

枯草菌菌体外酵素の遺伝・生化学的研究

Genetic and Biochemical Studies on Extracellular Enzymes of Bacillus subtilis

中木寸 显頁

					頁
序	章		本研	究の背景と本論文の構成	1
	第	1	節	緒言	1
	第	2	節	枯草菌における分子生物学的研究と遺伝子操作	2
	第	3	節	本論文の内容と構成	11
第	-	章	bs	cc遺伝子の構造解析とその産物の同定	14
	第	1	節	緒言	14
	第	2	節	材料及び方法	14
	第	3	節	<u>bsc</u> 遺伝子のサブクローニングとその塩基配列の決定	18
	第	4	節	BSC蛋白の精製とN末端アミノ酸配列の決定	22
	第	5	節	まとめ及び考察	25
第	11	章	バ	チルス属セルラーゼの構造・機能相関に関する研究	28
	第	1	節	緒言	28
	第	2	節	材料及び方法	29
	第	3	節	BSCの C 末端欠失変異の作製	33
	第	4	節	キメラセルラーゼの作製とそれぞれの酵素の精製	35
	第	5	節	アルカリ性領域についての解析	44
	第	6	領行	酸性領域についての解析	46
	第	7	節	まとめ及び考察	52

目次

第三章 bs	c遺伝子のプロモーター、シグナル配列を利用した	
分	※ベクターの構築とその利用	56
第1節	緒言	56
第2節	材料及び方法	57
第3節	bsc遺伝子のプロモーター、シグナル配列を用いた	
	BLA分泌ベクターの構築	60
第4節	BSCとBSC-BLA生産におけるプロテアーゼ三重欠損	
	変異と発現制御遺伝子の利用	62
第5節	まとめ及び考察	68
第四章 菌	「体外ヌクレアーゼ遺伝子のクローニングと	
2	の構造解析	69
第1節	緒言	69
第2節	材料及び方法	71
第3節	bsn遺伝子のクローニング	74
第4節	bsn遺伝子のサブクローニングとその塩基配列の決定	78
第5節	nuclease S1 mappingによる転写開始点の同定	82
第6節	まとめ及び考察	85
第五章 B	SN蛋白の精製と酵素学的諸性質	86
第1節	緒言	86
第2節	材料及び方法	86
第3節	BSN生産のための培養条件の検討	89
第4節	BSN蛋白の精製とN末端アミノ酸配列の決定	91
第5節	BSN蛋白の酵素学的諸性質	95

第6節 まとめ及び考察 総括 引用文献 謝辞 118

103

106

110

序章 本研究の背景と本論文の構成

第1節 緒言

20世紀に入り、遺伝情報を担う本体がDNAという化学物質である事 が明らかとなって以来1.2)、DNA上の特定の配列を認識して切断する 制限酵素^{3.4)}、2つのDNA断片を結合するDNA ligase⁵⁾の発見がなさ れ、1972年には試験管内でDNAの組換えが行える事が示された6)。さ らに細菌内で自律複製する核外遺伝子(プラスミド)の発見7,、及 び形質転換法の確立。, 9)を通じて遺伝子操作という新しい技術が誕 生した。この技術を用いる事により、任意の生物の染色体中より特 定の遺伝子部分のみをプラスミド上に取得し増幅する、いわゆる "クローニング"が行えるようになった。さらにはSangerら10)及び Maxam & Gilbert¹¹)による塩基配列決定法の確立と相まって、クロ ーン化された遺伝子の構造を塩基配列レベルから明らかにする事が 可能となった。現在ではウイルスや原核生物、酵母といった下等生 物から植物や高等動物にいたるまでのすべての生物種の多くの遺伝 子構造が明らかにされている。このような遺伝子操作技術の確立に より、生命現象を現象レベルで解析するのではなく、遺伝子レベル から解析する事が可能となり、生物学の分野の飛躍的な進展がなさ れた。

遺伝子操作技術のもたらした恩恵は、生物学の分野にとどまるも のではなく、有用菌株の育種といった発酵学の分野にももたらされ ている。有用なタンパク質の遺伝子をクローニングすれば、元来染

- 1 -

色体上に1コピーしかなかった遺伝子を数十から数百コピーにまで 増幅させる事ができるので、本来ならば微量にしか生産されない遺 伝子産物を大量に生産させる事ができるようになる。そのうえブロ モーターをはじめとするレギュレーター構造やターミネーター構造 をさらに効率的なものと交換する事によって生産量を増加させる事 も可能である。またそのうえ、インシュリンの大腸菌での生産¹²⁾の ように、異種遺伝子産物を取扱いの簡便な微生物で生産する事も容 易にできるようになった。さらにオリゴヌクレオチド合成技術の進 展にともなって任意の位置で1塩基単位で変異を造成する部位特異 的変異の技法が開発され、タンパク質工学(Protein Engineering¹³⁾) という新しい分野を生み出すとともに、クローン化した有用タンパ ク質の特性をさらに改善する事も可能となった。

以上述べてきたように、遺伝子操作技術の誕生及びその発展は分 子生物学のみならず発酵学、酵素学などの分野の飛躍的な進展をも たらした。最近では極微量のDNAを増幅することのできる PCR法14.15)や、高等生物への遺伝子導入・個体化技術の確立による トランスジェニック生物の作製技術の進歩により、遺伝子操作技術 は例えば犯罪捜査での利用や遺伝子診断、あるいは除草剤耐性植物 の作出16.などのように我々の生活にさらに密着したものとなりつつ ある。

第2節 枯草菌における分子生物学的研究と遺伝子操作

枯草菌 (Bacillus subtilis)は、納豆製造に用いられるなど我々日

- 2 -

本人には古くから親しまれ利用されてきた菌株であり、また初期の うちに形質転換系の確立した菌株でもある¹⁷⁾。また枯草菌には、大 腸菌と比較して以下のような遺伝子操作の宿主として利用する上で の特徴を有している。

1) 枯草菌は納豆製造に用いられる事からもわかるとおり、人体に 対する寄生性や毒素産生能がない。そのため、大腸菌を宿主とした 場合に問題になるようなLPSによる抗原性や寄生性を考慮せずに扱う 事ができる。またこの点は有用物質生産の宿主として利用する場合 にも大きな利点となる。

2)枯草菌はグラム陽性細菌であり、細胞表層に大腸菌のような外 膜を持たず、そのため多種類の菌体外酵素を大量に菌体外に分泌生 産する事ができる。そのような菌体外酵素遺伝子のプロモーターや シグナル配列領域を利用して、有用タンパク質の菌体外への分泌生 産が可能である。実際に大腸菌β-ラクタマーゼ^{1,6)}、

Staphylococcal protein A^{19} 、ヒトインターフェロン- $\alpha 2^{20, 21}$ 、 インターフェロン- $\beta^{22, 23}$ 、ヒト成長ホルモン²⁴、などの分泌生産 の例が報告されている。

3)枯草菌は非常に高い相同組換え能を有している。そのために遺 伝子破壊などの染色体レベルでの操作を通じた有用菌株の育種・改 良が容易にできる。

以上のような特徴を備えた枯草菌に対して、宿主・ベクター系の 開発、改良がなされてきた。以下にその概要を述べる。

1) 宿主

枯草菌において遺伝子操作の可能な菌株はMarburg 168株由来のものであるが、野生株は制限修飾系を有しているために異種遺伝子導

入の際には効率が下がるなどの障害となる。そこで制限修飾系欠損 の変異株が作製された。代表的なものとしては魚住らによって作製 されたRM125 <u>arg15</u> <u>leuB8 hsrM hsmM25</u>, があげられる。この菌株を 利用する事により、形質転換効率が約30-200倍に上昇する事が確認 されている²⁶。

さきに述べたように、枯草菌はまた高い相同組換え能を有してお り、通常は自身の遺伝子をプラスミド上に安定に保持する事は困難 である。そこで組換え能を支配する<u>recE</u>遺伝子(大腸菌の<u>recA</u>遺伝 子に相当する²⁷⁾)の欠損株が作製された。代表的なものとしては MI112 <u>leuB8 thr5</u> <u>arg15</u> <u>recE4</u> <u>hsrM</u> <u>hsmM²⁸⁾ やRM141 leuB8</u> <u>arg15</u> his recE4 hsrM hsmM²⁹⁾ があげられる。

また最近では遺伝子破壊の手法を用いて菌体外主要プロテアーゼ 欠損株³⁰、や菌体内主要プロテアーゼ欠損株³¹、菌体外マイナープ ロテアーゼ欠損株³²、さらにはそれらを組み合わせた多重プロテア ーゼ欠損株^{33、が}作製され、異種遺伝子産物の生産に利用されている 24.34-36、

2)ベクター

枯草菌のプラスミドベクターとしてもっとも利用されているもの は、<u>Staphylococcus</u>由来の薬剤耐性プラスミドである。1977年 Ehrlich³⁷)によって<u>Staphylococcus</u>由来のプラスミドが枯草菌に導 入され、しかも安定に保持される事が示されて以来、これらのプラ スミドが枯草菌におけるプラスミドベクターの主流を占めるように なった。現在もっともよく利用されているものとしてはpUB110(カ ナマイシン耐性)³⁶、pC194(クロラムフェニコール耐性)³⁷、 pE194(エリスロマイシン耐性)³⁹の3つがあげられる。これらの プラスミドはすでにその全塩基配列も報告されており^{40.41.42)}、ま たこれらのプラスミドを元にした誘導体や大腸菌とのシャトルベク ターも数多く作製されている。今後の課題としては、大腸菌のpUC系 プラスミドのような誘導可能な強力プロモーターを有するプラスミ ドの作製であろう。

このように枯草菌の宿主・ベクター系は、大腸菌に比較すると形 質転換効率が低い、誘導型の強力プロモーターとして利用できる適 当なものがないなどの問題点はあるものの、整備され、利用可能と なったものと考えられる。

以上述べたように枯草菌を異種遺伝子産物生産のための宿主とし て利用する事も可能であるが、枯草菌はそれ自体にDNA供与体及び分 子生物学の対象として以下のような興味深い特徴も有している。

まず第一に、さきに述べたとおり枯草菌は多種類の加水分解酵素 を菌体外に分泌生産する点である⁴³⁾(表0-1)。これらの中には α-アミラーゼやプロテアーゼ、セルラーゼをはじめとして応用上 有用なものも含まれている。これらの酵素のうちその遺伝子がクロ ーン化されているものにはα-アミラーゼ⁴⁴⁾、主要アルカリ性プロ テアーゼ(サチライシン)⁴⁵⁾、主要中性プロテアーゼ⁴⁶⁾、レバン シュークラーゼ⁴⁷⁾、β-1,3-1,4-グルカナーゼ⁴⁸⁾、マイナープ ロテアーゼ類^{49,50)}などがあげられる。これらの酵素遺伝子をクロ ーン化する事は、生産性の改良、タンパク質工学的な手法を用いた 酵素タンパク質の構造・機能相関関係の解明、さらに異種タンパク 質の分泌生産を可能にする分泌ベクターの構築などの点で重要であ る。実際にサチライシンの構造・機能相関に関する研究⁵¹⁾やα-ア ミラーゼ、プロテアーゼのシグナル配列を用いた分泌ベクターの開

- 5 -

表0-1 枯草菌の生産する菌体外酵素 (F. G. Priest, <u>Bacteriol. Rev.</u>, **41**, 711-753, 1977より引用)

Enzyme	Comments
Carbohydrases	
α-amylase	Endohydrolysis of the α-1,4-glucosidic linkages in polysaccharides
Arabinase	Probably an endo $\alpha -1, 5$ -arabinase
Cellulase	Hydrolysis of carboxymethyl cellulose to cellobiose
Dextranase	Cell-bound enzymes catalyzing the exohydrolysis of dextran to glucose
Galactanase	Hydrolysis of the β -1, 4-galactosidic linkages in soybean arabinogalactan
β -1,3-glucanase	Endohydrolysis of the β -1,3-glycosidic linkages in laminarin and related glucans
Levansucrase	
Maltase	Hydrolysis of the α-1,4-linkage of maltose and maltotriose
Pectate lyase	Endocleavage of polygalacturonic acid by an eliminative reaction
Xylanase	Hydrolysis of xylans; the specificity of the enzymes has not been studied in detail
Proteases	
Aminopeptidase	
Esterase	Serine enzymes with high esterolytic and low proteolytic activity
Metal protease	Enzymes require Ca ²⁺ for stability and Zn ²⁺ for activity; pH optimum at/or near neutrality
Serine protease	The subtilisins; alkaline pH optima, serine residue at/or near the active site

- 6 -

表0-1 Continued

Enzyme	Comments
Penicillinase	
β -lactamase	Hydrolysis of the amide bond in the β -lactam ring of penicillins and cephalosporins
Nucleases and phosphata	ses
Alkaline phosphatase	
Deoxyribonuclease- ribonuclease	A large number of DNases, RNases and phospho- diesterases with different properties have been purified
3'-nucleotidase 5'-nucleotidase	Active on both ribo- and deoxyribonucleotides Cell-bound enzyme; also possesses nucleotide diphosphate-sugar hydrolase activity
Bacteriolytic enzymes	
Endo-N-acetylglucosami	nidase
Exo-N-acetylglucosamin	idase
Endo-N-acetyl- muramidase	True lysozyme
Exo-N-acetylmuramidase	
N-acetyl-muramyl- L-alanine amidase	A cell-bound enzyme; the major autolysin

- 7 -

発と利用23.34.35)などの報告がなされている。

また菌体外酵素遺伝子の発現調節機構に関する興味深い研究もな されている。以前より α -アミラーゼ、プロテアーゼを含む数種類 の酵素生産を同時に上昇させる変異として<u>sacQh52</u>)、<u>sacUh53</u>)など が知られていたが、最近これらの遺伝子を含む発現制御遺伝子のク ローン化がなされた。その結果、<u>sacU</u>領域には<u>degSと degU</u>という2 つの遺伝子が存在し54.55)、大腸菌のEnvZ-OmpR系56)と同様の二成 分制御系を形成している事が示された⁵⁷⁾。おそらくはDegS-DegU系 は培地中の窒素源の枯渇を感知して、菌体外酵素遺伝子の発現を正 に調節しているものと推察されている⁵⁸⁾。また<u>degS-degU</u>以外の <u>sacQ(degQ)59</u>)、<u>prtR(degR)60</u>)、<u>sen61</u>)遺伝子は100アミノ酸以下の 小さなペプチドをコードしており、DegUを補助する機能を持ってい るものと推定されている。菌体外酵素遺伝子の発現調節はさらに次 に述べる胞子形成過程からの調節もうける事が示されている^{62.63})。

次に枯草菌は胞子形成を行う点である。これは細胞分化の原始的 なモデルと考えられており、数多くの研究者によって現在も精力的 にさまざまな研究がなされている。

胞子形成過程は図0-1に示すような7つの段階から成り立って おり、それぞれの時期に特異的なspo遺伝子群の発現が認められる。 これらの遺伝子群の発現調節は、認識配列の異なる五種類のσ因子 が逐次的に生合成される事によりなされている事が示されている⁶⁴⁾。 これらのσ因子の中には前駆体として合成された後に他のspo遺伝子 産物によるプロセシングを受けて成熟体へと変換されるもの^{65,66)} や、染色体の再編成が起こってはじめてその遺伝子が構築されるも の⁶⁷⁾も存在する。枯草菌中に見いだされるσ因子の機能とその認識

- 8 -

図1. 粒子形成に伴う形態的変化と各段階に関与する粒子形成遺伝子(文献4の図2を改変) 粒子形成間始間をT₀とし、n時間後をT₀とする。*:クローン化された遺伝子、+:2つ以上の遺伝子 からなるオペロン.□内はシグマ因子をコードしている遺伝子(表1参照).□内の spolIIC はシグ マ因子のの工業間とホモロジーのある蛋白質をコードしている遺伝子、spolVCは spolVCA と spolVCB とからなり、spolVCA は部位特異的組換え酵素、spolVCB はシグマ因子のN 末端間とホモロジーのある 蛋白質をコードしている、粒子形成中期(T₁)に spolVCA 遺伝子が母細胞で発現すると、その産物であ る部位特異的組換え酵素によってDNA の再編成が母細胞でのみおこり、spolVCB と spolIIC が融合して 新しいシマの母・6×をコードする six 漬伝子が構築される(水文変照).

図 0-1 胞子形成に伴う形態変化と各段階に関与する胞子形成遺 伝子

(小林泰夫 生物物理 31, 19-27, 1991より引用)

Sigma	Previous	Gene	Functions	Cognate promoter consensus sequence		
factor	designations			-35	- 10	
σ ^A	σ ⁵⁵ , σ ⁴³	rpoD	Housekeeping	TTGACA	TATAAT.	
α_y	σ ¹⁷	sigB	Unknown and etc transcription	AGGNTT	GGNATTGNT*	
σ ^C	o ³²	sigC	Unknown	AAATC	TANTGNTTNTA	
σ^{D}	0 ²⁸	sigD	Flagellar synthesis	CTAAA	CCGATAT'	
σ^{ϵ}	σ^{29}	sigE, spollGB	Sporulation	GAANAANT	CATATT'	
α^{μ}	GaboliAC	sigF, spollAC	Sporulation	Unknown t	out similar to $\sigma^{G_{g}}$	
σ ^G		sigG, spoIIIG	Sporulation: forespore specific	YGHATR	CAHWHTAH*	
σ^{H}	σ30	sigH, spo0H	Sporulation	CAGGA	GAATTWWT	
σĸ	σ ²⁷	spoIVCB, spoIIIC	Sporulation: mother cell specific	U	aknown*	

Table 1

* Base pairs at positions - 14 to - 18 also contribute to promoter activity (25, 45).
* Single-base substitutions in this sequence have been shown to prevent utilization of the *ctc* promoter by Eo⁸ (46, 65). This gene has not been identified.

This gene has not over normalized. This consensus sequence is based on the comparison of only two promoters that are used in vitro by $E\sigma^{C}$ and is therefore of little predictive value.

' This sequence is based on comparison of promoters, but no mutational analysis of sequence has been reported (15). ' Base substitutions at three positions of this sequence have been shown to reduce in vitro utilization of the G4 promoter by EgE (50).

by Ea⁴ (50). Facegoniton in vitro is similar to σ^{G} (Setlow, personal communication). * Based on comparison of 12 promoters (M. Nicholson, D. Sun, B. Setlow, and P. Setlow, personal communication). H = A, C, or T; R = A or G; W = A or T; Y = C or T. 'Sequence based on comparison of six promoters (Carter and Moran, unpublished data). Base substitutions in four positions have been found to reduce utilization of the spo VG promoter by Eo⁴¹ (74a). Sequences substitutions in four -35 region are essential for activity of several promoters. This enhancement is not or specific (44). 'These two genes must be fused during sporulation to encode σ^{K} (see text). The sequences of the cord and codD promoters are similar at the -10 and -35 regions but also near -20. It is not known, however, which of these sequences signal recognition by Eo^K and which signal repression by the spollID product.

product.

表0-2 枯草菌のσ因子の種類とその認識配列

(C. P. Moran, Jr., Regulation of Prokaryotic Development, ed. by I. Smith, R. A. Slepecky and P. Setlow, American Society for Microbiology, 1989, 167-184より引用)

配列については表0-2に示す。

このように枯草菌は有用物質生産の場としての応用面での利用の 面からも、あるいは分子生物学やタンパク質工学の対象としても非 常に重要な菌株である。

第3節 本論文の内容と構成

本研究では上述のような背景を元に枯草菌の菌体外酵素に関して 遺伝学的、あるいは生化学的な解析を行い、さらには応用面での研 究も行ったものである。対象となる菌体外酵素としては、バイオマ スの有効利用の観点や、また類縁菌である好アルカリ性バチルス属 の生産する酵素が実際に洗剤として使用されるなど、近年非常に注 目されているセルラーゼと、古くからさまざまな研究がなされ、し かも核酸調味料の工業的合成などにも応用されているヌクレアーゼ を取り上げる事とした。以下に本論文の内容を要約して述べる。

セルラーゼ遺伝子(bsc)は、発酵学研究室において小出らによって 4.8 kbのEcoRI断片としてクローン化され、大腸菌中でそのプロモー ター、シグナル配列が機能する事が示されていた^{6 ®)}が、本研究では その後を継いでまず<u>bsc</u>遺伝子の構造を明らかにする事^{6 9)}から行っ た。塩基配列を決定したところ、499アミノ酸からなるopen reading frame (ORF)が見いだされ、成熟体セルラーゼのN末端アミ ノ酸配列との比較からこのORFがセルラーゼをコードしている事が示 された。またBSC蛋白の39番目から329番目のアミノ酸部分が好アル カリ性バチルス属細菌の生産するセルラーゼと高い相同性を有する

- 11 -

事が示された。

次にこの相同性を元にして、セルラーゼの構造・機能相関に関す る研究⁷⁰⁾を行った。まず最初にC末端側の非相同領域が酵素活性に 必要でない事を示した。さらに至適pHの異なる好アルカリ性バチル ス属由来のセルラーゼとの間でキメラ遺伝子を作製する事により、 バチルス属セルラーゼの至適pHを決定するアミノ酸領域に関して基 礎的な知見を得た。

次にセルラーゼ遺伝子のプロモーター、シグナル配列領域を利用 して分泌ベクターを構築した³⁶, また異種タンパク質の蓄積を目的 として、別に作製した菌体外主要プロテアーゼ2種、並びに菌体内 主要セリンプロテアーゼを欠損したKN2株³³⁾を宿主として利用し、 菌体外酵素発現制御遺伝子のうち<u>sacQ</u>遺伝子を利用する事により、 高発現・高分泌が可能となる事を明らかにした。

ー方、次なる研究対象として菌体外ヌクレアーゼ遺伝子(bsn)のク ローニングを行った。bsn遺伝子は枯草菌を宿主としたショットガン クローニング法によりクローン化し、その塩基配列を決定して、 289アミノ酸からなるORFがbsn遺伝子をコードしている事を示した。 BSN蛋白は栄養源の豊富な、特殊な培地中でのみ培養後期に生産され る。その遺伝子の転写開始点を同定し、Eσ^ε型RNAポリメラーゼによ って転写される事を示唆する結果を得た。BSN蛋白を精製し、その酵 素学的な性質を明らかにしたところ、Mg²⁺を要求するリボヌクレア ーゼであった。

以上が本論文の内容であるが、本論文は序章、本章、及び総括か ら成り立っており、本章の内容は以下に示すとおりである。

第一章ではクローン化されたbsc遺伝子の構造解析並びにBSC蛋白

- 12 -

の精製について述べる。

第二章ではBSC蛋白を含むバチルス属セルラーゼの構造・機能相関 に関して得た知見について述べる。

第三章では<u>bsc</u>遺伝子のプロモーター、シグナル配列を用いた分泌 ベクターの構築並びにその利用について述べる。

第四章では<u>bsn</u>遺伝子のクローニング及びその構造解析について述べる。

第五章ではBSN蛋白の精製及びその酵素学的な諸性質について述べる。

第一章 bsc遺伝子の構造解析とその産物の同定

第1節 緒言

セルラーゼはパルプ廃液などのバイオマスの有効利用の点からも 重要な酵素である。しかしながらその研究は、アミラーゼに比べる と進展しているとは言い難く、唯一酵素学的な研究が進んでいるも のは<u>Trichoderma reeseiのセルラーゼ71-76</u>のみであった。ところ が最近になってさまざまな細菌からその遺伝子のクローニングが報 告された。代表的なものに、枯草菌^{6.8.77.76}、好アルカリ性バチル ス属⁷⁹⁻⁸¹、<u>Clostridium</u>属⁸²⁻⁸⁶、<u>Cellulomonas</u>属^{87.88}、などがあ げられる。これらのセルラーゼ遺伝子の塩基配列を決定する事は、 遺伝子操作上重要なばかりでなくセルラーゼ蛋白に関する新しい知 見を得るためにも重要である。そこで本章では小出らによってクロ ーン化された<u>bsc</u>遺伝子^{6.8}の構造解析並びに産物であるBSC蛋白の同 定、さらにはBSC蛋白の推定一次構造について論じる^{6.9}、。

第2節 材料及び方法

a)菌株、プラスミド及び培地

<u>B. subtilis</u> RM141株はサブクローニングの際の宿主として使用し、 <u>B. subtilis</u> N-24 arg15 hsrM hsmM npr apr recE4 (<u>B. subtilis</u> K-2 arg15 hsrM hsmM npr^{6 ®})にapr変異をNTG処理により付加し、さ

- 14 -

らにRM141株由来の<u>recE4</u>変異を導入して構築した)は酵素生産の際の宿主として使用した。

<u>Escherichia coli</u> JM105 <u>△lacpro thi strA endA sbcB15</u> <u>hsdR4</u> F'(<u>traD36 proAB lacI^qZ</u>△M15)⁸⁹)はM13ベクター⁹⁰)の宿主として使 用した。

プラスミドpBC56[&] はpBD64⁹¹⁾ に<u>bsc</u>遺伝子を含む4.8 kbの<u>Eco</u>RI断 片を組み込んだ組換えプラスミドである。枯草菌用のプラスミドベ クターとしてはpUB110を用いた。

通常の培養にはL-broth^{9 2)}を用い、プラスミドを保持する枯草菌 菌株の場合にはカナマイシンを終濃度10 μg/ml添加した。DNA塩基 配列の決定の際には2xYT-broth^{8 9)}を用い、枯草菌のプロトプラスト 法形質転換^{9 3)}の際にはDM3再生培地とPennassay broth (Antibiotic Medium 3 (Difco))液体培地を用いた。サブクローニングの 際のBSC活性は和光純薬製sodium carboxymethyl cellulose (CMC)を 1 %含む固体培地上でのクリアーゾーン形成能により検定した^{6 8)}。

b)bsc遺伝子のサブクローニング

pBC5の挿入断片の一部分を特定の制限酵素による消化によって取 得した後に、pUB110に挿入した。切断末端が一致しない場合には Klenow fragment⁹⁴⁹により末端を平滑化し、適当な制限酵素サイト を持つリンカーを用いてpUB110中に挿入した。このようにして作製 したプラスミドでB. <u>subtilis</u> RM141株を形質転換し、セルラーゼア ッセイプレート上でのクリアーゾーン形成能について検討してサブ クローニングを行った。

c)DNA塩基配列の決定

DNA塩基配列は、<u>bsc</u>遺伝子部分を各種制限酵素で消化した断片を 適切なM13ベクターに組み込んだ後に、Sangerらによるdideoxy法¹⁰⁾ によって決定した。部分的に縮重が起こった鋳型については、dITP をdGTPの代わりに用いて決定した⁹⁵⁾。

d)BSCの精製

サブクローニングの結果得られたプラスミドpBC501を保持するB. <u>subtilis</u> N-24株を5 1のL-broth中で37 ℃、12時間培養後、菌体を 遠心分離により除いて培養上清を得た。培養上清に対して硫酸アン モニウムを90 %飽和になるように加え、4 ℃、24時間攪拌した。次 に生じた沈澱物を遠心分離によって集めた後、50 mlの40 mM Tris-HC1、1 mM phenylmethylsulfonyl fluoride (PMSF)、2 mM EDTA、 pH 7.5に溶解し、さらに450 mlの40 mM Tris-HC1、2 M (NH₄)₂SO₄、 pH 7.5を加えた。この溶液を東ソー製ブチルトヨパール650Mカラム (32x300 mm)を用いた疎水クロマトグラフィーに供し、2-0 M (NH₄)₂SO₄グラジエントにより酵素を溶出した。次に活性画分を東ソ ー製トヨパールHW-40Cカラム(60x800 mm)によるゲル濾過によって、 10 mM Tris-HC1、pH 8.0に平衡化した。

次に酵素溶液をMono Q HR5/5カラムを装備したFPLCシステム (Pharmacia/LKB Biotechnology)を用いた陰イオン交換クロマトグラ フィーに供し、上記バッファー中で0-150 mM NaClグラジエントを形 成する事により溶出した。この操作によりBSCはSDS-PAGE⁹⁶、上単一 バンドになるまで精製された。

- 16 -

e)セルラーゼ活性の測定

基質溶液(1% CMCを0.1 M potassium phosphate buffer、pH 6.5中に含む)0.4 mlに対して酵素溶液を0.1 ml加え、37 ℃、30分 間反応させた後に、ジニトロサリチル酸法⁹⁷⁾により遊離した還元糖 を定量した。酵素1 Uは上記の条件下、1分間にグルコース換算で1 μ molの還元糖を遊離する酵素量とした。

p-nitrophenyl-β-D-cellobioside (PNPC)及びp-nitrophenyl-β -D-glucopyranoside (PNPG)に対する活性は以下のような方法^{9,6})で 測定した。それぞれの1 mg/ml溶液 (0.111 M potassium phosphate buffer、pH 6.5中に溶解させる) 1.8 mlに酵素溶液0.2 mlを添加し、 37 ℃、30分間反応させた。PNPCとPNPGのグルコースーp-nitrophenyl基間の結合を加水分解する活性は、反応後2 % Na₂CO₃を添加 して反応を終了させると共に遊離したp-nitrophenyl基を発色、定量 する事により測定した。またPNPCのグルコース間の結合を分解する 活性は、反応後glucose oxidase/peroxidase (和光純薬製glucose B-test Wako)を用いて遊離したグルコースを定量する事により測定 した。

f)精製BSC蛋白のN末端アミノ酸配列の決定

精製酵素溶液をトヨパールHW-40Cカラム(18x300 mm)によるゲル濾 過により50 mM triethylammonium bicarbonate、pH 7.5で平衡化し、 さらに凍結乾燥させた。このようにして得られた標品のN末端アミ ノ酸16残基をApplied Biosystems製470A Sequenatorを用いた自動エ ドマン分解法⁹⁹、により決定した。

- 17 -

第3節 bsc遺伝子のサブクローニングとその塩基配列の決定

クローン化された4.8 kbのEcoRI断片中のどの位置にbsc遺伝子が 存在しているかを調べるために、図1-1に示すような4.8 kb断片 の一部を含むプラスミドを作製しセルラーゼ活性の有無を調べた。 その結果、EcoRI-HpaI間約2.2 kbを含むプラスミドpBC501の場合に はpBC5の場合と同程度のBSC生産能を宿主枯草菌に付与する事ができ た。またEcoRI-HindIII間約2.0 kbに切り縮めたプラスミドpBC511で は明らかにクリアーゾーンの大きさが小さくなる事が認められた。 以上の結果より、bsc遺伝子はEcoRI-HpaI間に存在するものと推定さ れ、その領域の塩基配列の決定を行う事とした。

塩基配列はdideoxy法により、図1-2に示すようなsequencing strategyに従って決定した。結果を図1-3に示す。

<u>EcoRI-HpaI</u>間は2175 bpであり、この領域内にある唯一の長いORF としては<u>Eco</u>RI siteから438 bpの位置にあるATGから始まるものが存 在していた。このORFは1497 bpにわたり、499アミノ酸残基、分子量 54,996のタンパク質をコードしており、これが<u>bsc</u>遺伝子であるもの と考えられる。開始コドンの12 bp上流にはAAGGAGGという16s rRNA の3'末端と相補的なSD様配列¹⁰⁰, があり、さらにその40 bp上流には <u>B. subtilis</u> E σ RNA polymerase及び<u>E. coli</u> major RNA polymeraseの認識するコンセンサス配列(-35; TTGACA, -10; TATAAT)と 類似した配列(-35; TAGACA, -10; TACAAT)が存在していた。また終 始コドンの11 bp下流には9 bpからなるinverted repeatが存在して おり、その自由エネルギーは、 Δ G=-18.8 kcal/molであった。

- 18 -

図1-1 <u>bsc</u>遺伝子のサブクローニング

それぞれのプラスミド中に含まれるクローン化したDNA断片部分と、 プレートアッセイの結果を示す。

B, <u>Bam</u>HI; E, <u>Eco</u>RI; H, <u>Hpa</u>I; Hd, <u>Hin</u>dIII; Ps, <u>Pst</u>I; Pv, <u>Pvu</u>II.

- 19 -

図1-2 bsc遺伝子のDNA塩基配列決定のための

sequencing strategy

pBC5とpBC501の挿入断片の制限酵素地図を示す。矢印はDNA塩基配列決定の方向と長さを示す。pBC501中の黒く塗りつぶした部分はBSC蛋白をコードする部分である。

- 20 -

500R1 GAATICTTCCGGGCTGAATCCCACACTGAAGTACAATCTTATTGTACAACCCCAACCTTAACCCGTATTAATCCGAACCTTACATCAACCATAAATTAACA 100 AGGACGGGTÅAGGGCTCGTCTTCTTACAGCAATCATAAGATTCAATGCCATATTGAGACTCATCACATTACATTTAGAGCGTCTACGTCGGAAATACATT 200 TAATTTTTCGATTCGATTGAAAAATAACGTGTAAAGTCCCCGATTCAGTCCAGTTTTCTTIGTTCTATATGTGTCAGGTGTGTCTTATTCAATAGAGTTAG 300 AGTANATTGACAGGCTTTTAAACCTCCCAAAAACAAGAAATTAGGTTGATAGACAATCATGAGAAAGATTTTTACAATGAGTTCGAGGTCATAAGAAGTG 400 <u>50</u> AAGAGCCAAAATGATGCGÁAGGAGGAAAAAATCAGATATGAAACGGICAATTICTATTITATTACGGITTATTGATACGGTATTGACAATGGGCGGC 500 Mellyshr9SerileSerilePhelleThrCysLeuLeufleThrValLeuThrNetGisGiy Pot1 TTGCAGGCTTCGCCGGCATCTGCAGCAGGGACAAAAACGCCAGCAGCCAAGAATGGTCAGCTTAGCATAAAAGGAACACAGCTCGTAAACCGGGACGGCA 600 LeuGInalaSerProAlaSerAlaAlaGlyThrLysThrProAlaAlaLysAsnGlyGlhLeuSer11eLysGlyThrGlhLeuValAsnArgAspGlyLys AAGCGGTACAATTGAAAGGGATTAGTTCACATGGACTGCAATGGTATGGCGATTTCGTCAATAAAGACAGCTTAAAATGGCTGAAGAGACGATTGGGGCAT AlaValGinLeuLysGiyiieSerSerNisGiyLeuGinTrpTyrGiyAspPheValAsnLysAspSerLeuLysTrpLeuArgAspAspTrpGiyiie ThrValPheArgAlaAlaMetTyrThrAlaAspGlyGlyTyrIleAspAsnProSerValLysAsnLysValLysGluAlaValGluAlaAlaLysGlu CITGGGATATATGTCATCATTGACTGGCATATCTTAAATGACGGCAACCCAAACCAACATAAAGAGAAGGCAAAAGATTTTTTTAAGGAAATGTCAAGTC LeuGiyiietyrvaliieileAspTrpHisiieleAsmAspGjyAspProAsmGjmHisLysGluLysAlaLysAspPhePheLysGluHetSerSerLeu SerVallleArgLysAsnAspProAspAsnIlellelleValGlyThrGlyThrTrpSerGlnAspValAsnAspAlaAlaAspAspGlnLeuLysAsp GCANACGTCATGTACGCGCTCATTTTTATGCCGGCACACACGGCCAATCTTTACGGGATAAAGCAAACTATGCACCTCAGTAAAGGAGCGCCCTATTTTCG 1200 AlaAsnValMetTyrAlaLeuHisPheTyrAlaGlyThrHisGlyGliNSerLeuArgAspLysAlaAsnTyrAlaLeuSerLysGlyAlaProllePheVal TGACGGAATGGGGAACGACGCGCCTCTGAAATGGCGGTGTATTCCTTGACCAGTCGCGGGAATGGCTGAATTATCTCGACAGCAAGAACATCAGCCG ThrGIuTpGIyThrSerAspAlaSerClyAshGlyClyValPheLeuAspGlnSerArqGluTpLeuAshTyrLeuAspSerLysAshIleSerTrp GGTGAACTGGAATCTTTCTGATAAGCAGGAATCATCCTCAGCGTTAAAGCCGGGAGCATCTAAAACAGGCGGCTGGCCGCTTACAGATTTAACTGCTTCA 1400 ValAshTrpAshLeuSerAspLysGInGIuSerSerSerAlaLeuLysProGIyAlaSerLysThrGIyGIyTrpProLeuThrAspLeuThrAlaSer GGAACATTCGTAAGAGAAAACATTCTCGGCAACAAAGATTCAACGAAAGAACGCCCTGAAACGCCAGCAGATAACCCCCGCACAAGAAAACGGCATT GIyThrPheVaIArgGIuAsnIIeLeuGIyAsnLysAspSerThrLysGIuArgProGIuThrProAlaGInAspAsnProAlaGInGIuAsnGIyIieSer ValGinTyrLysAlaGiyAspGiyGiyValAsnSerAsnGinileArgProGinLeuHisileLysAsnAsnGiyAsnAlaThrValAspLeuLysAsr TGTCACTGCCCGTTACTGCGATAAACGCGAAAAACAAGGGCCAAAACTTTGACTGTGACTACGCGCAGAATGGGATGCGGCAATCTGACCCACAAATTTGTG 1700 ValThrAlaArgTyrTrpTyrAsnAlaLysAsnLysGlyGlnAsnPheAspCysAspTyrAlaGinleGlyCysGlyAsnLeuThrHisLysPheVal HindIII TCAAGGAAAACTGATTTGGGGAACAGAACCCCATTAGTTAAGCTTTAGGCGGACATCAGCAACGATGTCCGCTTTTATTATCTTAAACAGCAATACATGG 2000 GInGlyLysLeulleTrpGlyThrGluProHisTRM GATGCGTCCTGACGATGAAACTGCCATTGAGATGTGCCAAAACGTGCTTACACTTCCGATGCTTGACAAGTTAAC 図1-3 bsc遺伝子のDNA塩基配列と推定アミノ酸配列

SD配列とEσ^ RNA polymeraseが認識すると考えられる-35及び -10領域を示した。BSCのN末端アミノ酸配列決定の結果得られた配 列と一致する部分を下線で示した。またinverted repeat配列は向か い合った矢印で示した。

- 21 -

Coding frameのN末端には2Lys-3Argと塩基性アミノ酸が続いた後、 疎水性アミノ酸の多い領域が続く、典型的なシグナル配列101)領域 が存在していた。また次節で述べるように、精製BSCのN末端アミノ 酸を決定したところ、37番目のAlaから52番目のArgまでと一致して いた。

第4節 BSC蛋白の精製とN末端アミノ酸配列の決定

<u>B. subtilis</u> N-24 (pBC501)の培養上清を出発材料として、硫安沈 澱、ブチルトヨパール650Mによる疎水クロマトグラフィー、Mono Q HR5/5による陰イオン交換クロマトグラフィーによって、BSC蛋白を SDS-PAGE上単一バンドになるまで精製した。精製酵素のSDS-PAGE上 の分子量は51,000であった(図1-4)。最終精製物のCMCに対する 比活性は64.9 units/mg proteinであり(表1-1)、またPNPCのグ ルコースーp-nitrophenyl基間を分解する活性は2.01 units/mg proteinであった。しかしながら、PNPCのグルコース間及びPNPG分解 活性は検出されなかった。

最終精製標品を用いてそのN末端アミノ酸配列を決定したところ、 A-K-N-G-Q-L-S-I-K-G-T-Q-L-V-N-Rであり、DNA塩基配列から推定し たアミノ酸配列の37番目のAlaから52番目のArgまでと完全に一致し た。成熟酵素部分の分子量をDNA塩基配列から計算すると51,365であ り、これはSDS-PAGE上のBSCの分子量と非常によい一致を示した。

- 22 -

図 1 - 4 BSCの SDS-PAGE

Lane 1, 4, 標準分子量マーカー; 2, 培養上清; 3, 最終精製物。 右方の数値は分子量マーカーの大きさをkDa単位で示す。

表 1 - 1 BSCの 精製 表

Fraction	Total	Total	Specific	Yield
	activity	protein	activity	
	(U)	(mg)	(U/mg protei	n) (%)
Culture supernatant	1400	348	4.02	100
After HW-40C column	127.9	10.8	11.8	9.1
After Mono Q column	44.2	0.68	64.9	3.2

第5節 まとめ及び考察

a)bsc遺伝子の構造

<u>bsc</u>遺伝子は<u>EcoRI-HpaI</u>間約2.2 kb中に存在する1497 baseのORFか らなる事が明確に示された。Coding frameの上流にはEσ^A型 RNA polymeraseの認識するコンセンサス配列と類似の配列が存在し、枯 草菌中ではこの遺伝子が培養にともなって発現する事、及び大腸菌 中でも発現する事⁶⁸⁰から、この部分がプロモーターとして枯草菌及 び大腸菌中で実際に機能している事が考えられる。nuclease S1 mappingにより転写開始点の同定を試みたが、<u>bsc</u>遺伝子の親株中で の発現量が少ないためか明確なバンドを得る事ができなかった。

精製BSCのN末端アミノ酸配列の決定により、1-36アミノ酸の領域 がシグナル配列として機能する事が明らかとなった。BSCが大腸菌中 でもペリプラズム及び培養上清中に分泌される事^{6,8)}から、このシグ ナル配列が大腸菌中でも機能するものと考えられる。

Coding frameの下流に存在する inverted repeat d ρ 因子非依存性 のターミネーターとして機能している事が考えられる。このことは、 この inverted repeatを除く形でサブクローニングされた pBC511で bsc遺伝子の発現量が低下した事からも裏づけられる。 おそらくはタ ーミネーター構造がなくなったために、mRNAの安定性が減少し、発 現量の低下が起こったものと考えられる。

b)BSC蛋白の一次構造

ー般にアミラーゼをはじめとする α ーグルカンに作用する酵素は、 ヒトから細菌由来の酵素までその活性中心部分が高度に保存されて

- 25 -

いる事が知られている102)。そこでBSCのアミノ酸配列を他のβーグ ルカンに作用する酵素のものと比較したところ、福森らによりクロ ーン化された3種の好アルカリ性バチルス属由来のセルラーゼ 78.79.103)と39番目から329番目のN末端側領域において高い相同性 を有している事が示された(図1-5)。このことは、バチルス属 セルラーゼは共通の遺伝子から進化した事を示唆する⁸¹⁾。またこの 相同性を利用して、バチルス属セルラーゼの構造と機能に関して明 らかにしていく事ができるものと考えられた。その実験結果につい ては第二章に述べる。

BSCを含むバチルス属セルラーゼは他の菌株由来のセルラーゼとの 間にはほとんど相同性を示さない事から、セルラーゼはアミラーゼ とは異なり、数種類の遺伝子から別々に進化してきた事が考えられ る。

BSC NK2 NK1 FK1	MKRSISIFITCLLITVLTMGGLQASPASAAGTKTPA MKKITTIFIVVLUMTLAUFIIGNTTA	38
Ce1B BSC NK2 NK1 FK1	DVADKGTM DYSVVEE - HGQLSTKGTQLVNRDGKAVQLKGTSSHGLQWYGDFVNKDSLKWLRDDWGT NGQLSTQ - HGQLSTSNGELVNDRGEPVQLKGMSSHGLQWYGDFVNYESMKWLRDDWGTT NGQLSTQ - NGQLVNEHGDPVQLKGMSSHGLQWYGQFVNYDSIKWLRDDWGTT AGALQLQEVDGQMTLVDQHGEKTQLRGMSTHGLQWFPETLNDNAYKALANDWESN	89
CelB BSC NK2 NK1 FK1	VVRMPIATDLLYAWSOGTYPPSTDTSYNNPALAGLNS-YELFNFMLENFKRYGTKVTLDV VFRAAMYTAUGGYTDNPSVV-KNKVKEAVEAAELGTYVTTDW VFRAAMYTSSGGYTEDPSVV-KEKVKEAVEAATDLGTYVTTDW VFRAAMYTSSGGYTEDPSVV-KEKVKEAVEAATDLGTYVTTDW MTRLAMYVGENGYASNDELIKSRVIKGTDLATENDMYVTVDW	130
Ce1B BSC NK2 NK1 FK1	IHISPETDMOGHN HILWDGNPMOHKEKAKDFFKEMS]-SLYGNTPNVIYEIANEPNG-DVNWKRD HILSDNDPNIYKEEAKDFFDEMS-ELYGDYPNVIYEIANEPNGSDVTWDNQ HILSDNDPNIYKEEAKEFFDEMSJ-ALYGDYPNVIYEIANEPNGHNWRWDSH HILSDDDPNYAGAEDEFRDIAALYPNNPHTIYELANEPSSNNNGGAGIPNNEEGWNA	179
BSC NK2 NK1 FK1	IKPYAEEVISVIR KNDPDNIIIVGTGTWSQDVNDAADDQLKDANVMYALHFYAGTHG- IKPYAEEVIPVIR NNDPNNIIVGTGTWSQDVNHAADNQLTDPNVMYAFHFYAGTHG- IKPYAEEVIPVIR ANDPNNIVIVGTGTWSQDVHEAADNQLDDPNVMYAFHFYAGTHG- VKEYADPIVEMLRPSGNADDNIIVGSPNWSQRPDLAADNPIDDHHTMYTVHFYTGSHAA	236
BSC NK2 NK1 FK1		282
BSC NK2 NK1 FK1	SKINTSWYNNMEDSDKDESSSIALKIPGASKITGGWPLTDLTASGTFVRENTILGNKDSTKERPET ERMEDSWANWSLTHKDESSIALMPGASIPTGGWTEAELSPSGTFVRENTIRESATTPPSDIPTP ERMEDSWANWSLTHKDESSIALMPGAN PTGGMTAAELSPSGAFVRENTIRESASIPPSDIPTP ERMEDSWANWSLTHKDESSIALMPGAN PTGGMTAAELSPSGAFVRENTIRESASIPPSDIPTP ENNITSWANWSLTNKNEIVSGAFTDFELGKSNATSLODPGPDOVWVJPEELSLSGEVVRANTIKG	342
図 1	-5 バチルス属セルラーゼのアミノ酸配列の比較	
矢	印はシグナル配列の切断点を示す。同一のアミノ酸を線で囲ん	
た。	BSC, <u>B.</u> subtilis cellulase; NK1, pNK1 encoded cellulase;	
NK2,	pNKZ encoded cellulase; FK1, pFK1 encoded cellulase;	

L

CelB, <u>Clostridium</u> <u>thermocellum</u> cellulase B. (NK1、NK2、Fk1 は好アルカリ性バチルス属由来である。)

- 27 -

第二章 バチルス属セルラーゼの構造・機能相関に関する研究

第1節 緒言

セルラーゼの酵素学的研究を進める上での障害の1つに、それぞ れの酵素間でそのアミノ酸配列に相同性がほとんど認められない事 があげられる。そのような状況下でHenrissatら¹⁰⁴⁾は、hydrophobic cluster analysis (HCA)法を用いて現在までにアミノ酸配列 が明らかとなっているセルラーゼを6つのファミリーに分類した。 バチルス属セルラーゼはその中で<u>C. thermocellum</u>由来の2種のセル ラーゼを含めて1つのファミリーに分類された。

バチルス属セルラーゼは、前章でも示したようにそのN末端側で 高い相同性を示すが、逆にC末端側は全く相同性を示さない。この ことから相同性領域がセルラーゼ活性に必須な領域である事が考え られた。また、<u>B.</u> <u>subtilis</u>由来のBSCと好アルカリ性バチルス属由 来の酵素の至適pH profileを比べると、BSCがpH 6-6.5^{6 &)} であるの に対して、好アルカリ性バチルスN-4株由来の2種の酵素がpH 6-11 79)と幅広く、また1139株由来のものがpH 9.0¹⁰⁵⁾と全く異なってい る。

そこで本章では、まず第1にBSCのC末端欠失変異を作製してセル ラーゼ活性に必須な領域を同定し、次にBSCと高い相同性を示す好ア ルカリ性バチルス属N-4株由来のpNK1にコードされるセルラーゼ (NK1)との間でキメラ遺伝子を構築して、バチルス属セルラーゼの至 適pHを決めているアミノ酸領域の同定を行った700。

- 28 -

第2節 材料及び方法

a)菌株、プラスミド及び培養条件

<u>E</u>. <u>coli</u> JM105およびMV1184 <u>ara</u> Δ(<u>lac-proAB</u>) <u>strA</u> <u>thi</u> (\$\$0<u>lacZ</u>ΔM15) Δ(srl-recA)306::Tn10(tet*)</u> [F': <u>traD36</u> <u>proAB</u> <u>lacI*Z</u>ΔM15]¹⁰⁶, はプラスミドの宿主として使用した。E. <u>coli</u> CJ236 <u>dut</u> <u>ung</u> <u>relA</u>/pCJ105(<u>Cm*</u> F')¹⁰⁷, 及びBMH71-18 <u>mutS</u> Δ(<u>lac-proAB</u>) <u>thi</u> <u>supE</u> <u>mutS215</u>::Tn10(tet*) [F': <u>proAB</u> lacI*ZΔM15]¹⁰⁸, は部位特異的変異の際に使用した。

プラスミドpBRC501はpBR322¹⁰⁹、のEcoRI-BamHI間にpBC501の挿入 断片部分を導入したプラスミドである。プラスミドpUC18とpUC19 ¹¹⁰、はキメラ遺伝子作製の際のベクターとして使用した。また pUC118とpUC119¹⁰⁶、はDNA塩基配列の決定と部位特異的変異に用いた。 プラスミドpBC501⁶⁹、とpNK1⁷⁹、はそれぞれBSCとNK1をコードするプ ラスミドである。

酵素生産などの通常の培養にはL-brothを用い、一本鎖プラスミド DNAの生産の際には2xYT-brothを用いた。

b)BSCのC末端欠失変異の作製

BSCのC末端欠失変異を作製するに当たり、余分なアミノ酸の付加 及びC末端アミノ酸の置換をできるだけ防ぐために、<u>Xba</u>Iリンカー 由来のTAGを終始コドンとして利用する事とし、図2-1に示すよう な方法を用いた。セルラーゼ活性は前章で示したプレートアッセイ 法により判定した。

図 2 - 1 BSCの C 末端欠失変異の造成方法

細い円はベクターとして使用したpBR322を、太い線はクローン化した<u>bsc</u>遺伝子を示す。

c)部位特異的変異

部位特異的変異はKunkelらの方法¹⁰⁷に従って行った。オリゴヌ クレオチドd(AACTAAAACGAATTCGTCTCT)は<u>nk1</u>遺伝子の147 baseの位置 にEcoRIサイトを造成するために用いた。またd(CATTCGTGCGCGAAAA-CATTCTC)及びd(CATTTGTGCGCGCAAAAAATAAGA)は<u>bsc</u>及び<u>nk1</u>遺伝子のそ れぞれ1412 base、1150 baseの位置に<u>Hha</u>Iサイトを造成するために 用いた。

d)DNA塩基配列の決定

C 末端欠失変異部分及びキメラ遺伝子の接続部分の塩基配列は Sangerらによるdideoxy法によって確認した。

e)キメラセルラーゼの生産と精製

キメラ遺伝子を含むpUC-plasmidを保持する<u>E</u>. <u>coli</u> MV1184を L-broth中でlate log-phaseまで37 ℃で培養後、1 mMのisopropyl- β -D-thiogalactopyranosideを添加し、さらに3時間培養を継続し た。この菌体からペリプラズム画分をosmotic shock法¹¹¹⁾によって 取得し、その溶液に硫酸アンモニウムを90%飽和になるように添加 して4 ℃、24時間静置した。

BSCおよびC末端にBSC由来の非相同領域を持つキメラセルラーゼ の場合には、沈澱画分を取得後、20 mlの10 mM sodium acetate buffer、pH 5.3に溶解しトヨパールHW-40Cカラム(26x700 mm)による ゲル濾過クロマトグラフィーにより上記のバッファーに平衡化した。 次に活性画分をMono S HR5/5カラムを装備したFPLCシステムを装備 した陽イオン交換クロマトグラフィーに供し、0-200 mM NaClグラジ

- 31 -
エントにより酵素を溶出した。

NK1およびNK1由来のC末端部分を持つキメラセルラーゼの場合に は、沈澱画分を20 mlの10 mM Tris-HC1、pH 7.5に溶解し、ゲル濾過 クロマトグラフィーにより上記バッファーに平衡化した。 その後、 Mono Q HR5/5カラムを用いた陰イオン交換クロマトグラフィーに供 し、0-1 M NaClグラジエントにより酵素を溶出した。

BSC及びキメラセルラーゼBBBNB(以下に記す)についてはPNPCを 用いたkinetic parameter測定のために、高純度の標品を大量に調製 するために以下の方法を用いた。それぞれのプラスミドを持つE. coli MV1184株を5 lのL-broth中で37 ℃、終夜培養した後に、菌体 を遠心分離によって集め、ペリプラズム画分をosmotic shock法によ り取得した。この溶液に対して1/9量の100 mM sodium acetate buffer、 pH 5.3を加え、S-Sepharose Fast Flowカラム (Pharmacia/ LKB Biotechnology; 32x190 mm)による陽イオン交換クロマトグラフ ィーを行った。 溶出は10 mM sodium acetate buffer、 pH 5.3中で 0-500 mM NaClグラジエントを形成する事によって行った。次に活性 画分に硫酸アンモニウムを40%飽和になるように加え、ブチルトヨ パール650Mカラム(in HR16/10カラム)を用いた疎水クロマトグラフ ィーに供し、40 mM Tris-HC1、pH 7.5中で2-0 M硫酸アンモニウムグ ラジエントを作製する事により酵素を溶出した。さらに酵素溶液を ゲル濾過により25 mM diethanolamine-HCl buffer、 pH 9.5に平衡化 し、Mono P HR5/20カラムによるクロマトフォーカシングを行った。 溶出はPolybuffer 96と74を用いてpH 9-7グラジエントを作製する事 により行った。精製の度合いはSDS-PAGEにより確認した。

- 32 -

f)セルラーゼ活性の測定

酵素溶液0.1 mlを、1% CMCをpH 4-12のBritton and Robisonの universal buffer¹¹² 中に溶解させた基質溶液0.5 mlに加え、40 ℃、 10分間反応させ、反応中に生じた還元糖をジニトロサリチル酸法によ り定量した。酵素活性の定義は、上記条件下で1分間あたりグルコー ス換算で1 μ molの還元糖を生成する量を1 Uとした。至適pH profileを得る際にはそれぞれの至適pHで0.5 Uを示す酵素量を各反 応に用いた。

kinetic parameter測定にはPNPCを基質として用いた。反応は 83 pMの精製酵素と0.2-7 mMのPNPCを25 mM sodium acetate buffer、 pH 5.0、あるいは6.0中で混和し、30 ℃で行った。反応の進行は、 遊離したp-nitrophenyl基の量を410 nmの吸光度変化を追跡する事に より測定した。

第3節 BSCのC末端欠失変異の作製

図2-1に示す方法により、BSCのC末端欠失変異体をpBR322上で 作製し、セルラーゼ活性の有無をプレートアッセイ法を用いて判定 した。その結果、357番目のアミノ酸よりC末端側を欠失した場合に はセルラーゼ活性が残存するが、さらに288番目まで欠失させて相同 性領域の一部を欠失させた場合には活性が失われる事が示された (図2-2)。以上の事から、バチルス属セルラーゼではその相同 性領域がセルラーゼ活性を担っている事が示唆された。

- 33 -

図2-2 BSCのC末端欠失変異体とその活性

それぞれのプラスミドにコードされるBSC変異体の長さとプレート アッセイの結果を示す。白抜きの部分は相同性領域を示す。 第4節 キメラセルラーゼの作製とそれぞれの酵素の精製

a)BSC、NK1の比較と大腸菌における高発現系の構築

BSCとNK1の至適pH profileをCMCを基質として用いて測定したとこ ろ(図2-3)、BSCはpH 6-6.5を至適pHとする鐘型を示すのに対し て、NK1は90%以上の活性をpH 6-11の間で有していた。他方、両酵 素のアミノ酸配列を比較するとBSCの39Asnから329Ile、NK1の33Asn から324Ileの間で、70%以上の高い相同性が認められた(図2-4)。 また前節でも述べたように、BSCにおいてはC末端側の非相同領域は 活性に必須ではないので、両酵素の至適pH profileの違いは相同性 領域内のいくつかのアミノ酸の置換によるものと推定された。そこ でBSCとNK1との間でキメラセルラーゼを作製してこれらのアミノ酸 の所在についての情報を得る事とした。

キメラセルラーゼ作製の前に、大腸菌を宿主とした高発現系を確 立する事とした。これは<u>bsc</u>、<u>nk1</u>遺伝子を大腸菌内で発現させると、 両酵素がペリプラズム画分に貯留し^{6,8,79})、精製も容易になるため である。図2-5に示すように、<u>bsc</u>遺伝子を含む1.8 kbの<u>Sac</u>I-BamHI断片をpUC18の<u>lac</u>プロモーターの下流に接続しpUC18BSCを構築 したところ、BSC蛋白は<u>lac</u>プロモーターの制御下で大量に生産され た。しかしながら同様の構築を<u>nk1</u>遺伝子について行ったpUC19NK1で は、NK1蛋白は極微量しか生産されなかった。そこで部位特異的変異 により<u>nk1</u>遺伝子を含む2.1 kbの<u>Hin</u>dIII断片¹⁰¹⁾の147 baseめにユ ニークな<u>Eco</u>RIサイトを導入して<u>lac</u>プロモーターとNK1-coding regionとの間の距離を短くしたプラスミドpUC18NK15を構築した。そ の結果、E. coli MV1184 (pUC18NK15)は<u>E. coli</u> MV1184 (pUC19NK1)

- 35 -

図 2 - 3 BSCとNK1の至適pH profile ○はBSCの、●はNK1の至適pH profileを示す。

- 36 -

- 37 -

図 2 - 5 セルラーゼ遺伝子のpUC-plasmidへのサブクローニング 細い円は各種ベクタープラスミド部分を、太い線はセルラーゼ遺 伝子部分を示す。円の周囲の矢印はセルラーゼをコードする領域を 示し、鏃は<u>lac</u> promoterの向きを示す。E, <u>Eco</u>RI; H, <u>Hin</u>dIII; P, <u>Pst</u>I; S, <u>Sac</u>I. に比べてNK1蛋白を約10倍生産するようになった。

b)セルラーゼ蛋白の領域分割とキメラセルラーゼの作製

bsc遺伝子と<u>nk1</u>遺伝子を比較したところ、相同性領域内に4つの 保存された制限酵素切断点が存在していたので、両遺伝子をこの4 カ所で5つの領域に分割する事とした。それぞれの領域は、領域1、 1Met-57Val (1Met-51Val):領域2、5°Gln-9°Tyr (52Gln-9°Tyr): 領域3、97Thr-195Asp (91Thr-19°Asp):領域4、196Pro-2⁸⁷Ser (191Pro-2⁸²Ser):領域5、2⁸⁸Trp-499His (2⁸³Trp-4⁸⁸Asn)である (数字はBSCのアミノ酸番号であり、括弧内にNK1の番号を記した)。 ブラスミドpUC18BSCとpUC18NK15を出発材料として図2-6に示すよ うなさまざまなキメラ遺伝子を作製した。キメラセルラーゼの名前 により簡便にその構造を示すために、各領域ごとの由来をB (BSC由 来) あるいはN (NK1由来)で示し、領域1から5までを連ねてキメ ラセルラーゼの名前とした。従って、BBBBBはBSCを、NNNNNはNK1を 示す事となる。

これらのキメラ遺伝子を含むpUC-plasmidを保持する<u>E</u>. <u>coli</u> MV1184株を培養し、そのペリプラズム画分をosmotic shock法により 取得して、精製の出発材料とした。

c)キメラセルラーゼの精製とその至適pH profile

キメラセルラーゼ精製の際に、イオン交換クロマトグラフィー上 での挙動に大きな差が認められた。Mono S陽イオン交換カラムをpH 5.3で用いると、BSCはカラムに吸着され、NaCl 150 mMで溶出され たがこの条件ではNK1は全く吸着されなかった。

- 39 -

図2-6 構築したキメラセルラーゼの構造

白抜きの部分と黒塗りの部分はそれぞれBSC、NK1由来の領域を示 す。相同性領域と領域区分、並びに対応するアミノ酸番号を示した。

これとは逆に、Mono Q陰イオン交換カラムを用いると、NK1はpH 7.5で吸着されてNaCl 450 mMで溶出されたが、BSCはpHを8.5まで上 昇させない限り吸着されなかった。BSC由来の領域5を持つキメラセ ルラーゼはBSCと同様の、また逆に領域5にNK1由来の部分を持つキ メラセルラーゼはNK1と同様の挙動をイオン交換クロマトグラフィー の際に示す事より、BSCとNK1の示すこれらの挙動はC末端側領域の 特性を反映しているものと考えられる。実際にC末端の非相同領域 のアミノ酸組成をBSCとNK1の間で比較してみると、BSCの方は酸性/ 塩基性アミノ酸の比が16/19であるのに対して、NK1は30/3と大きく 異なっていた。従って、キメラセルラーゼの見かけの等電点は領域 5の由来によって大きく影響を受けているようである。また使用で きるカラムの差によって精製度も大きく異なっていた。BSCをはじめ とするMono Sカラムを精製に使用できるキメラセルラーゼは、この 精製法でSDS-PAGE上ほぼ単一バンドになるまで精製されたが、Mono Qカラムを精製に使用するキメラセルラーゼの精製度はそれよりも 低いものであった (図2-7)。

BSCの精製標品のCMCに対する比活性はpH 5.9で29.3 U/mg proteinであり、NK1の90 %精製標品のpH 5.9における比活性は35.8 U/mg proteinと計算され、両者の間で大きな差は認められなかった。

すべてのキメラセルラーゼを大腸菌で生産し、Mono Qあるいは Mono Sカラムを用いて部分精製してその至適pH profileを測定した (図2-8)。 至適pH profileからキメラセルラーゼをアルカリ性 側で2種類、酸性側でも別の2種類のグループに分ける事ができた。

- 41 -

図2-7 いくつかのキメラセルラーゼのSDS-PAGE

Lane 1 12, 標準分子量マーカー; 2, BSC; 3, NBBBB; 4, NNBBB; 5, NNNBB; 6, NNNNB; 7, BNNNN; 8, BBNNN; 9, BBBNN; 10, BBBBN; 11, NK1.

- 42 -

図2-8 キメラセルラーゼの至適pH profile

- 43 -

第5節 アルカリ性領域についての解析

a)アルカリ性側での分類

BSCとNK1の至適pH profileを比較すると、特にアルカリ性側で大 きな差が認められる (図2-3)。 BSCはpH 6を至適pHとしpH 9でほ ほ50%の活性を維持するが、pH 10ではその活性を失う。それに対し てNK1はpH 6から10.5の間でほぼ100%の活性を維持している。構築 したキメラセルラーゼの活性は両者のprofileの間に分布しているが、 pH 10で50 %の活性を維持しているかどうかを基準としてキメラセル ラーゼを大きくBSC typeとNK1 typeに分類する事ができた(図2-9)。NK1 typeに属するキメラ酵素はすべて領域5にNK1由来の部分 を持ち、更に領域3や4にNK1由来の部分を持っていた。それに対し てBSC typeに属するキメラ酵素は、BBBBNを除いて領域5にBSC由来 の部分を持っていた。BSC typeに属するキメラ酵素のうちBBBBNと NNNNBについては、アルカリ性側での活性が他のキメラ酵素と比べて 上昇している事が観察された。以上の結果より、領域5がBSC由来で あればBSC typeのprofileを与える事ができるのに対して、NK1 typeのprofileを得るには領域5のみならず更に領域3や4がNK1由 来である事が必要であると考えられる。すなわちアルカリ性側での 分類には、領域5が中心的な役割をはたしているが、領域3や4も 関与していると結論される。

b)領域5に関する解析

以上のように領域5の重要性が示されたが、領域5はN末端側に 短い相同性領域を持つ以外はほとんど相同性を示さない領域で構成

- 44 -

図 2 - 9 キメラセルラーゼのアルカリ性側の活性曲線 A、BSC-type chimeras: B、NK1-type chimeras. O, BBBBB; ▲, NBBBB; ■, NNBBB; ▼, NNNBB; ◆, NNNNB; ●, NNNNN; △, BNNNN; □, BBNNN; ▽, BBBNN; ◇, BBBBN; ★, NNBNN; *, BBNBN; ☆, BBNBB. 図中ではBSCとNK1のprofileの みを実線で示した。

- 45 -

されている。そこで領域5を相同性部分と非相同性部分の2つに分割し、それぞれの至適pH profileに与える効果を調べるために、相同性部分のC 末端側に部位特異的変異により共通する<u>Hha</u>Iサイトを アミノ酸置換が伴わないような形で導入した(図2-4の鏃部分)。 このHhaIサイトを用いて、NK1を母体に領域5の相同性部分、あるい は非相同性部分のみをBSC由来の部分と置換したキメラセルラーゼ、 NNNN (BN)、及びNNNN (NB)を作製した。これら2種のキメラ酵素の至 適pH profileはNNNN (BN)が、BSC typeのNNNNBとほぼ同じであり、 NNNN (NB)はNK1 typeに分類された(図2-10)。このことから領 域5の中では、相同性部分の方が至適pH profileに与える影響は大 きいという事が示された。

第6節 酸性領域についての解析

a)酸性側での分類

BSCとNK1の酸性側での至適pH profileを比較すると、BSCの活性が pH 4から5の間でシャープに上昇するのに対して、NK1の方はpH 5と 6の間でその活性が上昇する(図2-4)。そこで構築したキメラ酵 素をこの観点から分類すると、やはりBSC typeとNK1 typeの2種類 に分類された(図2-11)。BSC typeに属するものはすべて領域 4にBSC由来の部分を有しており、逆にNK1 typeに属するものは領域 4にNK1由来の部分を有していた。

- 46 -

図2-10 キメラ酵素NNNN(NB)とNNNN(BN)の至適pH profile ○、NNNN(BN); ●、NNNN(NB)

- 47 -

図2-11 キメラセルラーゼの酸性側での活性曲線

A、BSC-type chimeras; B、NK1-type chimeras シンボルは図 2 - 8 と同様である。図中ではBSCとNK1のprofileのみ を実線で示した。

- 48 -

b)領域4に関する解析

領域4の重要性が示されたので、その点を確認するためにBSCと NK1の領域4の部分のみを相互に交換したキメラ酵素、BBBNBと NNNBNを構築し、酸性側での酵素活性を測定した(図2-12)。予 想通りBBBNBはNK1 typeに、NNNBNはBSC typeに分類された。

BSCとBBBNBについては陽イオン交換クロマトグラフィー、疎水ク ロマトグラフィー及びクロマトフォーカシングを用いる事によって 完全精製ができたので、酸性側でkinetic parameterがどのように変 化しているのかをPNPCを基質として用いて測定した(表2-1)。 Km値に関してはBSCの方がBBBNBよりも2倍大きかったものの、両者 の値はpH 5と6の間で変化しなかった。それに対してBSCのkcat値は pH 5と6でほとんど変化が認められなかったのに対して、BBBNBの kcat値はpH 5で7.0x10³ s⁻¹からpH 6で1.3x10⁴ s⁻¹へと2倍に上昇 していた。このことは、酸性側での酵素活性の変化が基質結合では なく、分解活性の変化によるものである事を示している。

図 2 − 1 2 キメラ酵素BBBNBとNNNBNの酸性領域での活性曲線 △、BBBNB; ▲、NNNBN; ○、BSC; ●、NK1

- 50 -

表 2 - 1 BSCと BBBNBの酸性領域でのkinetic parameter

Enzyme	Km	kcat	<u>kcat/Km</u>
	mМ	S ⁻¹	M-1 s-1
BBBBB (BSC)			
pH 5.0	1.1	2.2x104	2.0x107
pH 6.0	1.0	2.3x104	2.3x107
BBBNB			
рН 5.0	0.49	7.0x10 ³	1.4x107
pH 6.0	0.41	1.3x104	3.2x107
			-

第7節 まとめ及び考察

a)バチルス属セルラーゼの活性に必須な領域の限定

BSCにおけるC末端欠失変異セルラーゼの構築の結果、少なくとも BSCに関してはN末端側の相同性領域のみでセルラーゼ活性が担われ ている事が示された。また同様の結果が福森らによって、好アルカ リ性バチルス属No. 1139株由来のセルラーゼに関して得られている 113)ので、この性質はバチルス属セルラーゼー般に共通したもので あろう。

最近、small angle X-ray scattering (SAXS)の手法を用いて <u>Trichoderma reesei</u>のセロビオハイドロラーゼ (CBH) IとII⁷⁶⁾、 <u>Cellulomonas fimi</u>のエンド型セルラーゼ (CenA)¹¹⁴⁾の分子構造が 明らかとなった (図2-13)が、いずれの場合も活性ドメインを 頭部に、結晶セルロース結合ドメインを尾部に持つオタマジャクシ 型であった。これらの酵素のうち、CBHIIとCenAは一次構造上弱い相 同性を示し、またHCAでも同じファミリーに属するが、CBHIは前2者 とは全く相同性を示さない。

バチルス属セルラーゼは、これらの酵素との間に明確な相同性を 有しておらず、またHCAにおいても異なるファミリーに分類されるが、 ドメイン構成(N末端側の活性ドメインとC末端側ドメイン)が類 似しているので、似たような構造をしているのではないかと考えら れる。すなわち、N末端側の相同性領域が頭部を形成し、C末端側 領域が尾部を形成するものと考えられる。

C 末端の非相同領域の酵素活性に及ぼす役割は明らかでない。一 つの仮定として、以前は結晶性セルロース結合ドメインを形成して

- 52 -

(A)

図2-12 SAXSによるβ-グルカナーゼ分子の構造

(A)、<u>T. reesei</u> CBHI: (B)、<u>T. reesei</u> CBHII: (C)、<u>C</u>.
<u>fimi</u> CenA。(A)及び(B)中の"core"は活性に必須なドメインを示し、"A"及び"B"、"B'"はそれぞれセルロース結合ドメインとPro、Thrに 富む領域を示す。(<u>Enzymes in Biomass Conversion</u>, Ed. by G. E Leathan and M. E. Himmel, American Chemical Society, 1991よ り引用)

- 53 -

いたものが、進化の過程でその機能を失ったのではないだろうか。

b)バチルス属セルラーゼの至適pH profileを決定する領域の同定

アルカリ性側に関しては、領域3から領域5の相同性部分まで (BSCのアミノ酸番号で97番目から329番目)に位置する多くのアミ ノ酸残基が影響を与えている事が明らかとなった。特に領域5の相 同性部分はNK1型のprofileを与えるためには必須であった。

C 末端側の非相同領域は、酵素活性に必要でないばかりでなく、 至適pH profileにも大きな影響を与えない事が示された。このこと はバチルス属セルラーゼの分子構造も、前に述べたようなオタマジ ャクシ型をしている一つの証拠になるのではないだろうか。

酸性側の活性化pHの違い(BSCではpH 4-5、NK1ではpH 5-6)は領 域4(BSCのアミノ酸番号で196番目から287番目)のみによって規定 されている事が明確に示された。またこの酵素活性の変化が<u>kcat</u>値 の変化にともなって起こっている事も示された。<u>T. reesei</u>の CBHIが酸性アミノ酸を化学修飾すると、その酵素活性を失う事⁷⁴⁾、 あるいはアミラーゼ¹¹⁵⁻¹¹⁷⁾やリゾチーム¹¹⁸⁻¹²⁰⁾などの他の糖質 分解酵素との類推から、セルラーゼも2つの酸性アミノ酸が酸、塩 基触媒として働くacid-base catalysis mechanism^{121,122)}によって その酵素活性を発揮するものと考えられる。領域4の特定のアミノ 酸がおそらくは直接活性中心を形成する酸性アミノ酸残基と相互作 用して、その解離pHを変化させているのではないだろうか。これら の点に関しては、部位特異的変異を用いてBSCとNK1の至適pH Profileに影響を与えるアミノ酸残基を特定したり、パチルス属セル ラーゼの高次構造を調べる事によって明らかとなっていくものと考

- 54 -

えられる。

第三章 <u>bsc</u>遺伝子のプロモーター、シグナル配列を用いた 分泌ベクターの構築とその利用

第1節 緒言

前章ではクローン化したBSC蛋白の構造と機能に関する研究につい て述べたが、本章では<u>bsc</u>遺伝子の利用として、プロモーターとシグ ナル配列を用いた分泌ベクターの構築とその利用について述べる。

枯草菌における分泌ベクターの開発は、その多くがB. subtilis及 びその類縁菌由来のプロテアーゼやアミラーゼ遺伝子のプロモータ ー及びシグナル配列を利用してなされてきた。また分泌される対象 となる遺伝子には真核生物、原核生物由来のさまざまな遺伝子が使 用された^{18-24.34-36.123)}。しかしながらそれらの多くの系におい ては、分泌生産物の収率は低いものであり、その原因の一つには宿 主の生産する菌体外プロテアーゼによる分解が考えられた^{124.125)}。 そこで菌体外主要プロテアーゼの2種類(サチライシン(Apr)と中性 プロテアーゼ(Npr))が欠損した菌株が作製され³⁰⁾、分泌生産の宿 主として使用された^{24.34.35)}が、この菌株においても生産物の分解 は防げなかった。従ってさらにプロテアーゼ活性を低下させる必要 性が考えられた。

他方、sacQ、degU、prtR、senなどの菌体外酵素遺伝子の発現を正 に制御する遺伝子のクローン化がなされ、これらの遺伝子を異種遺 伝子産物の分泌生産に利用する事が考えられた。実際に、Honjoらに よってB. amyloliquefaciens由来のsacQ遺伝子を染色体に組み込ん

- 56 -

だ枯草菌菌株が作製され、この株を分泌生産の宿主として使用する と、ヒト成長ホルモンの生産量が4-5倍に上昇したという報告もなさ れている²⁴⁾。

このような状況下で本章では、著者らが先に作製した3種の主要 プロテアーゼ(Apr、Npr、及び主要菌体内セリンプロテアーゼ (Isp-I))が欠損したKN2株³³⁾の宿主としての利用性を、BSC蛋白自 体と<u>bsc</u>遺伝子のプロモーター、シグナル配列を利用したpBR322由来 のTEM β -ラクタマーゼ(BLA)分泌ベクターを用いて検討を行った。 同時に発現制御遺伝子(<u>sacQ、prtR、sen</u>)を同一プラスミド上に組み 込み、生産性の改良を試みた³⁶⁾。

第2節 材料及び方法

a)菌株、プラスミド及び培養条件

<u>B. subtilis</u> RM141はプラスミド構築の宿主として使用した。<u>B.</u> subtilis 168 (a wild-type strain)とKN2 phe-1 lys-1 trpC2 nprR2 nprE18 aprE Δ 3 Δ ispA³³, はBSCとBLA生産の際の宿主として 使用した。<u>E. coli</u> RR1 supE44 hsdS20(r_B- m_B-) ara-14 proA2 lacY1 galK2 rpsL20 xyl-5 mtl-1¹⁰⁹, とMV1184はそれぞれプラスミ ドpBTD1構築とDNA塩基配列決定のための宿主として使用した。本章 で使用したプラスミドは表 3 - 1 に示した。枯草菌、大腸菌の両株 共、通常の培養にはL-brothを用いた。DNA塩基配列決定のための一 本鎖プラスミドDNA調製の際には2xYT-brothを用い、枯草菌のプロト プラスト法形質転換の際には2M3再生培地とPennassay broth液体培

- 57 -

Plasmid	Description	Source
pTG2	A pBR322-derivative containing BstEII site at the cleavage site of the signal peptide	J. R. Knowles ¹²⁶
pBC501	Contains the bsc gene	A. Nakamura ⁶⁹⁾
pUBHR-N1.8	Contains the sen gene	R. H. Doi ⁶¹⁾
pEST1	Contains the sacQ gene	F. Kawamura*
pNC61	Contains the prtR gene	T. Tanaka ⁶⁰⁾
pUC18		J. Norrander110>
pUC118		J. Vieira ¹⁰⁶⁾
pUB110		T. J. Gryczan ³⁸⁾
pBTD1	A pBR322-derivative containing the	This study
pUP110	<u>bsc-bla</u> fusion gene A pUB110-derivative containing the poly- linker site of pUC18	This study
pUP110BSC		This study
pUP110BSC-se	n	This study
pUP110BSC-sa		This study
pUP110BSC-pr	tR	This study
pUP110BLA	The second s	This study
pUP110BLA-se	n	This study
pUP110BLA-sa	cQ	This study
pUP110BLA-pr	tR	This study

表3-1 本章で使用したプラスミド

^a The <u>sacQ</u> gene was cloned from <u>B</u>. <u>subtilis</u> 168 as a 1.5-kb <u>Sau3AI</u> fragment by F. Kawamura, and sequenced by us. The nucleotide sequence was the same as that previously reported^{5 99}.

- 58 -

地を用いた。

b)DNA塩基配列の決定

bsc遺伝子と<u>bla</u>遺伝子の融合部分のDNA塩基配列を確認するために、 適切な制限酵素切断断片をpUC118にサブクローニングし、dideoxy法 によってその塩基配列を決定した。

c)酵素活性の測定

セルラーゼ活性はCMCを基質として前章で示した方法と同様の方法 で測定した。ただし、反応溶液中のバッファーは0.1 M potassium phosphate buffer、pH 6.5を使用した。

 $\beta - \overline{\rho} \rho \overline{\rho} \overline{\gamma} - \overline{\nu} \overline{\tau}$ 活性は、C. J. Perret¹²⁷⁾によるヨウ素滴定法 を用いた。0.1 M sodium phosphate buffer、pH 7.0にアンピシリン ナトリウム5 mMを溶解させた基質溶液2.5 mlに対して、酵素溶液を 0.5 ml加え、30 ℃、30分反応させる。その後、ヨウ素溶液(2.0 g KI、421 mg I₂を10 mlの水に溶解し、2 M sodium acetate buffer、 pH 4.0で20倍に希釈した溶液)を5 ml加え、室温で10分間放置した 後、0.5 %デンプン液を0.25 ml加える。その後、チオ硫酸ナトリウ ム溶液(419 mgのチオ硫酸ナトリウムを10 mlの水に溶解し、使用直 前に水で10倍に希釈する)を用いて滴定する(反応系)。同様の処 理を酵素溶液を加えずに行い、対照とする。酵素活性は次式に従っ て計算される。

酵素活性=Dil. x 4 x (Ref. - Rea.) / 30 (U/ml) Dil.、酵素溶液の希釈率: Ref.、対照側の滴定値; Rea.、反応系側 の滴定値 d) 大腸菌中におけるBLAの分布

大腸菌細胞をosmotic shock法により菌体外、ペリプラズム、及び 菌体内画分に分画し、それぞれのBLA活性を測定する事によりBLA蛋 白の分布を調べた。

第3節 <u>bsc</u>遺伝子のプロモーター、シグナル配列を用いた BLA分泌ベクターの構築

プラスミドpTG2は<u>bla</u>遺伝子のシグナル配列の切断点にユニークな <u>Bst</u>EIIサイトを持つpBR322の誘導体である¹²⁶³。このプラスミドを 出発材料として、<u>bla</u>遺伝子のプロモーター及びシグナル配列部分を <u>bsc</u>遺伝子のものと置換したプラスミドpBTD1を作製した(図3-1 A)。この構築ではBLAの成熟体部分の前に、BSCのシグナル配列と 成熟体のN末端側7アミノ酸が付加された形となっている(図3-1B)。このプラスミドを保持する<u>E</u>. <u>coli</u> RR1株はアンピシリン耐 性を示し、また塩基配列決定の結果から(図3-1B)も2つの遺 伝子が正しく接続された事が示された。<u>E</u>. <u>coli</u> RR1株の細胞分画の 結果、全体のβ-ラクタマーゼ活性はpTG2を用いた場合の1/5と低い ものの、約80%の活性が菌体外及びペリプラズム画分に存在してい た。このことは<u>bsc</u>遺伝子のプロモーター、シグナル配列が、<u>bla</u>遺 伝子と接続後も天然の<u>bsc</u>遺伝子の場合)と同様に大腸菌中で機能し 得る事を示している。

в

 $\begin{array}{cccc} Pst1- & -Dd/Bs- \\ gcstclscoscosgescamamacgccageagCCAAGAATGGTCAGCTAGCACCCCAGAAACGCTG 27^A & S & A & G & T & K & T & P & A & K & N & G & Q & L & S & H & P & E & T_{48}L \end{array}$

図3-1 <u>bsc-bla</u>融合遺伝子を含むプラスミドの構築

A、プラスミド構築の模式図

白抜き及び網掛けの部分はそれぞれ<u>bsc</u>、<u>bla</u>遺伝子部分を示す。円の周囲の矢 印はそれぞれの遺伝子の位置と方向を示す。Ba, <u>Bam</u>HI; Bs, <u>Bst</u>EII; Dd, <u>DdeI</u>; Dr, <u>Dra</u>I; E, <u>Eco</u>RI; Ps, <u>Pst</u>I; Pv, <u>Pvu</u>II; Sa, <u>Sal</u>I; Sm, <u>Sma</u>I; and M.C.S., polylinker site of pUC18.

B、融合部分の塩基配列

³⁶Aまでのイタリックはセルラーゼシグナルペプチドを、 ${}^{37}A-{}^{43}SO$ 部分は成熟 体セルラーゼのN末端7アミノ酸を示す。 ${}^{44}H以降は\beta-ラクタマーゼ部分であ$ る。 このようにして構築した<u>bsc-bla</u>融合遺伝子を、pUB110の<u>Eco</u>RI-<u>PvuII間にpUC18由来のポリリンカー部分を導入したプラスミド、</u> pUP110上にサブクローニングした(図3-1A)。このプラスミド、 pUP110BLAを保持する<u>B</u>. <u>subtilis</u> RM141株はBLAを培地中に生産した が、その活性は宿主にアンピシリン耐性(15 μ g/mlアンピシリンに 対する耐性)を付与するほど強いものではなかった。

第4節 BSCとBSC-BLA生産におけるプロテアーゼ三重欠損変異と 発現制御遺伝子の利用

<u>bsc-bla</u>融合遺伝子は枯草菌中で発現し、BLAを分泌生産させる事 ができたが、その生産量は低いものであった。この原因としては、 <u>bsc-bla</u>融合遺伝子の発現レベルが低い事と、生産物がプロテアーゼ により分解されている事が考えられる。そこで、菌体外酵素遺伝子 の発現を正に制御する遺伝子の利用と、プロテアーゼ三重欠損変異 を持つKN2株の利用を試みた。同時にコントロールとして、BSCの生 産量についても調べる事とした。

発現制御遺伝子としては<u>sacQ</u>、<u>sen</u>、<u>prtR</u>遺伝子を用いる事とし、 各遺伝子を<u>bsc</u>あるいは<u>bsc-bla</u>遺伝子を含むプラスミド上に導入し た(図3-2)。これらのプラスミドを用いて<u>B</u>.<u>subtilis</u> 168株と KN2株を形質転換し、L-brothで好気的に培養してその培養上清中の セルラーゼ、あるいは β -ラクタマーゼ活性を測定した(図3-3 及び3-4)。

- 62 -

a)BSC生産における発現制御遺伝子とKN2株の効果

図 3 - 3 に示すように、BSC生産については<u>sacQ</u>遺伝子とKN2株を 利用する事により、約9倍の生産性の上昇が認められた。<u>prtR</u>、 <u>sen</u>遺伝子の導入によってはそれぞれ1.7培、1.2倍の上昇しか認めら れなかった。プロテアーゼ三重欠損変異の効果は、<u>sacQ</u>により<u>bsc</u>遺 伝子の発現量を増加させた場合にのみ顕著に認められた(図 3 - 3 C)。KN2株ではBSC蛋白の培地中への蓄積は、培養を終了する72時 間目まで継続的に起こり、また産物の顕著な分解は認められなかっ たが、168株の場合には対数増殖の終了と共に、BSC活性の低下が認 められた。このことは<u>sacQ</u>遺伝子を野生株に導入した事により、 BSC生産の上昇と共に宿主の生産するプロテアーゼの生産量も増加し、 その結果本来宿主の生産するプロテアーゼによる分解に対して耐性 を有していると考えられるBSC蛋白の分解をも引き起こしたものと考 えられる。KN2株と<u>sacQ</u>遺伝子の利用により、BSC蛋白の蓄積量はそ の比活性⁷⁰,から計算して232 mg/1に上る事が示された。

図 3 - 3 B. subtilis 168株及びKN2株を用いたBSCの生産

A、pUP110BSC: B、pUP110BSC-sen: C、pUP110BSC-sacQ; D、pUP110BSC-prtR 白抜きのシンボルはKN2株を示し、黒塗りのシ ンボルは168株を示す。○ ●、培養液の660 nmの吸光度;△ ▲、 培地中のセルラーゼ活性

- 65 -

b)BLA生産における発現制御遺伝子とKN2株の利用

図3-4Aに示すように、プロテアーゼ三重欠損変異の効果は BLA生産の場合には発現制御遺伝子のないときに顕著であった。この ことは、BLA蛋白が枯草菌の生産する主要菌体外プロテアーゼによっ てBSC蛋白よりもはるかに分解され易い事を示している。KN2株は 168株に比べて対数増殖の終了時点でBLA蛋白を約2.5倍蓄積するが、 その後どちらの株においてもBLA活性は急速に失われていった。おそ らくはKN2株中に残っているマイナーなプロテアーゼによってBLA蛋 白の分解が引き起こされたものと考えられる。

発現制御遺伝子の導入は、いずれの場合もBLA生産の低下を引き起 こした。これは発現制御遺伝子の導入により、168株では主要な三種 のプロテアーゼ生産を、またおそらくはKN2株中に残存しているマイ ナーなプロテアーゼの生産量をも上昇させたために、BLA蛋白が急速 に分解されたものと考えられる。

図 3 - 4 B. subtilis 168株及びKN2株を用いたBLAの生産

A、 pUP110BLA: B、 pUP110BLA-sen: C、 pUP110BLA-sacQ:
D、 pUP110BLA-prtR 白抜き及び黒塗りのシンボルはそれぞれKN2株、及び168株を示す。○ ●、培養液の660 nmの吸光度: △ ▲、培養上 清中のβ-ラクタマーゼ活性

- 67 -
第5節 まとめ及び考察

<u>bsc</u>遺伝子のプロモーター、及びシグナル配列領域を利用して、枯 草菌と大腸菌の双方で機能する分泌ベクターの構築に成功した。枯 草菌においては、主要プロテアーゼ三重欠損変異株と<u>sacQ</u>遺伝子な どの発現制御遺伝子を組み合わせる事により、BSC蛋白などの枯草菌 プロテアーゼに対して耐性を有している産物を生産させる場合には、 その生産量を飛躍的に増加させる事ができる事が明らかとなった。 本研究におけるBSC蛋白の最大生産量は約250 mg/1であった。

しかしながらBLA蛋白のような枯草菌プロテアーゼに対して耐性を 有していない産物を生産させる場合には、主要プロテアーゼ三重欠 損変異株においても産物の分解が起こってしまう事が示された。ま た発現制御遺伝子の導入はかえって生産物の分解を促進してしまう 事が示された。この点を改善するには、<u>epr490やmpr500</u>といった菌 体外マイナープロテアーゼの遺伝子、あるいは<u>isp-II</u>1280といった 菌体内マイナープロテアーゼの遺伝子をクローン化し、さらに遺伝 子破壊を行うなどの手法を講じて宿主側のプロテアーゼレベルをさ らに減少させる必要があるものと考えられる。 **室四章 菌体外ヌクレアーゼ遺伝子のクローニングとその構造解析**

第1節 緒言

前章までにクローン化した<u>bsc</u>遺伝子の遺伝子レベル、及びタンパ ク質レベルでの解析と、その遺伝子を用いた分泌ベクターの作製に ついて述べたが、本章では次なる研究対象として、菌体外ヌクレア ーゼ遺伝子(<u>bsn</u>遺伝子)のクローニングとその構造解析について述 べる。

ヌクレアーゼ(特にリボヌクレアーゼ(RNase))に関する酵素学的 な研究は、哺乳類や糸状菌由来の酵素を中心に古くからなされてお り^{129,130)}、X線結晶解析によって立体構造が明らかになったもの もある^{131,132)}。これはRNaseのうちにアミノ酸100個程度で構成さ れている一群があり、全アミノ酸一次配列の決定ができるなど、取 扱いが容易であったためである。またこれらの酵素の中には塩基特 異的な分解活性を示すものがあり、RNA分子の塩基配列の決定への利 用¹³³⁾や、構造・機能相関関係の解析なども行われてきた¹³⁴⁾。

細菌由来のRNaseの研究では、<u>B. amyloliquefaciens</u>由来の barnaseについてはその遺伝子のクローン化¹³⁵⁷、並びにX線結晶解 析¹³⁶⁹がなされている。この酵素は<u>B. intermedius、Streptomyces</u> <u>erythreus</u>由来の酵素とともに、<u>Aspergillus oryza</u>e由来のRNase T1との類似性が示され¹³⁰⁹ている。また大腸菌由来の酵素では、 RNase H¹³⁷⁹、RNase I¹³⁸⁹、RNase IIII¹³⁹⁹などの遺伝子のクローン 化がなされている。

- 69 -

RNAばかりでなくDNAも分解する細菌由来のヌクレアーゼとしては、 <u>Staphylococcus</u> <u>aureus</u>由来のmicrococcal nucleaseについてその遺 伝子のクローン化¹⁴⁰とX線結晶解析¹⁴¹が報告されているし、 <u>Serratia</u> <u>marcescens</u>由来の酵素について遺伝子のクローニングが報 告されている^{142, 143}。

このようにヌクレアーゼに関する研究は多岐にわたり、またヌク レアーゼの中には酵素学的な興味ばかりでなく、tRNAやrRNAのプロ セシング、あるいはmRNAの分解、さらにはDNAの複製や修復といった 生命現象に直接関与しているものもあり、生物学的にも興味が持た れている。

枯草菌のヌクレアーゼについては、菌体内外に存在する数種類の 酵素について、精製と性質について報告されている。以下にまとめ てみると、

1) 菌体内に存在するエンド型RNase。分子量約25,000。至適pHを pH 5.5-5.7に持ち、塩基に対する嗜好性を示さない。最終産物とし て4 種類のribonucleoside 2',3'-cyclic monophosphateを生じる。 この酵素はATPにより阻害される^{144,145)}。

 2)菌体外に存在するエクソ型ヌクレアーゼ。Ca²⁺を活性に必要とし、2本鎖DNAに対しては3'端から、1本鎖DNAに対しては5'端から順に分解して、RNA及びDNAから(deoxy)ribonucleoside 3'monophosphateを生じる。至適pHは9.5である^{146.147})。

3) 菌体外に存在するエンド型RNase。分子量10,700で至適pHを8.5 付近に持つ。-GpGp-及び-GpAp-配列の分解を、他の配列よりも100倍 速く行うが、最終的には塩基に対する明確な嗜好性を示さない14%.

- 70 -

またこれら以外にも菌体外にpH 5付近に至適pHを持つRNaseの報告

このように枯草菌は多種類のヌクレアーゼを生産する事が知られ ているが、遺伝子レベルからの解析が行われたものには枯草菌のコ ンピテンスに関与するDNase¹⁵¹⁾、制限酵素<u>Bsu</u>RI¹⁵²⁾、DNA修復に関 与するDNase(<u>uvrC</u>遺伝子産物)¹⁵³⁾、及び組換えに関与するATP依 存性のDNase(<u>addA及びaddB</u>遺伝子産物)¹⁵⁴⁾がある。本章ではこれ らの酵素に関して遺伝子レベルから解析するために行った菌体外ヌ クレアーゼ遺伝子のクローニングと、その構造解析について述べる。 クローニングの方法としては、対象を絞らないためにもショットガ ンクローニング法を用いた。

第2節 材料及び方法

a)菌株、プラスミド及び培養条件

B. subtilis IF03034をbsc遺伝子の場合と同様にDNA供与体として用い、B. subtilis K-2、RM141はそれぞれショットガンクローニング、サブクローニングの際の宿主として使用した。E. coli JM105及びMV1184はそれぞれM13ベクター及びpUC118、pUC119の宿主として使用した。プラスミドpBD64及びpUB110はショットガンクローニング、サブクローニングの際のベクターとして使用した。M13 mp10、mp18及びmp19、並びにpUC118、pUC119はDNA塩基配列決定の際に使用した。
B. subtilis及びE. coliの通常の培養にはL-brothを用い、bsn遺伝子発現用の培地としてはNUC-broth(1.5% Veal Infusion Broth

(Difco), 0.5 % Yeast Extract (Difco), 3.0 % soluble starch, 1.0 % CaCO₃、次章にて詳しく述べる)を用いた。DNA塩基配列決定 のための一本鎖プラスミド、M13ファージDNA調製には2xYT-brothを 用い、枯草菌のプロトプラスト法形質転換の際にはDM3再生培地と Pennassay broth液体培地を用いた。

ショットガンクローニングの際に、Spizizen's minimal medium 155) (MM) + 1 % casein + 10 μg/ml chrolamphenicol plate (MM中のグルコースをマルトースに置換している)を形質転換体選 択に用い、Pennassay broth + 1 mg/ml yeast RNA plateをヌクレア ーゼ活性を検出する為のアッセイプレートとして用いた。

b)B. subtilis IF03034の染色体DNAの調製

B. <u>subtilis</u> IF03034株の染色体DNAは、Saito & Miura法¹⁵⁶, により調製した。

c)B. subtilis IF03034 gene libraryの構築

B. subtilis gene libraryは形質転換効率の高いプラスミドマー カーレスキュー法¹⁵⁷、を用いて構築した。B. subtilis IF03034株の 染色体DNAをEcoRIで部分分解した後、EcoRI消化したpBD64とT4 DNA ligaseを用いて連結した。この反応液を用いて、pUB110を保持した B. subtilis K-2株のコンピテントセルを形質転換した。形質転換体 はMM + casein + chrolamphenicolプレート上でのクロラムフェニコ ール耐性により選択した。 d) ヌクレアーゼ生産株の選択

クロラムフェニコール耐性の形質転換体をヌクレアーゼアッセイ ブレート上に移し、37℃、終夜培養してコロニーを形成させた。そ の後に1 N HC1をプレートに注ぎRNAを変性、白濁させると、ヌクレ アーゼにより分解された部分はハローとして検出される。宿主とし て用いた<u>B.</u> <u>subtilis</u> K-2株はわずかなハローしか形成しないのに対 して、大きなハローを形成する株を目的とする形質転換体として選 択した。

e)bsn遺伝子のサブクローニング

上記のようにして取得したプラスミドの挿入断片を適切な制限酵素で消化し、pUB110上にサブクローニングした。切断末端が一致しない場合には適切な制限酵素サイトを持つDNAリンカーを介して接続した。このようにして作製したプラスミドで<u>B</u>. <u>subtilis</u> RM141株のプロトプラストを形質転換した。<u>bsn</u>遺伝子の有無はヌクレアーゼアッセイプレート上でのハロー形成能により判定した。

f)DNA塩基配列の決定

サブクローニングの結果得られたpBN104の挿入断片部分を特定の 制限酵素で消化して得られるDNA断片を適切なM13ベクター、あるい はpUC118、pUC119にクローン化し、dideoxy法によりその塩基配列を 決定した。部分的に起こる縮重に対しては、Ampli<u>Tag</u>158) (<u>Tag</u> DNA polymerase)をKlenow fragmentの代わりに用いる事によって対 処した。 g) nuclease S1 mappingによる転写開始点の決定

pBN104を保持する<u>B</u>. <u>subtilis</u> RM141株をNUC broth中で37 ℃、 12時間培養し、その菌体から全RNAをhot phenol法¹⁵⁹、による抽出と DNase IによるDNAの消化により取得した。これとは別に、pBN104を <u>Nae</u>Iで消化した後、T4 DNA kinaseとγ-³²P-ATPで<u>Nae</u>Iサイトをラベ ルし、さらに<u>Eco</u>RIで消化して得た297 baseの<u>Eco</u>RI-<u>Nae</u>I断片(<u>bsn</u> 遺伝子の5'側coding regionとその上流域を含む)をプローブDNA断 片として調製した。このブローブDNAと精製RNAをLehtovaaraらの方 法¹⁶⁰、に従って35 ℃、終夜加温する事によってハイブリダイゼーシ ヨンを行った。その後にnuclease S1により一本鎖核酸部分を分解し た。同時にプローブDNA断片の塩基配列をMaxam & Gilbert法¹¹)によ り決定した。

第3節 bsn遺伝子のクローニング

<u>EcoRIで部分分解したB.</u> <u>subtilis</u> IF03034の染色体DNAをpBD64の
 <u>EcoRIで部分分解したB.</u> <u>subtilis</u> K-2 (pUB110)のコンピテントセルを形質転換した。10⁵のクロラムフェニコール耐性の形質転換体のうち、8株がヌクレアーゼアッセイブレート上で大きなハローを形成した(図4-1)。これらの形質転換体からプラスミドを調製し、
 <u>B.</u> <u>subtilis</u> RM141のプロトプラストを形質転換した。形質転換体を再びクロラムフェニコール耐性で選択した後、アッセイブレート上でのハロー形成能によりポジティブコロニーを選択した。この操作を2回繰り返す事によりプラスミドを純化した。最終的に得られた

- 74 -

形質転換体はすべて同一のプラスミドを有しており、そのプラスミ ドをpBN1と命名した。pBN1はpBD64のEcoRIサイトに6.9 kbのEcoRI断 片を有しており、この断片中にbsn遺伝子が含まれている事が示唆さ れた(図4-2)。

図4-2 pBN1の制限酵素切断地図

- 77 -

第4節 bsn遺伝子のサブクローニングとその塩基配列の決定

クローン化した6.9 kbのDNA断片中のどの位置に<u>bsn</u>遺伝子が存在 しているかを調べるために、pUB110をベクターとしてサブクローニ ングを行った(図4-3)。<u>bsn</u>遺伝子の有無の判定には、上述のプ レートアッセイ法を用いた。その結果、挿入断片を<u>Dral-Rsa</u>I間約 1.3 kbにまで縮めてもハロー形成能に変化が認められない事から、 この部分に<u>bsn</u>遺伝子が存在している事が示唆され、この断片の全塩 基配列を決定する事とした。。またこの断片をpUB110に対して逆向 きに挿入したプラスミドを用いてもハローを形成する事から、この 断片中にbsn遺伝子のプロモーターが存在する事が示唆された。

DNA塩基配列は図4-4に示すstrategyに従って、dideoxy法により決定した。結果を図4-5に示す。

<u>Dral-Rsal間は1273</u> baseであり、この領域内に存在する唯一の長 いORFとしては<u>Dral</u>サイトから208 baseの位置にあるATGから始まる ものが存在していた。このORFは867 baseにわたり、289アミノ酸残 基、分子量32,027のタンパク質をコードしており、これが<u>bsn</u>遺伝子 であるものと考えられる。このORFのN末端側のアミノ酸配列は、 ³Lys-4Lysと塩基性アミノ酸が続いた後、疎水性アミノ酸に富む領域 が続く、典型的なシグナル配列領域を形成していた。開始コドンの 8 bp上流には、AAGGAGGという配列があり、mRNA上でリボソームが結 合するのに必要なSD配列として機能しているものと思われる。また、 終始コドンの20 bp下流には9 bpからなるinverted repeatが存在し ており、ρ因子非依存性のターミネーターとして機能するものと考 えられる。

- 78 -

図4-3 <u>bsn</u>遺伝子のサブクローニング

各プラスミド中に含まれる挿入断片をbarで示し、併せてプレート アッセイの結果を示す。

- 79 -

図4-4 bsn遺伝子のDNA塩基配列決定のための

sequencing strategy

pBN104の挿入断片の制限酵素切断地図を示す。矢印はDNA塩基配列 決定の方向と長さを示す。pBN104中の黒く塗りつぶした部分はBSN蛋 白をコードする部分である。

- 80 -

Dral TTTAAACTGAAAAACTGACAAGATGATCTTCATTATAGAAGGAGCGCATAACGAGTTCATTATCATATCTTCCCAAAAAATCAATGATTTTCCGGATACTT	100
TGACCAAGAAACCGCCCCCTCTGTCCCATAAGCCGAAGGAACCATTTTTCAAAAAAGATAGAATATTAGATTTATTT	200
	300
ACGAATCTGTACAGCCGGCTGGCGGCTTTCAACTGCCGGCGGCACAACTCTTTTCCGCAAACTTCCTCAGCTGTCATCACTCCGCGCTCTGCGGATACGGAGA ThrAsnLeuTyrSerArgLeuAlaValSerThrAlaGlyGlyThrThrLeuPheProGln <u>ThrSerSerAlaValIleThrPro</u> SerAlaAspThrGluThr	400
Mimilii CATATTACAAAGAGCTECCGGAAAAAGCGGAACAGCCCTAAAAGAGCGCCCTGCACCGCATCATCAGCGGACATACAAAGCTGTCTTACAGCCAAGTATG TyrTyrLysGluAlaSerGlyLysSerGlyThralaLeuLysSerAlsLeuHisArg1lefleSerGlyHisThrLysLeuSerTyrSerGlnValTrp	500
GAATGCATTGAAGGAAACTGACGAAGATCCGGCAAACCCGAACAATGTCATCTTGCTCTACACCCAGGAATCACGGGCCAAAAGTAAAAACGGCGGCAGC AsnalaLeuLysGluThraspGluAspProAlaAsnProAsnAsnVallleLeuLeuTyThrGlnGluSerArgAlaLysSerLysAsnGlyGlySer	600
<u>wel</u> <u>seal</u> <u>PStl</u> OCCGCGGAACCGTGAACACGTGTGGGGAAAGTCACACGGAAACTTCGGAACCGTCGGGCCCGGGACGGGACATTCATCATCTGCGCCGTGCGG ValGlyAspTrpAsnArgGluHisValTrpAlaLysSorHisGlyAsnPheGlyThrAlaAlaGlyProGlyThrAsplleHisHisLeuArgProAlaAsp	700
ACGTCCAGGTGAACAGCGCCAGAGGAAACATGGATTTGATAACGGCGGGCCAGAATACCCGAAAGCGCCGGGGCAATTATTATGACGGTGATTCCTGGGA ValGinValAsnSerAlaArgGlyAsnNetAspPheAspAsnGlyGlySerGluTyrProLysAlaProGlyAsnTyrTyrAspGlyAspSerTrpGlu	800
GCGCGCGCGATGAGGTCAAAGGAGACGTCGCCGCCGCATGCTTTTTACATGGCGGGGCGCGACGGGCGACGGGTATCCCGACCTGAGCTGAATGAT ProArgAspGluValLysGlyAspValAlaArgHetLeuPheTyrMetAlaValArgTyrGluGlyGlyAspGlyTyrProAspLeuGluLeuAsnAsp	900
AAAACCGGAAACGGGTCAGCTCCTTACATGGGAAAACCGTCCGT	1000
AAATCATTTACGAAGACTATCAGCATAACCGCGAATCCGTTATCGACCGCCGGAATGGGCGGACGAAATCTGGTAATCGTATCATAAGAAGTGATAAGG IleileTyrdluxspTyrdlnHisAsnArgAsnProPhelleAspHisProGluTrpAlaAspGluIleTrp***	1100
GAGCCCCATCATCAGGCTCCCTTTTTCAATATACGGCGTTTTCAGTGTCGGCATCAAAAAACACGGCCCGGTTCATATTGACCGCAAGCAA	1200
85aL GCCGGGTTTCACCTCTGAAGCGCCGTCAAGGCGGATCGTCATGCGGTCATCTCCGCCTCACCGCATGAACGTAC	1273

図4-5 bsn遺伝子のDNA塩基配列と推定アミノ酸配列

nuclease S1 mappingの結果明らかになった転写開始点を太い矢印 で示す。SD配列及びE σ ^E RNA polymeraseが認識すると考えられる -35及び-10領域を示した。BSNのN末端アミノ酸配列決定の結果得ら れた配列と一致する部分を下線で示した。またinverted repeat配列 は向かい合った矢印で示した。 第5節 nuclease S1 mappingによる転写開始点の決定

<u>bsn</u>遺伝子のプロモーター領域がpBN104の挿入断片中に存在する事 が示唆されたので、nuclease S1 mappingによって転写開始点を決定 する事とした。

<u>B. subtilis</u> RM141 (pBN104)をNUC brothでstationary phaseまで 培養した後に、全RNAを抽出し、<u>bsn</u>遺伝子のプロモーター領域を含 む297 baseの<u>Eco</u>RI-<u>Nae</u>I断片とハイブリダイズさせ、nuclease S1に より消化した。その結果、<u>bsn</u>遺伝子の転写開始点は、SD配列の最初 のAである事が明かとなった(図4-6)。転写開始点の35 bp及び 10 bp上流の配列は、表4-1に示すようにE σ *およびE σ ^E RNA polymeraseの認識するコンセンサス配列と弱い相同性を示した。

図 4 - 6 nuclease S1 mappingによる<u>bsn</u>遺伝子の転写開始点の 同定

Lanes 1 and 2, nuclease S1反応産物。プローブDNAと全RNAをハ イブリダイズさせた後、それぞれ10 U、5 U/µg RNAのnuclease S1 により消化した。Lanes 3 and 4, 分子量マーカー。Maxam & Gilbert法のC+T及びA+G反応をそれぞれ用いてプローブDNAを分解し た。

- 83 -

表 4 - 1 bsn遺伝子のプロモーター構造

Promoter	-35	-10
bsn	GATAGAAT	GATAAT
σ A consensus	TTGACA	TATAAT
σ^{E} consensus	GAANAANT	CATATT

第6節 まとめ及び考察

枯草菌菌体外ヌクレアーゼ遺伝子のクローニングに成功し、また その構造をはじめて明らかにした。ここで示したORFが実際にBSNを コードする事は、次章でも示すように、精製BSNのN末端アミノ酸配 列の決定からも明らかである。

nuclease S1 mappingによる転写開始点の決定の結果、<u>bsn</u>遺伝子 のプロモーター構造を明らかにする事ができた。-35及び-10領域を 様々な σ 因子の認識するコンセンサス配列と比較したところ、E σ^{A} 型及びE σ^{E} 型RNA polymeraseの認識するコンセンサス配列との間で 弱い相同性を示したが、次章でも述べるように、<u>bsn</u>遺伝子の発現が stationary phaseになってから起こる事より、<u>bsn</u>遺伝子のプロモー ターはE σ^{E} RNA polymeraseによって認識されるものと推察される。

BSNの推定アミノ酸配列を、DNA data bankに登録されている他の 配列と比較したが、明確な相同性を有するものは得られなかった。 このことは、BSNの酵素学的性質(次章で述べる)と併せて、BSNが 新規のヌクレアーゼである事を示しているのかも知れない。 第五章 BSN蛋白の精製と酵素学的性質

第1節 緒言

前章でクローン化に成功したbsn遺伝子が、実際にタンパク質をコ ードしている事を示すためには、その遺伝子産物であるBSN蛋白を精 製し、部分アミノ酸配列に関する情報を得、それが<u>bsn</u>遺伝子から得 られる情報と一致する事を示さなくてはならない。そのために本章 では、BSN蛋白の精製とN末端アミノ酸配列の決定について述べ、さ らにBSN蛋白の酵素学的な性質について解析した結果について述べる。

第2節 材料及び方法

a)菌株、プラスミド及び培養条件

B. <u>subtilis</u> N-24及びRM141を宿主として用い、<u>bsn</u>遺伝子をコー ドするプラスミドには前章で構築したpBN104を用いた。Kerr's medium¹⁴⁶⁾、Shimada's medium¹⁶¹⁾、Phosphate-limited medium ¹⁶²⁾、Nishimura & Nomura medium¹⁴⁸⁾、L-brothをBSN生産のための 培養条件の検討の際に用い、最終的にNUC broth (1.5 % Veal Infusion broth (Difco), 0.5 % Yeast Extract (Difco), 3.0 % soluble starch, 1.0 % CaCO₃)をBSN生産のための培地として用いた。

b)BSN活性の測定

- 86 -

BSN活性はYamasakiらの方法¹⁴⁴⁾を変更して測定した。酵素溶液 50 µlを1.25 mgのTorula yeast RNA (SIGMA)と0.5 mlの50 mM Tris-HC1、1 mM MgCl₂、pH 7.5の反応液中で混和し、37 ℃、30分間 反応させる。その後、125 µlの反応停止液 (7.5 mg/ml uranyl acetate in 15.4 % perchloric acid)を加え、未分解のRNAを沈澱 させて遠心することにより除去する。遠心上清を水で25倍に希釈し た後、260 nmの吸光度を測定する。酵素1 Uは上記条件下で260 nmの 吸光度を1.0変化させる酵素量とした。

c)BSN蛋白の精製

B. subtilis N-24 (pBN104)を7 1の NUC broth中で37 ℃、18時間 培養した後、菌体を遠心分離により除いて得た培養上清に硫酸アン モニウムを90 %飽和となるように加えた。この溶液を4 ℃、24時間 攪拌した後、生じた沈澱を集め、500 mlの10 mM MOPS、1 mM MgCl₂、 1 mM PMSF、pH 6.3に再溶解して同様のバッファーに対して透析した。 その後S-Sepharose Fast Flowカラム(32x190 mm)を用いた陽イオン 交換クロマトグラフィーに供し、1 1の0-500 mM NaClグラジエント により酵素を溶出した。次に活性画分を10 mM Tris-HCl、1 mM MgCl₂、pH 7.5に対して透析、平衡化した後、東ソー製へパリントヨ パール650Mカラム(HR10/10 column)を装備したFPLCシステムによる アフィニティークロマトグラフィーを行った。酵素の溶出は0-500 mM NaClグラジエントにより行った。さらに酵素溶液を10 mM
sodium phosphate buffer、0.3 mM CaCl₂、1 mM MgCl₂、0.05 % NaN₃、pH 6.8に対して透析した後、ハイドロキシアパタイトカラム (7.5x100 mm:東燃製TAPS-020810)を装備したHPLCシステム (Gilson: model 305)を用いたアフィニティークロマトグラフィー に供し、10-400 mM sodium phosphate buffer、pH 6.8グラジエント を形成する事によって酵素を溶出した。各段階における精製度は SDS-PAGEにより確認した。

BSNの分子量をゲル濾過法で求めるために、精製酵素をSuperdex 75 prep grade in a HiLoad 16/60カラムを装備したFPLCシステムを 用いたゲル濾過クロマトグラフィーに供した。バッファーには、 100 mM Tris-HC1、200 mM NaC1、1 mM MgCl₂、pH 7.5を用い、BSNの retention timeを標準タンパク質 (combithek; Boehringer Mannheim) を用いた場合と比較した。

d)BSNのN末端アミノ酸配列の決定

精製BSNを用いてC-8カラム (4.6x250 mm; FP-308-1251、センシュ ー科学製)による逆相クロマトグラフィーを行い、0.1 % trifluoroacetic acid存在下0-80 % acetonitrileグラジエントによ り酵素を溶出した。この標品を用いてN末端の10アミノ酸を、477A sequenator (Applied Biosystems)による自動エドマン分解法によ り決定した。

e)BSNの切断様式の同定

BSNをRNAに対して反応させた際に、phosphodiester結合の5'側と 3'側のどちらを切断するかを同定するために、以下のような方法を 行った。

酵素反応溶液 (50 mM Tris-HCl, 1 mM MgCl₂, pH 7.5, 5 mg/ml yeast RNA) 10 mlに対して、約2.4 Uの精製BSNを加え、37 ℃で反応 させる。適宜反応液を1 mlづつ分取し、そのうちの0.5 mlには反応 停止液を0.125 ml加えて、b)に記したような方法で酸可溶性画分の 260 nmの吸光度を測定して反応を追跡する(酸可溶性画分を取得後、 水で50倍に希釈した)。また残りの0.5 mlに対しては、EDTAを終濃 度5 mMになるように加えて反応を停止した後、そのうちの90 μ 1に 対して10 μ 1の1 M sodium acetate buffer,

pH 4.5、あるいは1 M sodium acetate buffer, 0.2 M $ZnCl_2$, pH 5.3を加え、さらにRNase T_2 (1.0 U)、nuclease P_1 (2.55 U)をそれ ぞれ加え、37 ℃で終夜加温する事により完全分解を行った。

このようにして得られたBSN-RNase T₂分解物並びにBSN-nuclease P₁分解物の分子組成を、薄層クロマトグラフィー法¹⁶³⁾によって調 べた。上記完全分解物のうち、約50 µg分を10 x 10 cmのアビセル SF薄層プレートにスポットし、一次元目; 2-propanol - 5 % ammonium acetate buffer, pH 3.5 (60:25)及び二次元目; saturated ammonium sulfate - 1 M sodium acetate buffer, pH 5.5 - 2-propanol (40:9:1)を用いた二次元展開を行った。検出 には、254 nmの短波長のUVを用いたUV shadowingを用いた。各スポ ットの同定は、標準物質のRf値と比較する事により行った。

第3節 BSN生産のための培養条件の検討

<u>B. subtilis</u> N-24 (pBN1)をL-brothを用いて培養したところ、培 養上清中にRNase活性は検出されなかった。そこで既報の培養条件を 用いて、BSN生産条件を検討したところ、Shimada's mediumを用いた

Medium	RNase activity (U/ml broth) N-24 (pBN1) N-24 (pUB1		
Kerr's medium	0.30	0.13	
Shimada's medium	4.11	0.90	
Phosphate-limited medium	0.79	0.41	
Nishimura & Nomura medium	0.08	0.07	
L-broth	0.39	0.17	
NUC broth	7.21	0.45	

表1-1 各種培地を用いた場合のBSNの生産性

pBN1あるいはpUB110を保持する<u>B</u>. <u>subtilis</u> N-24株を10 μg/mlの カナマイシンを含む上記培地で37 ℃、12時間培養後、培養上清の RNase活性を測定した。 場合にのみ弱いながらもRNase活性が検出された(表 5 - 1)。そこ でShimada's mediumを元にそれぞれの栄養素の種類と量を変えて、 BSN生産の最適条件を調べたところ、Veal Infusion broth、 Yeast Extract、soluble starch、CaCO₃で構成されるNUC broth中で 最も良くBSNが生産され、L-brothを用いた場合の約20倍のBSN活性が 検出された。

次にNUC broth中でのBSN生産の経時変化を培養経過を追いながら 調べたところ、BSNは培養がstationary phaseに入ってから生産され る事が示された(図 5 - 1)。

第4節 BSN蛋白の精製とN末端アミノ酸配列の決定

B. subtilis N-24 (pBN104)を7 1の NUC broth中で培養して得た培養上清を出発材料として、硫安沈澱、S-Sepharose Fast Flowによる陽イオン交換クロマトグラフィー、ヘバリントヨパール650Mカラム並びにハイドロキシアパタイトカラムによるアフィニティークロマトグラフィーにより、BSNを精製した。最終精製物を用いてSDS-PAGEを行ったところ、分子量約32,000の位置に2つのバンドが検出された(図5-2)。また精製BSNの分子量をSuperdex 75カラムによるゲル濾過クロマトグラフィーにより測定したところ、約25,000と計算された。最終精製標品のyeast RNAを基質としたときの比活性は35.6 U/mg proteinであった(表5-2)。

精製BSN蛋白のN末端アミノ酸配列を決定するために、上で述べた 2種類のタンパク質を逆相クロマトグラフィーにより分離しようと

- 91 -

図 5-1 BSN生産の経時変化

白抜きのシンボルは培養液の550 nmの吸光度変化を示し、黒塗り のシンボルは培養上清中のRNase活性を示す。○ ●、<u>B</u>. <u>subtilis</u> RM141 (pBN1); □ ■、<u>B</u>. <u>subtilis</u> RM141 (pUB110)。

- 92 -

図 5 - 2 精製BSNのSDS-PAGE

Lane M, 標準分子量マーカー; 1, 培養上清; 2, 硫安沈澱後; 3, S-Sepharose Fast Flowクロマトグラフィー後; 4, Heparin Toyopearlクロマトグラフィー後; 5, ハイドロキシアパタイトクロ マトグラフィー後。右方の数値は分子量マーカーの大きさをDa単位 で示す。

- 93 -

表 5 - 2 BSNの精製表

Fraction	Total activity (U)	Total protein (mg)	Specific activity (U/mg protein	Yield n) (%)
Culture supernatant	9170	743	12.3	100
After S-Sepharose	702	23.3	30.2	7.6
After Heparin-Toyopear	1 492	13.0	37.9	5.4
After hydroxyapatite	196	5.5	35.6	2.1

試みたが、全く分離されなかったので、最終精製標品をそのまま用 いてN末端のアミノ酸配列を決定する事とした。

その結果得られた配列は、T/S-S/A-V/S-I/A-V/T-I/P-T/S-P/A-D-Tで あり、塩基配列から求められた⁵²Thrから⁵⁹Proまでと⁵⁴Serから ⁶³Thrまでに対応する配列が共存していることが判明した。この結果 から、BSN蛋白質のN末端のプロセシングには2通りあり、精製標品 中には⁵²Thrあるいは⁵⁴SerをN末端とする2種の分子種が共存して いるものと結論した。

第5節 BSNの酵素学的諸性質

a)pH及び温度の酵素活性に及ぼす影響

精製BSNを用いて至適pH、至適温度、及びpH、温度に対する安定性 を求めた。基質にはyeast RNAを用いた。

至適pHは50 mMのsodium acetate (pH 3.7-5.7)、potassium phosphate (pH 5.7-7.5)、Tris-HC1 (pH 7.0-9.0)、Glycine-NaOH (pH 8.5-10.3)の各バッファーを用いて37 ℃、30分間反応させて測 定したところ、pH 8.5付近であった (図 5 - 3 A、実線)。また50 mM potassium phosphate buffer、pH 7.5を用いて各温度で30分間反 応させる事により、至適温度を求めたところ、37 ℃であった (図 5 - 3 B、実線)。

次に各pHで25 ℃、24時間処理した後、pH 7.5で活性測定を行い pHに対する安定性を調べたところ、この条件下ではpH 6.5-9.5の間 で安定であった(図5-3A、破線)。またpH 7.5のバッファー中

図5-3 pH及び温度のBSN活性、並びに安定性に与える影響

A、pHの与える影響。実線は至適pH profileを示し、破線は各pH で処理した後の残存活性を示す。○, sodium acetate buffer; △, potassium phosphate buffer; □, Tris-HCl buffer; △, Glycine -NaOH buffer; ●, 各pHで処理した後の残存活性。B、温度の与え る影響。実線は至適温度profileを示し、破線は各温度で処理した後 の残存活性を示す。○, 各温度での活性; ●, 各温度で処理した後 の残存活性。

- 96 -

で各温度、1時間処理した後、37 ℃で残存活性を測定して、温度に 対する安定性を調べたところ、40 ℃までは安定であった(図5-3 B、破線)。

b)阻害剤の影響

ヒト胎盤由来のRNase Inhibitor、Heparin、EDTAと1.5 Uの酵素を 1 ml中で37 ℃、10分間処理した後、残存活性を測定した(表5-3)。 その結果、RNase Inhibitor、HeparinはBSN活性に何の影響も及ぼさ ないのに対して、1 mM EDTAによりBSNはほとんど失活した。このこ とは、BSNがその活性に金属イオンを要求する事を示している。

c)金属イオンのBSN活性に及ぼす影響

各種金属イオンを塩化物の形で反応系に加え、BSN活性に及ぼす影響を調べた(表5-4)。その結果、BSNは1 mM Mg²⁺の添加により約8倍に活性化される事が示された。また Mn^{2+} 、 Ca^{2+} 、 Co^{2+} 、及び高濃度の Ni^{2+} によっても若干の活性化が認められた。逆に Cu^{2+} 、 Zn^{2+} によってはBSN活性が阻害された。

d)BSNの基質特異性

BSNがDNA分解活性を有しているかどうかを調べるために、基質と してyeast RNA、native salmon sperm DNA、heat-denatured salmon sperm DNAを用いて活性測定を行った(表5-5)。その結 果、yeast RNAを完全に分解する条件下でも、native及びheatdenatured DNAに対する活性は認められないため、BSNはDNase活性を 有していないと結論した。

Compound	Concentration		Relative activity (%)		
			BSN		RNase A
None	÷		100		100
RNase Inhibitor	200	U/ml	103.0		58.8
	2000	U/ml	131.9		22.3
	10000	U/ml	225.9		14.9
Heparin	20	U/ml	113.1		186.0
	200	U/ml	142.6		162.0
	2000	U/ml	89.6		32.0
EDTA	1	m M	5.0	(1.6)	N.D.
	10	m M	3.4	(4.7)	N. D.

表5-3 BSN活性に対する阻害剤の影響

1.5 U/mlのBSN、RNase Aを上記の阻害剤と37 ℃、10分間処理した後、残存活性を測定した。BSNの場合は反応液中に1 mM MgCl₂を添加したが、RNase Aの場合及び括弧内の数値はMgCl₂無添加で測定した結果である。N.D.=not determined.

Metal ion	Concentration (mM)	Relative activity (%)
None	-	100
Mg ²⁺	0.5	572
	1.0	843
Mn ^{2 +}	0.5	158
	1.0	145
Ca ^{2 +}	0.5	313
	1.0	236
Co ^{2 +}	0.5	378
	1.0	425
N i ² +	1.0	89.0
	5.0	536
Fe ^{3 +}	1.0	156
	3.0	75.0
Cu ^{2 +}	1.0	18.0
	3.0	46.0
Zn ² +	1.0	25.0
	5.0	39.0

表5-4 金属イオンのBSN活性に与える影響

すべての金属イオンは塩化物として反応液中に添加した。約0.1 Uの酵素を各反応に用い、酵素溶液から3.75μMのMg²⁺イオンが反応 液中に持ち込まれている。

- 99 -

表 5-5 BSNの基質特異性

Reaction time	△ A260				
(min)	Yeast RNA	native DNA	heat-denatured DNA		
0	0.078	0.001	0.015		
15	1.146	0.004	0.017		
30	1.163	0.001	0.006		
60	1.251	0.009	0.000		
120	1.220	0.000	0.000		
180	1.242	0.001	0.000		

50 mM Tris-HC1、1 mM MgCl₂、pH 7.5中に2.5 mg/mlの濃度で各種 基質を溶解させた基質溶液に酵素を加え、37 ℃で加温した。各時間 ごとに0.5 mlの反応液を分取し、0.125 mlの反応停止液を加えた後、 第2節で述べた方法を用いて260 nmの吸光度を測定した。他の金属 イオンを反応液に加えた場合も同様の結果が得られた(data not shown)。

- 100 -

e)BSNの切断様式の同定

BSNがフォスフォジエステル結合のどちら側を切断するかを決定す るために、yeast RNAをBSNにより部分分解した後、リン酸-5'-リボ ース間を塩基非特異的に切断し、最終的に3'-モノヌクレオチドを生 成するRNase T₂、あるいは3'-リボースーリン酸間を塩基非特異的に 切断し、更に3'-phosphomonoesterase活性を有しているnuclease P₁によって完全分解を行った。この反応液中の分子組成を薄層クロ マトグラフィーにより分析した(図5-4)。その結果、nuclease P₁を用いた場合にはBSNの反応が進行しても、5'-モノヌクレオチド しか生成しないが、RNase T2の場合には反応の進行に伴ってモノヌ クレオシドが生成するようになった。この結果から、BSNはフォスフ オジエステル結合の3'-リボースーリン酸間を切断する事が示された。

また、BSNの反応の初期のうちから4種のヌクレオシドがほぼ等量 づつ生じるので、少なくとも切断点の5'側塩基に対する特異性はな いものと考えられる。

F

図5-4 TLCを用いたBSNの切断様式の同定

A, BSNの反応を酸可溶性画分の260 nmの吸収変化により追跡した結果。矢印はTLC により分析をした点を示す。; B, 標準物質のTLCによる展開パターン。原点の位置と 各スポットの分子種を示す。; C, D, E and F, BSNをそれぞれ0, 15, 60, 360分反応 させた後、RNase T_2 により完全分解した反応液の展開パターン。鏃は4種のヌクレオ シドのスポットを示す。; G and H, BSNをそれぞれ0及び360分反応させた後、 nuclease P_1 により完全分解した反応液の展開パターン;。

- 102 -

第6節 まとめ及び考察

BSNの生産が栄養源の豊富な、特殊な培地中で誘導される事が示さ れた。Preliminaryな実験結果より、著者らはBSN生産がデンプンで 誘導される事、並びにグルコースの添加によって阻害されないとい う知見を得ている(data not shown)。このことより、<u>bsn</u>遺伝子の発 現がプロテアーゼやアミラーゼ遺伝子とは異なる調節を受けている 事が考えられる。この点については今後更なる解析をして行かねば ならない。

BSNがNUC broth中で stationary phaseから生産される事より、 bsn遺伝子のプロモーターはE σ * ではなくE σ E RNA polymeraseによ って認識されると考える方が妥当である。しかしながら、枯草菌の 胞子形成はグルコースの添加によって阻害される¹⁶⁴, 事から、可溶 性澱粉を含む NUC broth中で培養した枯草菌菌株中で胞子形成が進行 しているとは考えにくい。実際にNUC broth中では、野生型の宿主の 生産する α - アミラーゼやプロテアーゼの生産量が減少しているこ とがpreliminaryな実験結果より得られており、宿主細胞が catabol ite repressionの状態にあることが考えられる (data not shown)。 このことからも bsn遺伝子の発現調節が他の菌体外酵素遺伝子の場合 とは異なっていると考えられ、今後の解析が待たれる。

BSNの精製を行ったところ、2種類の分子種の混合物として精製されたが、各種クロマトグラフィー上での挙動が全く同一である事、 また2種類の分子の混合物を用いてN末端アミノ酸配列を決定した ところ、塩基配列より推定したアミノ酸配列の52番目から59番目と 54番目から63番目に対応する配列の混合物として決定された事から、

- 103 -
これら2種類の分子とも<u>bsn</u>遺伝子の産物であるものと考えられる。 ¹Metから⁵¹Gln、あるいは1Metから53Serの領域は、シグナルペプチ ドとしては長すぎる上に切断点付近の配列も通常のシグナルペプチ ドの切断点とは異なっていることから、BSN蛋白はシグナルペプチド 切断後、宿主N-24株の生産するマイナープロテアーゼによってN末 端領域をプロセスされている事が考えられ、これら2種類の分子は 異なるプロセシングの結果生じたものと考えられる。BSN蛋白の分子 量は推定アミノ酸配列から計算すると26,616と26,424であり、この 値はゲル濾過法により求めた分子量、約25,000と良い一致を示す。

BSN蛋白のプロセスをされるN末端側、すなわちシグナルペプチド の切断点部位から51番目のアミノ酸に当たる領域、がサチライシン におけるプロ領域¹⁶⁵⁾のような何らかの機能を有しているのかどう かについては、現在のところ不明である。今後プロテアーゼ多重欠 損株を宿主としてBSNを生産させ、今回精製したBSN蛋白と比較する などすればこれらの点について明らかになっていくものと考えられ る。

BSNはヌクレアーゼとしても興味深い特徴を有している。それはこの酵素がEDTAにより不可逆的に失活し、またMg²⁺によって活性化されるRNaseである点である。またBSNは3'-リボースーリン酸間を加水分解する。このような特徴を有する酵素の報告は、枯草菌由来のものでは、全くなく、BSNが新規のヌクレアーゼであることを示す。

また他の生物種由来のMg²⁺要求性のRNaseとしては<u>E</u>. <u>coli</u> RNase II¹⁶⁶ といったエクソ型のRNaseや、エンド型では粘菌(<u>Physarum</u> <u>polycephalum</u>)由来の RNase¹⁶⁷、特殊な活性を持つものとしては<u>E</u>. coli RNase H¹⁶⁸、E. coli RNase P¹⁶⁹ などが知られている。こ

- 104 -

れらの酵素は、BSNと同様に3'-リボースーリン酸間を切断すること が知られており、このことがMg²⁺要求性のRNaseの一つの特徴となる のではないかと考えられる。これらの酵素のうち、アミノ酸配列が 報告されているものとBSNのアミノ酸配列を比較したが、明確な相同 性は示されなかった。BSNの酵素学的性質に関しては、今後更に深く 解析を行う必要がある。 総 括

本研究は"枯草菌菌体外酵素の遺伝・生化学的研究"と題して、 菌体外セルラーゼ、並びに菌体外ヌクレアーゼを対象にその遺伝子 のクローニング及び構造解析、遺伝子産物である酵素タンパク質に 関する解析、さらには応用面での研究として分泌ベクターの構築、 改良について行ったものである。以下に本研究により得られた知見 及び今後の展望について述べる。

bsc遺伝子の構造解析の結果、bsc遺伝子のプロモーター構造及び BSC蛋白の推定アミノ酸構造を明らかにする事ができた。bsc遺伝子 のプロモーター構造としてはnuclease S1 mappingなどの手法を用い て転写開始点の同定は行っていないものの、その遺伝子発現が培養 にともなって起こる事)からEσ* RNA polymeraseにより認識される 事が考えられる。今回示した <-35、TAGACA; -10、TACAAT> の配列 が、プロモーターとして実際に機能していると考えられる。

N 末端に36アミノ酸からなるシグナル配列を有する499アミノ酸か らなるORFが、BSC蛋白をコードしている事が示された。またBSCの成 熱体部分のN 末端側約300アミノ酸の領域が、好アルカリ性バチルス 属由来のセルラーゼと高い相同性を示す事が示された。

次に今回明らかにした相同性をもとにして、バチルス属由来のセ ルラーゼの構造と機能に関する知見を得た。まず<u>bsc</u>遺伝子上でC末 端部分を段階的に欠失させて、N末端側の相同性部分がセルラーゼ 活性に必須である事を示した。次に好アルカリ性バチルス属由来の セルラーゼのうち、最も高い相同性を示しつつも至適pH profileの 異なるN-4株由来のセルラーゼ(NK1)との間でキメラ酵素を作製する 事により、バチルス属セルラーゼの至適pHを決定するアミノ酸領域 に関する情報を得た。すなわちアルカリ性側では、BSCのアミノ酸番 号で97番目から329番目に位置する多くのアミノ酸残基が影響を与え る事により、アルカリ性側での活性化がなされている事が明らかと なった。特に288番目から329番目の領域はアルカリ性側での活性の 増大に必須であった。また酸性側の酵素活性が上昇するpHの差は 196番目から287番目の領域のみによって決定されている事が明らか となった。酸性側の酵素活性の変化は<u>kcat</u>値の変化にともなって起 こっている事も示された。おそらくはこの領域に属する特定のアミ ノ酸残基が活性中心を形成する酸性アミノ酸残基と直接相互作用し て、その解離pHを変化させ、その結果酸性側での酵素活性が上昇す るpHのシフトが起こっているものと考えられる。

今後は酸性側領域に関しては、部位特異的変異を用いて関与する アミノ酸残基を特定し、更にX線結晶解析を用いて得られるBSC蛋白 の三次元構造に関する情報と比較する事により、バチルス属セルラ ーゼの構造と機能に関する有意義な情報が得られるものと思われる。 またアルカリ性側に関しては、相同的組換えなどを用いた領域の細 分化などを行って関与するアミノ酸領域を限定していく必要がある だろう。

次に<u>bsc</u>遺伝子のプロモーター、シグナル配列部分をpBR322由来の β -ラクタマーゼ(BLA)遺伝子の成熟体をコードする部分と融合させ て、分泌ベクターを作製した。同時に菌体外酵素発現制御遺伝子 (<u>sacQ、prtR、sen</u>)を同一のプラスミド上に導入して転写効率を促進 させる事、また菌体外主要プロテアーゼ2種、並びに菌体内主要セ

- 107 -

リンプロテアーゼを欠損したKN2株を宿主として使用して産物のプロ テアーゼ分解を抑える事を試みた。しかしながら大腸菌のBLA蛋白の ような枯草菌の生産するプロテアーゼに対して感受性の高い産物に 関しては、今回構築した系においても産物が速やかに分解されてし まう事が示された。それに対してBSC蛋白のような宿主プロテアーゼ に対する耐性を有していると思われる産物を生産する場合には、今 回の系を用いる事により約10倍程度の増産が期待できる。今後はKN 2株の持つマイナープロテアーゼ遺伝子を破壊するなどして、宿主側 のプロテアーゼレベルを更に下げる試みを行い、プロテアーゼ感受 性の産物に対しても応用可能な系に変更していく事が期待される。

最後に菌体外ヌクレアーゼ遺伝子(bsn)のクローン化に成功し、そ の構造を明らかにした。枯草菌の菌体外ヌクレアーゼ遺伝子がクロ ーン化された例は今までなく、今回が初めての報告である。bsn遺伝 子のプロモーター部位をnuclease S1 mappingの手法を用いて同定し たところ、その-35及び-10領域はσ^およびσ[®]因子の認識するコン センサス配列と弱い相同性を示した。bsn遺伝子の発現は培養が定常 状態に入ってから起こるので、bsn遺伝子のプロモーター構造はσ[®] 因子により認識されると思われるが、bsn遺伝子の発現が特殊な培地 条件でのみ観察されるので、何らかの誘導メカニズムが存在する事 が示唆される。今後はbsn遺伝子発現に必要な誘導基質の同定と変異 株の取得などを通じて、このメカニズムを明らかにしていく事が望 まれる。

<u>bsn</u>遺伝子本体は、N末端側にシグナル配列を有する289アミノ酸 残基からなるORFとして同定された。精製BSNのN末端アミノ酸配列 決定の結果から、BSN蛋白は分泌された後、プロテアーゼによってプ

- 108 -

ロセシングされる事が示唆された。またBSN蛋白の酵素学的諸性質を 調べたところ、Mg²⁺を要求するRNaseである事が明らかとなった。ま たその切断位置は、DNaseと同じように3'-リボースーリン酸間であ った。今後はBSNの性質を更に細かく調べ、またX線結晶解析によっ て立体構造を明らかにしていくと、ヌクレアーゼに関する新しい情 報が得られるものと思われる。また、BSNをDNase型に変換する事も 可能ではないかと考えられる。

この様に本研究は枯草菌の菌体外セルラーゼとヌクレアーゼ、並 びにその遺伝子に関して数多くの新しい知見をもたらすことができ た。また今後前述のような点について更に検討を加えていく予定で ある。 引用文献

1.	Avery, O. T., MacLeod, C. M. & McCarty, M. (1944) J. Exp. Med., 79,
0	137-158. Watson I. D. & Chick F. H. C. (1052) Nature 171, 740-741
4.	Watson, J. D. & Crick, F. n. C. (1953) Nature, 171, 740-741.
5.	Lederberg, S. & Meselson, M. (1904) J. Mol. Biol., 6, 623-626.
4.	Kelly, I. J. & Smith, H. U. (1970) J. Mol. Biol., 51, 393-409.
Э.	Ulivera, B. M., Hall, Z. W. & Lenman, I. R. (1908) Proc. Natl. Acad.
~	Sci. U. S. A., 61, 237-244.
6.	Jackson, D. A., Symons, R. H. & Berg, P. (1972) Proc. Natl. Acad. Sci.
-	U.S.A., 69, 2904-2909.
7.	Watanabe, T. (1963) <u>Bacteriol. Rev.</u> , 27, 87-115.
8.	Mandel, M. & Higa, A. (1970) J. Mol. Biol., 53, 159-162.
9.	Cohen, S. N., Chang, A. C. Y. & Hsu, L. (1972) Proc. Natl. Acad. Sci. U. S. A., 69, 2110-2114.
10.	Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci.
	U. S. A., 74, 5463-5467.
11.	Maxam, A. M. & Gilbert, W. (1980) Methods Enzymol., 65, 499-560.
12.	Goeddel, D. V., Kleid, D. G., Goliver, F., Heyneker, H. L., Yansura,
	 D. G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K. & Riggs, A. D. (1979) Proc. Natl. Acad. Sci. U.S.A., 76, 106-110.
13.	Ulmer, K. M. (1983) Science, 219, 666-671.
14.	Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T.,
	Erlich, H. A. & Arnheim, N. (1985) <u>Science</u> , 230, 1350-1354.
15.	Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R.,
	Horn, G. T., Mullis, K. B. & Erlich, H. A. (1988) Science, 239, 487-
	491.
16.	Comai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E. &
	Stalker, D. M. (1985) Nature, 317, 741-744.
17.	Spizizen, J. (1958) Proc. Natl. Acad. Sci. U.S.A., 44, 1072-1078.
18.	Palva, I., Sarvas, M., Lehtovaara, P., Sibakov, M. & Kaariainen, L.
	(1982) Proc. Natl. Acad. Sci. U.S.A., 79, 5582-5586.
19.	Vasantha, N. & Thompson, L. D. (1986) J. Bacteriol., 165, 837-842.
20.	Palva, I., Lehtovaara, P., Kaariainen, L., Sibakov, M., Cantell, K.,
	Schein, C. H., Kashiwagi, K. & Weissmann, C. (1983) Gene, 22, 229-235.
21.	Schein, C. H., Kashiwagi, K., Fujisawa, A. & Weissmann, C. (1986)
	Biotechnology, 4, 719-725.
22.	Honjo, M., Akaoka, A., Nakayama, A., Shimada, H. & Furutani, Y. (1985)
	- 110 -
	IIV

J. Biotechnol., 3, 73-84.

- Shiroza, T., Nakazawa, K., Tashiro, N., Yamane, K., Yanagi, K., Yamasaki, M., Tamura, G., Saito, H., Kawade, Y.& Taniguchi, T. (1985) <u>Gene</u>, 34, 1-8.
- Honjo, M., Nakayama, A., Iio, A., Mita, I., Kawamura, K., Sawakura, A. & Furutani, Y. (1987) J. Biotechnol., 6, 191-204.
- Uozumi, T., Hoshino, T., Miwa, K., Horinouchi, S., Beppu, T. & Arima, K. (1977) Mol. Gen. Genet., 152, 65-69.
- Hoshino, T., Uozumi, T., Beppu, T. & Arima, K. (1980) <u>Agric. Biol.</u> Chem., 44, 621–623.
- Love, P. E. & Yasbin, R. E. (1986) <u>Proc. Natl. Acad. Sci. U.S.A.</u>, 83, 5204–5208.
- 28. Tanaka, T. & Sakaguchi, K. (1978) Mol. Gen. Genet., 165, 269-276.
- Hoshino, T., Uozumi, T. & Beppu, T. (1984) <u>Agric. Biol. Chem.</u>, 48, 307-316.
- 30. Kawamura, F. & Doi, R. H. (1984) J. Bacteriol., 160, 442-444.
- Koide, Y., Nakamura, A., Uozumi, T. & Beppu, T. (1986) <u>J. Bacteriol.</u>, 167, 110-116.
- Rufo Jr, G. A., Sullivan, B. J., Sloma, A. & Pero, J. (1990) <u>J.</u> Bacteriol., 172, 1019–1023.
- Nakamura, A., Koide, Y., Kawamura, F., Horinouchi, S., Uozumi, T. & Beppu, T. (1990) Agric. Biol. Chem., 54, 1307-1309.
- Wong, S.-L., Kawamura, F. & Doi, R. H. (1986) <u>J. Bacteriol.</u>, 168, 1005–1009.
- 35. Wang, L.-F., Wong, S.-L., Lee, S.-G., Kalyan, N. K., Hung, P. P., Hilliker, S. & Doi, R. H. (1988) <u>Gene</u>, 69, 39–47.
- Nakamura, A., Toyama, N., Kitamura, A., Masaki, H. & Uozumi, T. (1991) Agric. Biol. Chem., 55, 2367-2374.
- 37. Ehrlich, S. D. (1977) Proc. Natl. Acad. Sci. U.S.A., 74, 1680-1682.
- Gryczan, T. J., Contente, S. & Dubnau, D. (1978) <u>J. Bacteriol.</u>, 134, 318–329.
- Weisblum, B., Graham, M. Y., Gryczan, T. & Dubnau, D. (1979) <u>J.</u> Bacteriol., 137, 625–643.
- McKenzie, T., Hoshino, T., Tanaka, T. & Sueoka, N. (1986) <u>Plasmid</u>, 15, 93-103.
- 41. Horinouchi, S. & Weisblum, B. (1982) J. Bacteriol., 150, 815-825.
- 42. Horinouchi, S. & Weisblum, B. (1982) J. Bacteriol., 150, 804-814.
- 43. Priest, F. G. (1977) Bacteriol. Rev., 41, 711-753.

44.	Yang, M. Y., Galizzi, A. & Henner, D. J. (1983) <u>Nucleic Acids Res.</u> , 11, 237-249.											
45.	Stahl, M. L. & Ferrari, E. (1984) J. Bacteriol., 158, 411-418.											
46.	Yang, M. Y., Ferrari, E. & Henner, D. J. (1984) <u>J. Bacteriol.</u> , 160, 15-21.											
47.	Steinmetz, M., Coq, D. L., Aymerich, S., Gonzy-Treboul, G. & Gay, P. (1985) Mol. Gen. Genet., 200, 220-228.											
48.	. Murphy, N., McConnell, D. J. & Cantwell, B. A. (1984) <u>Nucleic Acids</u> <u>Res.</u> , 12 , 5355-5367.											
49.	. Sloma, A., Ally, A., Ally, D. & Pero, J. (1988) <u>J. Bacteriol.</u> , 170 , 5557-5563.											
50.	Sloma, A., Rudolph, C. F., Rufo Jr, G. A., Sullivan, B. J., Theriault, K. A., Ally, D. & Pero, J. (1990) <u>J. Bacteriol.</u> , 172, 1024-1029.											
51.	高木博史, (1991) 日本農去化学会誌, 65, 63-67.											
52.	Lepesant, JA., Kunst, F., Lepesant-Kejzlarova, J. & Dedonder, R. (1972) <u>Mol. Gen. Genet.</u> , 118 , 135-160.											
53.	Kunst, F., Pascal, M., Lepesant-Kejzlarova, J., Lepesant, JA., Billault, A. & Dedonder, R. (1974) Biochimie, 56, 1481-1489.											
54.	Henner, D. J., Yang, M. & Ferrari, E. (1988) <u>J. Bacteriol.</u> , 170 , 5102 -5109.											
55.	Tanaka, T. & Kawata, M. (1988) J. Bacteriol., 170, 3593-3600.											
56.	Aiba, H., Nakasai, F., Mizushima, S. & Mizuno, T. (1989) J. Biol. Chem., 264, 14090-14094.											
57.	Mukai, K., Kawata, M. & Tanaka, T. (1990) J. Biol. Chem., 265, 20000-20006											
58.	Msadek, T., Kunst, F., Henner, D. J., Klier, A., Rapoport, G. & Dedonder, R. (1990) J. Bacteriol., 172 , 824-834.											
59.	Yang, M., Ferrari, E. & Henner, D. J. (1986) <u>J. Bacteriol.</u> , 166, 113- 119.											
60.	Nagami, Y. & Tanaka, T. (1986) J. Bacteriol., 166, 20-28.											
61.	Wang, LF., Wong, SL., Park, SS. & Doi, R. H., in "Genetics and Biotechnology of <u>Bacilli</u> , Vol. 2", ed. by A. T. Ganesan & J. A. Hoch, Academic Press, 1988, pp. 45-50.											
62.	Perego, M. & Hoch, J. A. (1988) J. Bacteriol., 170, 2560-2567.											
63.	Perego, M. & Hoch, J. A., in "Genetics and Biotechnology of Bacilli,											
	Vol. 2", ed. by A. T. Ganesan & J. A. Hoch, Academic Press, 1988, pp. 129-134.											
64.	小林泰夫, (1991) 生物物理, 31, 19-27.											
	- 112 -											

- Stragier, P., Bonamy, C. & Karmazyn-Campelli, C. (1988) <u>Cell</u>, 52, 697 -704.
- Cutting, S., Oke, V., Driks, A., Losick, R., Lu, S. & Kroos, L. (1990) Cell, 62, 239–250.
- Stragier, P., Kunkel, B., Kroos, L. & Losick, R. (1989) <u>Science</u>, 243, 507-512.
- Koide, Y., Nakamura, A., Uozumi, T. & Beppu, T. (1986) <u>Agric. Biol.</u> Chem., 50, 233–237.
- Nakamura, A., Uozumi, T. and Beppu, T. (1987) <u>Eur. J. Biochem.</u>, 164, 317–320.
- Nakamura, A., Fukumori, F., Horinouchi, S., Masaki, H., Kudo, T., Uozumi, T., Horikoshi, K. and Beppu, T. (1991) <u>J. Biol. Chem.</u>, 266, 1579-1583.
- Chanzy, H., Henrissat, B., Vuong, R. & Schulein, M. (1983) <u>FEBS Lett.</u>, 153, 113-117.
- van Tilbeurgh, H., Pettersson, L. G., Bhikhabhai, R. & Claeyssens, M. (1985) Eur. J. Biochem., 148, 329-334.
- Tomme, P., van Tilbeurgh, H., Pettersson, G., van Damme, J., Vandekerckhove, J., Knowles, J., Teeri, T. & Claeyssens, M. (1988) Eur. J. Biochem., 170, 575-581.
- 74. Tomme, P. & Claeyssens, M. (1989) FEBS Lett., 243, 239-243.
- Johansson, G., Stahlberg, J., Lindeberg, G., Engstrom, A. & Pettersson, G. (1989) FEBS Lett., 243, 389-393.
- Esterbauer, H., Hayn, M., Abuja, P. M. & Claeyssens, M. in "Enzymes in Biomass Conversion", ed. by G. E. Leatham & M. E. Himmel, American Chemical Society, 1991, pp. 301-312.
- MacKay, R. M., Lo, A., Willick, G., Zuker, M., Baird, S., Dove, M., Moranelli, F. & Seligy, V. (1986) <u>Nucleic Acids Res.</u>, 14, 9159-9170.
- 78. Robson, L. M. & Chambliss, G. H. (1986) J. Bacteriol., 165, 612-619.
- Sashihara, N., Kudo, T. & Horikoshi, K. (1984) <u>J. Bacteriol.</u>, 158, 503-506.
- Fukumori, F., Kudo, T. & Horikoshi, K. (1985) <u>J. Gen. Microbiol.</u>, 131, 3339–3345.
- Fukumori, F., Kudo, T., Sashihara, N., Nagata, Y., Ito, K. & Horikoshi, K. (1989) Gene, 76, 289–298.
- Beguin, P., Cornet, P. & Aubert, J. P. (1985) <u>J. Bacteriol.</u>, 162, 102 -105.
- 83. Grepinet, O. & Beguin, P. (1986) Nucleic Acids Res., 14, 1791-1799.

- Joliff, G., Beguin, P. & Aubert, J. P. (1986) <u>Nucleic Acids Res.</u>, 14, 8605-8613.
- Schwarz, W. H., Schimming, S., Rucknagel, K. P., Burgschwaiger, S., Kreil, G. & Staudenbauer, W. L. (1988) Gene, 63, 23-30.
- Hall, J., Hazlewood, G. P., Barker, P. J. & Gilbert, H. J. (1988) Gene, 69, 29-38.
- Wong, W. K. R., Gerhard, B., Guo, Z. M., Kilburn, D. G., Warren, R. A. J. & Miller Jr., R. C. (1986) <u>Gene</u>, 44, 315–324.
- O'Neill, G., Goh, S. H., Warren, R. A. J., Kilburn, D. G. & Miller Jr., R. C. (1986) Gene, 44, 325-330.
- 89. Yanisch-Perron, C., Vieira, J. & Messing, J. (1985) Gene, 33, 103-119.
- 90. Messing, J. (1983) Methods Enzymol., 101, 20-78.
- Gryczan, T. J., Contente, S. & Dubnau, D. (1980) <u>Mol. Gen. Genet.</u>, 177, 459-467.
- Maniatis, T., Fritsch, E. F. & Samblook, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, pp. 68-69,
- 93. Chang, S. & Cohen, S. N. (1979) Mol. Gen. Genet., 168, 111-115.
- 94. Joyce, C. M., Kelley, W. S. & Grindley, N. D. F. (1982) <u>J. Biol. Chem.</u>, 257, 1958-1964.
- Mills, D. R. & Kramer, F. R. (1979) <u>Proc. Natl. Acad. Sci. U.S.A.</u>, 76, 2232-2235.
- 96. Laemmli, U. K. (1970) Nature, 227, 680-685.
- Sumner, J. R. & Somers, G. F. (1944) Laboratory Experiments in Biological Chemistry, Academic Press, pp. 34-35.
- Deshpande, M. V., Eriksson, K.-E. & Pettersson, L. G. (1984) <u>Anal.</u> Biochem., 138, 481-487.
- Hunkapiller, M. W., Hewick, R. E., Dreyer, W. J. & Hood, L. E. (1983) Methods Enzymol., 91, 399-413.
- 100. McLaughlin, J. R., Murray, C. L. & Rabinowitz, J. C. (1981) <u>J. Biol.</u> Chem., 256, 11283-11291.
- 101. Pugsley, A. P. & Schwartz, M. (1985) FEMS Microbiol. Rev., 32, 3-38.
- 102. Nakajima, R., Imanaka, T. & Aiba, S. (1986) <u>Appl. Microbiol.</u> Biotechnol., 23, 355-360.
- 103. Fukumori, F., Sashihara, N., Kudo, T. & Horikoshi, K. (1986) J. Bacteriol., 168, 479-485.
- 104. Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L. & Mornon, J.-P. (1989) Gene, 81, 83-95.

105.	Fukumor	i,	F.,	Kudo,	T. 8	k Ho	brik	oshi,	К.	(198	5)	J.	Gen.	Microbi	ol.,	131,
	3339-33	45														
106.	Vieira,	J.	& N	lessing	, J.	(1987)) Met	Methods		ymo	l.,	153,	3-11.		
107.	Kunkel,	Τ.	Α.,	Rober	ts,	J.	D. 1	& Zal	kuour	, R.	Α.	(1	987)	Methods	Enz	ymol.,
	154, 367–382.															
1000																

- 108. Kramer, W., Drutsa, V., Jansen, H.-W., Kramer, B., Pflugfelder, M. & Fritz, H.-J. (1984) Nucleic Acids Res., 12, 9441-9456.
- 109. Boliver, F., Rodrigues, R. L., Green, P. J., Betlach, M. C., Heynecker, H. L., Grosa, J. H. & Falkow, S. (1977) <u>Gene</u>, 2, 95-113.
- 110. Norrander, J., Kempe, T. & Messing, J. (1983) Gene, 26, 101-106.
- 111. Cornelis, P., Digneffe, C. & Willemot, K. (1982) <u>Mol. Gen. Genet.</u>, 186, 507-511.
- 112. Dawson, R. M. C., Elliott, D. C., Elliott, W. H. & Jones, K.M. (eds.) (1969) Data for Biochemical Research, Oxford University Press.
- Fukumori, F., Kudo, T. & Horikoshi, K. (1987) <u>FEMS Microbiol. Lett.</u>, 40, 311-314.
- 114. Gilkes, N. R., Meinke, A., Coutinho, J. B., Ong, E., Greenwood, J. M., Miller Jr., R. C., Kilburn, D. G. & Warren, A. J. in "Enzymes in Biomass Conversion", ed. by G. E. Leatham & M. E. Himmel, American Chemical Society, 1991, pp. 349-360.
- 115. Ono, S., Hiromi, K. & Yoshikawa, Y. (1958) <u>Bull. Chem. Soc. Jpn.</u>, 31, 957-962.
- 116. Mayer, F. C. & Larner, J. (1959) J. Am. Chem. Soc., 81, 188-193.
- 117. Matsuura, Y., Kusunoki, M., Harda, W. & Kakudo, M. (1984) <u>J. Biochem.</u>, 95, 697-702.
- 118. Blake, C. C. F., Johnson, L. N., Mair, G. E., North, A. C. T., Phillips, D. C. & Sarma, V. R. (1967) <u>Proc. R. Soc. Lond. B Biol. Sci.</u>, 167, 378-388.
- Imoto, T., Johnson, L. N., North, A. C. T., Phillips, D. C. & Rupley, J. A. in "Enzymes, Vol.7", ed. by P. D. Boyer, Academic Press, 1972, pp. 665-668.
- 120. Rupley, J. A. (1967) Proc. R. Soc. Lond. B Biol. Sci., 167, 416-428.
- 121. Paice, M. G. & Jurasek, L. (1979) Adv. Chem. Ser., 181, 361-374.
- 122. Zvelebil, M. J. J. M. & Sternberg, M. J. E. (1988) Protein Eng., 2, 127-138.
- 123. Saunders, C. W., Schmidt, B. J., Mallonee, R. L. & Guyer, M. S. (1987) J. Bacteriol., 169, 2917-2925.
- 124. Chang, S., Ho, D., Gray, O., Chang, S.-Y. & McLaughlin, J. in

"Genetics of Industrial Microorganisms", ed. by Y. Ikeda & T. Beppu, Kodansha Ltd., 1982, pp. 227-231.

- 125. Ulmanen, I., Lundstrom, K., Lehtovaara, P., Sarvas, M., Ruohonen, M. & Palva, I. (1985) J. Bacteriol., 162, 176-182.
- Kadonaga, J. T., Gautier, A. E., Straus, D. R., Charles, A. D., Edge, M. D. & Knowles, J. R. (1984) J. Biol. Chem., 259, 2149-2154.
- 127. Perret, C. J. (1954) Nature, 174, 1012-1013.
- 128. Srivastava, O. P. & Aronson, A. I. (1981) <u>Arch. Microbiol.</u>, 129, 227– 232.
- 129. Sierakowska, H. & Shugar, D. (1977) Progr. Nucleic Acids Res. Mol. Biol., 20, 59-130.
- 130. 高橋健治, (1982) 蛋白質核酸酵素, 27, 1788-1797.
- Wlodawer, A., Bott, R. & Sjolin, L. (1982) <u>J. Biol. Chem.</u>, 257, 1325– 1332.
- 132. Yamamoto, Y., Iwahashi, K., Nakamura, K. T., Iitaka, Y. & Mitsui, Y. (1981) Nucleic Acids Res., 10, 227-
- 133. Brownlee, G. G., Sanger, F. and Barrell, B. G. (1968) <u>J. Mol. Biol.</u>, 34, 379-412.
- 134. Nishikawa, S., Adiwinata, J., Morioka, H., Fujimura, T., Tanaka, T., Uesugi, S., Hakoshima, T., Tomita, K., Nakagawa, S. & Ikehara, M. (1990) Protein Eng., 3, 443-448.
- 135. Paddon, C. J. and Hartley, R. W. (1986) Gene, 40, 231-239.
- 136. Mauguen, Y., Hartley, R. W., Dodson, E. J., Dodson, G. G., Bricogne, G., Chothia, C. and Jack, A. (1982) Nature, 297, 162-164.
- 137. Kanaya, S. and Crouch, R. J. (1983) J. Biol. Chem., 258, 1276-1281.
- 138. Meador III, J. and Kennell, D. (1990) Gene, 95, 1-7.
- 139. March, P. E., Ahnn, J. and Inouye, M. (1985) <u>Nucleic Acids Res.</u>, 13, 4677-4685.
- 140. Shortle, D. (1983) Gene, 22, 181-189.
- 141. Cotton, F. A., Hazen, Jr., E. E. and Legg, M. J. (1979) <u>Proc. Natl.</u> Acad. Sci. U.S.A., 76, 2551–2555.
- 142. Clegg, S. and Allen, B. L. (1985) FEMS Microbiol. Lett., 27, 257-262.
- 143. Ball, T. K., Saurugger, P. N. and Benedik, M. J. (1987) <u>Gene</u>, 57, 183 -192.
- 144. Yamasaki, M., Yoshida, K. and Arima, K. (1970) <u>Biochim. Biophys. Acta</u>, 209, 463-474.
- 145. Yamasaki, M. and Arima, K. (1970) <u>Biochim. Biophys. Acta</u>, 209, 475– 483.

- 146. Kerr, I. M., Chien, J. R. and Lehman, I. R. (1967) <u>J. Biol. Chem.</u>, 242, 2700-2708.
- 147. Kanamori, N., Sakabe, K. and Okazaki, R. (1973) <u>Biochim. Biophys.</u> <u>Acta</u>, 335, 155-172.
- 148. Nishimura, S. and Nomura, M. (1959) J. Biochem., 46, 161-167.
- 149. Rushizky, G. W., Greco, A. E., Hartley, R. W. and Sober, H. A. (1963) <u>Biochemistry</u>, 2, 787-793.
- Nakai, M., Minami, Z., Yamazaki, T. and Tsugita, A. (1965) <u>J. Biochem.</u>, 57, 96-99.
- 151. Vosman, B., Kuiken, G., Kooistra, J. and Venema, G. (1988) <u>J.</u> <u>Bacteriol.</u>, **170**, 3703-3710.
- 152. Kiss, A., Posfai, G., Keller, C. C., Venetianer, P. and Roberts, R. J. (1985) <u>Nucleic Acids Res.</u>, 13, 6403-6421.
- 153. Chen, N.-Y., Zhang, J.-J. and Paulus, H. (1989) <u>J. Gen. Microbiol.</u>, 135, 2931-2940.
- 154. Kooistra, J. and Venema, G. (1991) J. Bacteriol., 173, 3644-3655.
- 155. Anagnostopoulos, C. and Spizizen, J. (1961) <u>J. Bacteriol.</u>, 81, 741-746.
- 156. Saito, H. and Miura, K. (1963) Biochim. Biophys. Acta, 72, 619-629.
- 157. Weinrauch, Y. and Dubnau, D. (1983) J. Bacteriol., 154, 1077-1087.
- 158. Innis, M. A., Myambo, K. B., Gelfand, D. H. and Brow, M. A. D. (1988) Proc. Natl. Acad. Sci. U.S.A., 85, 9436-9440.
- 159. Girard, M. (1967) Methods Enzymol., 12, 581-588.
- 160. Lehtovaara, P., Ulmanen, I. and Palva, I. (1984) Gene, 30, 11-16.
- Shimada, K. and Sugino, Y. (1969) <u>Biochim. Biophys. Acta</u>, 185, 367-380.
- 162. Mauck, J. and Glaser, L. (1970) Biochemistry, 9, 1140-1147.
- 163. Feldmann, H. & Falter, H. (1971) Eur. J. Biochem., 18, 573-581.
- 164. Schaeffer, P., Millet, J. and Aubert, J. P. (1965) <u>Proc. Natl. Acad.</u> <u>Sci. U. S. A.</u>, 54, 704-711.
- 165. Zhu, X., Ohta, Y., Jordan, G. and Inouye, M. (1989) <u>Nature</u>, 339, 483–486.
- 166. Singer, M. F. & Tolbert, G. (1965) Biochemistry, 4, 1319-1330.
- 167. Hiramaru, M., Uchida, T. & Egami, F. (1969) J. Biochem., 65, 701-708.
- 168. Miller, H. I., Riggs, A. D. & Gill, G. N. (1973) J. Biol. Chem., 248, 2621.
- 169. Altman, S. & Smith, J. D. (1971) Nature, 233, 35-39.

謝 辞

本研究を行うに当たり終始御懇篤な御指導、御鞭撻を賜りました 東京大学農学部教授、魚住武司先生並びに別府輝彦先生に深く感謝 いたします。また、常に御懇切な御指導、御助言をいただきました 東京大学農学部助教授、正木春彦先生並びに堀之内末治先生に深く 御礼申し上げます。さらに良き先輩として、また良き仲間として未 熟な私を見守り、研究の楽しさを教えてくださった東京大学農学部 助手、日高真誠先生、吉田稔先生、そして西山真先生に深く感謝い たします。

卒論の頃の無知な私を辛抱強く指導してくださった天野製薬(株) 小出芳直氏、<u>bsn</u>遺伝子の塩基配列の決定とBSNの精製を苦労しなが らも成し遂げてくださったサッポロビール(株)宮崎裕行氏、そし て分泌ベクターの作製の際に努力してくださった東亜紡織(株)北 村敦則氏並びに日本酸素(株)外山昇氏をはじめとする発酵学研究 室並びに育種生産工学研究室の皆様に感謝いたします。

最後になりましたが、本研究の遂行にぜひとも必要であった遺伝 子、及びプラスミドを快く御供与くださった東京工業大学生命理工 学部教授、掘越弘毅先生、カリフォルニア大学教授、Roy H. Doi先 生、ハーバード大学教授、Jeremy R. Knowles先生、三菱化成(株) 田中輝夫博士、及び東京大学応用微生物研究所助教授、河村富士夫 先生、また、BSCのN末端アミノ酸配列決定を行ってくださった味の 素(株)江島氏に感謝いたします。

