物を除去した。この後、再び、フローセルの中 を30℃の蒸留水で置換し、同様に発振周波数を測定した。このときの 周波数をF2とした。このF1とF2から、発振周波数変化△F=F1-F 2を求めた。

プロテインAと特異的に結合したヒトIgGは、pH2.4、0.1M グリシン塩酸緩衝液によって、溶出可能である。溶出後、その水晶振動 子を再度測定に使用した。以上の一連の操作手順をFig.3-2にまとめ た。

3. 2. 4 IgGサブクラスの分析

IgGサブクラスの分析においても、まず、前節と同様に、反応前に 発振周波数F₁を測定した。次に、マウスγーグロブリン(pH8.0, 0.2 Mリン酸緩衝液に溶解)または、ヒトγーグロブリン(pH7.0, 0.05 Mリン酸緩衝液に溶解)試料液をセル中に移送し、反応を行わせ た。この後、前節で述べた方法と同様に、セル中を蒸留水で置換してか ら、発振周波数を測定し、F₂とした。次に、pH7.0からpH2.5ま で、pHを0.5づつ変化させた0.1 Mリン酸ークエン酸緩衝液を用い て、表面のIgGの溶出を行った。各溶出後に、フローセル中を蒸留水 で置換して、発振周波数(F_{*}, F_{*+1}・・)の測定を行い、この溶出に 伴う発振周波数変化(ΔF_{*}h=F_{*}-F_{*+1})を求めた。この一連の操作 手順をFig.3-3にまとめた。

3.2.5 <u>E.coli</u>濃度の測定

<u>E.coli</u>濃度の測定については、既に述べたIgG濃度の測定と同じ手順で行った。さらに、<u>E.coli</u>濃度の測定に引き続き、抗体を固定化したポリスチレン粒子(5・10°number・cm⁻³)をセル中に

移送し、反応を行わせた。この後、再びフローセル中を蒸留水で置換して、発振周波数(F2・)の測定を行った。

3.3 結果および考察

3.3.1 各種液体中での発振周波数の変化

水晶振動子の液体中での使用にあたっては、水晶振動子の基本的な特 性についての検討を行い、それに基づいて実験条件を決定する必要があ ると考えられる。このような基礎的知見として、これまでに、水晶振動 子を液体中に浸漬した時の発振周波数変化について、いくつかの報告が なされている。

まず、NomuraとMinemuraは、液体の密度と導電率によって、水晶振動子の発振周波数が変化するという経験式を示した[16]。 さらに、NomuraとOkuharaは、液体の粘度と密度に依存し て発振周波数が変化するという経験式を示した[18]。

第一章で述べたように、KanazawaとGordonは、液体中 での平板の振動のモデルから、発振周波数変化が、液体の粘度と密度の 積の1/2乗に比例するという式を導いた[19]。

以上のことから、水晶振動子の発振周波数変化には、液体の粘度、密 度、導電率が影響していると考えられる。また、これらの因子は、温度 によって変化することから温度の影響も考慮する必要がある。さらに、 導電率などの電気的な因子の影響は、使用する発振回路によって、異な ると考えられる。したがって、すべてのケースに対応できる発振周波数 変化の式を得るのは困難であると考えられる。そこで、今回使用した実 験装置に関して、実験を行い、その結果に基づいて測定条件を検討する ことにした。

Fig. 3 - 4は、水晶振動子を空気中、蒸留水中(1・10°Ω・cm⁻¹) エタノール中に固定し、発振を開始させたときの発振周波数の変化を示 したものである。空気中における発振周波数を基準にした周波数変化は、 蒸留水中とエタノール中で、それぞれ、11,235と13,848Hz であった。発振周波数変化が、液体の粘性と密度の積の1/2乗に比例 するというKanazawaらの式に従うと仮定すると、水とエタノー ルの発振周波数変化の比は、30℃において、1:1.005となるはず である。これに対して、測定結果は、1.49:1であり、液体の種類に よって異なる結果が得られることが明かとなった。さらに、Fig.3-4 から、周波数の応答曲線は、エタノール中では、すぐに安定するのに対 して、蒸留水中では、安定するまでに3,4分を要することが明かとな った。この応答曲線の違いと発振周波数変化の比の違いの間に何らかの 関連性があると考えられる。

次に、導電率の影響を調べるために、蒸留水、0.5 mM NaC1、 2.5 mM NaC1を用いて測定を行った。その結果がFig.3-5 であ る。Fig.3-5から、塩濃度が濃くなるほど、周波数変化は、大きくな ることが示された。また、塩濃度が高くなるほど、周波数応答が安定す るのに長い時間を要することも示された。蒸留水とNaC1溶液の粘度 および密度の変化は、小さいことから、この周波数変化の差は、粘性や 密度の違いによるものでないことは明かであり、導電率(イオンの存在) の影響が大きいことが確認された。Fig.3-5で得られた結果は、Fig. 3-4の水とエタノールの結果と類似しており、同じメカニズムが関与 している可能性も考えられる。

蒸留水中で、21.5℃から40℃まで温度を変化させて、発振周波数

- 29 -

の変化を調べた結果が、Fig.3 - 6 である。この実験から水晶振動子の 発振周波数が、蒸留水中で、30Hz/℃の温度依存性を示すことがわ かった。この場合、温度変化にともなう液体の粘性変化によって、発振 周波数が、変化するものと推察された。発振周波数の安定に要する時間 は、温度によって大きな影響は受けなかった。

Fig. 3 - 4 と Fig. 3 - 5 から、水やイオンが、特異な影響を与えることが示唆されたが、これに関連する実験報告もある。 Thompson らは、表面に親水的または疎水的な処理を行った水晶振動子を用い、水中における発振周波数の変化について検討を行った[32,33]。この結果、親水処理を行った水晶振動子の発振周波数は、疎水処理を行ったものに対して、安定になるまでに長時間を要することが示された。これについて、彼らは、振動子表面と液体界面の電気的な状態の定常化に時間を要するのではないかと考察している。

以上のように、エタノールよりも蒸留水が、水よりも塩溶液が、大き な周波数変化をもたらし、周波数が安定になるまでに長い時間を必要す ることが示された。この原因としては、水晶振動子と液体の界面におけ る電気的な定常化(電気二重層の形成など)または液体の構造の定常化 に一定時間を必要することによるのではないかと推察される。このよう なことから、水晶振動子にタンパク質が結合した場合、親水性・疎水性の 変化によって、発振周波数変化になんらかの影響を与えることも考えら れる。

最後に、片面浸漬タイプと両面浸漬タイプの選択について考察する。 Fig. 3-5の実験の際に、10mM NaClについても検討を行なっ たが、この場合には、水晶振動子を発振させることはできなかった。こ の理由としては、NaCl溶液の電導率が高く、発振回路にとって、水 晶振動子に並列の抵抗が付加された状態と等しくなり、発振回路が正常 に動作できなくなったことが考えられる。この点で、水晶振動子の電極 の両面を液体に浸すことは、問題もある。ただし、電極両面に物質を結 合させることができるので、片面だけを浸漬する場合に較べ、2倍の応 答値を得られる。また、片面を絶縁する場合は、水晶振動子に機械的な ストレスを与え、発振周波数が、十分に安定しない場合がある。このよ うな点において、両面浸漬の方が、有利である。

以上のことから、塩濃度と温度の影響を避けることが測定の再現性に とって、重要であることが示された。実際に測定を行う場合は、繰り返 し測定時の周波数再現性がとくに重要である。この点から、蒸留水中で の測定→塩溶液に置換→蒸留水中での測定、という操作を繰り返し、再 現性の確認してから実験を行なった。この結果、セル中に一定温度の蒸 留水を流しながら、発振周波数の測定を行うことが最適と判断した。さ らに、フローラインに導電率計をセットし、塩が完全に除去されたこと をチェックできるようにした。

3.3.2 ヒトIgG濃度の測定

本システムを用いて、 I g G 濃度の 測定を行なったところ、 Fig. 3 -7 に示す発振周波数の応答が得られた。 Fig. 3 - 7 において、応答Aは、 I g G 反応前の周波数応答である。この周波数応答が、定常値に達した ときの周波数をF 1とした。応答Bが、1・10⁻⁴ mg・c m⁻³のヒト I g Gと30分反応させた後の周波数応答である。この場合の定常値に達し たときの周波数をF 2とした。応答Bの周波数は、応答Aの周波数に対し て減少していることから、固定化されたプロテインAに I g Gが結合す ることによって、周波数が変化することが確認された。応答C は、さら に、pH2.4、0.1Mグリシンー塩酸緩衝液によって、IgGの溶出 を行った後の周波数応答である。応答Cの周波数は、応答Bの周波数に 対して増加し、IgGの溶出によって、振動子表面の重量が減少するこ とが確認された。ただし、応答Cは、完全にもとの応答Aのレベルまで は、回復していない。これは、IgGが、完全に溶出しないで残ってい るためと考えられる。応答Dは、10^{-a}mg・cm^{-a}のヒトIgGと30 分反応させた後の周波数応答である。応答Dは、応答Bよりも周波数変 化が大きく、この水晶振動子バイオセンサーが、IgG濃度に依存した 周波数変化を起こすことが示された。さらに、本センサーが、再使用可 能であることも示された。詳細な実験は行なっていないが、本センサー は、比較的低濃度の試料であれば、10回程度の使用は可能と考えられ る。ただし、IgG濃度の高い試料では、溶出しきれないIgGが多く なるため、使用可能な回数は、減少すると考えられる。

IgG濃度の測定における反応時間と周波数変化の関係をFig.3-8 に示す。Fig.3-8では、IgG濃度が、それぞれ、10⁻²,10⁻³, 10⁻⁴mg⋅cm⁻³の試料について、測定した結果を示した。この結果か ら、いずれの濃度でも約30分程で、周波数変化が飽和に近いレベルに 達することが明かとなった。このことから、基本的な反応時間を30分 に設定することにした。

Fig. 3 - 9 に、ヒトΙgG濃度に対する周波数変化の関係を示した。 Fig. 3 - 9 におけるデータは、反応時間30分および15分について、 測定した結果である。反応時間30分の場合は、ヒトΙgG濃度10⁻³ mg・cm⁻³以上では、周波数変化は、飽和してしまうが、それ以下では、 IgG濃度に対して、良い直線関係を示した。この関係は、ΔF=0.4 0・1 og(ΔC)+3.4 であった。また反応時間15分では、周波 数変化は、IgG濃度10⁻⁴から10⁻²mg·cm⁻³の間で直線関係を示 し、ΔF=0.49·10g(ΔC)+3.2 の関係を示した。

ヒトアルブミンについても反応時間30分として、実験を行ったが、 10⁻²mg・cm⁻³以下では、ほとんど周波数変化は、起こらなかった。 したがって、本測定法において、非特異的吸着の影響は、ほとんどない ことが示された。

以上の結果から、本システムによって、10⁻⁶-10⁻²mg・cm⁻³の IgG濃度の測定が可能であると考えられる。周波数測定の誤差を考慮 しても、10⁻⁵mg・cm⁻³までは、十分に測定が可能と考えられる。

 3.3.3 プロテインA固定化量とヒトIgG結合量の検討 本実験では、プロテインAの固定化には、原則として、Y-APTE SとGAを用いたが、トレシルクロライドを用いる固定化法についても 検討を行った。トレシルクロライドを用いる方法では、10⁻²mg・cm
 ⁻³のIgGに対して、周波数変化として、191から165Hzの値が 得られた。この値は、Y-APTESとGAを用いる方法によって得ら れた値と同程度である。この結果については、2つの固定化法が、固定 化のための活性サイトをほぼ同定度形成しており、同程度のプロテイン Aが、固定化されたためと考えられる。

次に、固定化されたプロテインAの量と結合した IgGの量との関係 を調べるため、プロテインAの固定化に伴う周波数変化を測定した。G A処理の後、水晶振動子をセルに固定し、1mg・cm⁻³、1m1のプロ テインA水溶液をセル中に移送し、固定化反応前と1時間反応後の発振 周波数変化を測定した。この結果として、2回の測定で、180,20 0Hzの周波数変化を得た。このプロテインAに対して、IgGが結合 したときの周波数の変化は、Fig. 3 - 8 に示したように、最大で約25 0 H z 程度である。ここで、プロテインA 1分子に対して、IgG 2 分子が結合することが知られている[58]。また、分子量は、IgG が約15万、プロテインAが約4万であることから[59]、フリーの 反応の場合、重量比は、1:7.1と計算される。実験の結果は、両者と もほぼ同程度であり、発振周波数変化が、重量変化だけに依存すると仮 定すると、IgGの量は、プロテインAの量に比べて少ないことになる。 この理由としては、IgGどうしの立体的な障害や、プロテインA固定 化時にプロテインAの結合方向によって活性サイトがブロックされてい ることが考えられる。

また、Sauerbreyの式から、9MHz水晶振動子では、1n gが1Hzに相当することになる。例えば、10⁻⁵mg·cm⁻³,1m1 のIgGに含まれるIgGは、10ngであり、期待される最大の周波 数変化は、10Hzである。実際には、22Hzと33Hzという結果 が得られている。この理由としては、先に述べた、振動子と液体の界面 における液体の構造化や界面の電気的状態の変化が、周波数変化に影響 を与えているためと推察される。このような現象として、ガスセンサー において、発振周波数変化が、導入したガスの重量から期待される値よ りも大きくなったという報告もある[14]。この点については、第四 章において、さらに検討を行う。

3.3.4 IgGサブクラスの分析

本章の緒言においても述べたように、プロテインAは、IgGの各サ ブクラスの種類によって、IgGに対する親和性が異なるという性質を 持っている[60, 61]。本項では、この性質を利用して、IgG成 分の分析を行った結果について述べる。Fig. 3 - 1 0 (a) において、 Aで示した最初の点は、反応前の周波数であり、点Bは、0.1 mg・c m⁻³のマウスγ - グロブリン (pH8.0, 0.2 Mリン酸緩衝液) 3 0 分反応後の周波数である。この後の各点は、pH7.0からpH3.0ま で、pHを0.5 づつ変えたリン酸-クエン酸緩衝液によって、溶出させ た後の発振周波数を測定した結果である。この各点の差をpHに対して プロットしたものが、Fig. 3 - 1 0 (b) である。Fig. 3 - 1 0 (b) に示す溶出パターンは、既にアフィニティークロマトグラフィーによっ て、得られている結果とよく一致した[6 0]。 すなわち、それぞれ、 pH6.5, pH5.5 - 4.5, pH3.5 - 3.0におけるピークが、I g G₁, Ig G₂₆, Ig G₂₆ に相当するピークであると考えられる。

同様の実験をヒトγーグロブリンについて行った結果が、Fig. 3 - 1 1 である。このFig. 3 - 1 1 のパターンは、Fig. 3 - 1 0 のパターンと 明らかに異なっており、マウスγーグロブリンとヒトγーグロブリンの 成分の違いが明確に示されている。さらに、この結果は、既に報告され ている、IgG₂とIgG₄がpH4.7で溶出され、IgG₁とIgG₄ がpH4.3で溶出されるという結果によく対応している[61]。

このように、本センサーは、固定化した物質のアフィニティ特性を利 用した成分分析センサーとして使用が可能であることが示された。さら に、水晶振動子バイオセンサーは、固定化物質を代えることによって、 この他にも成分分析に応用が可能であると考えられる。

3.3.5 <u>E.coli</u>濃度の測定

Fig. 3 - 1 2 は、反応時間 3 0 分における <u>E. c o l i</u> 濃度と周波数変 化の関係を示したものである。フローシステムによる測定であるため、 第二章で示した<u>C.albicans</u> 濃度と周波数変化を示すFig.2-4 に比べ、反応前後の周波数変化を正確に測定することができ、検出限界 付近の周波数変化の有無が明確になった。Fig.3-12から、<u>E.col</u> iの測定範囲は、10^s-10^scells·cm⁻³であることが示された。 さらに、このセンサーにおいて、<u>E.coli</u>との反応時間の周波数変 化に与える影響を検討した。その結果をFig.3-13に示す。Fig.3-13から、反応時間が60分および120分の場合、周波数変化は、わ ずかに増加する程度であることが示された。したがって、反応時間は、 この場合も30分で十分であることが明らかになった。

3. 3. 6 ポリスチレン粒子を用いた発振周波数変化の増幅 前節で示したFig. 3 - 1 2 は、結合した<u>E</u>.<u>coli</u>のみに起因する周 波数変化であった。発振周波数の増幅を行うため、<u>E</u>.<u>coli</u>を反応さ せた後、さらに、0.5 μmおよび1 μmの抗<u>E</u>.<u>coli</u>たポリスチレン粒 子を反応させた。このときの<u>E</u>.<u>coli</u>とポリスチレン粒 子によって生じた周波数変化を合計して、<u>E</u>.<u>coli</u>濃度に対してプロ ットしたものが、Fig. 3 - 1 4 である。Fig. 3 - 1 4 で、0.5 μmおよ び1 μmの粒子について、ともに周波数の増幅効果が認められた。しか し、0.5 μmの粒子を使用した場合は、増幅効果は十分でなく、検出限 界を向上させるには至らなっかった。これに対して1 μmの粒子を使用 した場合には、検出限界を10⁵ cells・cm⁻³に向上させることが できた。今後、水晶振動子による免疫測定を発展させる上で、このよう に周波数を増幅させ感度の向上を計ることは有効な手段であると考えら れる。 3.4 結言

本章では、水晶振動子バイオセンサーをフローシステムへ発展させた。 このシステムを用い、表面にプロテインAを固定化した水晶振動子によ って、IgG濃度の測定が可能であることを示した。また、同じプロテ インA固定化水晶振動子によって、IgGサブクラスの分析が可能であ ることを示した。さらに、このセンサーシステムを<u>E</u>.<u>Coli</u>の測定に 適用するとともに、ポリスチレン粒子によって感度の向上が可能である ことを示した。本章で得られた知見を要約すると以下のようになる。 (1)液体中で水晶振動子を使用した場合、液体の粘性、密度、導電率 さらに温度等が、発振周波数に影響することが示された。さらに、水晶 振動子と液体界面において発振周波数に影響を与える因子が存在するこ とが示唆された。このことから、再現性よく実験を行うために、セル中 を蒸留水で置換して、発振周波数の測定を行うことにした。

(2) プロテインAを固定化した水晶振動子によるヒトIgGの測定で は、発振周波数変化が、IgG濃度に依存することが示された。また、 結合したIgGをpH2.4のグリシン塩酸緩衝液で、溶出することによ って、センサーの再使用が可能であることが示された。

(3) プロテインAを固定化した水晶振動子を用いるヒトIgGの測定において、反応時間がおよそ30分でほぼ発振周波数変化が飽和に達することが示された。これに基づき、標準の反応時間を30分に設定した。
 (4) ヒトIgG濃度の測定範囲は、反応時間30分で、10⁻⁸-10⁻³mg·cm⁻³、15分で、10⁻⁴-10⁻²mg·cm⁻³であることが示された。

(5) プロテインA固定化水晶振動子を用い、溶出後のpHを徐々に変 化させマウスIgG成分の分析に適用したところ、IgG1, IgG2, IgG₂bに相当するピークが得られた。また、ヒトーγ グロブリンにつ いても特異なパターンを示すことが確認され、本センサーが、成分分析 に適用可能であることが示された。

(6) 抗大腸菌抗体を固定化した水晶振動子によって、<u>E.coli</u>を
 10^s-10^scells·cm⁻³の範囲で測定できることが示された。
 (7) 抗大腸菌抗体固定化ポリスチレン粒子(1µm)によって、発振
 周波数の増幅が可能であることが示され、検出限界を10^s cells
 ·cm⁻³ に改善することができた。

Fig. 3-1 Schematic diagram of experimental system: (A) piezoelectric crystal in the cell; (B) oscillator; (C) frequency counter; (D) microcomputer; (E) peristaric pump; (F) solenoid valves; (G) thermostatic bath; (H) distilled water supply; (1) glycine-HCI buffer supply; (J) 0.5M NaCI supply; (K) sample injection port.

Fig. 3-3 Experimental procedure for IgG sub-class determination.

Fig. 3-4 Resonant frequency response in (A) air, (B) ethanol, and (C) deionized/distilled water at 30° C.

Fig. 3-5 Resonant frequency response in (A) deionized/distilled water, (B) 0.5 mM NaCl, and (C) 2.5 mM NaCl at 30° C.

Fig. 3-6 Resonant frequency response in deionized/distilled water at (A) 21.5, (B) 26, (C) 30, (D) 35, and (E) 40°C.

Fig. 3-7 Resonant frequency response after the successive (A) rinsing with glycine-HCl buffer (pH 2.4), (B) reaction with human IgG (1 \cdot 10⁻⁴ mg \cdot cm⁻³), (C) rinsing with glycine-HCl buffer (pH 2.4), and (D) reaction with human IgG (1 \cdot 10⁻⁹ mg \cdot cm⁻³).

Fig. 3-8 Relationship between reaction time and steady resonant frequency shift for human IgG concentrations of $1 \cdot 10^{-2}$ (O), $1 \cdot 10^{-3}$ (Δ), and $1 \cdot 10^{-4}$ (\Box) mg·cm⁻³.

Fig. 3-9 Correlation between human lgG and the steady resonant frequency shift after reaction time of 30 min (O), and 15 min (Δ), at 30°C.

Fig. 3-10 (a) Steady resonant frequency (A) before and (B) after reaction with 0.1 mg·cm⁻⁹ mouse δ -globulin and after rinsing with a stepped gradient of phosphate-citric acid buffer, pH 7-3. (b) Resonant frequency difference of each rinse in part (a).

Fig. 3-11 Resonant frequency difference of each rinse after reaction with human δ -globulin (0.1 mg·cm-3).

Fig. 3-13 Correlation between E. coli concentration and resonant frequency shift: reaction time 30 min (•). 60 min (O) and 120 min (△).

CONCENTRATION (COLLO CAL)

Fig. 3-14 Correlation between *E. coli* concentration and resonant frequency shift; treated with covaspheres particles 1 μ m (O), 0.5 μ m (Δ), and not-treated (\odot).

第四章 溶液中の水晶振動子の特性の解析とその粘性測定への応用

4.1 緒言

第二章、第三章において、抗体等を表面に固定化した水晶振動子を用 いることによって、微生物や抗体の測定が行えることを示した。これま で、測定の指標として用いてきた発振周波数変化は、主に、水晶振動子 表面の重量変化に起因すると考えられているが、第三章で示した水中で の発振周波数変化の検討において、重量変化以外の要因が関与している ことが示唆された。この要因としては、液体の粘性とさらにそれ以外の 要因が考えられる。まず粘性に関する知見としては、第一章でも述べた ように、液体中での水晶振動子の挙動について、いくつかの報告がなさ れている[15-21]。その代表的なものが、式1-2としても示し た Kanazawaらの式である[19]。

 $\Delta F = -F^{3/2} (\eta \rho_{\rm L} / \pi \mu \rho_{\rm Q})^{1/2} (4-1)$

この他、Hagerらは、オートマチックゲインコントローラー(入 カレベルに依存せずに出力レベルが一定になるように増幅率を自動的に 変える増幅回路)で構成した発振回路を用いた実験から、次式を得た [21]。

 $\Delta A G C = -k_1 \Delta (\rho \eta)^{1/2} + f (\Delta e) \qquad (4-2)$

 $\Delta F = -k_2 \Delta (\rho \eta)^{1/2} + g (\Delta e) \qquad (4-3)$

ここで、ΔAGC:オートマチックゲインコントローラーのゲインの変 化、Δe:誘電率の変化、k₁, k₂, f, g:比例係数。

発振周波数変化に影響する重量変化および粘性変化以外の要因については、まだ明確な結論は得られていない。これについて、Simpsonのらは、水晶振動子一液体界面において、親水性、疎水性に依存するな

- 39 -

んらかの緩和現象が関与しているのではないかとの考察をしている[3 2,33]。

以上のことから、本章では、水晶振動子の電気 - 機械変換モデルから、 水晶振動子の電気的等価回路定数を算出することにより、共振周波数に 影響を与える因子について検討することにした。

すなわち、本章では、まず、水晶振動子の電気的等価回路パラメータ ーの示す意味について考察し、この中で、特に、等価回路定数の中のR ((共振抵抗) の項に着目し、液体の粘性に関連した理論式の導出を行う。 さらに、水晶振動子の各等価回路定数の測定法について検討する。次に、 水ーエタノール混合液を用いΔFとR」を測定し、この2つのパラメー ターと液体の物性との相関について検討する。また、グリセリン水溶液 を用い、本システムの粘度測定への適用性を評価する。

4.2 理論

4.2.1 水晶振動子における電気-機械変換モデル

水晶振動子の電気的な等価回路は、Fig. 4 - 1 (a) のように表される。Fig. 4 - 1 (a) における直列のL₁, C₁, R₁に対する電気的な振動は、次のように表される。

L₁ (d^2q/dt^2) + R₁ (dq/dt) + 1/C₁· q = V 4-4 ここで、 qは電荷、 Vは印加電圧である。

この電気的なモデルは、水晶振動子の圧電素子としての性質から、よく知られているように、電気 - 機械変換モデルとして、機械的なモデル Fig.4-1(b)に変換される。この場合、振動の式は、次のようになる。 m (d²x/dt²) + r (dx/dt) + 1/C_{*}=F 4-5
ここで、xは位置、mは重量、rは摩擦係数、C_{*}はコンプライアンスである。

また、電気機械変換係数kは、F=kVとして定義される。したがっ て、式4-4と式4-5の対比から、次のような関係式が導かれる。

$L_1 = m \neq k^2$	4	-	6
 $C_1 = C_{\bullet} \cdot k^2$	4	-	7
$R_1 = r / k^2$	4	-	8

これは、インダクタンスと重量、キャパシタンスとばね定数、電気抵抗 と摩擦抵抗が、対応関係にあることを示すものである。従って、電気的 なパラメーターの測定によって、実際に水晶振動子で機械的に起きてい る現象をとらえることができると考えられる。

 4.2.2 水晶振動子の抵抗R₁と液体の粘性に関する式の導出 式4-5において、F=F_acos(ωt)とすると、次のような解が 得られる。

 $x = F_m / \{ 1 / C_m - m \omega^2 \}^2 + (\omega r)^2 \}$

• { $(1 / C_{a} - m \omega^{2}) \cos (\omega t) + \omega r \cdot \sin (\omega t)$ } 4 - 9

共振状態においては、振幅が最大となることから、共振周波数 ω_{*}^{2} は、 $\omega_{*}^{2} = 1 / C_{*} \cdot m$ (式 4 - 9 ')で表される。したがって、共振状態で は、次の関係式が得られる。

 $\mathbf{x} = \mathbf{F}_{\mathbf{m}} / \omega \mathbf{r} \cdot \mathbf{s} \text{ in } (\omega \mathbf{t}) \qquad 4 - 10$

 $d x / d t = v_s = F_m / r \cdot cos (\omega t)$ 4-11

ここで、v。は、振動系の速度である。

ATカット水晶振動子は、ずり振動を起こすことが知られている。し たがって、Fig. 4-1 (b) に示した機械的なモデルは、ATカット水 晶振動子では、水晶板が、水平方向(X方向のみ)に振動するFig.4-1 (c) に示すモデルに変換される。式4-10と式4-11のxおよ びv。は、水晶板のX方向の位置と速度としてとらえることができる。

液体に接している水晶振動子に対して、水晶振動子表面に垂直方向 (z)のある位置における水晶振動子に対して水平な方向へのずれとず れ速度をu(z,t)とv(z,t)とすると、Fig. 4-1(c)におけ る液体のせん断応力と水晶の弾性振動の式は以下のように表せる。これ らの式は、式4-1導出のもとになった式でもある[19]。

			F	(2	ι,	t)	/	A	=	μ	9	u	(z	, t)	/	9	z				4 -	1	2
			F	(2	. ,	t)	/	A	=	η	9	v	(z	, t)	1	9	Z				4 -	1	3
(9	F	(z	,	t)	/	9	z)	d	z	=	ρ	۹ A	d	Z	•	v	(z	. , t	;)	1	ə t		
																									4 -	1	4
(9	F	(z	,	t)	1	9	z)	d	Z	=	ρ	LA	d	Z	•	v	(z	, t	;)	1	ə t		

4 - 15

ここで、μは水晶の弾性係数、ηは液体の粘性、ραは水晶の密度、ρι は液体の密度、Aは水晶振動子の面積である。

式4-13と式4-15から次式が得られる。

 $\partial^2 v(z,t) / \partial z^2 = \rho_L / \eta_L \{\partial v(z,t) / \partial t\}$

4 - 1 6

この式から、既に文献(65)の中でも扱われているように、 z=0に おいて、 v = v (z,t)という境界条件のもとで、次のような解が得 られる。

 $v(z,t) = v_0 \cdot exp\{-(\omega \rho / 2 \eta)^{1/2} \cdot z\}$

 $\cdot \cos \{\omega t - (\omega \rho / 2 \eta)^{1/2} z\}$

4 - 1 7

 $zz\overline{c}, v_{o} t, v_{s} = v_{o} \cos(\omega t) \overline{c} \delta \delta$ 水晶板表面の受ける摩擦力は、式4-13から、

 $F(0,t) / A = \eta \cdot \partial v (0,t) / \partial z = 4 - 18$ と表される。式4-17と式4-18から、さらに、次式が得られる。 F (0,t) / A = - ($\omega \rho \eta$) ^{1/2}

 \cdot v \circ cos (ω t + 1 / 4 π)

4 - 1 9

ここで、pは液体の密度である。

さらに、式4-11と4-19より、

 $\mathbf{r} = (\omega \rho \eta)^{1/2} \mathbf{A}$ 4 - 2 0となり、式4-8とから、次式が得られる。

```
R_{1} = (\omega \rho \eta)^{1/2} A / k^{2} \qquad 4 - 2 1
```

このように、 Δ F (共振周波数変化)と R₁(共振抵抗)は、供に、液 体(ニュートン流体)に接している場合、(ρη)^{1/2}の関数として表 されることが示された。ただし、共振周波数は、式4-9'から、

 $\omega_{s} = 1 / (L_{1}C_{1})^{1/2}$ 4 - 2 2

として表されることから、△Fは、重量や弾性といった他の要因によっ ても影響を受けることになる。以上のことから、R₁を測定し、△Fと 対比することにより、△Fの変動の原因を考察できると考えられる。

- 43 -

4.3 実験方法

4.3.1 実験装置および試薬

本実験では、水晶振動子の両面が液体に接するようにしたセルと片面 のみが液体に接するようにしたセルの2種類のセルを使用した(Fig. 4 -2)。水晶振動子としては、ATカットの6MHz, 3MHzおよび 12MHzのものを使用した。インピーダンスアナライザーには、Yo kogawa-Hew1ett-Packardのmode1 4192 Aを使用し、コンピュータとしては、日本電気製PC-9801Eを使 用した。インピーダンスアナライザーの印加電圧を0.01Vとして実験 を行った。蒸留水には、比抵抗1MΩ・cm⁻²のものを使用し、試薬に は、すべて特級品を使用した。

4.3.2 電気的等価回路定数の算出

Fig. 4 − 1 (a) に示した水晶振動子の電気的等価回路回路のアドミ ッタンスは、次式のように表わせる。

Y=1/(R₁+jωL₁+1/jωC₁)+jωC。 4-23
一方、インピーダンスアナライザーによって、アドミッタンスの実数
成分のコンダクタンス(G)と虚数成分のサセプタンス(B)を測定す
ることができる。そこで、式4-23のアドミッタンスをこの2つの成分に分けると次の2つの式が得られる。

 $G = R_{1} / \{ R_{1}^{2} + (\omega L_{1} - 1 / \omega C_{1})^{2} \} \qquad 4 - 2 4$ $B - \omega C_{0} = -(\omega L_{1} - 1 / \omega C_{1}) / \{ R_{1}^{2} + (\omega L_{1} - 1 / \omega C_{1})^{2} \}$

4 - 2 5

式4-24と式4-25を整理すると、次の関係式が得られる。

 $(G-1/2R_1)^2 + (B-\omega C_0)^2 = (1/2R_1)^2$ 4-26 式4-26において、GとBをプロットすることにより、円が得られる ことがわかる。これをグラフ化するとFig.4-3 (b)のようになる。 ここで、Gが最大値を示す周波数が、共振周波数ω。であり、このGの 最大値は、1/R1 に等しくなる。さらに、Bの最大値および最小値を とる周波数ω1、ω2 をそれぞれ式4-25に代入して整理することによ って、

 $\omega_1 - \omega_2 = \Delta \omega = R_1 / L_1$

の関係が得られる。また、既に示したように、共振周波数ω。は、

 $\omega_{s} = 1 / (L_{1}C_{1})^{1/2}$

である。

本実験では、アドミッタンス測定の周波数をω₁-Δωからω₂ +Δω までとり、この間で周波数を約1000分割した周波数について測定を 行った。式4-26に対応する円の式を測定データから最小自乗法によ って求め、各パラメーターを算出した。この計算では、ωC。項が周波 数によって変化するため、ωC。の値を測定されたBの値より差し引い て、円の式を最小自乗法で求め、中心点のBの値がゼロになるC。の値を 求めた。ω₁については、円の中心点のBの値と一致する円周上の点に対 応する周波数から求めた。ω₁、ω₂についても、円の中心点のGの値と 一致する円周上の点に対応する周波数から求めた。いずれの場合も、多 項式近似法を利用した。これらの操作によって、C₀, R₁, ω₁, L₁お よびC₁の値を得ることができた。

さらに、水晶振動子の両面の電極が、液体に接する場合には、液体の 導電率の影響が考えられる。この影響については、等価回路に並列の抵 抗R。を付加することによって、考慮することができる。この等価回路 を、Fig. 4-3 (c)に示した。このアドミッタンスは、

 $Y = 1 / (R_{1} + j \omega L_{1} + 1 / j \omega C_{1}) + j \omega C_{0} + 1 / R_{0}$

- 45 -

4 - 2 7

で表される。式4-26と同様に、

 $(G - 1 / R_{0} - 1 / 2 R_{1})^{2} + (B - \omega C_{0})^{2}$

 $= (1 / 2 R_1)^2$

4 - 2 8

が、得られる。G, BをプロットしたFig.4-3 (c) からわかるよう に、円のG方向へのシフトからR。を求めることができる。

4. 4 結果および考察

4. 4. 1 水晶振動子バイオセンサーにおける等価回路定数の変化 Table 4-1に両面浸漬タイプのセルで水晶振動子の等価回路定数を空 気中、蒸留水中および1mMリン酸緩衝液中において測定を行なった結 果を示した。さらに、第三章で行なったプロテインAを固定化した水晶 振動子と、それにIgGを結合させたもの(0.1mg/m1, 30分) についての測定結果も示した。

Table 4 - 1 に示されているように、空気→蒸留水、蒸留水→リン酸緩 衝液における共振周波数の変化は、それぞれ、5 k H z, 3 5 0 H z で あった。この値は、発振回路を用いて測定した結果とほぼ一致した。 R₁については、空気→水において、水の(ρ η)^{1/2} に対応した変化が 得られたが、水→リン酸緩衝液ではほとんど変化しなっかった。(ここ で、 ρ は液体の密度、 η は液体の粘度である。) したがって、水→リ ン酸緩衝液で生じた周波数変化は、L₁ またはC₁ に関連する変化であ ると推察される。

プロテインA→プロテインA+IgGについては、300Hzの変化

が得られた。この値も、発振回路によって、得られる結果とほぼ一致し ている。この場合のR1には、ほとんど変化がみられず、IgGの結合 によって、表面の摩擦抵抗の変化は、起きていないと考えられる。した がって、この場合もC1またはL1に関連する変化であると考えられる。 しかし、周波数の測定精度が、7桁であるのに対して、C1およびL1の 測定精度は、3桁程度であるため、これらの測定値から議論を行なうこ とはできない。IgGによる発振周波数変化については、重量変化がか なり寄与しているとも考えられるが、第三章の考察で示したように、重 量変化だけでは説明できない現象もある。水→リン酸緩衝液での周波数 変化という点と合わせて考えると、C1すなわち、弾性的な因子によっ て、周波数が変化している可能性もある。この点については、次の水-エタノール混合液を用いた測定結果からも考察を加える。

4. 2 水-エタノール混合液における共振周波数および共振抵抗
R1の変化

Table4-2は、両面および片面タイプのセルを使用して、水-エタノ ール混合液(30℃)における水晶振動子の共振周波数、L₁, C₁, R 1およびC₀の測定値を示したものである。Table4-2には、空気中で の共振周波数を基準にした周波数変化も示した。Table4-2から、L₁, C₁の測定精度は、ΔFに比べて十分でないため、実質的な変化は、誤 差に埋もれてしまっている。したがって、本節では、共振周波数変化Δ Fと共振抵抗R₁の測定結果をもとに考察することにする。

Fig. 4 - 4 は、Table 4 - 2 に示した R₁と液体の(ρ η)^{1/2}との関係 を示したものである。ここで用いた液体の密度 ρ および粘度 η は、化学 便覧のデータから計算したものである [66]。(ρ η)^{1/2} と R₁ は、

- 46 -

良い直線関係を示すことが確認された。片面浸漬タイプのR₁の値は、両 面浸漬タイプのR₁の値の約半分になっている。これについては、式4-21の面積Aの項が反映されていると考えられる。

Fig. 4 – 5 は、 Δ Fと $(\rho \eta)^{1/2}$ の関係を示したものである。 Δ Fは、 ($\rho \eta$) ^{1/2}に対して、ほぼ直線的であるが、両面浸漬タイプの場合には、 水の比率が大きくなるほど直線からずれてくる傾向がみられた。この周 波数変化のずれは、Fig. 4 – 4の結果から、粘性に起因するものではな いことは明かである。前節でも触れたように、この理由として、重量変 化または液体の弾性的な効果の2点が考えられる。

重量変化であると考えた場合、一つの可能性として挙げられるのは、 水と電極界面における電気二重層が、表面への吸着層として影響を与え ているということである。しかし、水晶振動子の電極を電気化学測定の 作用極として用い、サイクリックポルタモグラムをとった結果では、5 MHzの水晶振動子において、表面への酸素の吸着に対して、20Hz 程度の周波数変化しか起こらないことが報告されている[28]。した がって、吸着層が原因とは考えにくい。また、9MHzという周波数は、 電気二重層が形成される時間に対して、きわめて速い速度であるという こと[67]、さらに、測定電圧 1,0.1,0.01V それぞれにつ いて測定を行ったが、ほとんど変化はなっかた。この結果も、周波数変 化が吸着に起因することを否定するものである。

水とエタノールにおける大きな違いとして、誘電率の違いが挙げられ る。特に、水分子は、大きなダイポールモーメントを持つとともに、強 い水素結合をすることが知られている。ここで、Fig.4-6は、エタノ ールー水の比率に対して、Coの値を両面浸漬セルと片面浸漬セルについ てプロットしたものである。両面浸漬セルの場合には、電極の周囲全体 に試料液が存在することから、水の比率が高くなるに従い、Coが大きな 値を示すことがわかった。Coの変化は、すでに述べた4.3.2 (電気的 等価回路定数の算出)からもわかるように、ΔFに対してほとんど影響 を与えないが、この誘電率の違いが、液体の物理的な性質の違いに関連 している可能性は考えられる。水分子の誘電分極は、9MHzより速い ことが知られている[68]。したがって、電極界面で、水分子の配向 が起こり[69]、水素結合により液体が構造化され、弾性的な性質が 増加すると考えることが可能である。この現象は、水のような特殊な液 体で、9MHzという比較的高い周波数の電場がかかったときに起こる ことが想定される。ただし、この点には、まだ議論の余地はあると考え られる。

Fig. 4 - 7 は、水-エタノール混合液とメタノール-エタノール混合 液で得られた R₁((ρη)^{1/2}に対応)とΔFについて、プロットした ものである。メタノール-エタノール混合液では、R₁とΔFは、かなり の直線性を示すが、メタノール100%では、直線からややずれてくる。 これも、水と同じように、メタノールの誘電率の違いから解釈可能であ る。

Fig. 4 - 8 は、25℃における水-エタノール混合液で得られたR₁と △ Fの関係を示したものである。Fig. 4 - 8 に示した25℃での水とエ タノールのずれは、Fig. 4 - 7 に示した30℃の場合に較べて大きくな っている。この理由として、ブラウン運動による乱れが、25℃では、 より小さくなることによって、水の構造化がより強くなったと解釈する ことができる。

前節で、重量変化および粘性変化以外の共振周波数変化の要因が存在 すること、また、第三章で、疎水性・親水性によって周波数変化が異なる ことを既に述べた。これらの現象の類似性を考えると、まず、IgGの 吸着によって、表面の親水性・疎水性の変化が生じることが考えられる [85]。さらに、両面浸漬 対 片面浸漬の状態は、親水性 対 疎水性 の状態が極端になった場合であるとも考えられる。したがって、前節以 前に述べた2つの周波数変化現象の原因が、本節で述べた片面浸漬・両面 浸漬によって生じる周波数変化のメカニズムによっても説明が可能であ ると考えられる。

4.4.3 グリセリン水溶液を用いた粘度センサーとしての評価 6 M.9 M,12 MHzの水晶振動子について、グリセリン水溶液を 用い、(ρη)^{1/2}に対する共振抵抗R₁の値を測定した結果が、Fig.4 -9である。また、同様に、(ρη)^{1/2}に対する共振周波数△Fの測定 を行った結果が、Fig.4-10である。Fig.4-9から、R₁が液体の粘 性に対し、広い範囲で直線関係を示すことが明らかにされた。一方、式 4-1から△Fも(ρη)^{1/2}に比例して変化するはずである。Fig.4-10の△Fと(ρη)^{1/2}は、基本的には直線関係を示しているが、(ρ η)^{1/2}が大きくなるに従って直線からのずれが生じている。このずれは、 式4-1の導出課程において近似処理を行っていることから理解できる [19]。

Fig. 4 - 11にΔFとF^{3/2}の関係を示す。ΔFとF^{3/2}は、直線関係 を示すことから、式4-1が実験結果とよく一致することが、さらに裏 づけられた。同様に、式4-21から、R₁とF^{1/2}·Aは直線関係を示す ことが期待される。面積Aとして電極面積を用いた場合、Fig. 4-12 に示すように、よい直線関係は得られなかった。この理由としては、実 際に振動している面積が、電極面積とは単純に一致しないことが考えら れる[70,71]。

以上のように、R₁は液体の粘性をよく反映した値を示すということが 明かとなった。さらに、ΔFは、粘性によって変化するが、重量変化や 弾性的な変化によっても変化することが示された。したがって、これら の性質を利用し、新たな分析法への応用が期待できる。

4.5 結言

本章では、水晶振動子の電気的な等価回路定数の意味について、電気 ー機械変換モデルから考察を行った。特に、液体中に水晶振動子を浸漬 したときの共振抵抗R₁についての関係式を導いた。これらの知見をもと に、第三章におけるIgG測定時の周波数変化についての検討した。さ らに、水ーエタノール混合液を用いた実験から、周波数変化△Fおよび 共振抵抗R₁と液体の性質との関連について検討した。続いて、グリセリ ン水溶液における測定から、粘度計測デバイスとしての評価を行った。 本章で得られた知見をまとめると以下のようになる。

(1)水晶振動子の電気的等価回路パラメーターは、既に知られている ように、機械的な振動系との対比から、インダクタンスー重量、キャパ シタンスーパネ定数、電気抵抗-摩擦抵抗という関係になる。この中で、 特に、液体に接した系における、共振抵抗R」について、新たに次式を導 いた。

 $R_1 = (\omega \rho \eta)^{1/2} A / k^2$

ここで、ω:共振周波数、ρ:液体の密度、η:液体の粘度、A:面積、
k:電気-機械変換係数である。

(2)両面浸漬セルを用い水晶振動子の電気的等価回路定数を測定した ところ、空気中→水中において共振周波数変化△Fと共振抵抗R1の変化

- 50 -

が同時に起きていることから、共振周波数変化の主な要因は粘性である と推察した。さらに、水→緩衝液中では、R₁の変化はなかったが、ΔF の変化が観察された。この変化は、L₁またはC₁の変化に起因すること が明らかになった。

(3)第三章における Ig G 結合反応について、各回路定数の測定を試 みたところ、R₁の変化はなかった。(2)の知見と総合して、この周波 数変化には、界面の摩擦抵抗は関与せず、重量変化および界面の弾性的 な性質が関与していることが示された。

(4) 片面浸漬セルと両面浸漬セルを用いた水-エタノール混合液にお けるR₁とΔFの測定結果から、R₁とΔFが、(ρη)^{1/2}に対して、直 線性を示すことが確認された。ただし、両面浸漬セルでは、R₁が直線性 を示しているのに対して、ΔFは直線からずれてくることが示された。 この原因として、水の誘電分極と水素結合に起因する水の構造化によっ て、液体と水晶振動子界面に弾性的な変化が生じているものと推察した。 (5) グリセリン水溶液による実験により、ΔFは(ρη)^{1/2}に対して 徐々に直線からずれるのに対し、R₁は直線性を維持することが示された。 また、各種の周波数の水晶振動子によって、同様に粘性の測定が可能で あることが示された。

Fig. 4-1 (a) Electrical equivalent circuit of AT cut quartz crystal. (b) Mechanical model for (a). (c) Coordinate model of oscillating quartz plate.

Fig. 4-2 Schematic diagram of two types of cells: (A) only one side of electrode in contact with the liquid; (B) both sides in contact.

Fig. 4-3 Diagrams of electrical equivalent circuits of quartz orystal and its admittance.

Table	4-1	Value	of	electrical	equivalent	circuit
paramet	ers of	quartz	orystal	l in various	conditions.	

CONDITION	Fs (Hz)	C 1 (10 ⁻¹⁴ C)	L 1 (H)	R 1 (Ω)	C a (10-11C)	R a (Ω)
in air	8697692	2.326	0.01439	7.949	1.720	/0
in distilled water	8692529	2.702	0.01241	550.3	1.454	22872
in 1 mM phosphate buffer	8692181	2.705	0.01239	548.2	1.423	5257
with protein A	8835014	2.837	0.01144	569.5	1.402	12092
with p. A&lgG	8834698	2.525	0.01235	568.3	1.404	10332

Table 4-2 Computed data of equivalent circuit parameters of quartz crystal in contact with water-ethanol mixture using two sided type cell (A) and one sided type cell (B) at 30°C.

	Ethanol	Fs	∆F	C ₁	L1	R ₁	co
	(wt%)	(Hz)	(Hz)	$(10^{-14}F)$	(H)	(2)	$(10^{-12}F)$
-	in air	8691441		2.318	0.01447	11.18	13.86
	100	8687870	3571	2.486	0.01468	569.9	12.92
	76	8686647	4794	2.287	0.01468	759.9	13.68
A	54	8685980	5461	2.579	0.01302	844.1	14.50
	44	8685786	5655	2.589	0.01297	871.7	14.93
	35	8685765	5676	1.954	0.01718	865.8	15.39
	17	8686510	4931	2.367	0.01418	746.7	16.11
	0	8687325	4116	2.596	0.01293	589.8	16.75
1	in air	8719011		2.197	0.01517	28.12	3.555
	100	8717307	1704	2.317	0.01438	321.7	6.111
	76 .	8716800	2211	2.316	0.01439	422.1	6.164
В	54	8716478	2533	2.322	0.01436	497.1	6.195
	44	8716408	2603	2.321	0.01436	491.1	6.203
	35	8716420	2591	2.324	0.01434	487.4	6.247
	17	8716773	2238	2.314	0.01441	416.6	6.263
	0	8717168	1843	2.309	0.01444	331.3	6.261

Fig. 4-4 Correlation of $(\rho \gamma)^{1/2}$ and resonant resistance (R₁) for water-ethanol mixture with one-sided cell (\Box) and two sided cell (O) at 30°C. Numbers inside the figures show ethanol content (wt%). ρ is density of liquid. γ is viscosity of liquid.

Fig. 4-5 Correlation of $(\rho\eta)^{1/2}$ and resonant frequency shift (Δ F) for water-ethanol mixture with one-sided cell (\Box) and two sided cell (O) at 30°C. Numbers inside the figures show ethanol content (wt%). p is density of liquid. η is viscosity of liquid.

Fig. 4-6 Correlation of the computed values of capacitance $C_{\rm O}$ and the water-ethanol ratio with a one-sided cell () and two-sided cell () at 30°C.

Fig. 4-7 Correlation of resonant resistance (R_1) and resonant frequency shift (ΔF) for a water-ethanol mixture (O) and methanol-ethanol mixture (\Box) with a two-sided cell at 30°C. Numbers inside the figure show ethanol content (wt%).

Fig. 4-8 Correlation of resonant resistance and (R₁) and resonant frequency shift (Δ F) for a water-ethanol mixture with a two-sided cell at 25°C.

Fig. 4-9 Correlation of $(\rho\eta)^{1/2}$ and resonant resistance (R₁) for water-glycerol mixture in contact with 6MHz (\Diamond). 9MHz (\Box), and 12MHz (O) quartz crystals with a one sided cell at 25°C. ρ is density of liquid. η is viscosity of liquid.

Fig. 4-11 Correlation of $F^{3/2}$ and resonant frequency shift (ΔF) for 0% (O), 60% (\Box), 80% (\Diamond), and 100% (Δ) glycerol solution. F is basic resonant frequency.

Fig. 4-12 Correlation of A(F) $\frac{1}{2}$ and resonant resistance (R₁) for 0% (O), 80% (\Box), 80% (\Diamond), and 100% (Δ) glycerol solution. A is area of electrode. F is basic resonant frequency.

第五章 水晶振動子粘度測定システムのエンドトキシン濃度測定への応 用

5.1 緒言

第四章において、水晶振動子の共振周波数および等価回路中の抵抗成 分(共振抵抗R₁)が、粘性によって変化することを示した。特に、共振 抵抗と(ρ₇)^{1/2}とのきわめてよい直線性から、水晶振動子が粘度測 定デバイスとして利用できることを明らかにした。本章では、この粘度 測定デバイスの生化学分析への応用について検討する。

これまでに、圧電効果を利用した粘度測定デバイスとしては、ねじれ 振動子が知られている[52,53]。しかし、このねじれ振動子の場 合、一般に入手しにくく、形状的に使用しにくいという問題があるため、 一般には、利用されていない。これに対して、本研究の水晶振動子は、 安価に入手できるうえ、板状で取り扱いやすいことから、実用にも十分 耐えるものと考えられる。

本章では、水晶振動子の生化学分析への応用としてエンドトキシンの 測定に着目して、検討を行なう。このエンドトキシンは、体内に混入し た場合、発熱を引き起こすパイロジェンの一種である。そして、医薬品 などの製造管理において、エンドトキシンの混入の有無を調べることが、 重要な検査項目となっている。また、血液中のエンドトキシンを測定す ることによって、感染症の診断を行うことも可能である。

すでに、エンドトキシンの同定に関する研究が進められており、エンドトキシンは、徴生物の産出するリピッドAを中心とするリポポリサッカライドであることが明かとなっている[72]。このエンドトキシンによって、カプトガニの血液が凝固することが発見され、その後、カプ

- 53 -

トガニ血球抽出物(<u>Limulus</u> Amebocyte Lysate:LAL)についても、 エンドトキシンによって、ゲル化することが明かとなった。このLAL のゲル化反応は、Fig.1-2 (a)に示すようなカスケード機構によっ て、起こることが明らかにされている。この反応は、超微量のエンドト キシンによって起こるため、エンドトキシンの測定方法として利用され ている[41-44]。

これまでLALを用いる測定方法では、転倒法が一般的であった。こ の方法は、LALと試料液を混合し、1時間のインキュベート後、試験 管を逆さにし、ゲルの落下の有無によって、規定値に対する濃度の判定 (規定値以上か、規定値以下かの判定)を行う方法である[41]。こ の他、ゲル化に伴う濁度の変化を測定し、濁度の時間変化からゲル化時 間を求める方法がある[50]。これらの方法の問題点として、まず、 転倒法では、定量性に欠けるということが挙げられる。濁度を測定する 方法では、着色した試料や濁っている試料には適用できず、塩析が生じ た場合にも正確な測定ができないという問題点が挙げられる。

本章では、これらの測定方法に対して、試料の着色などの影響を受け ない安定な測定法として、水晶振動子によって直接粘性変化を測定する 方法について検討する。さらに、実用的に使用可能な装置の試作につい ても検討する。

5.2 実験方法

5.2.1 実験装置および試薬

本章で使用した実験装置としては、ほとんど第四章で使用したものを そのまま使用した。水晶振動子には、パラジウムメッキした A T カット 9 MHzのものを用いた。セルには、水晶振動子の片面が試料と接する ようにした井戸型のセルを使用した (Fig. 4 - 2 (A))。 測定装置として は、インピーダンスアナライザー (Yokogawa Hewlett Packard, model 4192A)とコンピューター (NE C, PC-9801E)を使用した。

カプトガニ血球抽出物(LAL)としては、和光純薬製のリムルスH Sシングルテストワコー(LAL-HS)およびリムルスシングルテス トワコー(LAL-NL)を使用した。実験には、水晶振動子セルをエ チルアルコールで洗浄した後、エンドトキシンフリー水で、数回洗浄し てから使用した。

5.2.2 共振抵抗および共振周波数変化の測定法

水晶振動子の共振抵抗R₁および共振周波数の測定原理は、第四章で述 べた通りである。ただし、本章では、測定操作を連続的にかつ自動的に 行う必要があるため、第四章の測定プログラムを改良し、インピーダン スアナライザーの測定周波数範囲をコンピューターによって、自動的に 設定するようにした。周波数の測定範囲は、各測定時に、第4章で述べ た方法で、直前の測定データをもとに再設定されるため、共振周波数が 変化しても追従可能である。また、測定時間を短縮するため、測定点数 を100点として、1回の測定を2-3分で行えるようにした。

5. 2. 3 カブトガニ血球抽出物のゲル化反応の測定

エンドトキシン試料液には、エンドトキシンの標準品をエンドトキシ ンフリー水で希釈して使用した。エンドトキシン試料液0.2m1を37 ℃でインキュベートしたのち、LALと混合した。混合後、直ちに、試 料液をピペットで水晶振動子セル中に移し、共振周波数および共振抵抗 R₁の測定を行った。共振周波数変化(ΔF)は、空気中で測定した共振 周波数をF₀とし、反応中の共振周波数をF₀としたとときに、ΔF= F₀-F₀として求めた。

5.3 結果および考察

5.3.1 ゲル化反応に伴う共振抵抗R1と共振周波数の変化

まず、LAL-HSを使用し、エンドトキシン濃度0および0.1-1 0⁵ pg·m1⁻¹の試料に対する共振抵抗R₁と共振周波数の時間変化を測 定した結果が、Fig.5-1とFig.5-2である。Fig.5-1は、反応時 間に対して、共振抵抗変化をプロットしたものであり、Fig.5-2は、 共振周波数変化(ΔF)の反応時間に対する変化をプロットしたもので ある。R₁の変化曲線とΔFの変化曲線は、共に、一定のラグタイムをお いたのち、LALのゲル化にともない増加し、ゲル化の終了と共に、一 定値を示した。Fig.5-1およびFig.5-2から、エンドトキシン濃度 が高くなるほど短い時間でゲル化が終了していることが確認された。ま た、エンドトキシン濃度が低いほど、R₁,ΔFともに変化量が大きくな っていることが明らかになった。

5.3.2 エンドトキシン濃度測定のための指標の検討 Fig.5-3は、1ng・m1⁻¹のエンドトキシンに対する共振抵抗R₁の変化を示したものである。Fig.5-3において、プロットした点は、 実験によって得られたデータであり、実線は、実験データをもとに多項 式近似を行った結果をプロットしたものである。さらに、この多項式近 似の式を微分した結果をFig.5-4に示す。

ゲル化時間は、本来の意味としては、共振抵抗R」または共振周波数 (ΔF)の変化量が、一定値に落ち着いた点、すなわち、R」またはΔF の微分が、0を示す点であると考えられる。しかし、実際には、Fig.5 -3における一定値を示すようになった点やFig.5-4における0にな ったの点は、グラフの傾きが緩くなったところにあるため、ゲル化時間 を算定する際に誤差を生じやすくなるという問題がある。このため、傾 きが緩くなる前の時点でゲル化時間を判定する必要がある。したがって、 Fig.5-3においては、変化量が全体の90%になった時間(T1)を ゲル化時間とした。Fig.5-4では、変化速度が、変化速度の最大値の 10%になった時間(T2)をゲル化時間とした。

次の節以降では、エンドトキシン濃度に対する指標として、T1、T 2以外にもR1の最大変化速度(VRmax)、そして、VRmaxを示す時間 (T3)についての検討を行う。また、あるしきい値を設定し、その値 まで変化するまでの時間についても検討する。さらに、R1やΔFの変化 量についてもエンドトキシン濃度に対する指標として検討を行う。

5.3.3 エンドトキシン濃度とゲル化時間の対応関係

ゲル化時間として定めたT1およびT2をそれぞれのエンドトキシン 濃度に対して、プロットしたものが、Fig.5-5である。Fig.5-5に は、R1およびΔFの応答曲線から得られた結果を示した。ゲル化時間T 1およびT2は、エンドトキシン濃度に依存して変化することが示され た。これによって、R1およびΔFは、エンドトキシン濃度の測定に使用 可能であり、T1およびT2は、エンドトキシン濃度を表す指標として 十分使用できることが確認された。本システムでの検出限界は、1pg

- 56 -

·m1-1で、従来の方法による結果と一致した[50]。

LAL-NLを使用したときのゲル化時間は、1ng・m1⁻¹で、T1 = 29.2, T2=33.1分、10ng・m1⁻¹でT1=19.2, T 2=21.5分であった。この結果は、LAL-HSに対して、LAL-NLの感度が1桁下がるという試薬の特性を反映して、LAL-HSに おける1桁濃度の低い試料のゲル化時間にほぼ一致した。

5.3.4 エンドトキシン濃度と共振抵抗 R₁の最大変化速度の対応関係

Fig. 5 - 6 (a), (b) は、R₁の最大変化速度(V_R axx) とそのと きの反応開始からの時間(T3)をそれぞれのエンドトキシン濃度に対 してプロットしたものである。Fig. 5 - 6 (b)より、V_R axとエンド トキシン濃度は、よい対応関係にあることが示された。この場合も検出 限界は、1 pg·m1⁻¹であった。Fig. 5 - 6 (a)より、T3も低濃度 以外では、エンドトキシン濃度と良い対応関係にあることが示された。

V R ■ a x をエンドトキシン濃度の指標にすることは、V R ■ a x が、ほぼ 40分以内で現れることから、低濃度の試料に対して、測定時間を短縮 することが可能であり、実用上意味のあることと考えられる。

5.3.5 エンドトキシン濃度と しきい値時間の対応関係

エンドトキシン濃度測定の指標として、R₁またはΔFの変化が、ある しきい値まで達したときの時間(しきい値時間)をゲル化時間として求 めた。R₁のしきい値を1500Ω、ΔFのしきい値を7500Hzとし て求めた。しきい値時間をエンドトキシン濃度に対してプロットしたも のが、Fig.5-7である。このFig.5-7から、このしきい値から求め たゲル化時間も、エンドトキシン濃度に対応して変化することが示され た。ゲル化時間をしきい値によって求める方法では、測定までに要する 時間は、エンドトキシン濃度が1 pg·m1⁻¹の場合でも30分程度であ る。したがって、この方法によって、比較的短時間で測定を行うことが 可能である。

5. 3. 6 エンドトキシン濃度と共振抵抗変化量および共振周波数変 化量との対応関係

Fig. 5 - 8 (a) およびFig. 5 - 8 (b) は、ゲル化前からゲル化終 了までの間に変化した共振抵抗R₁および共振周波数変化△Fの値を示し たものである。エンドトキシン濃度が増すに従い、R₁と△Fの変化量は、 共に小さくなることが示された。ここで観察の結果、一度測定に使用し たセルのR₁が、水洗後も元に戻らず高い値を示すことがわかった。R₁ の値は、0.1 M HC1による洗浄によって、元のレベルまで回復する ことから、粘性の高い薄膜が、表面に吸着することによってもR₁の変化 が生じているものと考えられる。

この吸着反応は、LALに含まれている物質によって、起こると思われるが、Fig.5-1およびFig.5-2で示されているように、応答に時間遅れがあることから、この吸着物は、反応課程において生成される物質であると推察される。

R₁および△Fの変化量における検出限界は、10および100pg・ m1⁻¹であった。この値は、他の指標に比べて、あまり良くないが、エ ンドトキシンが高濃度の範囲まで、直線的な関係を示しており、高濃度 のエンドトキシン測定には、良い指標となるものと考えられる。

- 58 -

5.3.7 エンドトキシン濃度-ゲル化時間のキャリブレーションカ ーブ

Fig. 5 - 9 は、Fig. 5 - 5 に示したゲル化時間とエンドトキシン濃度 の関係を両対数グラフにプロットし直したものである。Fig. 5 - 9 から、 ゲル化時間とエンドトキシン濃度の間には、対数を取ることによって、 直線関係が得られることが示された。したがって、ゲル化時間とエンド トキシン濃度の両対数グラフから、最小自乗法で一次式を求めることが できる。ここで得られた一次式を用いて、未知試料のゲル化時間からエ ンドトキシン濃度を容易に求めることができる。

この他、LALのゲル化反応を阻害する物質については、既に報告が なされており、代表的なものとして、GIucose(20%), Do xycycline hydrochloride(20mg・m1⁻¹), NaCl(0.9%), L-Arginine(0.5%)などがある [50]。これらの阻害剤が存在する場合には、既知量のエンドトキシ ンを添加して、阻害効果を調べて、補正した濃度を求めることができる。 エンドトキシン濃度の測定に、水晶振動子を使用することにより、光 学的な妨害を受けずに、より確実にゲル化反応を追跡することが可能に なった。さらに、水晶振動子表面が濡れている程度で十分測定ができる ため、微量の試薬および試料で測定が可能である。また、本章で製作し たシステムは、粘度変化を伴う反応の測定に汎用的に応用が可能である と考えられた。

5.4 試作機の製作

これまで述べたエンドトキシン濃度の測定法を汎用的に使用可能なも のとするためには、装置の小型化と多チャンネル化が必要である。この ため、発振回路を利用した測定法について検討した。これまでのFig. 2 -1の回路では、粘性の大きなゲルでは発振不能となり測定ができなか ったが、この回路をを改良したFig. 5 - 10に示す回路を用いることに よって、ゲル化反応を測定できることを見いだした。さらに、周波数カ ウンター回路とラパーヒーターを用いた恒温器によって6チャンネルタ イブの試作機を構成した。試作機の構成図をFig. 5 - 11に写真をFig. 5 - 12に示す。この試作機は、I/Oボードを介してコンピューター に接続して使用した。本試作機によって得られた応答曲線の例をFig. 5 - 13に示す。また、90%ゲル化時間(T1)の測定結果をFig. 5 -14に示す。このように、本試作機がエンドトキシン濃度の測定に適用 可能であることが確かめられた。以上の結果から、本試作機をさらに改 良することによって、実用化を行うことが可能であると考えられる。

5.5 結言

本章では、第四章において水晶振動子が粘度測定素子として利用可能 であることが示されたことを受け、実際の応用について検討した。応用 の対象として、カプトガニ血球抽出物がエンドトキシンによってゲル化 することを利用して、エンドトキシン濃度の測定について検討した。こ の結果、本章で示したシステムが、エンドトキシン濃度の測定に使用可 能であることが示された。本章では、エンドトキシン濃度測定のための 指標についての検討を行い、ゲル化時間の算出法について検討した。本 章で得られた知見をまとめると以下のようになる。

(1) 水晶振動子を用いて、共振抵抗R および共振周波数変化を測定す ることにより、エンドトキシンによるカプトガニ血球抽出物のゲル化反 応を粘性変化として、モニターできることが示された。 (2) 測定データから多項式近似式を計算し、共振抵抗R₁または共振周 波数変化の最終変化量の90%に達した時間をゲル化時間として求めた ところ、ゲル化時間とエンドトキシン濃度の間によい対応関係が得られ た。この場合の検出限界は、1pg·m1⁻¹であり、従来法と同等であっ た。得られた多項式をさらに微分し、最大変化速度(V_{R max})を求め、 微分値が、V_{R max}の10%まで低下した時間をゲル化時間として求めた ところ、同様に、ゲル化時間とエンドトキシン濃度との間によい対応関 係が得られた。

(3) エンドトキシン濃度測定の指標として、R₁の最大変化速度V_R = **を用いたところ、検出限界は、1 pg·m1⁻¹であり、エンドトキシン 濃度測定に十分使用可能であることが示された。また、この最大変化速 度は、40分以内に現れるため、低濃度試料では、測定時間の短縮が可 能であることが示された。

(4)共振抵抗および共振周波数が、あるしきい値に達した時間を求め、 ゲル化時間としたところ、ゲル化時間とエンドトキシン濃度の間に、よ い対応関係が得られた。このゲル化時間は、1pg・m1⁻¹の試料でも3 0分程度で現れるため、測定時間の短縮が可能であることが示された。 (5)ゲル化反応前後の共振抵抗R₁および共振周波数の変化量とエンド トキシン濃度は直線関係にあるため、高濃度のエンドトキシンの測定に 利用可能であることが示された。また、これらの変化には、反応課程で 生成した物質の吸着も関与していることが示唆された。

(6) ゲル化時間の対数とエンドトキシン濃度の対数は、一次式で近似 できることが示され、比較的容易にゲル化時間とエンドトキシン濃度の 換算が行えることが示された。

(7)発振回路を使用した試作機を製作し、実用化を可能にした。

Fig. 5-1 Resonant resistance response caused by gelation of Limulus amebocyte lysate for different endotoxin concentrations: (A) 0; (B) 0.1; (C) 1; (D) 10; (E) 10^2 ; (F) 10^3 ; (G) 10^4 ; (H) 10^5 pg·cm⁻³ (37°C).

- 62 -

Fig. 5-2 Resonant frequency response caused by gelation of Limulus amebocyte lysate for different endotoxin concentrations: (A) 0; (B) 0.1; (C) 1; (D) 10; (E) 10^2 ; (F) 10^3 ; (G) 10^4 ; (H) $10^5 \text{ pg} \cdot \text{cm}^{-3}$ (37°C).

Fig. 5-3 Resonant resistance response for a $1 \text{ ng} \cdot \text{cm}^{-3}$ endotoxin sample. The points show experimental data, the line is drawn on the basis of the polynomial equation approximating the data. T1 is the time required for 90% of the total resonant resistance change.

Fig. 5-4 Plot of the differentiated polynomial equation of fig. 5-3. Resonant resistance R is differentiated to dR/dt ($\Omega \cdot min^{-1}$). T2 is the time required to decrease to 10% of the maximum differential value. V_{Rm=x} is the value of maximum differential value. T3 is the time to reach V_{Rm=x}.

Fig. 5-5 Relation between gelation time and endotoxin concentration based on T1 (\odot) and T2 (\blacksquare) obtained from the resonant resistance response and T1 (\bigcirc) and T2 (\square) obtained from the resonant frequency response.

Fig. 5-6 Relation between endotoxin concentration and (a) gelation time T3 or (b) V_{Rmax} .

CONCENTRATION (pg·cm⁻³)

Fig. 5-7 Relation between gelation time and endotoxin concentration. The gelation time is obtained from the time to cross the threshold of resonant resistance 1500 Ω (O) and resonant frequency change 7500 Hz (Δ).

Fig. 5-8 (a) Relation between endotoxin concentration and the resonant resistance change.

Fig. 5-9 Double Logarithmic relation between gelation time and endotoxin concentration: Gelation time T1 (\bullet) and T2 (**I**) are obtained from the resonant resistance response, and T1 (O) and T2 (\Box) are obtained from the resonant frequency response.

Fig. 5-10 Oscillating circuit for the prototype system.

Fig. 5-11 Block diagram of the prototype system for endotoxin determination.

Fig. 5-12 Front view of the prototype system for endotoxin determination.

.

Fig. 5-14 Double logarithmic relation between gelation time and endotoxin concentration obtained with the prototype system. 第六章 水晶振動子によるフィブリノーゲン濃度の測定

6.1 緒言

第五章において、水晶振動子を用いて、カブトガニ血球抽出物のゲル 化反応を測定することによって、エンドトキシンの濃度測定が可能であ ることを示した。本章では、このゲル化反応の測定手法が、分析手段と して汎用的に使用可能であることを検証するため、フィブリノーゲンの 凝固反応の測定について検討を行う。

フィブリノーゲンは、血液凝固に関連するタンパク質の一種であり、 血液凝固時のゲルの骨格を形成するものとして知られている。この血液 凝固反応もカブトガニ血球抽出物の場合と同様、カスケード機構によっ て、凝固反応が進行するが(Fig.1-2b)、フィブリノーゲンがトロ ンビンによって凝固する反応は、その最終段階である[45,46]。 血液中におけるフィブリノーゲン濃度は、体内の異物の存在によっても 変化することから、この濃度測定は、医療分野における検査項目として、 また、人工臓器の開発における生体適合性の検討において重要視されて いる。

これまでにも、フィブリノーゲンの凝固反応における凝固時間を測定 する装置が市販されている。この装置の原理には、光散乱を利用するも のと、機械的に振動を与え粘度変化を測定するものとがある。光学的な 方法には、着色した試料や濁った試料では測定できないという問題点が ある。機械的な振動による方法には、装置に機械的な部分があるため耐 久性や時間的な精度などの点で問題がある。

第五章において扱ったカブトガニ血球抽出物のゲル化反応が、数十分 を要する反応であったのに対して、フィブリノーゲンの凝固反応は、数

- 63 -

秒で完了してしまう。また、エンドトキシン測定においては、大きな信号変化を得ることができたが、フィブリノーゲンの凝固反応による信号変化は、ゲルの骨格となるフィブリノーゲン濃度が測定試料として変化するため、比較的小さくなる場合が考えられる。したがって、本章では、粘度変化を高速で測定すること、十分な信号変化を確保することの2点を中心に新たな凝固反応測定システムの構築を行う。

6.2 実験方法

6.2.1 実験装置および試薬

本章で使用した水晶振動子およびセルには、第五章と同様に、ATカ ット、9MHzの水晶振動子とFig.4-1(A)に示した水晶振動子が底面 になるような井戸型のセルを用いた。本章の測定システムには、第五章 で用いたインピーダンスアナライザーではなく、発振回路と周波数カウ ンターを使用した。この理由は、周波数カウンターによる測定では、測 定精度を10Hzにすることによって、0.1sec間隔で測定を行うこ とができるからである。本章の測定システムの構成は、第二章および第 三章で使用した測定システムに準ずる。すなわち、発振回路には、Fig. 2-1に示したTTL-IC(SN7400)で構成したものを使用し、 周波数カウンターには、Iwatsu, SC-7201を使用し、コン ピュターには、NEC, PC-9801Eを使用した。

フィブリノーゲン標準溶液、8μg·ml⁻¹のPolybreneを含 む20NIH·ml⁻¹のトロンビン溶液、 さらに、5.33mg·ml⁻¹ Barbital, 2.12mg·ml⁻¹Sodium acetate, 0.3mg·ml⁻¹Sodium azide, 6.13mg·ml⁻¹塩化 ナトリウムを含む緩衝液については、Boehringer Mann heim社より入手した。2µmおよび5µmのアルミナ粒子について は、Sumitomo Chemical Co Ltd.より入手し た。

6.2.2 フィブリノーゲン濃度の測定

フィブリノーゲン溶液は、上記緩衝溶液によって、500,250, 125,50mg·ml⁻¹に希釈して使用した。ブランク測定には、緩 衝液をそのまま用いた。ゲル化反応に関する実験操作に関しては、基本 的に、Boeringer Mannheim社の測定キットの使用法 に従った[73]。

実験操作としては、まず、37℃にインキュベートした0.2mlのフ イブリノーゲン試料液を37℃恒温槽中の水晶振動子セルに注入した。 次に、室温(20℃)の0.2mlトロンビン溶液を加え、ビベットによ る吸入、排出操作によって、すばやく攪はんした。

本章の測定では、疑固反応が速く進むため、発振周波数の測定を試料 混合前に開始した。この場合、試料の混合が行われた時点で、発振周波 数が急激に変化することから、発振周波数が急激に変化した点から反応 開始時間を得た。また、周波数カウンターのゲートタイムを0.1 s e c として測定を行った。コンピューターにおける周波数データの処理を含 んだ測定間隔は、0.15 s e c であった。

アルミナ粒子の沈降を調べる実験では、0.2または1 mg·m1-1 のアルミナ粒子を蒸留水中に懸濁させて使用した。

6.3 結果および考察

6.3.1 ゲル化反応に伴う発振周波数変化の応答

Fig. 6-1 (a) は、500mg・d1⁻¹のフィブリノーゲン試料の 凝固反応に伴う発振周波数変化を示したものである。ここで、発振周波 数変化の値は、トロンビン溶液混合前の発振周波数を基準にして、これ までの各章の場合と同じ方法で求めたが、グラフ上では、上下を逆にプ ロットした。

Fig. 6-1 (a) に示される周波数変化は、周波数の精度が10Hz であるために、階段状のグラフになっている。これについて、測定値の 連続する5点の平均を取るというデータ処理を行って、プロットし直し たものが、Fig. 6-1 (b) である。この処理は、データF1, F2, F3…に対して、f1=(F1+…+F5) /5, f2=(F2+…+ F6) /5,, を計算し、新しいデータをf1, f2, f3, …とし たものである。

Fig. 6 - 1 (b)において、発振周波数は、試料の混合と同時に急激 に減少した。これは、加えたトロンビン溶液が、始めに入れたフィブリ ノーゲン試料溶液よりも温度が低く、粘性が大きいためと考えられる。 次に、発振周波数の増加が起こるが、これは、温度が低いトロンビン溶 液が直接水晶振動子に接っした後、2つの液体が完全に混合し、粘性が 低下したためと考えられる。さらに、周波数は、再び減少した後、一定 値を示すようになった。この変化が、凝固反応による粘性増加を示すも のであり、変化の終了が凝固の完了を示すもである。この後、発振周波 数は、ゆっくりした増加を示した。これは、セルが37℃恒温槽中にあ るため、徐々に試料の温度が上昇し、粘性が減少したためと考えられる。

6.3.2 ゲル化時間の測定

ゲル化時間(Tg)は、測定データからコンピューターによって、自 動的に算出した。すなわち、周波数が急速に減少する点(試料注入点) と2回目の下向きのピークを示す点(ゲル化完了点)を判定し、その2 点間の時間を求めた。

Fig. 6 - 2は、それぞれ、500, 250, 125, 50mg・d1-' のフィブリノーゲン試料について、凝固反応に伴う発振周波数変化を 示したものである。500, 250mg・d1-' の試料については、凝 固時間は、3.65および11.10secであることが求められた。こ の結果は、従来法によく対応するものであった。しかし、125, 50 mg・d1-' の試料については、2回目の下向きのピークは得られず、 凝固時間を求めることはできなかった。この原因としては、凝固反応に よる発振周波数の減少が、温度変化による発振周波数の上昇よりも小さ いため、結果として周波数の減少が観測されなかったことが考えられる。

6.3.3 アルミナ粒子を用いる周波数変化の増幅

濃度の低いフィブリノーゲン試料の測定における温度の影響は、トロ ンビン溶液を予め37℃にインキュベートしておくことによって、ある 程度避けることが可能と考えられる。しかし、本研究においては、より 確実なゲル化反応の検出法として、アルミナ粒子を添加する方法を考案 したので、以下、この方法について述べる。

このアルミナ粒子を用いる方法は、溶液中にアルミナ粒子を懸濁させ ておくと、アルミナ粒子が徐々に沈降していき、セル底面の水晶振動子 上に堆積することによって、発振周波数変化を引き起こすことを利用し たものである。このアルミナ粒子は、凝固反応の進行とともに、ゲルの 網目構造の中にトラップされてしまう。したがって、凝固が終了すると アルミナ粒子による周波数変化も止まることになる。

アルミナ粒子懸濁液5μm-0.2wt%,5μm-1wt%,2μm -1wt%について、発振周波数の時間変化を示したものが、Fig.6-3である。Fig.6-3から、全体の周波数変化が、アルミナ粒子の濃度 (wt%)によって決まることが示された。また、粒径が小さい方が周 波数変化を長時間維持させることができるが、単位時間当りの変化量は 小さくなることが示された。沈降終了時間は、5μmの粒子で4.5分で あった。

6.3.4 アルミナ粒子を用いる凝固時間の測定

凝固時間の測定には、5μm-1wt%のアルミナ粒子をトロンビン 溶液に懸濁して使用することにした。この理由は、5μmの粒子は、単 位時間当りの変化量が多いことと、ゲル化反応は4.5分以内には終了す るため、5μmの粒子で十分であるからである。

アルミナ粒子を使用して、500,250,125,50,0mg・d 1⁻¹のフィブリノーゲン試料の凝固反応に伴う発振周波数変化を測定し た結果が、Fig.6-4である。Fig.6-4に示されるように、Fig.6-2では、凝固反応を判定できなかった125,50mg・d1⁻¹の試料 についても、明確に凝固の判定ができるようになった。また、0mg・d 1⁻¹の試料では凝固していないことが、はっきりと示された。

前述したゲル化時間の測定プログラムによって、Fig. 6 - 4 から求め たゲル化時間をフィブリノーゲン濃度に対してプロットしたものが、Fi g. 6 - 5 である。Fig. 6 - 5 に示されるように、両対数プロットしたフ ィブリノーゲン濃度とゲル化時間の間によい直線関係が認められた。こ れも、従来法[48,73]の知見とよく一致する結果である。

6.4 結言

本章では、第五章において示した水晶振動子を用いるゲル化反応を利 用した測定手法が、分析手段として汎用的に使用可能であることを検証 するため、フィブリノーゲンの凝固反応の測定について検討を行った。 この結果、発振回路を用いる測定システムによっても、凝固反応の測定 が行えることを示した。本章で得られた知見をまとめると以下のように なる。

(1)発振回路タイプの水晶振動子粘度測定システムによって、ゲート タイムを0.1 secで周波数測定することによって、数秒で終了するフ イブリノーゲンの凝固反応を測定可能であることが示された。しかし、 低濃度の試料では、温度変化の影響で、測定ができなくなる場合がある ことがわかった。

(2) アルミナ粒子の懸濁液において、アルミナ粒子がセル底面の水晶 振動子上に沈降することによって、周波数変化を引き起こすことが示さ れた。この周波数変化の最終的な量は、添加した粒子の量に依存し、周 波数の変化速度は、粒子が大きくなるほど大きくなることが明かとなっ た。

(3)アルミナ粒子をトロンビン溶液に懸濁させた状態で、フィブリノ ーゲンの凝固反応を行わせることによって、ゲル化時の周波数変化を増 幅できることが示された。この方法によって、温度変化に伴う粘性変化 の影響を受けずに、低濃度のフィブリノーゲン試料の測定も行えること が明かとなった。また、本システムによって得られたゲル化時間は、従 来法による結果とよく対応するものであった。

Fig. 6-1 Resonant frequency response to 500 mg·dl⁻¹ fibrinogen: (a) actual data; (b) data after the smoothing process. The arrow represents the injection of thrombin solution.

Fig. 6-2(1) Resonant frequency responses to: (A) 500 and (B) $250 \text{ mg} \cdot \text{dl}^{-1}$ fibrinogen solution. The downward arrows represent the injection of thrombin solution. The upward arrows show the end-points of coagulation.

Fig. 6-2(2) Resonant frequency responses to: (C) 125 and (D) 50 mg·dl⁻¹ fibrinogen solution. The downward arrows represent the injection of thrombin solution. The upward arrows show the end-points of coagulation.

Fig. 6-3 Resonant frequency responses to aluminium oxide particle suspension of: (A) 0.2%, (B) 1%, both 5 μ m diameter; (C) 1% (w/w) of 2 μ m diameter. The arrows represent the injection of the suspension.

Fig. 6-4(1) Resonant frequency responses using 1% (w/w) 5µm aluminium oxide particles to: (A) 500; (B) 250 and (C) 125 mg·dl-1 fibrinogen solutions. The downward arrows represent the injection of thrombin solution. The upward arrows show the end-points of coagulation.

Fig. 6-4(2) Resonant frequency responses using 1% (w/w) 5 μ m aluminium oxide particles to: (D) 20 and (E) 0 $\mbox{mg}\mbox{\cdot}\mbox{d}\mbox{l}^{-1}$ fibrinogen solutions. The downward arrows represent the injection of thrombin solution. The upward arrow shows the end-points of coagulation.

Fig. 6-5 Relationship between concentration and coagulation time using aluminium oxide particles.

第七章 天然脂質被覆水晶振動子による匂い物質の計測

7.1 緒言

第一章で述べたように、水晶振動子を用いたガスセンサーに関して、 数多くの研究が報告されている[5-14]。これらの研究では主に、 水晶振動子上に有機薄膜を形成させ、この有機薄膜に対するガス吸着性 の違いを利用してガスの識別や濃度の測定を行うものである。この中に は、感応膜に酵素や抗体を利用した水晶振動子ガスセンサーの報告もあ る[74,75]。しかし、このような生体高分子は、その基質に対し て分子量が大きいため、期待される応答はきわめて小さいと考えられる。 これについては、筆者らも予備実験を行ったが満足な結果は得られなか った。

一方、最近では、岡畑らによって、人工二分子膜を被覆した水晶振動 子を用いて、匂い物質の測定を行ったという報告がある[76]。この 中では、感応膜として二分子膜物質のが用いられており、この感応膜は、 他の有機膜に較べ高い応答性を示したと報告されている。この中では、 匂い物質の濃度に対する評価は、分配係数という形で扱われており、各 匂い物質について得られた分配係数と嗅覚細胞において求められていた しきい値(匂い物質が嗅覚細胞を応答させる最小濃度)の間によい対応 関係があったと報告されている。しかし、匂い物質の識別については検 討されていない。

脂質が、匂い物質に対する感応素子として機能を持つということは、 栗原らの研究から示唆されている[77-80]。栗原らは、リポソー ムの膜電位を測定する実験から、脂質の構成成分の比によって、匂い物 質に対する膜電位変化の程度が変化することを明らかにした。この膜電 位変化を起こす匂い物質の最小濃度は、匂い物質によって異なり、この 傾向は、実際の嗅覚細胞で得られた結果と一致することが示された。こ のことから、嗅覚には何種類かの匂いを検知するレセプターが存在する、 というこれまでの考え方に対して、それぞれ脂質組成の異なる嗅覚細胞 が、匂い物質に対して異なる信号を出し、その複数の信号パターンによ って、匂いの識別が行われるという考えが示されている。

一方、これまでの水晶振動子ガスセンサーの測定装置には、発振回路 が用いられてきた。しかし、この発振回路には、水晶振動子上の感応膜 の膜厚が増加するなど、負荷が増加することによって、発振が停止して しまうという問題点があった。ところが、本論文でこれまでに述べたイ ンピーダンスアナライザーを用いる方法によって、高負荷の水晶振動子 についての測定が可能であることから、ガスセンサーとしての応用領域 に新しい可能性が見いだされるものと考えられる。

このような知見をもとに、本章では、天然脂質を感応膜として使用し た水晶振動子を用い、気相の匂い物質に対する応答性について検討する。 さらに、膜組成の異なる数種類の感応膜を用いて、匂い物質に対する応 答パターンの相違を利用して、匂い物質の識別についての検討を行う。

7.2 実験方法

7.2.1 実験装置および試薬

本章で使用した実験装置をFig.7-1に示す。水晶振動子は、密閉さ れたフラスコの中に固定されるようになっており、フラスコには窒素ガ スの導入コックと排気口が付けられている。水晶振動子の共振周波数お よび共振抵抗R1の測定には、第四章と同様に、インピーダンスアナラ

- 71 -

- 70 -

イザーとコンピューターを使用した。フラスコの容量としては、標準で、 600mlのものを使用し、この他に、300mlと1200mlのフ ラスコを使用した。

匂い物質の感応膜としては、ホスファチジルエタノールアミン、アゾ レクチン、卵黄レシチン、コレステロールを使用した。ホスファチジル エタノールアミンは、SIGMA chemical company より入手した。アゾレクチン、卵黄レシチン、コレステロールは、和光 純薬(株)より入手した。測定対象には、代表的な匂い物質である、β ーIonone、Citral、n-Amyl acetate、 Menthoneを選んだ。さらに有臭性の有機ガスとして、メタノー ル、エタノール、アセトン、エチルエーテルを測定対象とした。これら の化学式をFig.7-2に示す。このうち、β-Iononeはスミレ香、 Citralはレモン香、Menthoneはハッカ香、n-Amyl acetateは果実香として知られている。β-Ionone、 Citral、n-Amyl acetate、Menthoneをつい ては、和光純薬(株)より入手した。また、メタノール、エタノールに ついては、脱水されたものを使用し、その他、アセトン、エチルエーテ ルには、特級品を使用した。

7.2.2 実験操作

感応膜物質をクロロホルムに溶解(5 mg・m1⁻¹)した後、標準の 実験で、感応膜の量が100μgとなるように水晶振動子上へキャステ イングし、静置して乾燥させた。この際、キャスティング前と後の共振 周波数の測定も行った。

匂い物質の応答性の測定では、まず、窒素ガスを流しながら共振周波

数が一定となるまで放置し、一定となった後、窒素ガスを止め、試料を フラスコ中に注入した。試料の注入には、マイクロシリンジを使用し、 注入した液体をフラスコ内で気化させた。このときの注入量から計算し た試料の気化した体積とフラスコの体積から試料ガスの濃度を算定した。 また、β-Ionone、Citral、n-Amyl acetate、 Menthoneについては、エチルエーテルで希釈して、濃度をコン トロールした。この場合には、全体の注入量を5μ1(600ml容器 でエチルエーテル濃度0.2%[気化した体積/フラスコ全体の体積]) として実験を行った。試料による共振周波数の応答が一定となった後、 再び窒素ガスを流し、共振周波数が元の値に戻るまで放置した。この後、 再び、次の測定に使用した。共振周波数の測定と同時に、共振抵抗R₁の 測定も行った。

7.3 結果および考察

7.3.1 天然脂質の匂い物質に対する応答性

Fig. 7 - 3 (a), (b), (c), (d)は、アゾレクチンをキャストした水晶振動 子の各匂い物質 (β - I o n o n e、C i t r a 1、n - A m y 1 a c e t a t e、M e n t h o n e) に対する共振周波数の応答を示し たものである。 (ここで、[p p m]は、[匂い物質の気体状態での体 積/容器全体の体積]を示す。) Fig. 7 - 3 に示されるように、天然 脂質をキャストした水晶振動子は、匂い物質に対して応答することが確 認された。ここで、例えば、Fig. 7 - 3 (b)において、m e n t h o n e の濃度が、0.13 p p m と 1.3 p p m では、共振周波数変化は、エチ

- 72 -

- 73 -

ルエーテルのみの結果とほとんど変化がない。したがって、この濃度に おけるmenthoneの寄与は、きわめて少ないと考えられる。13 ppmと65ppmにおける共振周波数変化は、エチルエーテルとme nthoneによって生じた周波数変化の和であると考えられる。この ことから、menthoneの検出限界が、1.3ppmと13ppmの 間であることがわかった。また、Fig. 7 - 3 (a), (b), (c), (d)から共振周 波数の応答速度は、匂い物質の種類によって大きく異なることが観察さ れた。この違いは、匂い物質の膜表面への吸着速度および膜中への拡散 速度の違いによって生じるものと推察される。

Fig. 7 - 4 (a),(b),(c),(d)は、アゾレクチン、卵黄レシチン、ホスフ アチジルエタノールアミン、コレステロールにおける各匂い物質の濃度 と共振周波数変化の関係を示したものである。エーテル希釈にともなう 応答値への影響を調べるため、n-Amy1 acetateについて、 エーテルによる希釈を行なわずに濃度をコントロールした結果をFig. 7 - 4 (a)に合わせて示した。300ppm,600ppmのn-amy1 acetateに対して、125Hz,365Hzの結果が得られ、エ ーテル希釈を行ったときの結果とほぼ一致した。このことから、エーテ ル希釈によって共振周波数の増加、減少という効果が生じることはない と推察された。また、共振周波数変化が十分大きな場合には、エーテル による周波数変化の増加は、無視し得るものと考えられた。

Fig. 7 - 4 (a), (b), (c), (d)において、各匂い物質の検出下限は、それ ぞれ異なっており、このうち β - I o n o n e が、一番小さく、1 p p m程度である。次に、Citralの数 p p m、次に、 M e n t h o n e の 1 0 p p m、最後に、n - A m y 1 a c e t a t e の 1 0 0 p p mとなっている。この結果は、栗原らの報告 [77-80] にある動物 の嗅覚細胞のしきい値の順序や、脂質の膜電位測定における応答の最小 濃度の順序とよく対応している。このように、異なる系で類似した傾向 を示すことから、これらの結果は、脂質と匂い物質の吸着平衡を反映し ているものと考えられる。

アゾレクチンをキャストした水晶振動子のメタノール、エタノール、 アセトン、エチルエーテルに対する共振周波数の変化をFig.7-5に示 す。(ここで、[%]は、[匂い物質の気体状態での体積/容器全体の 体積]を示す。) Fig.7-5から、これらの有機ガスの感度は、0.1 %(1000ppm)程度であり、これまで扱った匂い物質に比べて鈍 いことが示された。この結果も、嗅覚におけるしきいの順序に対応して いる。

ところで、本実験で行なったガス濃度のコントロールは、簡易的な方 法であり、容器への吸着による影響も考えられる。ここで、この吸着の 影響について考察する。

気体の単分子吸着の一般的な式は、次式で与えられる。

v = a b p / (1 + a p) 7 - 1
 ここで、v:吸着したガスの体積、p:圧力、a:定数、b:ガスの飽
 和吸着体積、である。

式7-1において、圧力pを濃度cに置き換えると、次のようになる。

 $m = a m_0 c / (1 + a c)$ 7 - 2

ここで、m:吸着したガスの質量、m。:ガスの飽和吸着量、である。 式7-2は、ガス濃度が低い場合に、次のように書き換えられる。

m = a m o c 7 - 3

- 75 -

体積Vの容器において、初期濃度をcoとすると、

 $m = a m_0 (c_0 - m / V)$

7 - 4

となる。ここで、m。は容器内の全表面積に依存し、本実験においては、 mは水晶振動子表面と容器内面への吸着ガスの合計を意味する。

一般に、ガスの吸着平衡が、被吸着物質よりも吸着ガスの性質に依存 すると考えられるので、この水晶振動子表面と容器内面への吸着量の比 は、ほぼ一定であると推察される。ガス濃度は、調整した初期の c oから c へと減少する。これに伴い応答値も初期濃度から期待される値よりも 小さな値となると考えられる。ただし、このように応答値が変化した場 合でも個々の実験装置において、応答が濃度に対して依存する傾向には 変化はなく、測定には支障はないと推察される。

次に、容器表面への吸着の影響を調べるために、体積の異なる容器を 用いて実験を行った。Fig.7-6は、300,600,1200m1の 容器を用いて、エーテル(20µ1)で希釈したcitralの濃度と 共振周波数変化の関係を調べた結果である。容器の内表面積は、それぞ れ、およそ1100,1800,2800cm²である。(面積)/(体 積)の値は、体積が大きくなるほど小さくなり、容器への吸着の影響は 小さくなると考えられる。Fig.7-6では、容器が大きいほど共振周波 数変化は大きくなることが示され、吸着の影響が確認された。しかし、 Fig.7-6では、それぞれの容器から得られた共振周波数変化は、いず れも濃度に依存して変化することが示された。この結果は、同時に、容 積に関わらず相対的に濃度変化に対応した測定が可能であることを示し ている。

一方、応答を引き起こす最小濃度については、式7-3から考察する ことができる。まず、気体の種類によって、式7-3の定数aの値がそ れぞれ異なることが考えられる。そして、水晶振動子における共振周波 数変化は、濃度に対して傾きaで直線的に変化すると考えられる。この ような直線的な変化を片対数でブロットした場合、傾き a の違いによっ て、ある濃度から急激に吸着が起きたように見えるものと考えられる。 したがって、嗅覚におけるしきい値と水晶振動子の応答の最小濃度の順 序がよく対応したことは、嗅覚においても匂い物質の吸着性によって、 嗅覚の感度が左右されていることを示唆するものと考えられる。すなわ ち、レセプターによって、匂い物質が検知されるという考えもあるが、 脂質膜で検知されると考えれば、しきい値の意味を簡単に説明すること ができる。

7.3.2 各種天然脂質の匂い物質に対する応答パターンとその標準 化

Fig. 7 - 4 において、それぞれの匂い物質の感応する最小濃度の値は、 それぞれどの脂質においても同じ程度であったが、応答の絶対値は、そ れぞれ異なっている。この理由としては、感応膜の厚さがそれぞれ若干 異なることと、前節で述べた気体の種類に起因する吸着性の違いが考え られるが、この他に、被吸着物質(感応膜)に依存する吸着特性の差が 関与していると考えられる。

Fig. 7 - 7 は、横軸に感応膜の種類をとり、一定の濃度の匂い物質に ついて、各感応膜で得られた共振周波数変化をグラフ化したものである。 Fig. 7 - 7 に示されるように、4 種類の感応膜は、それぞれの匂い物質 に対して、様々なパターンを示した。このパターンの比較によって、匂 い物質の識別が可能と考えられる。

また、Fig.7-7において、アゾレクチンで得られた共振周波数変化 は、どの匂い物質に対しても比較的変化が少ないことが示された。この ことから、匂い物質の濃度の測定を行う場合には、アゾレクチンで得ら れた共振周波数変化を用いるのが適当であると考えられる。

Fig. 7 - 7 に示したパターンは、それぞれ、条件の異なる実験で得ら れた共振周波数変化をそのまま示したものでる。このため、このままで は、パターンどうしを比較することはできない。すなわち、パターンの 比較を行うには、パターンの標準化を行う必要がある。Fig. 7 - 7 にお いて、測定条件として異なる点は、それぞれの感応膜の量と匂い物質の 濃度である。したがって、本実験におけるパターンの標準化には、各感 応膜間での標準化(膜厚に起因する変異の補正)、そして、各応答パタ ーン間における標準化(匂い物質の濃度に起因する変異の補正)の2つ のステップが必要と考えられる。

まず、感応膜の量に対する標準化について検討する。ここで、Fig. 7 -8は、アゾレクチンの被覆量を変えた3種類の水晶振動子について、 被覆に伴う共振周波数変化(ΔFriim)を横軸にとり、メタノールに対 して得られた共振周波数変化(ΔFriim)を繊軸に示したものである。F ig. 7-8から、ΔFriimとΔFras は、直線関係を示すことが示された。 したがって、個々の感応膜における共振周波数変化は、ΔFras/ΔFr

一方、この共振周波数変化の膜厚依存性は、膜厚を厚くすることによって、感度の向上が可能であることを示すものである。一般の発振回路を使用する測定装置では、膜厚をある程度増加させると、発振が停止し、 測定が不能になってしまう。これに対して、本研究で使用したインピー ダンスアナライザーでは、さらに、膜厚が厚い場合でも測定が可能であり、感度を簡単に向上させることが可能と考えられる。

次に匂い物質の濃度に対する標準化について検討する。式7-3およびFig.7-8の結果からもわかるように、匂い物質の吸着によって生じ

る共振周波数変化は、匂い物質の濃度に対し直線的に変化すると考えら れる。したがって、匂い物質の濃度に対する補正では、濃度変化によっ て、パターンが変化しないものとして処理を行うことができる。すなわ ち、パターンの大きさについての標準化を行えばよい。そこで、個々の パターンにおける平均が、それぞれ1となるような処理を行うことによ って、パターンどうしの標準化を行った。

この2つの標準化の処理をFig.7-7に対して行った結果が、Fig.7 -9である。Fig.7-9を用いることによって、未知試料のパターンに 対して、識別を行うことも可能と考えられる。このパターン識別法とし て、一般には、それぞれの感応膜について、未知試料の応答値と標準の 応答値の差の自乗を計算し、その合計値をもとに判断する方法がとられ ている。この方法では、自乗和が、未知試料に対して、最も小さな値を 示す標準パターンを検索することによって、未知試料の識別が行われて いる[81]。

7.3.3 アゾレクチンーコレステロール混合膜の匂い物質に対する 応答性

前節では、4種類の感応膜を用い、匂い物質に固有のパターンが得ら れることを示した。一方、2種類の脂質を混合させたリポソームの膜電 位は、その脂質の混合比率によって、単なる直線的な変化でなく、匂い 物質に対して異なるパターンで変化することが、栗原らの研究で示され ている「79]。

本研究では、これに関連して、アゾレクチンとコレステロールの混合 比を変えた感応膜を使用し共振周波数変化の測定を行った。Fig.7-1 0は、種々の混合比のアゾレクチンーコレステロール感応膜における句

- 79 -

い物質の共振周波数変化を膜厚について標準化した結果(Δ F ***/Δ F riim)を混合比を横軸にして示したものである。Fig. 7 - 1 1 は、さら に、Fig. 7 - 1 0 のパターンを平均1に標準化した結果である。Fig. 7 - 1 1 から、アゾレクチンーコレステロール混合膜の応答は、単に、ア ゾレクチンーコレステロールの比によって、比例配分された応答値が得 られるのではないことが確認された。この結果は、既に述べた栗原らに よって示された知見とよく対応するものである。これは、脂質がその組 成比によって、微妙に性質を変えることを示唆するものと考えられる。

さらに、ここで得られたパターンは、単に独立な複数のセンサーで得られるパターンとは異なり、横軸方向の関連性があることから、より多くの情報を含んでいるといえる。

7.3.4 応答パターンの比較法の検討と測定結果への適用

一般に、応答パターンの比較法としては、個々のセンサーの出力値の 差の自乗和を計算して比較するという方法がよく用いられている。これ に対して、2次元的なパターンの比較法について、文字や図形のパター ン認識についての研究が行われている[83,84]。しかし、いずれ の方法も、限られた対象に対する処理法を検討したものであり、前節で 得たパターンの比較法として、そのまま適用できるものは見あたらない。 そこで、本論文では、このパターンの比較法から検討を行う。

まず、2つの方法について検討を行う。第一の方法は、2つのパター ンを重ね合わせ、そのパターン間のずれによって生じた面積の和によっ て、パターン間の類似度を比較する方法(重ね合わせ法)である。第2 の方法は、2つのパターンを上下から移動させ、ある一点がぶつかった ときにそのパターンどうしのすき間に生じる面積を計算する方法(組合 せ法)である。この方法では、上下2通りの組合せが考えられるので、2通りの面積を計算して、面積の小さい方を類似度の指標とした。

ここで、Fig. 7 - 1 2 (a), (b)を用いてその特徴について検討を行う。 まず、Fig. 7 - 1 2 (a)のA, B, C 3 つのパターンについて考えると、 視覚的には、パターンBとCが類似しているように感じられる。ところ が、自乗和法では、AとC、BとCの類似性は同じであり、AとCがか なり離れているという結果が得られた。これに対し重ね合わせ法では、 BとCが最も類似しており、次がAとCであり、AとBが最も異なると いう結果が得られ、視覚的なパターンの比較を反映した傾向が得られた。 次に、組合せ法では、この場合もBとCが、最も類似性が高いという結 果が得られ、AとB、AとCは、同定度の類似度であるという結果が得 られた。この2 つの結果は微妙に異なるが、視点によっては、それぞれ 納得のできる結果と考えられる。

次に、Fig. 7-12(b)のケースでは、自乗和による結果では、AとB、 AとCが、同じ類似度であり、BとCは、かなり異なるという結果が得 られた。しかし、視覚的には、BとCともに、左から一度上昇してから 下がるという共通の特徴を持っているともいえるし、AとCの左端は、 一致した傾向を持っている。重ね合わせ法では、類似の順序は、AとC、 次にAとB、最後がBとCとなった。また、組合せ法では、AとC、B とCの類似度が同じで、AとBの類似性がやや低いという結果となった。 このように、パターンの比較を行う場合、どこに重点をおいて比較する かによって、得られる結果は異なってくることがわかる。

以上述べた2つの図形的方法は、やや感覚的な取扱であった。これに 対して、パターンの中の全ての点どうしの関係を比較していく方法につ いて検討する。この方法は、パターンの中から2つの点を選び、傾きを

- 80 -

- 81 -

計算し、2つのパターンにおける差の絶対値を加算していくものである。 そして、この計算に2つの点の横軸方向の距離の逆数が、重み付けされ るようにした。つまり、A、B2つのパターンがあり、n番目のパター ンの値が、A(n)、B(n)であり、n+k番目のパターンの値が、 A(n+k)、B(n+k)であった場合に、相違度をDIFとすると、

DIF= $\Sigma_{n}\Sigma_{k}1 / k \cdot \{ | (A(n+k) - A(n)) \}$

/(1/N) - (B(n+k) - B(n))

/(1/N) } 7-5

となる。ここで、Nは、パターンの全点数であり、1/kは、重み付けの係数である。

この方法による結果をFig. 7 - 1 2 の下段に示す。ここでは、図中の xを0.1として計算を行った。Fig. 7 - 1 2 aのパターンでは、類似度 の順序は、BとC、AとC、AとBのようになり、Fig. 7 - 1 2 bのパ ターンでは、AとC、AとB、BとCの順になり、いずれも重ね合わせ 法の結果と一致した。

以上、4つの比較法をFig.7-11に示した結果に適用し、それぞれ の匂い物質間のパターンの類似性について計算を行った結果が、Table7 -1である。(ここで、全点比較法は、計算値に10000倍した値を示 している。)Table7-1において、数値の小さいものが、類似性が高い ことを示している。それぞれの匂い物質間のパターンの類似性を類似、 相違、中間の3つに分類した結果をTable7-2に示す。Table7-2に おいて、上位6点について、類似、相違の分類を行った。(すなわち、自 乗和法においては、0.05以下を類似、0.21以上を相違に分類した。 重ね合わせ法では、0.12以下を類似、0.3以上を相違とした。組合 せ法では、0.22以下を類似、0.51以上を相違とした。前点比較法 では、30以下を類似、75以上を相違とした。)Table7-2に示した 結果は、それぞれの比較法で若干の差異を示しているが、全体的には、 メタノールとエタノールが類似性を示すなど、嗅覚で人間が感じる結果 と一致していると思われる。このパターン比較法については、今後、嗅 覚における官能的な判断との比較から、さらに、詳細に検討する必要が あると考えられる。

7.3.5 共振抵抗,共振周波数変化の匂い物質に対する依存性の違いと2次元パターンへの展開

第四章において、液体中における水晶振動子の共振抵抗民」と共振周波 数変化△Fについての詳細な検討を行った。さらに、水晶振動子の表面 に、粘弾性的な膜が存在する場合の共振周波数変化については、Cra neらによって検討が行われている [82]。しかし、粘弾性的な膜に 対する共振抵抗民」の変化についての検討は、まだ行われていない。ただ し、膜の粘弾性的な変化がない場合については、定性的に、△Fは重量 変化によって決定され、R」は密度の変化によって決定され、その変化の 比は一定となると考えられる。しかし、本実験の結果では、それぞれ標 進化したムFとR1の比 (kp/kp=(ムFsas/ムFsing)/(ムRsas/ △R(iii=))を求めると、匂い物質によって、異なる値を示すことがわか った (Table7-3)。Table7-3において、 kp/kgの値は、 匂い物 質の種類に依存して変化し、この変化は各脂質間で類似した傾向を示し た。これは、匂い物質の種類によって、脂質膜の粘弾性的な変化が生じ ることを示唆するものと考えられる。この原因としては、匂い物質分子 の形や大きさ、そして、親水性、疎水性といった性質によって、脂質分 子間の結合状態に変化が生じることが考えられる。この kp/kpの値は、

- 83 -

- 82 -

この点から膜の物理的な変化を表す指標として利用できるものと考えられる。

これに対して、個々の匂い物質の吸着量は、膜一気相間の吸着平衡に よって決定されると考えられることから、この吸着量の差は、化学的な 親和性の差として考えることもできる。一方、共振抵抗における密度の 効果は、膜量に対する吸着量が小さいことからほとんど無視し得るもの と考えられる。そして、共振周波数は、重量変化と粘弾性変化によって 変化するが、重量の効果の少ない共振抵抗と較べると、共振周波数変化 変化における重量の効果は大きいといえる。Fig.7-13は、横軸にア ゾレクチン膜で得られた共振周波数変化とコレステロール25%を含む アゾレクチン膜の共振周波数変化の比を取り、これに対してアゾレクチ ン膜で測定したkp/kaをプロットしたものである。このFig.7-13 の横軸は、単に混合比の異なる2種類の膜の応答値の比であるため厳密 な意味には乏しいが、化学的な親和性の変化を反映するものと考えられ、 それぞれの匂い物質をグラフ上で分離するのには有効と考えられる。Fi g.7-13において、比較的類似した匂いであるメタノールとエタノー ルが、近接した位置にあり、また、同じようにアセトンとエチルエーテ ルも比較的近い位置にあることがわかる。その他の匂い物質は、それぞ れやや離れた位置にあり、メタノールーエタノールおよびアセトンーエ チルエーテルの類似性に対して、よい対照を示している。このような2 次元パターンによる匂い物質の識別法は、視覚的にも分かりやすく有用 な方法であると考えられる。

7.4 結言

本章では、アゾレクチン、ホスファチジルエタノールアミン、卵黄レ

- 84 -

シチン、コレステロールなど、天然脂質を被覆した水晶振動子を用い、 匂い物質の計測について検討を行った。さらに、アゾレクチンーコレス テロール混合膜の混合比を変えた感応膜被覆水晶振動子を用いて、各匂 い物質に対する発振周波数変化を測定し、各匂い物質の応答パターンの 類似性を比較した。本章で得られた知見を要約すると以下のようになる。 (1) 天然脂質を被覆した水晶振動子によって、匂い物質の計測が可能 であることが示された。また、各匂い物質の検出下限濃度の順序として は、リポソームの膜電位変化および嗅覚細胞で得られるしきい値の順序 とよく対応した傾向が示された。このことから、匂い物質そのものの吸 着性の違いが、応答に強く影響すると考えられた。この現象は、嗅覚に おける匂い物質の検知が、レセプターによると考えるよりも脂質による と考える方が理解しやすいことを示すものである。

(2) 匂い物質に対する共振周波数変化△F ***は、膜被覆によって生じ た共振周波数変化△F ****に依存して変化することが示された。したが って、共振周波数変化の測定値は、△F ***/△F ***として標準化され ることが示された。また、4種の脂質を用いて得られた各匂い物質に対 する応答パターンは、それぞれ異なることから、このパターンを利用し た匂い物質の識別の可能性が確認された。

(3) アゾレクチンとコレステロールの混合比を変えた感応膜を有する 水晶振動子を複数用いることによって、各匂い物質に対して異なる応答 パターンが得られた。この応答パターンは、横軸に混合比を取ったもの であり、横軸方向の関連性を含むという特徴を持つものである。

(4)応答パターンの比較法として、これまでの各センサーの応答の差の自乗和を取る方法に対して、横軸方向にパターンの関連性があることを利用するため、パターンのずれの面積を計算する重ね合わせ法、組合

- 85 -

せ法、さらに、パターン各点の位置を比較する全点比較法について検討 した。これらの比較法を実際の測定データに適用し、各匂い物質の類似 性を求めたところ、嗅覚における類似性に近い結果を得ることができた。 (5)共振周波数変化(ΔF***)と共振抵抗変化(ΔR***)の比が匂 い物質によって、異なることが明かとなった。この比(ΔF***)の比が匂 い物質によって、異なることが明かとなった。この比(ΔF***)の比を包 ***)と混合比の異なる2種類の脂質感応膜どうしのΔF***の比とを2次 元的に表示することによって、匂い物質の識別に利用可能であることが わかった。

Fig. 7-1 Schematic diagram of experimental system: The system is constructed with (A) impedance analyser; (B) micro-computer and (C) coated quartz crystal.

N₂

A

B

n-Amyl acetate CH₃COO (CH₂) 4CH₃

Menthone (CH₃) 2CHCHCH2CH2 (CH₃) CHCH2CO

Citral (CH₃)₂C:CHCH₂CH₂C(CH₃):CHCHO

 β -lonone (CH_a) CHCH₂CH₂CH₂C (CH_a) : CCH : CHC (CH_a) 0

Methanol CH₃OH

Ethanol CH₃CH₂OH

Acetone CH3COCH3

Ethyl ether (CH₃CH₂)₂O

Fig. 7-2 Chemical formula of various odorants

Fig. 7-3 Resonant frequency responses to (A) n-amylacetate, (B) citral, (C) β -ionone and (D) menthone for asolectin coated quartz crystal. Initial concentrations (volume/volume) are given.

Fig. 7-4 Correlation between odorant concentration and resonant frequency shift for (A) asolectin-, (B) cholesterol-, (C) lecitin-, and (D) phosphatidylethanolamine- coated quartz crystal: B-lonone(Δ), citral(∇), menthone (O) and n-amyl acetate (\Box , \blacksquare) were used. The concentration of open marked points were controlled by ethyl ether dilution. Initial concentrations (volume/volume) are given.

Fig. 7-5 Correlation between organic gas concentration and resonant frequency shift for asolectin coated quartz orystal. Ethanol(Δ), methanol(O), acetone(\Box) and ethyl ether(\diamond) were used. Initial concentrations (volume/volume) are given.

Fig. 7-6 Correlation between citral concentration and resonant frequency shift for asolectin coated quartz crystal using a 300ml (\Box), 600ml (O) and 1200ml (Δ) vessels. Initial concentrations (volume/volume) are given.

Fig. 7-7 Patterns of resonant frequency shifts to respective odorants for (A) asolectin; (B) cholesterol; (C) phosphatidyle than olamine and (D) lecitin (from egg). Initial concentrations (volume/volume) are given.

Fig. 7-8 Correlation of resonant frequency shifts by film coating (Δ Ffilm) and resonant frequency shifts by gas adsorption (Δ Fgas). Asolectin film, and methanol gas 0.55% (\Diamond) and 2.7% (\bigcirc) were used. Initial concentrations (volume/volume) are given.

Fig. 7-9 Normalized patterns of resonant frequency shifts to respective odorants for (A) asolectin; (B) cholesterol; (C) phosphatidylethanolamine and (D) lecitin (from egg).

Fig. 7-10Patterns of normalized frequency shifts(ΔFgas/ΔFfilm)torespectiveodorantsforasolectin-cholesterolmixture of 1:0, 3:1, 1:1, 1:3and 0:1.Cholesterolratiosare given.

Fig. 7-11 Normalized patterns of resonant frequency shifts to respective odorants for asolectin-cholesterol mixture of 1:0, 3:1, 1:1, 1:3 and 0:1. Cholesterol ratios are given.

Fig. 7-12(b) Comparing method for sensor patterns (2)

Fig. 7-12(a) Comparing method for sensor patterns (1)

Table 7-1 Degree of similarity in the patterns of resonant frequency shift for eight types of odorant. Smaller value means higher similarity. Four types of comparing method are applied to the patterns shown in figure 7-11.

G

011 055 112

F

H

METHOD OF DIFFERENTIAL SQUARE

A B C D E

Fig. 7-13 Classificatory plots for various odorants by k= (3:1)/k= (1:0) (i.e. ratio of frequency shifts for asolectin coated- and asolectin-cholesterol (3:1) coated-quartz crystal) and k_/k_ (i.e. ratio of normalized frequency shift and normalized resistance shift for asolectin coated quartz crystal).

ABCDH	n-amyl acetate menthone citral b-ionone methanol	.000 .035 .122 .075 .022 .044	.036 .000 .115 .050 .054 .084	.122 .115 .000 .168 .212 .289	.076 .050 .168 .000 .047 .105	.022 .054 .212 .047 .000 .024	.084 .289 .105 .024 .000	.120 .321 .151 .041	.196 .069 .259 .208 .281	
1	echanos	.055	.120	.321	.151	.041	.005	.000.	. 273	
Gu	ethvl ether	.112	.195	.069	.259	.208	.281	.213	.000	
ME	THOD OF OVERLAPP	ING	-	C	D	Ŧ	F	G	н	
		A	5	225	142	085	.114	.099	.225	
A	n-amyl acetate	.000	. 123	254	125	.145	.149	.182	.317	
В	menthone	.123	.000	. 204	224	300	.291	.294	.173	
C	citral	.225	.254	.000	. 204	131	151	.152	.323	
D	b-ionone	.142	.125	. 234	.000		081	.098	.285	
F	methanol	.085	.145	.300	. 101	.000		039	.337	
-	ethanol	.114	.149	.291	. 151	.004		000	.320	
Ċ.	acetone	.099	.182	.294	.182	.098	.035	.000	000	
H	ethyl ether	.225	.317	.173	.323	.285			.000	
MABCDHFGH	ETHOD OF COMBININ n-amyl acetate menthone citral b-ionone methanol ethanol acetone ethyl ether	A .000 .277 .469 .335 .193 .156 .298 .331	B .277 .000 .391 .284 .269 .372 .372 .504	C .469 .391 .603 .519 .625 .767 .350	D .335 .284 .608 .000 .144 .290 .306 .656	E .193 .269 .519 .144 .000 .170 .219 .577	F 15725 2900 1700 0777 437	G 298 372 767 219 .077 .000 .360	H .331 .504 .3556 .5577 .4350 .000	
М	ETHOD OF POINTS	COMPARI	NG	0	D	Ŧ	F	G	н	
		A	B 10	13	93	26	24	28	32	
A	n-amyl acetate	0	40	51	72	50	54	64	65	
B	menthone	40		51	109	56	64	50	37	
C	citral	43	51	100	100	78	90	100	106	
D	b-ionone	93	72	109	70		26	29	39	
E	methanol	25	50	56	10	26	0	31	45	
F	ethanol	24	54	64	100	20	21	0	15	
C	acetone	28	64	50	100	23	16	15	0	
F	ethyl ether	32	65	37	106	39	40	10		

Table 7-2 Degree of similarity in the patterns of resonant frequency shift for eight types of odorant. O, - and X means similitude, neutral and difference, respectively. Four types of comparing method are applied to the patterns shown in figure 7-11.

METHOD OF DIFFERENTIAL SQUARE

		A	B	C	D	E	F	G	H	
A	n-amyl acetate	*	0	-	-	0	0	-	-	
В	menthone	0	*	-	-	-	-	-	-	
С	citral	-	-	*	-	Х	х	X	-	
D	b-ionone	-	-	-	*	-	-	-	Х	
E	methanol	0	-	Х	-	÷	0	0	-	
F	ethanol	0	-	Х	-	0	*	0	X	
G	acetone	-	-	х	4	0	0	*	Х	
H	ethyl ether	-	-	-	Х	-	Х	х	*	

METHOD OF OVERLAPPING

		A	В	C	D	E	F	G	H
A	n-amyl acetate	. *	-	-	-	0	0	0	-
В	menthone	-	*	-	-	-	-	-	Х
С	citral	-	-	*	-	Х	-	Х	-
D	b-ionone	-	-	-	*	-	-	-	Х
Ε	methanol	0	-	Х	-	*	0	0	-
F	ethanol	0	-	-	-	0	*	0	Х
G	acetone	0	-	Х	-	0	0	*	Х
Η	ethyl ether	-	Х	-	Х	-	Х	Х	*

METHOD OF COMBINING

		24	D	0	D	£	2	G	n	
A	n-amyl acetate	*	-	-	-	0	0	-	-	
В	menthone	-	*	-	-	-	-	-	-	
C	citral	-	-	*	Х	Х	Х	Х	-	
D	b-ionone	-	-	Х	*	0	-	-	Х	
E	methanol	0	-	Х	0	*	0	0	Х	
F	ethanol	0	-	Х	-	0	±	0	-	
G	acetone	-	-	Х	-	0	0	*	-	
Н	ethyl ether	-	-	-	Х	Х	-	-	±	

METHOD OF POINTS COMPARING

		A	В	C	D	Ε	F	G	H	
A	n-amyl acetate	*	-	-	X	0	0	0	-	
В	menthone	-	*	-	-	-	-	-	-	
С	citral	-	-	*	Х	-	-	-	-	
D	b-ionone	Х	-	Χ	*	Х	Χ	Х	Х	
Е	methanol	0	-	-	Х	t	0	0	-	
F	ethanol	0	-	-	X	0	*	-	-	
G	acetone	0	-	-	Х	0	-	*	0	
Н	ethyl ether	-	-	-	Х	-	-	0	*	

Table 7-3 Ratio of resonant frequency shift and resonant resistance change in asolectin-cholesterol coated quartz crystal for eight types of odorant.

ratio of asolectin and cholesterol	1 : 0	3 : 1	1 : 1	1 : 3
		k F	/ k R	
n-amyl acetate menthone citral b-ionone methanol ethanol acetone ethyl ether	.096 .115 .126 .120 .139 .138 .116 .110	.036 .042 .039 .037 .041 .043 .038 .032	.079 .086 .035 .090 .081 .083 .077 .076	.07 .08 .08 .09 .08 .08 .08 .08 .07

第八章 結論

以上、第七章までに述べてきたように、本研究では、水晶振動子をト ランスデュサーとするパイオセンサーおよび化学計測システムの開発を 行った。本研究における成果は、①水晶振動子の免疫センサーへの応用 として、微生物の計測およびIgGの計測と分析へ適用したこと、②粘 性測定デバイスとしての基礎的な解析を行いエンドトキシン、フィブリ ノーゲンの測定へ応用したこと、③天然の感応膜を利用したガスセンサ ーを匂い物質の計測と識別に適用したことである。各章ごとに得られた 知見をまとめると次のようになる。

(1)第二章では、水晶振動子バイオセンサー開発のための基礎的知見 を得た。これらの知見をもとに、水晶振動子の表面に抗体を固定化し、 徴生物濃度の計測に適用した。要するに、微生物懸濁液中で、抗原抗体 反応を行わせ、水晶振動子表面に微生物を結合させ、発振周波数変化を 測定することによって、特定の微生物濃度の検出と濃度の測定が、可能 であることを示した。すなわち、

①抗体の固定化を行う水晶振動子の電極として、Pd-Ni電極に陽極酸化処理したものが、安定性および抗体結合能において優れていることが示された。この陽極酸化処理の結果は、AES分析によって、表面の 相さの増加と酸化物の増加に起因していることが示された。

②微生物測定のための反応時間は、約30分が適当であることが示された。

③抗<u>Candida</u>抗体を固定化した水晶振動子は、10⁶-5・10⁸ cells・cm⁻³の<u>C</u>.<u>albicans</u>を測定可能であり、<u>S</u>. <u>c</u>

a side and the second

- 87 -

<u>erevisiae</u>には応答しない、特異性の優れたセンサーであることが示された。

④懸濁液の微生物濃度、水晶振動子表面に結合した微生物密度および発振周波数の変化の間には、良好な対応関係があることが示された。

(2)第三章では、水晶振動子バイオセンサーをフローシステムへ発展 させた。このシステムを用い、表面にプロテインAを固定化した水晶振 動子によって、IgG濃度の測定が可能であることを示した。また、同 じプロテインA固定化水晶振動子によって、IgGサブクラスの分析が 可能であることを示した。さらに、このセンサーシステムを<u>E.Coli</u> の測定に適用するとともに、ポリスチレン粒子によって感度の向上が可 能であることを示した。すなわち、

①液体中で水晶振動子を使用した場合、液体の粘性、密度、導電率さらに温度等が、発振周波数に影響することが示された。さらに、水晶振動子と液体界面において発振周波数に影響を与える因子が存在することが示唆された。このことから、再現性よく実験を行うために、セル中を蒸留水で置換して、発振周波数の測定を行うことにした。

②プロテインAを固定化した水晶振動子によるヒトIgGの測定では、 発振周波数変化が、IgG濃度に依存することが示された。また、結合 したIgGをpH2.4のグリシン塩酸緩衝液で、溶出することによって、 センサーの再使用が可能であることが示された。

③プロテインAを固定化した水晶振動子を用いるヒトIgGの測定にお いて、反応時間がおよそ30分でほぼ発振周波数変化が飽和に達するこ とが示された。これに基づき、標準の反応時間を30分に設定した。 ④ヒトIgG濃度の測定範囲は、反応時間30分で、10^{-s}-10^{-a}m g・cm⁻³、15分で、10⁻⁴-10⁻²mg・cm⁻³であることが示さ れた。

⑤プロテインA固定化水晶振動子を用い、溶出後のpHを徐々に変化さ せマウスIgG成分の分析に適用したところ、IgG1, IgG2a, Ig G2bに相当するピークが得られた。また、ヒトーγグロブリンについて も特異なパターンを示すことが確認され、本センサーが、成分分析に適 用可能であることが示された。

 ⑧抗大腸菌抗体を固定化した水晶振動子によって、<u>E</u>.<u>coli</u>を10^s
 -10^scells·cm⁻³の範囲で測定できることが示された。
 ⑦抗大腸菌抗体固定化ポリスチレン粒子(1µm)によって、発振周波数の増幅が可能であることが示され、検出限界を10^s cells· cm⁻³ に改善することができた。

(3)第四章では、水晶振動子の電気的な等価回路定数の意味について、 電気一機械変換モデルから考察を行った。特に、液体中に水晶振動子を 浸漬したときの共振抵抗R₁についての関係式を導いた。これらの知見を もとに、第三章におけるIgG測定時の周波数変化についての検討した。 さらに、水ーエタノール混合液を用いた実験から、周波数変化△Fおよ び共振抵抗R₁と液体の性質との関連について検討した。続いて、グリセ リン水溶液における測定から、粘度計測デバイスとしての評価を行った。 すなわち、

①水晶振動子の電気的等価回路パラメーターは、既に知られているよう に、機械的な振動系との対比から、インダクタンスー重量、キャパシタ ンスーパネ定数、電気抵抗-摩擦抵抗という関係になる。この中で、特 に、液体に接した系における、共振抵抗R」について、新たに次式を導い

- 88 -

た。

 $R_1 = (\omega \rho \eta)^{1/2} A / k^2$

ここで、ω:共振周波数、ρ:液体の密度、η:液体の粘度、A:面積、
 k:電気-機械変換係数である。

②両面浸漬セルを用い水晶振動子の電気的等価回路定数を測定したところ、空気中→水中において共振周波数変化△Fと共振抵抗R1の変化が同時に起きていることから、共振周波数変化の主な要因は粘性であると推察した。さらに、水→緩衝液中では、R1の変化はなかったが、△Fの変化が観察された。この変化は、L1またはC1の変化に起因することが明らかになった。

③第三章における Ig G 結合反応について、各回路定数の測定を試みた ところ、R1の変化はなかった。②の知見と総合して、この周波数変化に は、界面の摩擦抵抗は関与せず、重量変化および界面の弾性的な性質が 関与していることが示された。

④片面浸漬セルと両面浸漬セルを用いた水ーエタノール混合液における R₁とΔFの測定結果から、R₁とΔFが、(ρη)^{1/2}に対して、直線性 を示すことが確認された。ただし、両面浸漬セルでは、R₁が直線性を示 しているのに対して、ΔFは直線からずれてくることが示された。この 原因として、水の誘電分極と水素結合に起因する水の構造化によって、 液体と水晶振動子界面に弾性的な変化が生じているものと推察した。
⑤グリセリン水溶液による実験により、ΔFは(ρη)^{1/2}に対して徐々 に直線からずれるのに対し、R₁は直線性を維持することが示された。ま た、各種の周波数の水晶振動子によって、同様に粘性の測定が可能であ ることが示された。 (4)第五章では、第四章において水晶振動子が粘度測定素子として利用可能であることが示されたことを受け、実際の応用について検討した。応用の対象として、カブトガニ血球抽出物がエンドトキシンによってゲル化することを利用して、エンドトキシン濃度の測定について検討した。この結果、本章で示したシステムが、エンドトキシン濃度の測定に使用可能であることが示された。本章では、エンドトキシン濃度測定のための指標についての検討を行い、ゲル化時間の算出法について検討した。すなわち、

①水晶振動子を用いて、共振抵抗R1および共振周波数変化を測定することにより、エンドトキシンによるカブトガニ血球抽出物のゲル化反応を 粘性変化として、モニターできることが示された。

②測定データから多項式近似式を計算し、共振抵抗R」または共振周波数変化の最終変化量の90%に達した時間をゲル化時間として求めたところ、ゲル化時間とエンドトキシン濃度の間によい対応関係が得られた。この場合の検出限界は、1pg・m1⁻¹であり、従来法と同等であった。得られた多項式をさらに微分し、最大変化速度(Vamax)を求め、微分値が、Vamaxの10%まで低下した時間をゲル化時間として求めたところ、同様に、ゲル化時間とエンドトキシン濃度との間によい対応関係が得られた。

③エンドトキシン濃度測定の指標として、R1の最大変化速度VB maxを 用いたところ、検出限界は、1pg・m1⁻¹であり、エンドトキシン濃度 測定に十分使用可能であることが示された。また、この最大変化速度は、 40分以内に現れるため、低濃度試料では、測定時間の短縮が可能であ ることが示された。

④共振抵抗および共振周波数が、あるしきい値に達した時間を求め、ゲ

- 91 -

- 90 -

ル化時間としたところ、ゲル化時間とエンドトキシン濃度の間に、よい 対応関係が得られた。このゲル化時間は、1 pg・m 1⁻¹の試料でも30 分程度で現れるため、測定時間の短縮が可能であることが示された。 ⑤ゲル化反応前後の共振抵抗R₁および共振周波数の変化量とエンドトキ シン濃度は直線関係にあるため、高濃度のエンドトキシンの測定に利用 可能であることが示された。また、これらの変化には、反応課程で生成 した物質の吸着も関与していることが示唆された。

⑥ゲル化時間の対数とエンドトキシン濃度の対数は、一次式で近似できることが示され、比較的容易にゲル化時間とエンドトキシン濃度の換算が行えることが示された。

⑦発振回路を使用した試作機を製作し、実用化への道を開くことができた。

(5)第六章では、第五章において示した水晶振動子を用いるゲル化反応を利用した測定手法が、分析手段として汎用的に使用可能であることを検証するため、フィブリノーゲンの凝固反応の測定について検討を行った。この結果、発振回路を用いる測定システムによっても、凝固反応の測定が行えることを示した。すなわち、

①発振回路タイプの水晶振動子粘度測定システムによって、ゲートタイムを0.1 secで周波数測定することによって、数秒で終了するフィブリノーゲンの凝固反応を測定可能であることが示された。しかし、低濃度の試料では、温度変化の影響で、測定ができなくなる場合があることがわかった。

②アルミナ粒子の懸濁液において、アルミナ粒子がセル底面の水晶振動子上に沈降することによって、周波数変化を引き起こすことが示された。

この周波数変化の最終的な量は、添加した粒子の量に依存し、周波数の 変化速度は、粒子が大きくなるほど大きくなることが明かとなった。 ③アルミナ粒子をトロンビン溶液に懸濁させた状態で、フィブリノーゲ ンの凝固反応を行わせることによって、ゲル化時の周波数変化を増幅で きることが示された。この方法によって、温度変化に伴う粘性変化の影 響を受けずに、低濃度のフィブリノーゲン試料の測定も行えることが明 かとなった。また、本システムによって得られたゲル化時間は、従来法 による結果とよく対応するものであった。

(6)第七章では、アゾレクチン、ホスファチジルエタノールアミン、 卵黄レシチン、コレステロールなど、天然脂質を被覆した水晶振動子を 用い、匂い物質の計測について検討を行った。さらに、アゾレクチンー コレステロール混合膜の混合比を変えた感応膜被覆水晶振動子を用いて、 各匂い物質に対する発振周波数変化を測定し、各匂い物質の応答パター ンの類似性を比較した。すなわち、

①天然脂質を被覆した水晶振動子によって、匂い物質の計測が可能であることが示された。また、各匂い物質の検出下限濃度の順序としては、リポソームの膜電位変化および嗅覚細胞で得られるしきい値の順序とよく対応した傾向が示された。このことから、匂い物質そのものの吸着性の違いが、応答に強く影響すると考えられた。この現象は、嗅覚における匂い物質の検知が、レセプターによると考えるよりも脂質によると考える方が理解しやすいことを示すものである。

②匂い物質に対する共振周波数変化△F***は、膜被覆によって生じた共振周波数変化△F****に依存して変化することが示された。したがって、 共振周波数変化の測定値は、△F***/△F****として標準化されること

- 93 -

- 92 -

が示された。また、4種の脂質を用いて得られた各匂い物質に対する応 答パターンは、それぞれ異なることから、このパターンを利用した匂い 物質の識別の可能性が確認された。

③アゾレクチンとコレステロールの混合比を変えた感応膜を有する水晶 振動子を複数用いることによって、各匂い物質に対して異なる応答パタ ーンが得られた。この応答パターンは、横軸に混合比を取ったものであ り、横軸方向の関連性を含むという特徴を持つものである。

 ④応答パターンの比較法として、これまでの各センサーの応答の差の自 乗和を取る方法に対して、横軸方向にパターンの関連性があることを利 用するため、パターンのずれの面積を計算する重ね合わせ法、組合せ法、 さらに、パターン各点の位置を比較する全点比較法について検討した。 これらの比較法を実際の測定データに適用し、各匂い物質の類似性を求 めたところ、嗅覚における類似性に近い結果を得ることができた。
 ⑤共振周波数変化(ΔF***)と共振抵抗変化(ΔR***)の比が匂い物 質によって、異なることが明かとなった。この比(ΔF***)の比が匂い物 質によって、異なることが明かとなった。この比(ΔF***)と混合比の異なる2種類の脂質感応膜どうしのΔF****の比とを2次元的 に表示することによって、匂い物質の識別に利用可能であることがわか った。

以上の研究結果は、水晶振動子をトランスデュサーとするバイオセン サーの開発ならびにその化学計測システムへの応用に重要な基礎的知見 を提供するものと考えられる。さらに、本研究の成果は、化学分析分野 に新しい計測システムを提案し、この分野の発展に著しく貢献するもの と考えられる。

参考文献

1)	軽部征夫編、	33	バイ	才	セン	サ	- 1	是先端	技術"	,	シー	エレ	シシ	-,
	(1987).													

2)鈴木周一編、"イオン電極と酵素電極"、講談社,(1981).
3)清山哲郎、塩川二郎、鈴木周一、笛木和雄編、"化学センサー"、 講談社,(1981).

4) 鈴木周一編、"バイオセンサー"、講談社, (1984).

5) W.H.King, Jr., Anal.Chem., <u>36</u> (1964) 1735.

6) W.H.King, Jr. and L.W.Corbett, Anal.Chem., <u>41</u> (1969) 580.

7) J.Hlavay and G.G.Guilbault, Anal.Chem, <u>49</u> (1977) 1890.

8) M.H.Ho and G.G.Guilbault, Anal.Chem., 52 (1980) 1489.

9) J.F.Alder and J.J.McCallum, Analyst, 108 (1983) 1169.

10) 岡正太郎、田原修、センサ技術、4(1984) 33.

11) 伊藤秀明、センサ技術、4(1984) 37.

12) W.P.Carey, K.R.Beebe, B.R.Kowalski, D.L.Illman and T.Hirschfeld, Anal.Chem., <u>58</u> (1986) 149.

13) W.P.Carey and B.R.Kowalski, Anal.Chem., <u>58</u> (1986) 3077.

14) C.S.I.Lai, G.J.Moody and J.D.R.Thomas, Analyst, <u>111</u> (1986) 511.

15) P.L.Konash and G.J.Bastiaans, Anal.Chem., <u>52</u> (1980) 1929.

16) 野村俊明、嶺村昭子、日本化学会誌, 1980 (1980) 1621.

17) 野村俊明、奥原守、村田可奈子、服部治、分析化学, <u>30</u> (1981)417.

18) T.Nomura and M.Okuhara, Anal. Chim. Acta, 142 (1982) 281.

- 19) K.K.Kanazawa and J.G.Gordon II, Anal.Chim.Acta, <u>175</u> (1985) 99.
- 20) S. Bruckenstein and M. Shay, Electrochim. Acta, 30 (1985) 1295.
- 21) H.E.Hager, Chem.Eng.Commun., 43 (1986) 25.
- 野村俊明、長棟隆、伊豆津公佑、T.S.West,分析化学,<u>30</u> (1981)
 494.
- 23) T.Nomura and M.Iijima, Anal.Chim.Acta, 131 (1981) 97.
- 24) T.Nomura and K.Tsuge, Anal.Chim.Acta, 169 (1985) 257.
- 25) Y. Shou-zhuo and M. Zhi-hong, Anal. Chim. Acta, 193 (1987) 97.
- S. Bruckenstein and S. Swathirajan, Electrochim. Acta, <u>30</u> (1985) 851.
- 27) S.Bruckenstein and M.Syay, J.Electroanal.Chem., <u>188</u> (1985) 131.
- 28) R. Schumacher, G. Borges and K. K. Kanazawa, Surface Science, <u>163</u> (1985) L621.
- 29) H.E.Hager, R.D.Ruedisueli and M.E.Buehler, Corrosion, <u>42</u> (1986) 345.
- A. Shons, F. Dorman and J. Najarian, J. Biomed. Mater. Res., <u>6</u> (1972) 565.
- 31) J.E.Reoder and G.J.Bastiaans, Anal.Chem., 55 (1983) 2333.
- 32) M. Thompson, C. L. Arthur and G. K. Dhaliwal, Anal. Chem., <u>58</u> (1986) 1206.
- 33) M. Thompson and G.K. Dhaliwal, Proc. of the 2nd int. meeting on chemical sensors, p.759 (1986).
- 34) G.J.Bastiaans and C.M.Good, Proc. of the 2nd int. meeting on

chemical sensors, p.619 (1986).

- 35) E.S.Grabbe and R.P.Buck, J.Electroanal.Chem., 223 (1987) 67.
- 36) 微生物研究懇談会編、" 微生物学実験法"、講談社, (1975).
- 37) A.P. Snyder and D.B.Greenberg, Biotech.Bioeng., <u>26</u> (1984) 1395.
- 38) T.Matsunaga, I.Karube and S.Suzuki, European J. of Appl. Microbiol.Biotechnol., <u>10</u> (1980) 125.
- 39) S.Nishikawa, S.Sakai, I.Karube, T.Matsunaga and S.Suzuki, Appl.Environ.Microbiol., <u>43</u> (1982) 814.
- 40) H. Matsuoka, I. Karube, N. T. K. Nhung and S. Suzuki, Denki Kagaku, <u>50</u> (1982) 946.
- 41) F.B.Bang, Bull. Johns Hopkins Hosp., 98 (1956) 325.
- 42) S.Nakamura, T.Morita, T.Harada-Suzuki, S.Iwanaga,
 K.Takahashi and M.Niwa, J.BIochem, <u>92</u> (1982) 781.
- 43) J.Levin and F.B.Bang, Bull. Johns Hopkins Hosp., <u>115</u> (1964) 265.
- 44) 中村隆範、森田隆司、平永万寿代、宮田敏行、岩永貞昭,日本細菌 学会誌, <u>38</u> (1983) 781.
- 45) E.W. Davie, K. Fujiwara, K. Kurachi and W. Kisiel, "Advances in Enzymology (ed. A. Meistert)", <u>48</u> (1979) 277.
- 46) E.W. Davie and K. Fujiwara, Ann. Rev. Biochem., 44 (1975) 799.
- 47) A.Clauss, Acta Harmat., <u>17</u> (1957) 237.
- 48) D.Paar, Blut, 23 (1971) 1.
- 49) 倉地幸徳、藤川和雄, タンパク質 核酸 酵素, 25 (1980) 95.
- 50) H.Oishi, A.Takaoka, Y.Hatayama, T.Matsuo and Y.Sakata, J.

- 97 -

Parenteral Science and Technology, 39 (1985) 194.

- 51) G.Sauerbrey, Z.Physik, <u>155</u> (1959) 206.
- 52) W.P.Mason, W.O.Baker, H.J.McSkimin and J.H.Heiss, Physical Review, <u>75</u> (1949) 936.
- 53) Y. Wada, H. Sasabe and M. Tomono, Biopolymers, 5 (1967) 887.
- 54) 八尾俊男、中西邦之、和佐保,分析化学, 33 (1984) 213.
- 55) T.Dickinson, A.F.Povey and P.M.A.Sherwood, J.Chem.Sco., Faraday Trans. I, 71 (1975) 298.
- 56) A. Proctor, J.F. Castner, L.B. Wingard, Anal. Chem., <u>57</u> (1985) 1644.
- 57) D.H.Williamson and D.J.Fennell, "Method in Cell Biology (ed. D.M.Prescott)", Vol.12, Academic Press, New York, 1975, p.355.
- 58) J.Sjoquist, B.Meloun and H.Hjelm, Eur.J.Biochem., <u>29</u> (1972) 572.
- 59) I.Bjork, B.Petersson and J.Sjoquist, Eur.J.Biochem., <u>29</u> (1972) 579.
- P.L.Ey, S.J.Prowse and C.R.Jenkin, Immunochemistry, <u>15</u> (1978) 429.
- 61) R.C. Duhamel, P.H. Schur, K. Brendel and E. Meezen, J. Immunol. Methods, <u>31</u> (1979) 211.
- H.Hjelm, J.Sjodahl and J.Sjoquist, Eur.J.Biochem., <u>57</u> (1975) 395.
- 63) D.S.Hage and R.R.Walters, Anal.Chem., 58 (1986) 274.
- 64) K.Nisson and K.Mosbach, Biochem.Biophys.Res.Commun., 102

(1981) 449.

- 65) L.D.Landau and E.M.Lifshtz, "Fluid Mechanics", Pergamon, Oxford, England, 1959, p.88.
- 66) 日本化学会編、化学便覧基礎編、丸善、東京(1975) p.583.
- 67) J.E.B. Randeles and K.W. Somerton, Trans. Faraday Soc., <u>48</u> (1952) 937.
- 68) H.P.Schwan, N.Y.Acad.Sci., 103 (1977) 198.
- 69) P.Kruus, "Liquid and Solution", Dekker, New York (1977) p. 296.
- 70) R.J.Byrne, P.Lloyd and W.J.Spencer, J.Acoust.Soc.Am., <u>43</u> (1967) 232.
- 71) G.T.Perman, J.Acoust.Soc.Am., 45 (1969) 928.
- 72) C.M. Chang and A. Nowotny, Immunochemistry, 12 (1975) 19.
- 73) ベ-リンガー・マンハイム山之内(株)編、フィブリノゲンテスト「BMY」説明書,
 (1987).

74) G.G.Guilbault, Anal.Chem., <u>55</u> (1983) 1682.

- 75) G.G.Guibault and G.Palleschi, Proc. of the 2nd int. meeting on chemical sensors, p.515 (1986).
- 76) Y.Okahata and O.Shimizu, Langmuir, 3 (1987) 1171.
- 77) M.Kashiwayanagi and K.Kurihara, Brain Research, <u>359</u> (1985) 97.
- 78) T.Nomura and K.Kurihara, Biochemistry, 26 (1987) 6135.
- 79) T.Nomura and K.Kurihara, Biochemistry, 26 (1987) 6145.
- 80) 栗原堅三, "バイオセンシングとそのシステム (日本化学会編)",
 化学総説, No.1 (1988) p.38.

- 98 -

- 99 -

- A. Ikegami and M. Kaneyasu, Int. Conf. Solid-State Sensors and Actuators, (1985) p.139.
- 82) R.A. Crane and G. Fisher, J. Phys. D: Appl. Phys., 12 (1979) 2019.
- 83) A. Sanfeliu and K.S.Fu, IEEE Trans.Syst.Man.Cybern., <u>13</u> (1983) 353.
- 84) M.A.Eshera and K.S.Fu, IEEE Trans.Pattern.Anal.Mach.Intell., <u>8</u> (1986) 604.
- 85) H.Elwing, Febs Letters, 116 (1980) 239.

謝辞

本研究を行うに当り終始ご指導いただいた東京大学先端科学技術研究 センター教授・軽部征夫先生に心から感謝致します。また、本研究を行 うに当り有益な助言と協力を頂いた、同センター民谷栄一助教授、鈴木 正康博士、梶原一人博士、早出広司博士を始めとする軽部研究室の方々、 さらに、実験を行うに当りご協力頂いた渡部由美氏(元・味の素(株)) に心から感謝致します。最後に、本研究を進めるに当たり多大な協力を 頂いた安宅龍明氏を始めとするセイコー電子工業(株)およびセイコー 電子部品(株)の方々に心から感謝致します。

