鉄筋コンクリート部材のせん断耐力と 変形能力の評価法に関する研究

1991年9月

倉本 洋

鉄筋コンクリート部材のせん断耐力と 変形能力の評価法に関する研究

1991年 9月

倉本 洋

〈 論文要旨 〉

本研究は、X形配筋を含めた鉄筋コンクリート架、柱部材のせん断強度式、付着割裂強 度式および靭性評価式を塑性理論を応用して構築し、終局強度型耐震設計法を念頭に置い たせん断設計法を開発することを主たる目的とした実験的研究および解析的研究である。

本論文は9章から構成されている。

第1章は序論であり、本研究の背景と目的を示すと共に本研究に関連する既往の研究を 整理した。既往の研究に関しては『鉄筋コンクリート部材のせん断強度理論』、『各国の 基・規準における鉄筋コンクリート部材のせん断強度式』、『鉄筋コンクリート部材の靭 性評価法』および『X形配筋部材の耐震性能』の4項目について整理した。

第2章では、本論で提案する鉄筋コンクリート部材およびX形配筋部材のせん断強度式、 付着割裂強度式および靭性評価式の基礎となった『若林・南理論』の基本仮定、理論式の 誘導およびその構成について概説した。若林・南理論は、曲げモーメント、せん断力およ び軸力が作用する鉄筋コンクリート部材のせん断抵抗機構として、はり機構とアーチ機構 の混在を仮定し、極限解析における下界定理と拡張累加強度理論を応用して導かれたもの である。この理論では主筋の降伏を伴う二次元的な釣合いを考慮しているため、理論式か ら算出されるせん断強度は、断面解析による終局曲げモーメントから得られるせん断強度 (曲げ強度)に対して独立なものではなく、常に曲げ強度を上回ることがないことが特徴 として挙げられる。また本章では、若林・南式のせん断耐力予測精度を既往の実験データ 180体を用いて検証し、計算値と実験値の対応は概ね良好であるが、破壊モードが理論で 仮定しているものと異なるデータに対しては、計算値が実験値を過大評価する傾向にある ことを指摘した。

第3章では、曲げ設計とせん断設計を分離して行なう現行のせん断設計手順に適用でき るように、若林・南理論式を修正したせん断強度式(以後、提案式と呼称)を提示した。 提案式は、若林・南理論式と同様にはり機構とアーチ機構の2種類のせん断抵抗機構によ る負担せん断力の累加によって部材耐力を与えるものであるが、はり機構に寄与する主筋 の強度を無限大と仮定している点で若林・南理論式とは異なり、せん断強度を曲げ強度と は独立に算出することを可能にした。また、主筋量、せん断補強筋量、軸力比および柱長 さ比等を変数としたパラメトリック解析を実行することにより、提案式の持つ物理的意味、 強度特性に及ぼす主要構成因子の影響、および若林・南理論式との相違点等を明確にした。 さらに、提案式のせん断耐力予測精度を前述の実験データ180体を用いて検証し、 せん断 補強筋の降伏強度が σ **< 6000kgf/cm³のデータに対しては予測精度が極めて良好であり、 実用せん断強度式として十分に適用できることを示した。 一方、σ ** ≥ 6000kgf/cm³のデ ータにおいて破壊モードが提案式で仮定しているモードと異なる、いわゆる適用範囲外の データについては、提案式による計算耐力が実験データを過大評価する傾向にあることを 指摘した。 最後に、これら適用範囲外のデータに対しても、提案式にせん断補強筋強度の 上限値とせん断補強筋量の下限値を設定することによって、その耐力予測精度を実用上問 題のない程度に向上させることができることを示した。

第4章では、典型的な付着割裂破壊を生じた鉄筋コンクリート柱の実験データを参考に して付着抵抗機構のモデル化を行ない、この付着抵抗機構とアーチ機構による負担強度の 累加で与えられる付着割裂強度式を提示した。さらに、付着割裂破壊が先行したデータ13 体、および主筋の曲げ降伏後に付着破壊を生じたデータ24体のそれぞれに対して付着割裂 強度式の耐力予測精度を検証した。その結果、曲げ強度式およびせん断強度式に、さらに この付着割裂強度式を考慮することによって、部材強度の評価のみならず、曲げ破壊、せ ん断破壊あるいは付着割裂破壊といった鉄筋コンクリート部材の代表的な破壊形式の判別 も適切に行えることを示した。また、曲げ降伏後に付着割裂破壊を生じた鉄筋コンクリー ト部材の場合でも、曲げ降伏以前に付着割裂破壊を生じる部材と同様な付着抵抗機構が形 成されることを既往の実験結果から明かにし、そのような部材に対する付着割裂破壊防止 条件を提示した。

第5章では、まず若林・南理論を応用して鉄筋コンクリート部材の荷重一変形解析法を 提案した。解析の手順は、①はり機構およびアーチ機構のそれぞれが負担する断面幅およ び終局強度時に負担する軸力を若林・南理論によって与えられる負担割合を用いて決定す る、②各抵抗機構をトラス材に置換し、それぞれに対して変形の適合条件と材料の構成条 件を設定し、任意の変形に対して応力の釣合いを満足させることによって各抵抗機構のせ ん断力を求める、③任意の変形に対して得られたはり機構とアーチ機構のせん断力を累加 することによって、鉄筋コンクリート部材としての荷重一変形関係を求める、というもの である。せん断補強筋比、軸力比、柱長さ比およびコンクリート強度を変数とし、せん断 破壊あるいは曲げ降伏破壊の何れかが先行した鉄筋コンクリート部材の実験データ14体に ついて解析結果と実験結果を比較検討し、解析手法の妥当性を確認した。また、せん断補 強筋係数、柱長さ比、軸力比および引張主筋係数等の構造因子が鉄筋コンクリート部材の 変形能力に及ぼす影響をパラメトリック解析によって把握することを試み、 ① せん断補強筋係数の増加に伴って最大強度および変形能力共に増加する ② 柱長さ比の増加に伴って最大強度は減少するが、変形能力は増加する ③ 軸力比の増加に伴って最大強度は増加するが、変形能力は減少する
④ 引張主筋係数の増加に伴って最大強度は増加するが、変形能力は減少するといった既往の実験から得られる荷重-変形関係の一般的な傾向と合致した結果を得た。 最後に、荷重-変形解析法によって得られた種々の鉄筋コンクリート部材の90% および80 %耐力低下時の部材角(限界部材角)Ruと 仮定したせん断抵抗機構から求められる必要せん断補強筋量p**の関係を統計的に整理することによって、 終局強度型耐震設計法に適用 できる靭性評価式を導出した。

第6章では、まず逆対称曲げ・せん断を受けるX形配筋部材のせん断強度式を、第3章 で示した鉄筋コンクリート部材の場合と同様に若林・南理論を修正することによって導出 した。X形配筋部材に対するせん断強度式は、はり機構、アーチ機構およびX形主筋によ るトラス機構の各せん断抵抗機構の負担せん断力の累加で与えられる。次に、実設計で対 象とすることが多い柱頭と柱脚で異なった大きさのモーメントを受けるX形配筋柱の力学 的性状の把握を目的とした実験的研究の内容をまとめた。実験は、X形配筋柱の耐震性能 に及ぼすせん断スパン比の影響の把握と、非対称曲げモーメントを受ける場合のせん断抵 抗機構をモデル化するための基礎資料を得ることを目的として、せん断スパン比と軸力比 を実験変数とした X 形配筋柱 6 体を計画した。実験結果より、同一軸力下であれば、 X 形 配筋柱の耐震性能に及ぼすせん断スパン比の影響は強度のみに依存し、せん断スパン比の 大きさに拘らず曲げ破壊系の復元力特性を示すことを明らかにした。また、非対称曲げモ ーメントを受けるX形配筋部材の場合、X形主筋によるせん断抵抗機構は逆対称曲げ・せ ん断載荷の場合とは異なり、X形主筋のみによるトラス機構の他にX形主筋とコンクリー ト間の付着力を考慮する必要があることを指摘した。さらに、本章ではこの実験結果を参 考にして、非対称曲げモーメントを受けるX形配筋部材におけるX形主筋のせん断抵抗機 構として『複合トラス機構』を仮定し、部材がはり機構、アーチ機構および複合トラス機 構の3種類のせん断抵抗機構から構成されるものとして、下界定理に基づいたせん断強度 理論解を導いた。そして最後に、前述した逆対称曲げ・せん断を受けるX形配筋部材に対 するせん断強度式との連動を考慮して、理論解を修正したせん断強度式を提示した。

第7章では、まずX形配筋部材の荷重-変形解析モデルを得るために、既往の実験デー タ15体に対するX形主筋の負担せん断力-部材角関係を検討した。その結果、巨視的には 圧縮X形主筋の剛性を弾性剛性の1/2と仮定し、X形主筋のみによるトラス材に置換して 解析することによって、X形主筋の負担せん断力-部材角関係を評価できることを示した。 次に、この結果と第5章で示した鉄筋コンクリート部材に対する荷重-変形解析法および 第6章で示した任意の曲げモーメントを受けるX形配筋部材のせん断強度理論を参考にし て、X形配筋部材の荷重-変形解析法を提案した。また、前述の15体の実験データについ て解析結果と実験結果を比較し、本解析法によってX形配筋部材の荷重-変形関係を概ね 評価できることを確認した。最後にこの解析法を利用して、第5章で示した鉄筋コンクリ ート部材の靭性評価式の場合と同様な手法によって、任意の曲げモーメントを受けるX形 配筋部材の靭性評価式を導出した。

第8章では、第3章から第7章で提案したせん断強度式、付着割裂強度式および靭性評価式を用いて、終局強度型耐震設計法を念頭に置いた鉄筋コンクリート部材およびX形配筋部材のせん断設計法(案)をまとめた。

第9章では、本論文全体をまとめ、今後の課題について検討した。

〈本研究に関する既発表論文 〉

- [D1] 倉本 洋、宮井清忠、南 宏一、若林 實:高圧縮力を受けるX形配筋柱の強度と 靭性、第8回コンクリート工学年次講演会論文集、pp.821-824、1986.6
- [D2] 倉本 洋、宮井清忠、南 宏一:高圧縮力を受けるX形配筋極短柱の変形能力、第 7回日本地震工学シンポジウム、pp.1363-1368、1986.12
- [D3] 南 宏一、倉本 洋:鉄筋コンクリート部材のせん断設計式、コンクリート工学年 次論文報告集、第9巻、第2号、pp.347-352、1987.6
- [D4] 倉本 洋、南 宏一:累加強度理論に基づくR/C部材のせん断設計式、日本建築 学会近畿支部研究報告集、pp.81-84、1988.5
- [D5] 倉本 洋、南 宏一: 靭性を考慮した鉄筋コンクリート部材の実用せん断設計式、 コンクリート工学年次論文報告集、第10巻、第3号、pp.651-656、1988.7
- [D6] Kuramoto H., K. Minami and M. Wakabayashi: Deformation Capacity of Diagonally Reinforced Concrete Short Columns Subject to High Axial Compressive Stress. Proceedings of 9th WCEE. Vol. 4, pp. 377-382, 1988.8
- [D7] Minami K., H. Kuramoto and M. Wakabayashi : Shear Design of Reinforced Concrete Members Based on The Plastic Theory. Proceedings of Pacific Concrete Conference, Vol.1, pp.113-124, 1988.10
- [D8] 倉本 洋、塚本尚由、中澤 淳、山本 昇、南 宏一:高強度せん断補強筋を用いた鉄筋コンクリート部材の終局せん断強度に関する一考察(その2)、日本建築学会関東支部研究報告集、pp.169-172、1988.11
- [D9]南 宏一、倉本 洋:累加強度理論に基づく鉄筋コンクリート部材のせん断設計式、 大阪工業大学紀要、Vol.32-A、No.2、pp.65-82、1988
- [D10] Kuramoto H. and K. Minami: Behavior of Diagonally Reinforced Columns Subject to Anti-Asymmetric Bending, Proceedings of The Second East Asia-Pacific Conference on Stractural Engineering & Construction, Vol. 1, pp. 358 -363, 1989.1
- [D11] 南 宏一、倉本 洋:せん断を受ける鉄筋コンクリート部材の極限解析とその実用 設計式、大阪工大摂南大学中研所報、第21巻、第3号、pp.314-369、1989.2
- [D12] 倉本 洋、山脇佳典、南 宏一:非対称曲げモーメントを受けるX形配筋柱の強度 と靭性(その1、2)、日本建築学会近畿支部研究報告集、pp.453-460、1989.5
- [D13] 倉本 洋、南 宏一:非対称曲げモーメントを受けるX形配筋柱の耐震性能、コン クリート工学年次論文報告集、第11巻、第2号、pp.483-488、1989.7

- [D14] 倉本 洋、南 宏一:累加強度理論に基づくX形配筋部材のせん断設計式と靭性評 価式、日本建築学会大会学術講演梗概集、pp.565-566、1989.10
- [D15] 倉本 洋、南 宏一:マクロモデルに基づく鉄筋コンクリート架および柱のせん断 強度評価式の検証、JC1コロキウム「RC構造のせん断設計法に関する解析的研 究」論文集、pp.203-210、1989.10
- [D16] 倉本 洋、南 宏一:X形配筋梁および柱の実用せん断設計式とその検証、JCI コロキウム「RC構造のせん断設計法に関する解析的研究」論文集、pp.211-218、 1989.10
- [D17] 倉本 洋、南 宏一:非対称曲げとせん断を受けるX形配筋梁および柱のせん断抵 抗機構とその設計式、JCIコロキウム「RC構造のせん断設計法に関する解析的 研究」論文集、pp.219-226、1989.10
- [D18]南 宏一、倉本 洋:X形配筋を用いた鉄筋コンクリート構造の理論と設計、大阪 工大摂南大学中研所報、第22巻、第2号、pp.127-179、1989.11
- [D19] 倉本 洋、南 宏一:マクロモデルによる鉄筋コンクリート架、柱の変形解析、コ ンクリート構造物の靭性と配筋方法に関するシンポジウム論文集、JCI-C20、pp.69 -86、1990.5
- [D20] 中澤 淳、塚本尚由、倉本 洋、南 宏一:繰り返し曲げせん断を受ける 18000キロ 級の高強度せん断補強筋を用いたRC梁のせん断および付着割裂破壊性状、コンク リート工学年次論文報告集、第12巻、第2号、pp.221-226、1990.6
- [D21] 倉本 洋、南 宏一:高主筋量を有するRC柱の耐力と靭性に及ぼすX形配筋の効果、コンクリート工学年次論文報告集、第12巻、第2号、pp.387-392、1990.6
- [D22] 倉本 洋、南 宏一、若林 實:鉄筋コンクリート朶、柱の付着割裂強度式とその 検証、日本建築学会大会学術講演梗概集、pp.723-724、1990.10
- [D23] 倉本 洋、南 宏一: 塑性理論を応用した鉄筋コンクリート部材の実用せん断設計 式、日本建築学会構造系論文報告集、pp.31-45、1990.11
- [D24] 倉本 洋:鉄筋コンクリート梁、柱の付着割裂破壊防止条件、日本建築学会大会学 術講演梗概集、pp.359-360、1991.9

本論文は、私の過去5年間の研究成果を纏めたものであります。この間、多くの先生方、 動務先の上司の皆様より暖かい御指導、御鞭撻を頂戴いたしました。

福山大学工学部教授・南宏一先生には、本論文に関する一連の研究についての熱意の籠 もった御指導と共に、研究全般に亘る貴重な御教示を賜りました。ここに深甚なる感謝の 意を表します。

東京大学工学部教授・青山博之先生には、本論文の内容全体に亘って詳細に議論して戴 き、文字どおり懇切丁寧な御指導によって本論文を完成に導いて戴きました。心より感謝 申し上げます。

横浜国立大学工学部教授・末永保美先生、同助教授・壁谷澤寿海先生には、日常の御指 導に加え、本論文執筆に際して御理解を載き、また東京大学への学位請求の道を開いて載 きました。衷心よりお礼申し上げます。

また、京都大学工学部助教授・渡辺史夫先生、千葉大学工学部教授・野口博先生、名古 屋工業大学工学部助教授・市之瀬敏勝先生には、鉄筋コンクリート部材のせん断研究の専 門家として、本研究に関して貴重な御教示、御助言を賜りました。厚くお礼申し上げます。

本研究の大半は、大阪工業大学大学院博士後期課程および㈱湖池組技術研究所在籍中に 行ったものであります。京都大学名誉教授・若林寶先生、大阪工業大学工学部教授・竹内 吉弘先生、同講師・西村泰志先生には、大学における研究指導に加えて、自由な研究環境 を与えて戴きました。また、㈱鴻池組技術研究所所長・吉田正三氏、同元副所長・宮井清 忠氏には、本研究を進める上で多大な御理解を戴きました。心よりお礼申し上げます。

この他、実験実施に御協力載いた村上秀夫氏、藤本善久氏をはじめ、㈱湖池組技術研究 所の皆様ならびに大阪工業大学南,西村研究室の卒論生の皆様には、心より厚くお礼申し 上げる次第であります。

1991年 9月20日

倉本 洋

『鉄筋コンクリート部材のせん断耐力と変形能力の評価法に関する研究』

(目次)

(論文要旨)	
(本研究に関する既発表論文) ・・・・・・・・・・・・・・・・・・・・・・・・・・・	···· v
(謝 辞〉	···· VII
(目 次)	· · · · VIII

第1	章	序	ŧ.	論		••	• • •	• • •			• •	• •	• • •		• •	•••				• •		• •		• •	•••							1-	- 35
	1.	1.	研	究	のす	宇 景	2	目	的			• •												• •							 		T
	1.	2.	既	往	のな	开究	2			••																					 		4
		1.2.	. 1.	4	铁角	π⊐	2	2	IJ	-	Þ	部	材	0	せ	. 1	,断	強	度	理	論	に	関	す	3	既	往	0	研	32			4
		1.2.	. 2.	4	各目		畫		規	準	E	お	け	3	銊	前	57	2	2	IJ	-	Þ	梁		柱	部	材	0	せ	h			
				2	新設	皮計	士	2	z	0	背	景		• •																	 		17
	3	1. 2.	3.	\$	洪寬	ĥ ⊐	7	2	IJ	-	٢	部	材	0	靭	性	: 評	価	法	10	関	す	る	既	生	0	研	究			 		25
	3	1. 2.	4.	3	х 开	5 A.	筋	部	材	0	耐	震	性	能	10	関	す	3	既	往	0	研	究								 		31
第2	章	鉄	筋		13	. 1)	-	+	部	材	0	せ	h	断	強	度	理	合用	(若	林		南	理書	(a)		D	旺	要			36-	- 50
	2.1	6	は	10	51	-	••					• •	••		• •																 		36
	2.2	2.	せ	んは	听报	E抗	機	構		• •	•••	•••							••												 		36
	2. 3	3.	は	りお	幾柿	見に	z	3	ьΠ	-	. P a	方	程	式																	 		37
	2.4	K	7	- 7	F模	表構	に	£	3	n	-	. q	方	程	式			•••													 		40
	2. 5	2	鉄	窃 :	22	17	IJ	-	1	部	材	Ø	n	-	q	方	程	式													 		41
	2.6	6	若礼	林 .	南	理	論	に	£.	3	せ	N	断	強	度	Ł	断	面	解	折	に.	Ł	31	±۲	fi	由日	÷.	וס	期(系			46
	2.7		若相	林 •	南	式	0	耐	力	予言))	精	度																		 		47
	2.8		ŧ,	28	5													•••													 		19
第3	章	鉄	筋:	22	17	ŋ	-	1	部相	才	D.	ť,	N	断	強	度	式														 	51-	76
	3.1		は	10	5 12		•••										••														 		51
	3.2		せ,	ん田	斤強	度	式										••														 		51
	3.3		せん	い出	f強	度	式	D	強用	E	侍	生	12)	及	17	す	主	要	構)	龙1	因-	子	の月	日報	1						 		5.5
	3.4		せん	い間	f強	度	式	Di	耐っ	17=	F- 1	er s	错日	Ŧ																			ED

	3.4.	1.	降伏	強度	±€00	0kgf/	cm²;	未満の	りせん	断補引	単筋を	使用し	た部を	đ	
			に対	する	予測精	度			****			• • • • •			. 59
	3.4.	2.	降伏	強度	<i>ti</i> 600	0kgf/	′cm²]	以上の	つせん	断補引	単筋を	使用し	た部れ	ł	
			に対	する	子測和	度									. 61
	3.4.	3.	適用	範囲	外の部	3材に	対す	る適	用条(4					65
	3.5.	せん	断強	度式	の耐力	予測	精度	に及	ぼす	主要構	成因于	の影響	W		68
	3.6.	既往	のせ	ん断	強度式	20	比較								72
	3.7.	まと	め												75
第4	章 鉄	筋コ	ンク	IJ —	ト 部 材	の付	着割	裂強!	度式					77	- 94
-	4.1.	はじ	めに												. 77
1	4. 2.	付着	割裂	強度:	式										77
	4.3.	付着	割裂	強度;	式、世	ん断	強度	式お	よび由	由げ強	度式に	よる音	B材の	迨	10
		度特	性												81
	4.4.	付着	割裂	強度;	式の耐	力予	測精	度 .							84
10	1.5.	曲げ	降伏	後に(寸着破	壊を	生じ	る鉄倉	筋コン	101	ート部	材の変	を形能っ	力	2.4
	3	の評	価												86
4	1.6.	まと	25												94
第51	章 鉄)	筋コ	27	y -	ト部材	の朝	性評	価式						95-	- 151
5	5.1.	はじ	めに												95
5	. 2.	变形)	解析	法の記	8月範	囲と	基本	仮定							95
5	. 3.	はりま	機構	およて	メアー	チ機	構の	負担車	由力						9.6
5	. 4. 4	はりれ	幾構	におり	けるせ	ん断	力	変形り	周係						101
	5.4.1		忘力。	の約台	合条件										101
	5. 4. 2	2. 2	变形。	の適合	全条件										102
	5.4.3		22	クリー	- ト斜	め圧論	縮束者	材の自	百度						103
	5.4.4	. 1	舞成礼	材料。	力学	的特	4 ·								105
	5.4.5		まりま	機構に	こおけ	るせ	も断っ	力 或	医形限	係.					100
	5.4.6	. 1	まりま	機構に	おけ	3 = 1	所の I	志力							100
5	. 5	r	F 機材	青にま	ける	せんは	新力.	- 変形	調係						109
	5.5.1	. 1	ち力の	の釣台	条件										111
	5.5.2	. 3	変形の	の適合	条件										111
	5.5.3		1 2	7 1 -	- ト創	め圧能	宿束 <i>‡</i>	tot	1学的	林社					112
	5.5.4		221	7 y -	- 下台	め圧象	お事ま	オの種) DF						113
						and the second se	and strength of the							A 14 14 14 14 14 1	

5.5.5. アーチ機構におけるせん断力-変形関係 ・・・・・・・・	
5.6. 鉄筋コンクリート部材のせん断力 - 変形関係	- 110
5.7. 既往の実験データによる解析モデルの妥当性の检証 ・・・・	. 110
 5.8. 鉄筋コンクリート部材のせん断力 - 変形関係に及ぼす主要構成因 	110
子の影響	- 126
5.9. 鉄筋コンクリート部材の靱件評価式 ・・・・・	120
5.9.1. 靭性部材におけるせん断折抗機構 ・・・・・	. 131
5.9.2 靭性評価式の提案	. 101
510 まとめ ・・・・・	+ 135
5 11 記号	. 147
	• 150
第6章 X形配筋部材のせん断論産者	
6 d ! d :	- 209
6.2 逆対称曲げ・サム斯を受ける又形配策如材のサノ航光座で	• 152
6.2.1 逆対称曲げ・せん断を受けるX形配筋部列のその断強度式	152
6.2.1. とれか曲け、せん断を受ける人形配筋部材のそん断強度理論	152
※ にと、 とれ称曲い、とれ働き受ける人形配動部材に対するもん断強 確す。	
6.2.2 社 / 新設府主の計力系測構成	158
5.2.3. この断型反式の耐力子則相反 ····································	160
	164
0.0.1. 天服の日町	164
0.0.2. 天歌訂圖 ····································	164
6.3.3. 天银刀広 ····································	166
0.0.9. 版设伙优 ····································	171
0.0.0. 何里一发形关诉	174
0.3.0. 土助およびせん断相强肋の応力度分布 ······	177
6.3.7. X形主肋の負担せん断刀 ······	182
6.3.6. 実験結果のまとめ ······	184
0.4. 非対称曲げモーメントを受けるX形配筋部材のせん断強度理論	185
b.4.1. せん断強度解析 ····································	185
 4.2. 埋論解のせん断強度予測精度 	200
6.4.3. X 形主筋によるせん断力負担効果 ····································	202
6.5. 非对称曲げモーメントを受けるX形配筋部材のせん断強度式	204
0.0. まとめ ···································	208
第7章 X形配筋架材の期份等位式	
210-	- 249
- X -	

	7.I.	はし	おお							• • •	• • • •								210
	7. 2.	既往	この実	「験う	2-1	タに	よる	xŦ	臣主	筋の	自打	日せ	ん断	力一	変形	関係			210
	7.3.	X 形	配筋	5部市	すのす	荷重	- 裘	形	周係										217
	7.	3.1.	荷重	1-3	を形象	解析	法の	適月	用範	囲と	: 基2	本仮;	定						217
	7.	3.2.	各せ	ん菌	F抵扎	亢機	構の	自打	日軸	力									217
	7.	3.3.	複合	1 1 3	マスオ	幾構	にお	: 17 2	ちせ	ん街	iti-	- 恋	形開	15					210
	7.	3.4.	平行	配節	新部分	30	せん	新っ	4-	亦形		E .							213
	7.3	3.5.	X H	配領	新部 本	to	+ 1	新し	h-	交 形	E RUT C	E .							220
	7 4	既往	の宝	11 元	z /	2 1-	F Z	金花 封	5 68	と生	話合	501	1. 1. 1. 1.						220
	7 5	X HS	和節	部的	10+	+ 2.1	新力	- 7	1 1111		1 - T	4 123 -	++1		+ 117 7				221
	7 5	Y H	可能	如12	tor	114-1		-	2 /121	为诉	IL D	K ta	9 生 :	安備和	改四日	-01	影響		234
	7 7	エル	AL IN	np 12	100 1	ALE	97 100	A											238
	7 0	*3	E														***		247
	1.0.	eC.	5							• • • •		• • • •				••••			249
-		-						-											
弗达	and a	矢肋コ	27	9-	- 1 - 3	521	XX	形首	己筋者	部材	のも	とん目	所設書	计法	(案)			• 250-	-258
	8.1.	強度	設計			••••	••••	••••	• • • •	••••		• • • • •			••••	••••	••••	*****	250
	8.2.	靭性	設計					••••	• • • •	••••	•••	••••	••••	••••		• • • •	••••	*****	255
	8.3.	記	号		••••	••••	•••	•••		•••	••••			****	•••••	••••			258
第9	章	吉 論	**		••••	••••	***	•••	• • • •	•••	•••		• • • •	• • • •		• • • •		· 259-	-263
	9.1.	研究	結果	のま	28	5 .	•••	•••		• • •	• • • •		••••						259
	9.2.	今後	の課	題	•••	••••					••••								262
	(3	参考文	献〉		***		•••			• • •									264
	〈書	已 号	>							• • •									274
付	録杉	範用	デー	90	一覧													. 278-	332
	付録A	:鉄	筋コ	27	y -	下音	日材	のせ	ん臣	F強	度式	檢罰	E用 =	- 4					270
	付録E	:鉄	筋コ	27	y -	ト音	5材	の付	着書	则裂	強度	式枪	新作用	17-	- 4				208
	付録C	: 鉄	筋コ	27	1 -	ト部	财材	の靭	件影	¥価:	式检	新月	1	- 4					202
	付録D	: X	形配	访部	材の	せん	新	治度	式ま	s t	7 K #10	杜照	E (# =	榆加	: H =				200
	付錄E	:铁	第コ	27	11 -	ト部	(##	の荷	前-	- atr	F : 67	折油	: 於 50		In T	- 2			306
	付録F	: X +	形配的	防部 :	おの	荷貢	1-2	の形	解却	~注:	12 11	H =	- 190 AL	2,02.5	- ,				010
			and the second of a			1. THE LOOP		mi 71/	1 TT 1/	 E.2.5.1 	DOC DIA	1 1 1 1	- 7						A

第1章 序 論

1.1. 研究の背景と目的

1968年5月16日の十勝沖地震による鉄筋コンクリート造建物の被害は、耐震設計におい て構造部材、特に短柱のせん断破壊に対する安全性確保の重要性を強く認識させた。この 地震を契機として、わが国では部材レベル、特に柱の耐震性能の把握を目的とした実験的、 解析的研究⁽¹⁾が数多く実施されるようになり、それらの研究成果は 1981年に施行された 現行基準、すなわち「新耐震設計法」に生かされている。この設計法の特徴は、それまで 主流であった許容応力度設計法に代わって、部分的ではあるが建物の終局状態を意識した 設計法(二次設計)を取り入れている点と、部材に対して強度だけでなく塑性変形能力に も期待した設計(Da値の導入)となっている点である。したがって、鉄筋コンクリート部 材のせん断強度式および靭性評価式に関しても終局状態を対象としたものとはなっている が、前述の.あるいはそれ以前の実験資料を統計的に整理して構築された実験式⁽²⁾を基本 としたものであるため、理論的な明解さを欠き、その適用範囲も自ずと狭いものとなって いる。

鉄筋コンクリート造建物の耐震設計法に関しては、1981年以降もさらに、現行の設計法 から終局強度型設計法への移行を意図した研究が日本建築学会を中心に精力的に行なわれ てきている。現時点の研究成果の集大成としては、1988年10月に日本建築学会で纏められ た「鉄筋コンクリート造建物の終局強度型耐震設計指針(案)、同解説」⁽¹⁾として制定化されて は「鉄筋コンクリート造建物の終局強度型耐震設計指針・同解説」⁽¹⁾として制定化されて いる。以後、この指針を「学会指針」と略記する。)があり、将来的には現行の設計法に 代わって、この終局強度型設計法が主流になるものと予想される。また、この指針に示き れているせん断設計法では現行基準によるものとは異なり、せん断強度式として塑性理論 を応用した理論式⁽¹⁾が採用されている。 さらに、靭性評価式に関してもせん断強度式に 甚づいた半理論的なものとなっている⁽⁴⁾。 しかし、それらの理論式は完成されたもので はなく、せん断強度式における軸力の影響の考慮、あるいは荷重一変形解析法に基づいた 靭性評価法の樹立等の点で改良の余地が残されている。特に後者に対しては、せん断強度 式の基礎となったせん断強度理論と、その合理性、適用性において進色のない解析理論を 開発することが先決であるものと考えられる。

一方、十勝沖地震による教訓的な被害に加えて耐震設計の考え方の変遷により、1970年 代半ばから、せん断補強筋または主筋の量、形状あるいは配筋法そのものを変えることに よって、鉄筋コンクリート部材の強度と粉性の向上を図ろうとする開発研究も盛んに行な われるようになった。それらの研究の一つにX形配筋法がある。この配筋法は、主筋を筋 違い状に斜めに配筋することによってせん断破壊あるいは付着割裂破壊を防止し、鉄筋コ シクリート部材の耐震性能の向上を図ろうとするものであり、1971年にNewZealand・Canterbury大学のPaulayよって連層耐震壁の境界架に初めて適用された⁽⁷⁾。その後わが国で は、1971年頃から若林および南によって鉄筋コンクリート短柱に適用した研究が系統的に 行なわれ、その基礎的な弾塑性性状を把握するに至っている^[41]。これらの研究成果によ って、現在、わが国だけでも30数棟に及ぶ鉄筋コンクリート造建物にX形配筋法が適用さ れている。また、高靭性というX形配筋部材の特性を設計に積極的に生かそうとする試み もなされてきており、前述の学会指針にはせん断設計の条項にX形配筋部材に対する設計 法が盛り込まれている。1990年9月には 建設省住宅局建築指導課監修による「X形配筋部 材の設計と施工」⁽⁴¹と称する手引書が(社)日本建築士事務所協会連合会において纏めら れるに至っており、X形配筋法の更なる普及が期待されている。

しかし、これまでの研究成果は、両部材端において逆対称の曲げ・せん断応力状態にあ る部材、すなわち、X形主筋がせん断力に対して最も効果的に抵抗する場合の実験資料に 基づいたものである。また、手引書に示されているせん断設計法に関しても、基本的には 前述の現行基準に示されている実験式をベースにしたせん断強食式あるいは朝性評価式に X形主筋によるせん断力負担効果を考慮しているにすぎず、実験的、解析的に明らかにさ れているX形配筋部材特有のせん断抵抗機構を設計法に反映するまでには至っていない。 したがって、X形配筋法の特徴を生かしたせん断設計法を確立するためには、非対称曲げ ・せん断の応力状態にあるX形配筋部材の挙動の把握、および理論的に明解なせん断強度 式および靭性評価式の構築が必要である。

以上の背景を踏まえ、本研究では終局強度型耐震設計法への適用を念頭に置いて、

① 塑性理論を応用した鉄筋コンクリート架、柱部材に対するせん断設計法の開発

② 非対称曲げモーメントを受けるX形配筋部材の挙動およびせん断抵抗機構の解明

③ 塑性理論を応用した X 形配筋梁、柱部材に対するせん断設計法の開発

等を目的としているが、特に、X形配筋部材を含めた鉄筋コンクリート部材に対するせん 断強度と変形能力の評価式を理論的に構築することに重点を置く。

図1.1に本論文の構成を表わすフローチャートを示す。

図1.1 論文の構成

- 3 -

1.2. 既往の研究

本研究の対象である鉄筋コンクリート部材および X 形配筋部材のせん断設計法に関連する既往の研究を

① 鉄筋コンクリート部材のせん断強度理論

② 各国の基規準における鉄筋コンクリート部材のせん断設計式

③ 鉄筋コンクリート部材の靭性評価法

④ X形配筋部材の耐震性能

の4項目に分けて整理する。

1.2.1. 鉄筋コンクリート部材のせん断強度理論に関する既往の研究

鉄筋コンクリート部材のせん断破壊問題を解析的なアプローチによって解明しようとする研究は、1899年のRitterによる"Truss Analogy"の提唱以来⁽¹⁰⁾、約1世紀に亘って数多くの研究者によってなされてきている^[11]。

Ritterは、架部材に入力されるせん断力に対して せん断補強筋 (Stirrup) が引張力を 生じることによって抵抗するものと考え、鉛直せん断補強筋を有する架のせん断強度算定 式として次式を提案した。

$$V = \frac{A_* \cdot f_* \cdot jd}{*} \qquad (1-1)$$

ここに、V:せん断力

Av: 一組のせん断補強筋断面積

f.: せん断補強筋の許容応力度

s:せん断補強筋の間隔

jd: 応力重心間距離

この理論は、架部材のせん断抵抗機構を材軸に対して 45°の角度を成すコンクリート斜 め圧縮束材、引張主筋および圧縮コンクリートによる上下平行弦材、およびせん断補強筋 による鉛直弦材から構成される平行弦トラスに理想化したものであり、現在までに展開さ れた多くのトラス理論の基礎となっているもので「古典トラス理論」とも呼ばれている。 しかし この理論を発表した当時は、せん断補強筋は水平せん断力に対するShear Keyとし て作用する、すなわち、Dowel Actionによってせん断力が伝達されるという考え方が主流 であったため、一般に受け入られるまでには至らなかった。その後、1903年にMörschが鉛 直および斜めに配筋したせん断補強筋の抵抗機構を調べるために行なった4体の鉄筋コン クリート梁の実験から斜張力破壊(Diagonal Tension)がせん断破壊の原因であることを 指摘し、その場合のせん断補強筋の作用を Truss Analogyによって説明できることを示し た¹¹²¹。また、F. v. EmpergerやE. Probstが行なった実験からもMörschの指摘を裏付る結果 が得られ、Truss Analogyが研究者、技術者の間で広く支持されるようになった¹¹³¹。

一方、Ritter・Mörschのトラス理論によれば、斜張力ひび割れ発生後はせん断補強筋が 全せん断力を負担することになる。 しかし、この点についてTalbotは、(1-1)式から計算 されるせん断補強筋の応力度が実験値に対して高すぎることを指摘し、早くからせん断耐 力がせん断補強筋の負担せん断力とコンクリートの負担せん断力の和で与えられることを 主張している⁽¹⁴⁾。具体的には、全せん断力のうち2/3がせん断補強筋(Truss Analogy) によって、また 残りの1/3を圧縮領域のコンクリートによってそれぞれ負担されるものと 結論付けている。負担割合の数値はともあれ、この考え方は現在においてもアメリカ、ニ ュージーランド、日本をはじめ数多くの国々のせん断設計式に取り入れられている。

Ritter、Mörschのトラス理論以後、せん断強度理論の開発が活発化するのは1950年代以 降となる。1950年代後半から1960年代にかけて、鉄筋コンクリート梁に関するせん断強度 理論が数多く発表されている。それらを大別すると終局強度理論系、アーチ理論系および トラス理論系に分類できる。

終局強度理論の代表的なものとしては、Waltherのせん断圧縮理論⁽¹⁶⁾とMorrow・Viest のせん断モーメント理論⁽¹⁶⁾が挙げられる。Waltherの理論は図1.2に示すように、せん断 補強筋のない架部材が斜張力ひび割れの発生によって2つの平面に分割され、その平面が ひび割れの先端0点を中心として剛体回転を生じることによって、危険断面でのモーメン トが増加し、せん断力が伝達されるものと仮定している。0点を中心とする剛体回転によ って幾何学的に求められるコンクリート圧縮縁の変形Δ1,0,2 と鉄筋の変形Δ1,0,0 に コンクリートの圧縮力と鉄筋の引張力を算出し、0点に関するモーメントを求める。ここ で、圧縮コンクリートの応力度分布は矩形と仮定しており、破壊時の応力度はシリンダー 圧縮強度に強度低減係数を乗じたものを採用している。なお、強度低減係数にはせん断ス パン比の影響が考慮されている。

図1.2 Waltherのモデル[15]

- 5 -

図1.3 Morrow · Viestのモデル^[10]

一方、Morrow・Viestの理論は、基本的には 断面曲げ解析と同様な手法でせん断補強筋 のない架部材の危険断面におけるせん断耐力を求めようとするものである。具体的には図 1.8に示すように、 危険断面のひずみ分布を仮定してモーメントを求めるものであるが、 せん断破壊時には平面保持の仮定が成り立たないことを考慮して、ひずみ適合係数kによ って圧縮線のひずみの修正を行なっている。なお、ひずみ適合係数はせん断スパン比の影 響を含んだ実験式で与えられている。

これら2つと類似の理論としては、コンクリート圧縮域におけるコンクリート耐荷能力 をせん断力によって低減さるBresler・Pisterの理論^[17]、より複雑な弾塑性モデルを仮定 したMoore・Sozenの理論^[18]、せん断補強筋の効果も考慮した神山の理論^[18]などがある。

アーチ理論ではKaniアーチの理論⁽²⁰¹⁾が代表的である。Kaniはまず、せん断補強筋のな い衆部材に曲げひび割れが発生した後の抵抗機構として、図1.4(a)に示すような櫛歯モデ ル (Concrete Teeth Theory)を提案した。 この理論では、引張主筋とコンタリートの付 着が健全な場合には横歯がその先端に作用する付着力によって片持ち架として抵抗し、櫛 歯の根元にモーメントが伝達されることによってせん断力が増加するものとしている。ま た、引張主筋が降伏する以前に横歯が破壊する場合を斜張力破壊とし、斜張力ひび割れ耐 力を求めている。一方、付着力が劣化した場合や斜張力ひび割れが伸展した場合にはこの 櫛歯の抵抗機構が消失し、かつ、せん断力に抵抗する断面が減少して、アーチ的な抵抗機 構に移行するものと考え、図1.4(b)に示すようなアーチモデル(Remaining Arch Theory) を提案した。この理論では、斜張力ひび割れ発生以後せん断力の増加に伴って、形成した アーチの抵抗機能が内側から消失していき、コンクリートの有効圧縮領域深さが減少して、 コンクリートの圧壊が生じるとするもので、この時の破壊荷重を求めている。さらに、櫛 歯理論とアーチ理論による耐力の比較から、梁部材の耐力がせん断スパン比の増加に伴っ てアーチ耐力、斜張力ひび割れ耐力、曲げ耐力の順で与えられることを示した(図1.5)。

図1.4 Kaniによる櫛歯モデルとアーチモデル 1201

図1.5 Kaniによるせん断破壊荷重とせん断スパン比の関係 [20]

また、Kaniは せん断補強筋を有する梁部材に対するアーチ理論(Hanging Arch Theory) ^[21]も提案しており、せん断補強筋のないものから有るものまでアーチ理論による統一的 な説明を試みている。

トラス理論に関しては、Talbotが指摘したようにRitter・Mörschによる古典トラス理論 だけでは鉄筋コンクリート梁のせん断耐力を評価できないことが、その後の実験からも明 らかにされ、古典トラス理論を修正あるいは拡張した理論が提案されている。 Leonhardt はStutgart工科大学で実施したT形架のせん断実験から、曲げ圧縮領域のコンクリートに よってせん断力の一部が負担され、その負担割合は フランジ幅bとウェブ幅b。の比率によ って異なることを明らかにした。すなわち、b/b。が小さければ小さいほど曲げ圧縮領域の コンクリートの負担せん断力が増加するというものである。そこで Leonhardtは、この実 験結果に基づいて図1.5に示すような修正トラスモデルを提案した^[22]。 この理論では、 b/beが小さくなるほど圧縮上弦材の傾斜を大きく、かつコンクリート斜め圧縮束材の角度

図1.6 Leonhardtによる修正トラスモデル^[22]

を小さくすることによって、全せん断力に対する曲げ圧縮領域のコンクリートのせん断力 負担割合の増加を考慮した。しかし、このトラスモデルは不静定構造であり、影響因子の 数が多いので計算が複雑となるため、直接的にせん断補強筋を算定することは困難である。 なお、曲げ圧縮領域のコンクリートの負担せん断力を考慮したトラス理論としては、他に Baker・Ahmadの不静定トラス理論¹²⁴¹なども提案されている。

以上1960年代に開発された代表的なせん断強度理論について示したが、Ritter・Morsch の古典トラス理論では、鉄筋コンクリート部材の複雑なせん断破壊現象に対して、単純明 解なモデル (マクロモデル) によってその本質的なせん断抵抗機構を表現し、せん断設計 に反映させようとするものであった。しかし、これらの理論ではせん断破壊現象の複雑さ を実験結果に基づいて忠実に解明しようとする意図は理解できるものの、かえって理論そ のものを複雑にして一般性、拡張性のないものになってしまった観がある。

これに対して、1970年代にはヨーロッパを中心としてそれまでとは全く異なったアプロ ーチによってトラス理論あるいはアーチ理論が展開された。すなわち、塑性理論を応用し たせん断強度理論の発達であり、その先駆的役割を果たしたのがNielsen、Braestrupらあ るいはThürlimannらによる極限解析のせん断強度理論への適用¹²⁴⁻¹⁷¹であり、Collinsら による圧縮場理論¹²⁴⁻²⁷¹の提案であったと言えよう。

Nielsenらは、せん断補強筋を有するT形架を図1.7に示すように、引張主筋による下弦 材、圧縮鉄筋と圧縮領域のコンクリートによる上弦材、せん断補強筋による鉛直弦材、お よび材軸と0の角度を成すコンクリート斜め圧縮束材によって構成される平行弦トラスに モデル化した。さらに、主筋、せん断補強筋およびコンクリートが何れも剛塑性材料であ ると仮定し、静的許容応力場を満足するせん断強度(下界の解)を求めた。この理論では、 引張および圧縮弦材の強度は無限大とし、コンクリート斜め圧縮束材の圧壊とせん断補強 筋の引張降伏が同時に生じていることを降伏条件としており、せん断強度がせん断補強筋

図1.7 Nielsenらによるトラスモデル (静的許容応力場)¹²⁴¹

の関数として(1-2)式で与えられる。 (ただし、(1-2)式において Ψ>ν c/2の場合はコン クリート斜め圧縮束材の圧壊のみが先行し、せん断補強筋は降伏しない。)

 $q = \begin{pmatrix} \sqrt{\Psi(\nu_{c}-\Psi)} & (\Psi \leq \nu_{c}/2) \\ \nu_{c}/2 & (\Psi > \nu_{c}/2) & \cdots & (1-2) \end{pmatrix}$ ここに、q : 無次元化せん断力 [= Q/(b·D·F_{c})] Ψ : せん断補強筋係数 [= p_w · \sigma_wv/F_{c}] ν_{c}: コンクリート有効強度係数 [= 0.7-F_{c}/200 (単位: MPa)]

また、Nielsenらは図1.8に示すようなアーチモデルを用いて、せん断補強筋のない築部 材のせん断強度について上界および下界の解を導き、次式で与えている。

ここに、Φ :引張主筋係数 [= p₁·σ₂/F_c] a/h:せん断スパン比

この理論では、Φ ≤ ν ε/2の場合に引張主筋の降伏によって、Φ > ν ε/2の場合にはコン クリート斜め圧縮束材の圧壊によってそれぞれせん断強度が決定され、せん断スパン比が 増加するほどせん断強度が減少することになる。また、この場合のコンクリート有効強度 係数 ν εは コンクリート強度、梁せい、引張主筋比、せん断スパン比の関数として経験的

(a)静的許容応力場のモデル
 (b)動的許容速度場のモデル
 図1.8 Nielsenらによるアーチモデル^(2*)

に与えられており、0.6前後の値となっている。

ヨーロッパコンクリート規準(CEB-MC-90)^[189]におけるせん断設計式はこれらの理論に 基づいて構築されている。しかし、これらの理論には、トラス理論においてせん断強度に 及ぼす軸力およびせん断スパン比の影響が考慮されていない、トラス理論およびアーチ理 論のそれぞれに採用されているコンクリート強度有効係数の理論的根拠が希薄である、と いった問題点があり、検討の余地が残されている。特に、コンクリート有効強度係数につ いては、単純架の実験結果との対応を考慮して定められているが、実験では部材両端部支 点位置において理論で仮定したような剛な支持条件(断面)が再現されているとは考え難 く、その影響などが係数に含まれている可能性がある。したがって、理論の仮定により忠 実な条件下で行なった実験では、コンクリート強度有効係数はより大きな値を採るものと 考えられる。

一方、Collinsは ウェブの薄い鉄骨梁に対するせん断座屈理論であるWagnerの「斜張力 場理論」を参考にして、鉛直せん断補強筋を有する対称配筋断面の鉄筋コンクリートおよ びプレストレストコンクリート架に対するせん断強度理論として「斜め圧縮場理論 (The Diagonal Compression Field Theory)^[2*1]」を提案した。この理論は、部材内の二軸応力 下にあるコンクリートに対して平均応力と平均ひずみの概念を導入し、平均主応力の方向 と平均主ひずみの方向が一致するという仮定の下で、応力の釣合い条件、ひずみの適合条 件および材料構成則を満足するようなせん断力とせん断変形の関係を求めたものである。 この理論は Vecchioらによって直交配筋されたコンクリート膜要素のせん断力ーせん断変 形関係の解析理論 (The Modified Compression Field Theory)^[2*0]に拡張され、せん断力 を受ける鉄筋コンクリート部材の断面解析^[131]や有限要素解析^[32]に利用されている。ま た、実用的なせん断設計式に適用するために理論解の簡便化も図られており^[33]、1984年 に発表されたカナダ規準(CAN3-A23.3-M84)^[341]におけるせん断設計式に反映されている。 この理論と類似のものとしては Hsuの軟化トラス理論^[341]があり、ねじりを受ける鉄筋コ

 (a) Discontinuous stress field in deep beam (b) Anchorage of tie force
 (c) Corbei
 (d) Knee joint under closing sceent
 (e) Knee joint under opening sceent
 (f) Interior beam-columning incent

図1.9 Martiによるタイとストラットのモデル[39]

ンクリート菜^[36]、せん断力を受ける耐震壁^[37]およびディープビーム^[38]などの解析に 適用されている。

また、最近では Martiによって、設計に直接適用できる簡便な解析手法が提案されている^[1*1,45]。この方法は、図1.9に示すようにせん断力を受ける鉄筋コンクリート架部材を コンクリートで構成されるストラットと鉄筋(主筋およびせん断補強筋)で構成されるタ イからなるトラス材に置き換えて、静的許容応力場を満足するストラット、タイおよびそ の接点(ノード)の応力を求めるものである。 この方法は、先に示したCollins理論とは 対称的に、局部的な集中荷重が作用してせん断応力場が一様と見なせない部材の設計に便 利である。 塩原はMartiの解析手法を応用して、一層ースパンの鉄筋コンクリート耐震壁 の終局強度算定式を提案している^[41]。また、鈴木・井上は塩原の理論を鉄筋コンクリー ト連層耐震壁に拡張して最大耐力を算定している^[42]。

塩原の研究にも見られるように、わが国においても1970年代後半から塑性理論あるいは 極限解析を応用したせん断強度理論の開発が盛んに行なわれてきている。わが国で開発さ れた鉄筋コンクリート架および柱部材に関するせん断強度理論の主たる特徴としては、加 藤・称原の理論^(**)あるいは若林・南の理論^(**)に代表されるように、以下の2点が挙げ られる。

- ① 地震荷重時を想定して、逆対称曲げモーメント、せん断力および軸力による組合せ応力が作用する部材を解析対象としている。
- ② 鉄筋コンクリート部材のせん断抵抗機構として、トラス機構(はり機構)とアーチ機構の2種類を仮定している。

特に、後者に示されるように、せん断補強筋を有する鉄筋コンクリート部材に対して従 来汎用されてきたトラス機構のみの解析モデルでは、その導入が困難とされてきたシアス パンおよび軸力のせん断強度に及ぼす影響をアーチ作用的な機構を考慮することによって 解決しているところに日本で発展したせん断強度理論の独創性が伺える。

図1.10および図1.11にそれぞれ加藤・称原理論および若林・南理論で仮定しているせん 断抵抗モデルを示す。加藤・称原理論はWagnerあるいはBaslerの張力場理論を参考にして 構築されたものであり、鉄筋コンクリート部材のせん断抵抗機構として、トラス的な機構 (せん断補強筋のシステム)とアーチ的な機構(コンクリート圧力場のシステム)の混在 を仮定して、極限解析の下界定理に従ってせん断強度解を導いた最初の理論であろう。一 方、若林・南理論は前述のNielsenやThürlimannらによるトラス理論とアーチ理論にヒン トを得て、加藤・称原理論と同様にトラス機構(はり機構)とアーチ機構の混在を仮定し、 さらに、累加強度理論⁽¹⁴⁾を応用して鉄筋コンクリート部材のせん断強度理論解を導いた ものである。

両理論はその基礎となった理論は異なるものの、せん断抵抗機構のモデル化および基本 仮定等において類似する点が多い。そこで、以下では加藤・称原理論の構成を簡潔に示す とともに、若林・南理論との関係について考察する。なお、若林・南理論の構成について は2章で詳述する。また、以下に示す加藤・称原式に用いた記号は若林・南式との比較を 簡単にするために原論文^[43]とは異なっており、注釈のない記号はすべて本論文末に示す 〈記号〉によるものとする。

⁽a) コンクリート圧力場のシステム

⁽b) せん断補強筋のシステム

図1.10 加藤・称原によるせん断抵抗モデル [43]

図1.11 若林・南によるせん断抵抗モアル [44]

加藤,称原理論では、図1.10に示すように(a)コンクリート圧力場のシステムと(b)せん 断補強筋のシステムと称する2種類のせん断抵抗機構を仮定している。若林,南理論では アーチ機構が前者と、はり機構が後者とそれぞれ類似した抵抗機構となっている。

せん断補強筋のシステムの無次元化負担せん断力wqと無次元化負担軸力wnの関係は次式で与えられる。

また、コンクリート圧力場のシステムにおける無次元化負担せん断力cqと無次元化負担 軸力cnの関係は、cnの大きさによって(1-5)式~(1-7)式で与えられる。

$$\begin{split} \mathcal{L} \subset \{\mathcal{L}, \mathbf{n}_{0} = -2 \cdot \Phi + \Psi \cdot \eta \\ \mathbf{n}_{1} &= \delta - 2 \cdot \Phi + \Psi \cdot \eta \\ \mathbf{n}_{2} &= \delta + 2 \cdot \Phi - \Psi \cdot \eta \\ \mathbf{n}_{3} &= 2 \cdot \delta + 2 \cdot \Phi - \Psi \cdot \eta \\ \mathbf{c} \mathbf{n}_{*} &= (\mathbf{c} \mathbf{n} + 2 \cdot \Phi - \Psi \cdot \eta) / (2 \cdot \delta) \\ \mathbf{c} \mathbf{n}_{*} &= (\mathbf{c} \mathbf{n} - 2 \cdot \Phi + \Psi \cdot \eta) / (2 \cdot \delta) \\ \mathbf{c} \mathbf{q} &= \mathbf{c} Q / (\mathbf{b} \cdot \mathbf{D} \cdot \mathbf{F}_{c}) \\ \mathbf{c} \mathbf{n} &= \mathbf{c} \mathbb{N} / (\mathbf{b} \cdot \mathbf{D} \cdot \mathbf{F}_{c}) \end{split}$$

鉄筋コンクリート部材としての強度はせん断補強筋のシステムによる強度とコンクリート圧力場のシステムによる強度を累加することによって得られ、無次元化せん断力 q および無次元化軸力 n はそれぞれ(1-8)式および(1-9)式で与えられる。

したがって、鉄筋コンクリート部材のn-q方程式は(1-4)式~(1-9)式より $n_0+ \Psi \cdot d_1 \leq n \leq n_1+ \Psi \cdot d_1$ のとき

$$\begin{split} \zeta \zeta & (\zeta, n) = \{n + 2 \cdot \Phi - \Psi (d_1 + \eta)\} / (2 \cdot \delta) \\ & n_6 = \{n - 2 \cdot \Phi - \Psi (d_1 - \eta)\} / (2 \cdot \delta) \end{split}$$

となる。

図1.12の(a)および(b)にせん断補強筋のシステムおよびコンクリート圧力場のシステム によるn-q相関曲線をそれぞれ示す。なお、同図には比較のため、若林・南理論におけ るはり機構およびアーチ機構の相関曲線を点線で示している。また、図1.12(c)には(a)と (b)を累加して得られる鉄筋コンクリート部材のn-q相関曲線を示している。

せん断補強筋のシステムの相関曲線は、(1-4)式からも解るように直線で与えられる。 したがって、このシステムでは若林・南理論におけるはり機構のように負担せん断力と負 担軸力が独立に与えられるのではなく、常に負担せん断力と負担軸力は等しくなる。

図1.12 加藤・称原理論による鉄筋コンクリート部材のn-q相関曲線

コンクリート圧力場のシステムの相関曲線は、全主筋からせん断補強筋のシステムに寄 与する主筋量を減じた残りの主筋によって構成される軸力のみを負担する抵抗機構の相関 曲線と、無筋コンクリートで構成される軸力とせん断力を負担する抵抗機構(若林・南理 論のアーチ機構に相当する。)の相関曲線を累加したものに相当する。

一方、(1-10)式~(1-12)式は2章の表2.3に示す(2-33)式~(2-35)式に一致し、さらに、 Ψ=0の場合には(1-10)式および(1-12)式はそれぞれ(2-31)式および(2-37)式と一致するこ とになる。すなわち、加藤・称原理論による鉄筋コンクリート部材のn-q相関曲線は若 林・南理論によるものと一致する。 このように加藤・称原理論と若林・南理論とでは、せん断補強筋のシステムとはり機構、 およびコンクリート圧力場のシステムとアーチ機構のそれぞれに対する負担せん断力およ び負担軸力は異なるが、各抵抗機構の強度を累加して得られる鉄筋コンクリート部材のせ ん断強度解は一致する。なお、加藤・称原理論では 図1.12(c)における特定点X1~X2、お よびX5~X5の範囲においてn-q方程式が陽な形で与えられないため、軸力比がこの範囲 に属する部材のせん断強度を求める際には繰り返し計算を要する。それに対して、若林・ 南理論はすべての軸力範囲で閉解を与えることができ、加藤・称原理論に比してより洗練 された理論であると言えよう。

これらの理論は鉄骨鉄筋コンクリート部材^[43,41]、耐震壁^[47,43]あるいはX形配筋部 材^[89]のせん断強度理論に拡張されており、鉄筋コンクリート部材のみならずコンクリー ト系構造部材のせん断強度をトラス機構とアーチ機構の混在を仮定することによって統一 的に評価できることを示している。また、土井は鉄筋コンクリート部材のせん断強度解を 上界定理から求め、加藤・称原理論による下界の解と比較している^[61]。

最近では、トラス機構とアーチ機構の混在を仮定した理論に基づいた鉄筋コンクリート 梁、柱部材^(sz, ss) および耐震墜^(st)のせん断強度式の構築を目的とした研究が、日本建 築学会を中心として精力的に行なわれてきている。それらの研究の現時点での集大成とし ては、日本建築学会編「鉄筋コンクリート造建物の終局強度型耐震設計指針・同解説」^(st) があるが、さらに洗練されたせん断設計法の確立を目指して研究が進められている状況に ある。

以上、鉄筋コンクリート部材のせん断強度理論に関する既往の研究について整理した。 研究の動向は、RitterのTruss Analogyの提案から実験資料の蓄積の時代(1900~1950)、 実験結果に基づいたせん断強度理論の開発の時代(1950~1970)、塑性理論を応用したせ ん断強度理論の開発の時代(1970~1980)へと移り変わってきており、現在はせん断強度 理論に基づいたせん断設計法の樹立の時代にきていると言ってよい。本研究の位置付けも ここにあり、文献[52]、[53]の研究と同様に、終局強度型耐震設計法に適用できるせん断 設計法を若林・南理論に基づいて開発することを目的としている。 1.2.2. 各国の基・規準における鉄筋コンクリート梁、柱部材のせん断設計式とその背景

わが国および諸外国のコンクリート基、規準に示されている架および柱部材のせん断設 計式の構成およびその背景を整理する。検討対象としたせん断設計式はセンター指針^(a)、 学会指針⁽⁴⁾、AC1318-89⁽⁸⁶⁾、NZS3101⁽⁸⁴⁾、CEB-MC-90⁽³⁴⁾およびCSA-A23, 3-84⁽³⁴⁾の各 規準に示されているものとした。表1.1および表1.2にせん断設計式を示す。なお、各せん 断設計式は比較し易いように主要な記号を統一し、工学単位で示してある。注釈のない記 号は本論文末に示す(記号)によるものとする。

(a) わが国のコンクリート基・規準におけるせん断設計式とその背景

日本建築センター・構造計算指針(2)

この指針に示されているせん断強度式は、過去に国内外で実施された普通コンクリート 梁の一方向単調加力実験から得られた終局せん断強度データ約1200個について、大野、荒 川が整理して求めた実験式^{(*7,**1}に基づいたものである。せん断強度Qはコンクリートの せん断ひび割れ強度Qcとせん断補強筋の負担せん断力Qsの累加によって与えられ、柱部材 に対しては広沢^{(**1}の提案による軸力の効果が考慮されている。なお、表1.1に示したせ ん断強度式は部材の有効せいが32cm以上のものに対して平均的な耐力予測精度を与えるも のであるが、下限値に近い値を表わす場合にはQcにおける係数0.068を0.058とすればよい とされている。

日本建築学会·終局強度型耐震設計指針^[4]

この指針では、1.2.1節で述べたように 極限解析の下界定理に基づいたせん断強度式を 採用している。 せん断強度Qは、アーチ機構による強度Qxとトラス機構による強度Qrの累 加によって与えられている。この場合の塑性条件は、せん断補強筋応力がその信頼強度に 到達していることと、トラス機構およびアーチ機構の重ね合わせにより生じるコンクリー ト圧縮東応力がコンクリート有効圧縮強度 ν c・Fcに達していることとしている。また、釣 合い条件としてはせん断力の釣合いのみを考慮しており、曲げ主筋は無限に強く、決して 降伏しないものと仮定している。

なお、指針では 表1.1に示す A法^(**)が指針式として採用されているが、解説にはA法 の他にB法^(**)というせん断強度式も紹介されている。A法とB法ではトラス機構におけ るコンクリート圧縮東材の角度 ¢ と、コンクリート強度有効係数 v cの値が異なる。A法 ではcot ¢=1~2の範囲において、あるせん断補強筋量に対してトラス機構によるせん断抵 抗が最大となる条件よりcot ¢を与えているのに対して、B法では あるせん断補強筋量に 対して、トラス機構におけるコンクリート圧縮東応力を最小とするという条件より cot ¢ 表1.1 日本の規準におけるせん断設計式

[センター指針式] Q = Q_c + Q_s Q_s = 2.7 $\sqrt{p_{w} \cdot \sigma_{wy}} \cdot b \cdot j$ Q_c = $\left\{ \frac{0.068 \cdot (100 \cdot p_1)^{0.23} \cdot (180 + F_c)}{M/(Q \cdot d_s) + 0.12} + \frac{N}{b \cdot D} \right\} \cdot b \cdot j$

ただし、N/(b·D) $\leq 0.4 \cdot F_c$ $1 \leq M/(Q \cdot d_*) < 3$ pw ≤ 0.012

[学会指針式:A法]

 $Q = Q_A + Q_T \leq b \cdot d \cdot \nu_c \cdot F_c/2$ $Q_T = b \cdot d \cdot p_W \cdot \sigma_{WY} \cdot \cot \phi$ $Q_A = \alpha \cdot (1 - \beta) \cdot b \cdot D \cdot \nu_c \cdot F_c$ $f \cdot f \in L, \ \sigma_{WY} \leq 25 \cdot F_c$ $C \in (Z, \beta) = (1 + \cot^2 \phi) \cdot p_W \cdot \sigma_{WY}/(\nu_c \cdot F_c))$ $\nu_c = 0.7 - F_c/2000$ $\cot \phi = \min (A, B, C) \geq 1.0$ A = 2.0 $B = d/(2 \cdot \alpha \cdot D)$ $C = \sqrt{\nu_c \cdot F_c}/(p_W \cdot \sigma_{WY}) - 1.0$

[学会指針式:B法]

 $\begin{bmatrix} A C \mid \vec{x} \quad (AC1318-89) \end{bmatrix}$ $Q = Q_{c} + Q_{T} \leq 2.12 \cdot \sqrt{F_{c}} \cdot b \cdot d,$

表1.2(a) 外国の規準におけるせん断設計式(半理論式)

ただし、 $\sigma_{wy} \leq 4219 \text{ kgf/cm}^2$ $p_w \geq 3.52/\sigma_{wy}$

注) N>0の場合のQcの略算式 Qc = 0.53 · (1+0.0071 · N/(b·D)) · √Fc·b·d-

[N Z 式 (NZ\$3101)] Q = Q_c + Q_T ≤ 0.2·F_c or 61 kgf/cm² Q_T = p_w· σ w_Y· b·d_e N<0のとき、Q_c = (1 + 12·n)·Q_c_B N≥0のとき、Q_c = (1 + 3·n)·Q_c_B ここに、Q_c_B = (0.224 + 31.94·p₁)· $\sqrt{F_c}$

$\begin{bmatrix} C \in B \exists t & (CEB-MC-90 : Accurate Method) \end{bmatrix}$ $Q = Q_{c} + Q_{T} \leq 0.3 \cdot b \cdot d_{*} \cdot \nu_{c} \cdot F_{c} \cdot \sin 2\phi$ $Q_{T} = 0.9 \cdot b \cdot d_{*} \cdot p_{W} \cdot \nu_{*} \cdot \sigma_{WY} \cdot \cot \phi$ $Q_{c} = 2.5 \cdot \tau_{We} \cdot b \cdot d_{e} - Q_{T}/3 \geq 0$ $C \subset C_{*} \quad \nu_{*} = 1/1.15$ $\nu_{c} = 2/3$ $\tau_{We} = 0.25 \cdot \nu_{c} \cdot f_{*}$ $f_{*} \equiv 0.0421 \cdot F_{c} + 7.089$ $\cot \phi = \min (A, B) \geq 1.0$ A = 5/3 $B = \sqrt{2 \cdot \nu_{c} \cdot F_{c}/(3 \cdot p_{W} \cdot \nu_{*} \cdot \sigma_{WY}) - 1.0}$

表1.2(b) 外国の規準におけるせん断設計式(理論式)

```
\begin{bmatrix} C S A \overrightarrow{x} & (CSA-A23.3-84) \end{bmatrix}
Q = pw \cdot \sigma w_{Y} \cdot b \cdot d \cdot \cot \phi
f_{2m*x} \leq F_{c} \sigma \geq \overrightarrow{s} \cdot \cot \phi = \sqrt{(-B + \sqrt{B^{2} - 4 \cdot A \cdot C})/(2 \cdot A)}
f_{2m*x} > F_{c} \sigma \geq \overrightarrow{s} \cdot \cot \phi = \sqrt{0.6 \cdot F_{c}/(p_{W} \cdot \sigma w_{Y}) - 1, 0}
C \subset i \subset A = 170 \cdot \varepsilon \times + 0.34
B = 340 \cdot \varepsilon \times + 1.14
C = 170 \cdot \varepsilon \times + 0.8 - 0.6 \cdot F_{c}/(p_{W} \cdot \sigma w_{Y})
f_{2m*x} = 0.6 \cdot F_{c}/(0.8 + 170 \cdot \varepsilon_{1})
\varepsilon_{1} = \varepsilon_{1} + (\varepsilon_{1} + 0.002)/\tan^{2} \phi
\varepsilon_{2} = 0 \sim 0.002
```

=1.0と固定している。また、 ν_c に関しては、A法ではNielsenらの提案する値を採用しているのに対して、B法では基本的には ν_c =1.0とし、せん断スパン比が小さな部材に対して算定値が実験値に対して過大となる傾向があるという理由から、 $\eta \leq 3$ の場合に η に応じて低減している。図1.13はA法とB法をQ-pw·σwy関係によって比較したものであるが、指針によれば、実用的な範囲(印部分: pw·σwv $\leq 0.25 \cdot F_c$)では両案によるせん断耐力予測構度に大差はないとしている。

また、高強度せん断補強筋を使用した部材に対する適用を考慮して、A法およびB法共 にせん断補強筋信頼強度の値をσwv≤25・Fcと制限している。

図1.13 Q-pw· σwy関係によるA法とB法の比較⁽⁴⁾

(b) 諸外国のコンクリート基・規準におけるせん断設計式とその背景

AC1318-89 [8 6] (米国)

梁および柱部材に対するせん断設計式は、1963年の ACI Building Code改訂時から採用 されており、その基本的な考え方は 1962年に発表されたACI-ASCE 326(現在の426)委員 会報告; Shear and Diagonal Tension^(**)に詳細に示されている。

この規準では、部材のせん断強度Qを せん断補強筋のない部材の斜張力ひび割れ強度Qe と45°トラス理論に基づいたせん断補強筋の負担強度Qrの累加によって与えている。 架部 材に対する斜張力ひび割れ強度式は、ViestおよびMorrowらの半理論的研究^{(18.91}に基づ いたものであり、柱部材に対しては架部材の式に軸力の効果を考慮して修正したものを採 用している。一方、せん断補強筋による負担強度は 45°トラス理論に基づいた式によって 与えられるが、せん断補強筋比あるいはせん断補強筋強度が非常に大きな場合には危険側 の設計となることを考慮して、部材のせん断強度およびせん断補強筋強度の上限値をそれ

ぞれ2.12√Feおよび4218kgf/cm* (60000 psi) と規定している。

WZS3101 (501 (ニュージーランド)

この規準に示されている梁および柱部材のせん断強度Qは、ACI318-83と同様にせん断補 強筋のない部材の斜張力ひび割れ強度Qcと 45[°]トラス理論に基づいたせん断補強筋の負担 強度Qrの累加によって与えられるが、斜張力ひび割れ強度の評価法がACI式と若干異なる。 すなわち、梁部材の斜張力ひび割れ強度式(Qce)には、1973年および1979年に発表され たACI-ASCE 426委員会報告^[18,2,43]に基づいて、FergusonおよびRajagopalanの提案式^[18,4] を修正したものを採用している。この理由は、図1.14に示すように、せん断補強筋を有す る梁部材の実験結果に対して、引張鉄筋比が1.0%以下の部材の場合に ACI式では斜張力ひ び割れ強度をかなり過大評価する傾向があることと、さらに、この点を考慮して修正した 426委員会式がオーストラリア、イギリス およびヨーロッパの各コンクリート委員会で採 用されている式とその精度において通色がないことによる^[18,4]。また、柱部材に対しては、 ACI式と同様に斜張力ひび割れ強度式に軸力の効果を考慮しているが、ACI式に比してその 効果をかなり大きくみている。

図1.14 斜張力ひび割れ強度と引張鉄筋比の関係 [*5]

CEB-MC-90 [30] (欧州)

この規準には、略算法(Standard Method)と精算法(Accurate Method)の2 種類のせん断 設計法が示されている。 前者はACI規準およびN2規準と同様に、架および柱部材のせん断 強度をコンクリートの負担強度と 45°トラス理論によるせん断補強筋の負担強度の単純累 加で与えている。これに対して、後者は1.2.1節で示したNielsenあるいはThurlimannら¹² ****)による塑性理論を応用したトラス理論基づいたせん断設計法を採用している。なお、 後者にもコンクリートの負担強度をある程度考慮しているが、この規準によるコンクリー トの負担強度は ACI規準およびNZ規準によるものとは異なり、圧縮フランジやその他トラ ス機構以外の抵抗機構によって伝達されるせん断力と定義されている。また、トラス機構 のコンクリート斜め圧縮束材の強度もNielsonらの研究成果に従って、強度有効係数(ν_ε =2/3)によって低減している。

精算法では、トラスの斜め圧縮束材の角度φを 3/5≦cotφ≦5/3の範囲で任意に選択し てよいとされているが、わが国で慣用されている曲げ設計終了後にせん断設計を行なうと いう設計手順に従えば、より大きなcotφを採用することが経済的な方法である。 なお、 表1.2(b)には精算法によるせん断設計式を示しているが、他の設計式と比較し易いように cotφを最大とした場合について示してあり、CEB規準の表現とは若干異なっている。

CSA-A23.3-84^[3+] (力ナダ)

この規準に示されているせん断設計法には、Collinsらによる「Modified Compression Field Theory」^{12*.201}が全面的に反映されている。 この理論は前述したように、鉄筋コ ンクリート部材のせん断力とせん断変形の関係を、コンクリート微小要素における平均主 応力と平均主ひずみの方向が一致するという仮定の下に、それらの応力の釣合条件、変形 の適合条件および材料構成則を満足させることによって求めるものである。規準では設計 の簡便さを考慮して、図1.15に示すようにせん断応力は断面せいに沿って一様に分布し、 圧縮主応力の方向(コンクリート圧縮束材の角度φ)も断面せいに沿って一定と仮定して いる。さらに、ひび割れたコンクリートにおける引張応力も無視している。また、この理 論の特徴の一つである主引張ひずみの増大に伴うコンクリート圧縮強度の低減効果は、断 面中心部の材軸方向のひずみ ε xを与えることによって考慮されている。 ε x は平面保持を 仮定した断面解析によって求められるが、規準では安全側の値として ε x=0.002を用いて 設計しても良いとしている。 コンクリート圧縮束材の角度φについては、規準では15^{*} ≤ $φ \le 75^*$ の範囲で任意に選択して良いとしているが、 経済性を考慮して最も少ないせん断 補強筋量(最小のφ値)を求めることのできる図表が用意されている(図1.16)。 表1.2 (b)にはCEB規準と同様にcot φ を最大とした場合のせん断設計式を示している。

- 23 -

図1.16 せん断応力度と圧縮主応力度の角度の関係 [33]

以上、日本および諸外国のコンクリート基・規準で採用されている代表的なせん断強度 式について示したが、これらの相互関係およびせん断耐力予測精度については、本論文で 提案するせん断強度式と共に3章において検討する。

1.2.3. 鉄筋コンクリート部材の靭性評価法に関する既往の研究

鉄筋コンクリート架、柱部材の靭性を確保するために重要な事項として

- (a)曲げ降伏後のせん断破壊あるいは付着割裂破壊の防止
- (b) ヒンジ領域のコンクリートの圧壊あるいは主筋の座屈に起因する破壊(以後、曲げ 降伏後の圧縮破壊と呼称)の防止

等が挙げられる。以下に、靭性評価法に関する既往の研究をこの2項目に分けて整理する。

(a) 曲げ降伏後のせん断破壊あるいは付着割裂破壊の防止に着目した靭性評価法

最初に曲げ降伏後のせん断破壊の防止に着目した研究を紹介する。

常川ら^{(**1}は、曲げ降伏後にせん断破壊を生じた実験データ 107体について、せん断余 裕率(曲げ強度計算値に対するせん断強度計算値の比率)の逆数 $cQ_{0.0}/cQ_{0.0}$ と 破壊時塑性 率 μ_{sv} の関係を整理することによって靭性評価式を導いている。 $\mu_{su}-cQ_{0.0}/cQ_{su}$ の検討 結果は、図1.17に示すようにかなりのばらつきがあるが、せん断補強筋比以外の諸元が同 一の資料同士を結ぶと、図中の破線のように $cQ_{0.0}/cQ_{0.0}$ 大きいものほど $\mu_{0.0}$ は次式で表わされ る傾向があり、せん断スパン比が1.0~3.0の範囲にあるデータの下限値は次式で表わされ るとしている。

 $s \mu s u = 18.8 - 20 \cdot c Q_{s u} / c Q_{s u}$ $(1 \le \mu s u \le 5) \cdots (1-13)$

図1.17 塑性率とせん断余裕率の逆数の関係 [**]

この評価法は式の構成が簡単であり、実用的ではあるが、変形能力に及ぼす部材の構成 因子個々の影響が把握しにくいという欠点がある。特に、(1-13)式の場合はせん断強度式 そのものが実験式で与えられているため、その把握がより困難なものになっている。

吉岡ら¹⁴¹¹は、曲げ降伏後に材端部ヒンジ領域において破壊を生じた鉄筋コンクリート 柱の実験結果より、ヒンジ領域におけるせん断補強筋およびコンクリートのせん断応力負 担割合と塑性率μの関係を図1.18のようにモデル化し、靭性評価式として(1-14)式を提案 している。

$$\begin{split} \mu &= 6 + (k_1 \cdot (6) \sqrt{F_c} + k_2 \cdot (\mu) \cdot k_3 \cdot p_W(\mu) \cdot \sigma_{WY} - \tau_{aU}) / \alpha \quad \cdots \quad (1-14) \\ \subset C \cdot (C, k_1 \cdot (6) &= 0.85 \quad (0 \le n \le 0.159 : n = N / (b \cdot D \cdot F_c)) \\ &= -5.29 \cdot n + 1.69 \quad (0.159 < n \le 0.32) \\ k_2 \cdot (\mu) &= 0.6 \\ k_3 &= 0.571 \cdot M / (Q \cdot D) \\ = -(\mu) \quad \text{and } \mu \neq \infty \quad \text{$$

pw(μ):塑性率μの変形能を保持するために必要なせん断補強筋比

て ** :曲げ終局時のせん断応力度

 $\alpha = (0.8 \cdot \tau_{8v} - k_1(6) \sqrt{F_c})/5 \ge 1.65$

(1-14)式の実験データ47体に対する変形能力予測精度は、図1.19に示すように良好とは 言い難いが、計算値(計μ)は実験値(実μ)に対して平均的な値となっており、(1-14) 式に0.5の係数を乗じて安全側の評価式とする事もできるとしている。 この評価式では、 式中の諸係数が限られた実験結果から導かれているため、その適用範囲が狭いことが問題 点として挙げられる。

学会指針^(*)では トラス機構とアーチ機構の混在を仮定したせん断強度式に基づく靭性 評価法が提案されている。 この評価法は、市之瀬の研究^(*)に基づくものであり、塑性ヒ

図1.18 せん断補強筋とコンクリートの 負担せん断力のモデル化¹⁰¹¹

図1.19 実験値と計算値の比較1671

ンジ部のせん断破壊を防止するために、コンクリート有効強度係数レeと トラス機構にお けるコンクリート圧縮束材の角度 φ を、ヒンジ部の要求回転角R*の関数として(1-15)式お よび(1-16)式で与えている。

 $\nu_{c} = \begin{cases} (1.0-15 \cdot R_{F}) \cdot \nu_{o} & (0 < R_{F} \le 0.05) \\ 0.25 \cdot \nu_{o} & (0.05 < R_{F}) \end{cases} \dots \dots \dots (1-15) \\ C \subset (C, \nu_{o} = 0.7 - F_{c}/2000 \ (kgf/cm^{2}) \end{cases}$

cot¢ =	2.0-50 · R .	$(0 < R_{\mu} \le 0.02)$	
	1.0	$(0.02 < R_r)$	(1-16)

実際の設計では、Rsを設計用保証変形Roと読み変えて、(1-15)式および(1-16)式から求 められるνeとcotφを用いて、 表1.1に示した学会指針・A法によってせん断力を算定し (ただし、係数βの計算には(1-16)式は考慮しない)、そのせん断力が設計用せん断力を 上回ることを確認すればよい。

(1-15)式と(1-16)式は、靭性部材が曲げ降伏後に繰り返し載荷を受け、かつ、変形が増 大することによって、ヒンジ領域におけるひび割れの伸展および拡幅によりせん断伝達能 力が低下することを考慮したものである。変形の増大に伴って、ヒンジ領域のコンクリー ト有効強度が低下し、トラス機構の圧縮束材の角度が増大するという仮定の妥当性は、渡 辺らの研究¹⁸⁺¹によっても検証されているが、式自体の理論的根拠は現在のところ希薄で ある。また、文献[6]では (1-15)式と(1-16)式を考慮した場合の靭性部材のせん断抵抗機 構を理論的に説明しているが、これによれば、変形限界時において非ヒンジ領域のせん断 補強筋は降伏するが、ヒンジ領域では降伏しないことになり、実際の現象とは逆の仮定と なっている。これらの点でこの靭性評価法は改良の余地は残されているものと考えられる。

一方、学会指針の解説にはB法に関する靭性評価式も次式で提案されている。

R_r = (Q/Q₁₀)²/100 ······(1-17) ここに、Q:学会指針・B法によるせん断強度

この式も前述の荒川らによるもの^(***)と同様に、実験データに基づいて、変形能力をせ ん断余裕率で評価したものであり、実用的ではあるが理論的根拠に欠ける。なお、A法お よびB法による靭性評価式の精度については、本論文で提案する靭性評価式と共に5章に おいて比較検討する。

付着割裂破壊の防止に着目したものとしては、小谷らの研究^[**]がある。この研究では、 曲げ降伏後に付着割裂破壊を生じた鉄筋コンクリート梁32体に対して、吉岡・武田^[**]、 柴田・桜井⁽¹⁾¹および藤井・森田⁽¹⁾¹の各式による付着強度と、部材角1/25rad.での耐力 維持率(同一変位振幅における1サイクル目の耐力に対する2サイクル目の耐力の比率) の関係を検討している。これらの検討から、各式から算定される付着強度あるいは付着割 裂強度に対して余裕がある部材ほど、耐力維持率が増加する傾向があり、特に、藤井・森 田式を用いた場合には付着強度と耐力維持率の間に良好な相関性が認められるとしている。 この研究では、靱性評価式を提示するには至っていないが、曲げ降伏後に付着割裂破壊を 生じる部材に対して、既往の付着強度式を用いた籾性評価がある程度可能であることを示 唆したと言えよう。

最近では、朝性評価式の構築を目的としたものではないが、マクロモデルによるせん断 強度理論を応用して鉄筋コンクリート部材の荷重一変形関係を求めようとする研究も発表 されてきている。中村・若林⁽¹⁴⁾は若林・南理論を応用して、図1.20に示すようにはり機 構とアーチ機構を模擬したトラスモデルによって、鉄筋コンクリート桂、鉄筋コンクリー ト耐震壁および補強組積造耐力壁のせん断力一変形関係を求めている。この方法は、鉄筋 コンクリート部材の変形成分としてせん断変形と軸方向変形のみを考慮し、はり機構およ びアーチ機構のそれぞれに対して変形の適合条件と材料構成則を設定し、増分解析によっ て各抵抗機構のせん断力一変形関係を求め、さらに、それらを累加することによって部材 としてのせん断力一変形関係を得るものである。

その他、トラスモデルによる荷重-変形解析を取り扱ったものとしては、山田ら⁽¹⁴⁾あ るいは睦好⁽¹⁴⁾の研究等があるが、何れの理論も鉄筋コンクリート部材のせん断力-変形 関係に及ぼす主要構成因子の影響を定性的に説明できるまでには至っていない。

本論文でも、5章において若林・南理論を応用した荷重 – 変形解析法を提案しており、 鉄筋コンクリート架、柱部材の変形特性に及ぼす主要構成因子の影響を解析的に把握する ことを試みている。

Arch-Mechanism Truss-Mechanism (b) Compatibility condition.

(b) 曲げ降伏後の圧縮破壊の防止に着目した靭性評価法

林⁽¹⁴⁾は、鉄筋コンクリート柱が図1.21に示すように、危険断面位置で中立軸を中心に 剛体回転すると仮定し、圧縮緑ひずみがコンクリートの限界圧縮ひずみ。esに達するとい う条件から限界変形部材角Ruを次式で与えている。

Ru = 1.08 a · (2.61 · Ψ + 0.30) / Xn - 0.39 (%) · · · · · · · · · (1-18) ここに、a : せん断スパン長 Xn : 中立軸距離 [= (a, · σ y + N) / (b · Fc)]

(1-18)式は既往の実験結果を統計的に処理することによって、限界変形時のcsaとせん 断補強筋係数Ψを関連づけて求めたものである。したがって、式中の諸係数に理論的根拠 はなく、式の適用範囲が限定されるところに問題がある。

図1.21 部材端における圧縮変形 [78]

平石・稲井⁽¹⁷⁾は、既往の高層壁式ラーメン鉄筋コンクリート造における壁柱の実験結 果⁽¹⁴⁾から、引張ヒンジ領域の伸びの限界点を境にエネルギー吸収性状が急変することに 着目し、この限界点を安定限界と定義した。さらに、平面保持を仮定した曲げ解析に基づ いて、コンクリート圧縮縁ひずみ ε cの増分に対する引張鉄筋のひずみ ε oの増分の比率が

という条件から、図1.22に示すように、安定限界時のコンクリート圧縮縁ひずみ ε c. stが コンクリートの応力-ひずみ関係と軸応力によって与えられることを示した。

また、曲げ降伏先行型の鉄筋コンクリート柱の変形機構を図1.23に示すようなトラスモ デルに置換して、(1-20)式で与えられる相対部材角Rの算定式を導いた。 $E = (2\varepsilon_0 + \varepsilon_{sh})\sqrt{E_{sh} \cdot p_r(\varepsilon_0 - \varepsilon_{sh})(2d_1 - Xn_1)/(E_s \cdot \varepsilon_s \cdot p_w)/(3 \cdot (d_1 - Xn_1))}$

..... (1-20)

ここに、ε。:軸応力度σ。に対応する柱脚断面の引張鉄筋のひずみ

εss:引張鉄筋のひずみ硬化開始ひずみ

Ess:ひずみ硬化域における引張鉄筋のヤング係数

d: : 圧縮縁より引張鉄筋までの距離の柱せいに対する比

Xn::中立軸位置

その他の記号は、本論文末に示す(記号)によるものとする。

なお、安定限界時の部材角は先に求めた ε c, siから引張鉄筋のひずみ ε o, siと中立軸位 置Xn1, siを求め、(1-20)式に代入することによって算定できる。

この理論は、曲げ降伏が先行した鉄筋コンクリート柱の変形限界点のみならず、引張ヒ ンジ領域の主筋のひずみ分布等も適切に評価することが可能である。また、実設計におい ても、高軸力を受ける柱の変形評価法あるいはヒンジ領域の横補強筋の算定法の構築に有 効な理論であると考えられ、極めて興味深いものである。なお、この理論の今後の課題と しては、拘束されたコンクリートの応力-ひずみ関係の適切なモデル化が挙げられよう。

以上示したように、最近では、鉄筋コンクリート部材の靭性評価法に関しても、学会指 針・A法や平石らの研究に見られるように、マクロモデルに基づいた理論的な方法が提案 されてきている。本研究においても塑性理論を応用した鉄筋コンクリート部材の靭性評価 式の構築を試みており、曲げ降伏後の付着割裂破壊およびせん断破壊の防止を念頭に置い た靭性評価式をそれぞれ4章および5章で提案している。なお、本論文では曲げ降伏後の 圧縮破壊の防止を念頭に置いた靭性評価法については言及していない。

図1.22 安定限界時のコンクリート 圧縮縁ひずみ ε c, sL¹⁷¹¹

図1.23 平石らによるトラスモデル [17]

1.2.4. X形配筋部材の耐震性能に関する既往の研究

X 形配筋法は、従来から慣用されていた斜め配筋の考え方を発展させてたものであり、 せん断力分布が材軸に沿って一様となるような部材に対して、主筋の一部を筋違い状に斜 めに配筋することによって、鉄筋コンクリート部材の脆性的な破壊を防止し、耐震性能の 向上を図ろうとするものである。この配筋法は、当時NewZealand・Canterbury大学の教授 であったPaulay博士によって考案された。Paulayは並列連層耐震壁を繋ぐ境界梁にX 形配 筋法を適用し(図1.24(a))、従来型配筋によるものとの比較実験によって、境界梁のせん 断強度と靭性が飛躍的に向上することを明らかにした¹⁷¹。また、逆対称の曲げとせん断 の応力状態にある境界梁では、せん断力の一部をX 形主筋のみによって負担させることが できることを指摘し、 図1.24(b)に示すようなせん断抵抗モデルを用いて、X 形主筋量算 定式として次式を導いている⁽⁷⁴⁾。

fv:X形主筋の降伏応力度

α:X形主筋が材軸と成す角度

Paulayらは、このX形配筋法が危険断面におけるすべり破壊(Sliding Shear Failure) の防止に対しても効果的であることを示し、境界架だけでなく、フレーム構造における梁 部材⁽¹⁸⁰¹や連層耐震壁の下層部分⁽¹⁰¹⁾といった塑性ヒンジを計画する部材あるいは部位に 積極的に適用している。

(a) X 形配筋を施した境界梁

(b) 境界梁のせん断抵抗モデル

日本では、吉岡・武田がX形配筋(著者らはクロス配筋と呼んでいる。)を鉄筋コンク リート柱に適用した研究が1975年に発表されている^(*2)。この研究は、曲げ降伏が先行し た場合でも付着割裂破壊を生じ易い引張主筋比が1%程度の柱を対象として、副帯筋や主 筋の特殊配筋による靱性の改善効果を検討したものである。この研究では、X形配筋柱が 変形能力に優れていることと、部材の最大強度時におけるX形主筋の負担せん断力が引張 側および圧縮側共に全長に亘って降伏するものとして評価できることが報告されている。 しかし、スパイラルフープを配筋した円柱と共に行なった実験^(*3)より、軸力比が1/3以 上の場合には、X形配筋柱よりも円柱のほうが優れた変形性能を有するとの結果を得たた め、その後、吉岡・武田によるX形配筋柱の研究は発表されていない。

ー方、若林・南らは1977年頃からX形配筋柱に関する研究に着手し、その系統的な研究 によって、基礎的な弾塑性性状を把握するに至っている^(*)。若林・南は、まずX形配筋 による鉄筋コンクリート柱の耐震性能の改善効果を検討するために、従来型の配筋(以後、 平行配筋と呼称)を施した柱と全主筋をX形配筋とした柱の比較実験を行なった^(**,**)。 この実験では、X形配筋柱(XA)は平行配筋柱(PA)に比してせん断強度が大きく、 かつ、靭性に優れており、逆対称の曲げモーメントとせん断力を受ける柱の場合、主筋を 斜めに配筋するだけでその耐震性能が飛躍的に向上することを示した(図1.25)。

次に、平行配筋とX形配筋を併用した柱の挙動を調べるために、(1-22)式で与えられる X形主筋比βrを変数とした実験を行なっている^(**.*2)。

 $\beta_{\tau} = a \Phi \cdot \cos \theta_a / (a \Phi \cdot \cos \theta_a + \rho \Phi)$ ················(1-22) ここに、 $a \Phi : X 形主筋の引張鉄筋係数 [= a p_{\tau^* a \sigma_{\tau}} / F_c]$

図1.25 平行配筋柱とX形配筋柱の耐震性能の比較^{184,851}

φ : 平行配筋の引張鉄筋係数 [= *p, ** σ */Fe]
 θ : X形主筋が材軸と成す角度

実験結果より、 β_{τ} が増加するほど X形配筋柱のせん断強度および変形能力は増加し、 $\beta_{\tau}=0.6程度のX形配筋柱であれば、耐震的に十分優れた性能が期待できることを示した。$ $また、部材の最大強度時では、<math>\beta_{\tau}$ に拘らず X形主筋は引張側および圧縮側共に降伏して おり、X形配筋柱のせん断強度Qは 平行配筋部分の強度*QとX形主筋の負担せん断力。Qに よって

> $Q = {}_{\mathbf{r}}Q + {}_{\mathbf{a}}Q \qquad (1-23)$ ${}_{\mathbf{a}}Q = 2 \cdot {}_{\mathbf{a}}\Phi \cdot \sin\theta \cdot {}_{\mathbf{a}} \cdot b \cdot D \cdot F_{\mathbf{c}} \qquad (1-24)$

で与えられると報告している。なお、南らは(1-23)式の考え方に基づいて、X形配筋部材 の終局せん断強度理論式を若林・南理論を応用して導いている^[80]が、その構成および耐 力予測精度については本論文の6.2.1節で詳述する。

文献[86,87]の実験は 引張主筋比が比較的多い柱 (p,=1.78%) を対象としたものであっ た。 そこで、実設計に有効な実験資料を蓄積するために、p,=1%程度の柱を対象としてX 形主筋比とせん断補強筋比を変数とした実験も行なっている^[*****]。 この実験では、引 張主筋比が多い場合と同様に、B₁が増加するに従って 柱の破壊形式が付着割裂破壊ある いはせん断破壊といった脆性的な破壊から、強度劣化が少なくエネルギー消費能力の大き な曲げ破壊へと移行することが示されている。また、X形配筋柱においても、せん断補強 筋比を増加させることは、X形主筋以外のせん断抵抗機構(平行配筋部分)の靭性向上に 役立ち、結果として部材の変形能力の向上に繋がると報告しているが、せん断補強筋比と 変形能力の関係を定量化するまでには至っていない。

以上示した南らによる研究成果に基づいて、1982年には日本で最初のX形配筋を適用した鉄筋コンクリート造建物が大阪市に建設されている¹⁹⁰¹。この建物は5階建ての集合住 宅であり、柱にX形配筋が施されている。また、この建設に先立って、実物の1/2モデル による柱部材実験および架構実験¹⁹¹¹が実施され、その耐震安全性が確認されている。

筆者および南らは、上述した基礎研究をさらに発展させ、X形配筋柱の変形能力に及ぼ す軸力とせん断補強筋比の影響の把握を目的とした研究を行なっている^(32,33)。 この研 究では、軸力の増加およびせん断補強筋比の減少に伴ってX形配筋部材の変形能力が低下 することが指摘されている。また、X形配筋部材が限界部材角Rv(ただし、Ku回の繰り返 しを伴う)の変形能力を確保するために必要な補強筋比pvは、若林・南理論⁽⁴⁴⁾から求め られる限界せん断補強筋比pvoと実験から得られた拘束補強筋比pvcの和によって pw = pwo + pwc

= pwo + 10.075 · π³ √ Ru (Ke-1)³+0.01 · Ru · Ku+0.08 · n) Fc/σ we

ΞΞ12. pwo = 2. p . · · σ x/(σ wy · η)

と与えられると報告している。(1-25)式は、必要補強筋比(pw)がせん断力に寄与する補 強筋比(pwo)とコンクリートの拘束に寄与する補強筋比(pwc)の和で与えられており、 式の構成は明解であるが、拘束補強筋比が実験式で与えられているため一般性のないもの になっている。したがって、拘束補強筋比を理論的に導出することが今後の課題である。 なお、本論文では、この実験結果を5章および7章で示す鉄筋コンクリート部材およびX 形配筋部材のせん断力-変形解析法を導出する際の基礎資料として利用している。

また、南らは基礎研究に基づいて、高強度コンクリートを使用した高主筋量のX形配筋 柱^[94]、垂れ壁・腰壁付きX形配筋柱^[95,94]、二方向X形配筋柱^[97-91]、円形多方向X 形配筋柱^[100,101]、X形配筋壁柱^[102]およびX形配筋配筋鋼管コンクリート柱^[109]な どの開発研究も行なっており、何れの場合も在来型配筋のものに比して、耐震性能が向上 することを明らかにしている。

一方、最近では、構造計画上、靭性が要求されることが多い梁部材に X 形配筋を適用し ようとする研究も盛んに行なわれている。

田中・坂口ら¹¹⁰¹は、高層鉄筋コンクリートチューブ架構における短スパン梁にX形配 筋を適用している。この研究では、X形配筋梁のスケルトンカーブが平行配筋部分を通常 の鉄筋コンクリート梁として求めたトリリニアカーブとX形主筋をトラス材に置換して得 たパイリニアカーブの重ね合わせによって評価できることを示している。また、ヒンジ領 域に貫通孔を設けたX形配筋梁の実験も行なっており、梁のせん断耐力と変形能力に対し て貨通孔による悪影響はほとんど認められないと報告している。

江戸・武田ら⁽¹⁰⁴⁾は、41建てのダブルチューブ構造における短スパン梁にX形配筋法を 適用することを目的とした実験を行なっている。この研究では、梁部材の場合でもX形主 筋の負担せん断力は、引張側および圧縮側共に降伏しているとして評価できること、およ び質通孔を有するX形配筋梁の場合でも既往の設計式によって開口補強を行なえば、4*δ*y 程度の変形能力は十分確保できること、を明らかにしている。

柳沢ら^(104,107)は、高層壁式ラーメン構造において 独立耐震壁を繋ぐ短スパン梁にX 形配筋を適用するために、せん断スパン比が a/D=0.5および0.75と極めて小さな梁の実験 を行なっている。a/D=0.5の場合でも、せん断補強筋を適切に配筋しておけば X形配筋の 効果が十分発揮され、両部材端に塑性ヒンジを形成するが、せん断補強筋が比較的少ない 場合にはせん断引張破壊を生じる可能性があると報告している。 以上、X形配筋部材の耐震性能に関する既往の研究について整理した。現在、これらの 研究成果に基づいて、わが国だけでも30棟を超えるX形配筋を適用した鉄筋コンクリート 造建物が建設されるに至っている。これらの設計法や施工法については、建設省監修によ る手引書⁽⁹⁾やその他の文献⁽¹⁰⁵⁻¹⁾¹¹で紹介されており、X形配筋法が鉄筋コンクリート 構造における一般的な技術として認識されつつある。

しかし、X形配筋部材の設計法、施工法については開発途上の段階にあり、特に設計法 に関しては、

① 非対称の曲げモーメントを受ける部材のせん断設計

② X形配筋の特性を反映した合理的な靭性評価

等の点で、さらに改良を加える必要がある。

本論文では、6章において非対称曲げモーメントを受けるX形配筋部材の弾塑性挙動に ついて検討し、そのせん断強度式を塑性理論を応用して構築している。また、7章ではX 形配筋部材の靭性評価式を導いている。 第2章 鉄筋コンクリート部材のせん断強度理論(若林・南理論)の概要

2.1. はじめに

わが国において開発された鉄筋コンクリート架および柱部材に対するせん断強度理論の 一つとして、若林、南による理論⁽⁺¹⁾(以後、若林・南理論と呼称)がある。本論文では この若林・南理論を基本として、鉄筋コンクリート部材およびX形配筋部材のせん断強度 式、付着割裂強度式および靭性評価式を構築している。そこで本章では、若林・南理論の 基本仮定、理論式の誘導およびその構成について概説し、さらに、理論式のせん断耐力子 測精度の検証結果を示すことにする。

2.2. せん断抵抗機構

若林・南理論では、曲げモーメント、せん断力および軸力による組合せ応力が作用する 鉄筋コンクリート部材のせん断抵抗機構として、図2.1に示すような(a)はり機構⁽²⁾と(b) アーチ機構の2種類を仮定している。部材の強度(M, N. Q)は、それぞれ静的許容応力 場を満足するはり機構による強度(.M, .N. sQ)およびアーチ機構による強度(.M. .N. ,Q)に対して、拡張累加強度理論を適用することによって次式で与えられる。

 $M = {}_{b}M + {}_{M}, N = {}_{b}N + {}_{N}, Q = {}_{b}Q + {}_{*}Q + {}_{*}$

ただし、この理論では 図2.1に示すように逆対称の曲げとせん断の応力状態にある部材 を対象としているため、(2-1)式は以下の関係を満足する必要がある。

> M/Q = 。M/。Q = .M/。Q = L/2 ······ (2-2) ここに、L:部材長

注) このせん断抵抗機構は一般的に「トラス機構」と呼ばれることが多い。しかし、南らは、彼らのモデルが主筋のみによる平行弦材で構成されている点で、第1章で紹介したRitterやNielsenのモデルと若干異なることと、 <u>そのせん断抵抗機構による負担</u> <u>せん断力が材軸に沿って変化する主筋の引張力および圧縮力と、さらに一定の主筋間</u> <u>距離によって与えられる</u>こと(すなわち、Q= (d(T+C)/dx) · d/2で与えられる.)を考慮 して、「はり機構」と呼称している。 なお、本論文では南らの定義に従って、図2.1 (a)に示すようなせん断抵抗機構を「はり機構」と呼ぶことにする。

図2.1 鉄筋コンクリートのせん断抵抗機構

なお、若林・南理論では部材の終局状態のみについて着目しており、理論式によって与 えられた強度は力の釣合条件と構成材料の降伏条件のみによって決定される、いわゆる極 限解析における下界の解である。したがって、はり機構およびアーチ機構は、部材の終局 時においてそれぞれの強度が累加できる程度に塑性変形が生じるものと仮定する。

2.3. はり機構による n- g方程式

はり機構は図2.1(a)に示すように主筋、せん断補強筋、および。bの幅を有し材軸と¢の 角度をなすコンクリート斜め圧縮束材で構成されるものと仮定する。なお、若林・南理論 では主筋の材長に対する付着力R,を最大とする条件から

ここに、。σ »: コンクリート斜め圧縮東材の応力度

として得られるφ=45°をコンクリート斜め圧縮束材の適正な角度として選択している。以 後、議論を簡単にするため、φ=45°として方程式の誘導を行なう。 はり機構の材端に作用する断面力は。M、。Nおよび。Qは釣合条件より、

	$_{b}M = (_{b}C + _{b}T) \cdot d/2$	***********************************	(2-4)
	$_{b}N = _{b}Q + _{b}C{b}T$	*****	(2-5)
	ьQ = 2·ьM/L	***************************************	(2-6)
	$_{b}Q = _{b}b \cdot d \cdot _{b} \sigma _{D}/2$	·····	(2-7)
だ、	d: 引張主筋と圧縮主	筋の間隔	
	。C:材端部において主	筋に生じる圧縮力	
	»T:材端部において主	筋に生じる引張力	

と与えられる。一方、せん断補強筋に生じる引張応力度σ «と コンクリート斜め圧縮束材 に生じる応力度。σ »との間には次の関係が成立する。

b・b σ p/2 = b・pw・σw
 c こに、b : 部材断面の幅
 pw: せん断補強筋比

したがって、(2-4)式、(2-5)式および(2-6)式より、

D : 部材断面のせい

が、また、(2-7)式および(2-8)式より、

 $\mathfrak{sQ} = \mathfrak{b} \cdot \mathfrak{d} \cdot \mathfrak{p}_{W} \cdot \sigma_{W} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (2-11)$

がそれぞれ得られる。

35

主筋の引張降伏、あるいは圧縮降伏によって決定されるはり機構の $_{n-s}q方程式は、(2-9)式および(2-10)式において <math>_{sT} = _{sC} = a_{1} \cdot \sigma_{v}$ とし、さらに両辺をb·D·Feで無次元化することによって、

 $\mathfrak{sq} = (2 \cdot \Phi + \mathfrak{sn})/(\eta/\mathfrak{d}_1 + 1) \cdots (2-12)$

sq = (2・Φ - sn)/(η/d₁ - 1) ·······(2-13)
 ここに、sn = sN/(b·D·Fc) : はり機構の無次元化負担軸力
 sq = sQ/(b·D·Fc) : はり機構の無次元化負担せん断力
 Φ = a₁ · σ₁/(b·D·Fc) : 引張主筋係数
 at : 引張主筋の断面積
 Fc : コンクリートー軸圧縮強度
 σ₁ : 主筋の降伏応力度

と与えられる。 一方、せん断補強筋の引張降伏によって決定される。n-。q方程式は、(2-11)式において σ w= σ wy とし、両辺をb・D・F c で無次元化することによって次式で与えられる。

sq = Ψ·d1 ······(2-14) ここに、Ψ = pw·σwv/Fc: せん断補強筋係数 σwv: せん断補強筋の降伏応力度

図2.2には(2-12)式、(2-13)式 および(2-14)式の関係を。n-。q相関曲線によって示して いる。(2-12)式と(2-13)式の交点、すなわち、図2.1において 左側材端部で上端主筋が引 張降伏し、かつ下端主筋が圧縮降伏する(したがって、右側材端部では上端および下端主 筋がそれぞれ圧縮および引張降伏する)場合の無次元化せん断力。go,d

 $_{\circ}q_{\circ} = 2 \cdot \Phi \cdot d_{1} / \eta \qquad (2-15)$

と求められ、はり機構による最大負担せん断力となる。また、。qoを得るために必要な最少せん断補強筋係数を限界せん断補強筋係数要。と定義すると、Ψoは(2-14)式と(2-15)式

図2.2 はり機構の n- n q相関曲線

- 39 -

によって次式で与えられる。

 $\Psi_{n} = 2 \cdot \Phi / \eta \qquad \dots \qquad (2-16)$

なお、はり機構を形成するのに必要なコンクリート斜め圧縮束材の幅 。bは、。σο=Fεの 条件の下で(2-7)式より

と与えられる。

2.4. アーチ機構による。n-。q方程式

アーチ機構は図2.1(b)に示すように、部材幅からはり機構で用いたコンクリート幅を減 じた幅・b(=b-,b)を部材幅として、無筋コンクリートで構成されるものと仮定する。さ らに材端では、断面力・M、、Nおよび・Qによって一様な垂直応力度・σとせん断応力度、τが 作用しているものとする。コンクリート斜め圧縮束材の材軸と成す角度をθ、および束材 に生じる圧縮応力度を、σ。とすると、、σおよび、τと、σ。の間には次の関係が成立する。

• 0	= $\sigma_{\rm D} \cdot \cos^2 \theta$	******	(2-18)
. T	= $\sigma_{p} \cdot \sin\theta \cdot \cos\theta$		(2-19)

したがって、材端に作用する断面力・M、、Nおよび、Q、および圧縮束材の角度θは釣合条 件より、

$M = .N \cdot (1 - k) \cdot D/2$	•••••	(2-20)
$N = \mathbf{b} \cdot \mathbf{k} \cdot \mathbf{D} \cdot \mathbf{\sigma} \mathbf{p} \cdot \cos^2 \theta$		(2-21)
$Q = .b \cdot k \cdot D \cdot . \sigma_{p} \cdot \sin \theta \cdot \cos \theta$		(2-22)
$\tan\theta = (1 - k)/\eta$		(2-23)

ここに、k: 両材端部の圧縮域のせいと断面せいの比

と与えられる。

コンクリート斜め圧縮束材に生じる圧縮応力度.σ。がコンクリートー軸圧縮強度Fcに達 したとき、アーチ機構による強度が発現されると仮定すると、.n-.q方程式は(2-21)式~ (2-23)式から kとθを消去することによって .q = (√4・.n・(1-.n/.b₁)/.b₁+η²-η |.b₁/2 ······ (2-24) ただし、0 ≤ .n ≤ .b₁ ここに、.n = .N/(b·D·F_c):アーチ機構の無次元化負担軸力 .q = .Q/(b·D·F_c):アーチ機構の無次元化負担せん断力 .b₁ = .b/b

と求められる。なお、(2-24)式は

 $(n-b_{1}/2)^{2} + (q+\eta \cdot b_{1}/2)^{2} = (b_{1}\sqrt{1+\eta^{2}/2})^{2} \cdots (2-25)$

と書き直すことができ、図2.3に示すように(.n. .q)=(.b₁/2, - η ・.b₁/2)を中心点とする 半径.b₁ $\sqrt{1+\eta^2}$ /2の円の方程式を表わしている。また、この円は常に原点を通り、変数.b₁ による円群の中心点は.q=- η ・.nの直線上に存在する。

図2.3 アーチ機構の.n-.q相関曲線

2.5. 鉄筋コンクリート部材のn-q方程式

鉄筋コンクリート部材の強度(n-q方程式:ここに、n=N/(b·D·F_c)、q=Q/(b·D·F_c)) は、はり機構による強度(\bullet n- \bullet q方程式)とアーチ機構による強度(\bullet n- \bullet q方程式)の累 加によって与えられる。その累加則は、はり機構とアーチ機構に対するコンクリートウェ ブの負担割合を考慮したものであり、はり機構の負担せん断力が大きくなるほどその点に 累加されるアーチ機構の相関曲線が比例的に小さくなるところに特徴がある。 はり機構の*n-*q相関曲線と アーチ機構の*n-*q相関曲線の累加状況の一例を図2.4に 示す。また、はり機構の相関曲線上の特定点:A~Eの座標値(*n.*q)およびその応力点 に累加されるアーチ機構に寄与するコンクリートの無次元化幅*b,を表2.1に、各応力点に 累加されるアーチ機構の相関曲線を示す円の中心点:A'~E'の座標値(*n***q*)および 円の半径rを表2.2にそれぞれ示す。

アーチ機構による応力円の中心点の座標および半径は、biの一次関数であり、点A'、B'、 C'および点C'、D'、E'はそれぞれ一直線上にある。 したがって、直線A'C'とACとは交点S を、直線E'C'とECとは交点S'をそれぞれ有する。さらに、各円群の包絡線は直線となり、 かつ、それぞれの直線は交点SおよびS'を通ることが示される。交点Sの座標値(n₃, q₅) および交点S'の座標値(n₅', q₅')は表2.1および表2.2より直線AC、A'C'、ECおよびE'C' の方程式を決定することによって求めることができ、

Пз	*	$-2 \cdot \Phi + (d_1 + \eta)/2$	***************************************	(2-26)
qs		d1/2	******	(2-27)
Πs'		$2 \cdot \Phi + (d_1 - \eta)/2$	*****	(2-28)
qs'	=	d1/2	*****	(2-29)

とそれぞれ与えられる。

	À	В	C	D	E
sn	-2Φ	$-2\Phi + \Psi (d_1 + \eta)$	$2\Phi \cdot d_1/\eta$	$2\Phi + \Psi (d_{1} - 7)$)	2Φ
ъq	0	Ψ·d,	2Φ·d1/η	Ψ·dı	0
.b.	1	1-2 ¥	1-4Φ/η	1-2 W	i

表2.1 はり機構の負担軸力および負担せん断力の特値とアーチ機構の負担断面幅比

表2.2 アーチ機構による.n-.q相関曲線の中心点とその半径

_	A.	B,	C,	D.	Ε,
*N¢	-2Φ +1/2	$\begin{array}{c} -2 \Phi + \Psi \left(d_1 + \eta \right) \\ + \left(1 - 2 \Psi \right) / 2 \end{array}$	$\frac{2\Phi \cdot d_1/\eta}{+(1-4\Phi/\eta)/2}$	$2\Phi + \Psi (d_1 - \eta) + (1 - 2\Psi)/2$	2Φ +1/2
• 9 •	- 7/2	$\frac{\Psi \cdot d_1}{-(1-2\Psi) \eta / 2}$	2Φ·d ₁ /η -(1-4Φ/η)η/2	Ψ·d: -(1-2Ψ)η/2	- 77 / 2
r	7 .	(1-2 \V) 7 r	(1-4Φ/η)γ _r	(1-2Ψ)γ _P	7 *

ごこに、 y r=√1+ n 2/2

円群 C_A 、 C_a 、 C_c の包絡線を示す直線 X_1S は、 $C_A \geq X_1S \geq O$ 接線方程式を決定することによって得られ、n - q相関曲線上の特定点 X_1 および X_2 の値 (n_1 , q_1)および (n_2 , q_2)がそれぞれ $C_A \geq X_1S$ および $C_a \geq X_1S$ の接点の座標値として求められる。同様にして、特定点 X_a および X_a の値 (n_5 , q_9)および (n_6 , q_9)は、 $\Pi C_a \geq i$ 線 $\overline{X_aS'}$ との接線方程式を決定することによって求められる。一方、特定点 X_a および X_4 の値 (n_3 , q_3)および (n_4 , q_4)は、それぞれ ΠC_a および C_0 の中心点の座標値とそれらの半径 r によって決定される。

なお、円CA、Cu、CoおよびCuで構成される円弧曲線の方程式は、 表2.2に示したそれぞれの円の中心点の座標値 (.n., .q.)を用いて

 $(n-.n_{\circ})^{2} + (q-.q_{\circ})^{2} = (.b, \sqrt{1+\eta^{2}/2})^{2} \cdots (2-30)$

として求められる。

上記の方法によって得られる鉄筋コンクリート部材のn-q方程式、およびその特定点の値を表2.3に、方程式に用いた記号を表2.4にそれぞれ示す。なお、n-q方程式におい

て、せん断補強筋係数 Ψ が限界せん断補強筋係数 Ψ 。より大きな値の場合には、 $\Psi=\Psi$ 。として計算する。これらのn - q方程式から得られたn - q相関曲線の一例を図2.5に示している。図中の〇印はn - q相関曲線における特定点を表わす。

鉄筋コンクリート部材のn - q 相関曲線は、アーチ機構によるan-aq相関曲線の円弧で 構成される4曲線 $\hat{\chi}_{0}X_{1}$ 、 $\hat{\chi}_{2}X_{3}$ 、 $\hat{\chi}_{4}X_{6}$ および $\hat{\chi}_{0}X_{7}$ ((2-31)式、(2-33)式、(2-35)式 および (2-37)式)、はり機構によるan-aq相関曲線で構成され、最大せん断力を与える直線 $\chi_{3}X_{4}$ ((2-34)式)、さらに、 $\hat{\chi}_{0}X_{1}$ と $\hat{\chi}_{2}X_{3}$ の接線および $\hat{\chi}_{*}X_{6}$ と $\hat{\chi}_{*}X_{7}$ の接線であり、それぞれ傾き λ_{1} および λ_{2} を持つ2直線 $\chi_{1}X_{2}$ および $\chi_{*}X_{6}$ ((2-32)式および(2-36)式)の7区間によって 表現される。

なお、若林・南理論では、はり機構およびアーチ機構のそれぞれにおけるコンクリート 斜め圧縮束材の応力度がコンクリート圧縮強度に到達していることと、主筋あるいはせん 断補強筋の何れか一方が降伏応力度に達していることを降伏条件としている。したがって、 若林・南理論では、作用軸力の大きさによって以下の5種類の破壊モードを考慮している。

- ① no ≤n≤n2:材端部における主筋の引張降伏による曲げ破壊
- ② n₂<n≤n₂:材端部における主筋の引張降伏とせん断補強筋の引張降伏を伴う曲げ せん断破壊
- ③ ns<n≤n,:せん断補強筋の引張降伏によるせん断破壊
- ④ n₄ ≤ n ≤ n₅: 材端部における主筋の圧縮降伏とせん断補強筋の引張降伏を伴う曲げ せん断破壊

⑤ n_s < n ≤ n₇: 材端部における主筋の圧縮降伏による曲げ破壊

すなわち、若林・南理論の適用対象は曲げ破壊あるいはせん断破壊の何れかを生じた鉄 筋コンクリート部材であり、付着割裂破壊を生じた部材は適用対象外となる。

図2.5 若林・南式によるn-q相関曲線

表2.3 鉄筋コンクリート部材のn-q相関方程式およびその特値

$n_{0} \leq n < n_{1}$: $q = (\sqrt{4(n+2 \cdot \Phi)(1-n-2 \cdot \Phi)})$	$(\Phi) + \eta^{e} - \eta \}/2 \cdots (2-31)$
$n_1 \leq n < n_2 : q = \lambda_1 (n-n_1) + q_1$	····· (2-32)
$n_2 \leq n < n_8$: $q = \delta (\sqrt{4 \cdot n_* (1 - n_*) + \eta^2})$	$-\eta$]+ Ψ ·d ₁ ····· (2-33)
$n_s \leq n < n_*$: $q = \delta (\sqrt{1 + \eta^2} - \eta) + \Psi \cdot d$	1 (2-34)
$n_{*} \leq n < n_{*}$: $q = \delta (\sqrt{4 \cdot n_{*} (1 - n_{*}) + \eta^{2}})$	$-\eta + \Psi \cdot d_1 \qquad \cdots \qquad (2-35)$
$n_s \leq n < n_s$: $q = \lambda_z (n-n_s) + q_s$	(2-36)
$n_{s} \leq n \leq n_{7}$: $q = (\sqrt{4(n-2 \cdot \Phi)(1-n+2 \cdot \Phi)})$	$(\Phi) + \eta^2 - \eta 1/2 \cdots (2-37)$
χ_o : $n_o = -2 \cdot \Phi$	q ₀ = 0
X_1 : $n_4 = \beta_{1} - \xi_{4} / \omega_{1} + (1 - 4 \cdot \Phi) / 2$	$q_1 = \alpha_{p} - \xi_1 / \omega_1 - \eta / 2$
\dot{X}_z : $n_z = 2 \cdot \delta (n_1 + 2 \cdot \Phi) - 2 \cdot \Phi + \Psi (d_1 + \eta)$	$q_2 = 2 \cdot \delta \cdot q_1 + \Psi \cdot d_1$
χ_s : $n_s = \delta - 2 \cdot \Phi + \Psi (d_1 + \eta)$	$q_{s} = \delta \left(\sqrt{1 + \eta^{2}} - \eta \right) + \Psi \cdot d_{1}$
X_* : $n_* = \delta + 2 \cdot \Phi + \Psi (d_1 - \eta)$	$q_{\star} = \delta \left(\sqrt{1 + \eta^2} - \eta\right) + \Psi \cdot d_1$
X_s : $n_s = 2 \cdot \delta (n_s - 2 \cdot \Phi) + 2 \cdot \Phi + \Psi (d_1 - \eta)$	$q_{s} = 2 \cdot \delta \cdot q_{s} + \Psi \cdot d_{1}$
X_s : $n_s = \beta_2 - \xi_4 / \omega_2 + (1 + 4 \cdot \Phi) / 2$	$q_{e} = \alpha_{P} - \xi_{2} / \omega_{2} - \eta / 2$
X_{τ} : $n_{\tau} = 1 + 2 \cdot \Phi$	q , = 0

表2.4 方程式に用いた記号

THE REPORT OF THE PARTY OF THE

$n_{1} = \{n+2 \cdot \Phi - \Psi (d_{1} + n_{2})\}$	7)]/(2.5)	$n_{\mathbf{b}} = \{n-2 \cdot \Phi - \Psi \ (d_1 - \Phi)\}$	$(\eta))/(2\cdot\delta)$
λ 1= ξ 1/ξ a		λ z= ξ z/ξ .	
$\xi_1 = \alpha_P \cdot \omega_1 - \{\alpha_P \cdot \gamma\}$	$_{P} + \sqrt{(\alpha_{P} \cdot \gamma_{P})^{2}}$	· W 1 · P 1) 7 P	
$\xi_{z} = \alpha_{p} \cdot \omega_{z} - (\alpha_{p} \cdot \gamma)$	$_{p}+\sqrt{(\alpha_{r}\cdot\gamma_{r})^{2}}$	-w 2 · p 2 7 +	
ξ 3= β 1 + W 1 - 1 β 1 · γ	$_{P} - \sqrt{(\beta_{1} \cdot \gamma_{P})^{2}}$	-w1. p17 .	
ξ = β 2 · ω 2 - β 2 · γ	+ + V (B 2 . 7 P)2-	-w2. p)7 p	
$\alpha_{p} = (d_{1} + \eta)/2 \beta$	$_{1} = (d_{1} + \eta - 1)/2$	$\beta_{2} = (d_{1} - \eta - 1)/2$	$\gamma_{p} = \sqrt{1 + \eta^{2}/2}$
$\delta = (1 - 2 \cdot \Psi) / 2 \rho$	$= \gamma r^2 - \alpha r^2$	$p_{1} = \gamma_{r}^{2} - \beta_{1}^{2}$	$\rho_{2} = \gamma_{r}^{2} - \beta_{2}^{2}$
$\omega_1 = \alpha_{p}^2 + \beta_1^2 \qquad \omega$	$_{2} = \alpha_{r}^{2} + \beta_{2}^{2}$	$\eta = L/D$	d _i =d/D
$n = N/(b \cdot D \cdot F_c)$ N b:部材幅 D Fc:コンクリート圧 p1:引張主筋比 $\sigma_{x1}: 主筋の降伏応力$: 作用軸力 : 部材せい 縮強度 度 理+笠 6 **	q = Q/(b・D・F _c) d : 主筋間隔 pw: せん斯補強筋L σwy: せん斯補強筋の	Q: せん断力 L: 部材長 と D降伏応力度

2.6. 若林・南理論によるせん断強度と断面解析による曲げ強度の関係

せん断補強筋量のみが異なる3種類の鉄筋コンクリート部材に対して、若林・南理論か ら求められるせん断強度と断面の曲げ解析から求められる終局曲げモーメントMoより2・Mo /Lとして算定されるせん断強度(以後、曲げ強度と呼称)をn - q相関曲線上で比較した ものを図2.6に示す。縦軸および横軸はそれぞれ無次元化軸力nおよび無次元化せん断力 qを表わし、実線および点線はそれぞれ若林・南理論および曲げ強度式による計算結果を 示している。解析対象とした部材は、主筋間隔比d,=0.8、柱長さ比 η =2および引張鉄筋係 数Φ=0.15であり、せん断補強筋係数は限界せん断補強筋係数¥。((2-16)式)を基準量と して、¥=0、¥o/2および¥oとした。なお、本論文では、曲げ強度式についても表2.5に 示す累加強度式を採用している。

限界せん断補強筋係数Ψ。は、若林・南理論において 材端部で上端および下端の主筋を 同時に降伏させるのに必要な最少せん断補強筋係数であり、理論上、鉄筋コンクリート部 材が軸力の大きさに拘らず曲げ破壊を生じるのに必要な最少せん断補強筋量を表わす指標 である。そのようなせん断補強筋量を配筋した場合でも、二次元的な釣合いを考慮した若 林・南理論によるせん断強度計算値は、断面に生じる曲げモーメントと軸力の釣合い(一 次元的な釣合い)のみを考慮した曲げ強度計算値に対して常に小さな値を採ることが示さ れる。この理由は、断面曲げ解析では、コンクリートの負担せん断力が全コンクリート面 積について計算されるのに対して、若林・南理論では、はり機構においてその負担せん断 力に相当するコンクリート面積((2-17)式)が必要となるため、結果として、その残りの コンクリート面積についてアーチ機構の負担せん断力が計算されるためである。

また、この解析結果は、鉄筋コンクリート部材において、軸力、曲げおよびせん断の複 合応力下における曲げ破壊機構と軸力と曲げのみを受ける(純曲げ)場合の曲げ破壊機構 とが基本的に異なっていること示している。したがって、本研究で解析対象としている逆

表2.5 終局曲げモーメント:mu (= Mu/(b・D²・Fc))

$n_0 = -2\Phi$				
$B_1 = (1-d_1)/2 - 2 \Phi$	$n_{\circ} \leq n < n_{\circ}$:	$m_u = (n+2\Phi)(1-n-2\Phi)/2$	
$n_x = (1-d_x)/2$	$n_1 \leq n < n_2$		$m_{v} = \Phi \cdot d_{1} \cdot (1 + (2n - 1 + d_{1})/4\Phi) + (1 - d_{1}^{2})/8$	
$n_{2} = (1+d_{1})/2$	$\pi_2 \leq n < \pi_3$	4	$m_u = \Phi \cdot d_1 + n (1-n)/2$	
$n_1 = (1+d_1)/2$	$n_3 \leq n < n_4$:	$m_{w} = \Phi \cdot d_{1} \cdot [1 - (2n - 1 - d_{1})/4\Phi] + (1 - d_{1}^{2})/8$	
$n_{4} = (1+d_{1})/2+2\Phi$	n₄≦n≦n₅		$m_{\rm W} = (n-2\Phi)((1-n+2\Phi))/2$	
$n_{\bullet} = 1 + 2 \Phi$				

図2.6 若林・南理論によるせん断強度と断面解析による曲げ強度の比較

対称曲げ・せん断を受ける鉄筋コンクリート部材では、曲げ破壊を生じる場合でも、その 強度に対してせん断力の影響が無視できないものと考えられる。

なお、せん断補強筋係数がΨ。に対して少なくなる場合には、 軸力の大きさに拘らずせ ん断強度が一定値を探る領域が現われ、せん断破壊によって強度が低下することが認めら れる。また、その領域はせん断補強筋係数の減少に伴って増加し、n-q相関曲線におい て、せん断強度に及ぼす軸力の影響が少なくなることが示されている。

2.7. 若林・南式の耐力予測精度

2.5節で示した若林・南理論によるn-q方程式:(2-31)式~(2-37)式(以後、これらの 式をまとめて若林・南式と呼ぶ。)のせん断耐力予測精度を検証するために、文献[112]~ [122]に示される既往の実験データの中から以下に示す5つの条件を満足するものを検証 用データとして採用した。

① 部材断面積が400cm²以上

② せん断補強筋を有する

③ コンクリート強度:210kgf/cm²~600kgf/cm²

④ 普通コンクリートを使用

⑤ 付着破壊によって最大耐力が決定されていない

検証用データは、架データ48体および柱データ134体の計180体であり、何れも曲げ破壊 もしくはせん断破壊が先行した実験データである。また、それらの中には降伏強度σwyが 6000kgf/cm²以上の高強度せん断補強筋を使用したデータが108体含まれている。なお、検 証用データ180体の詳細は付録Aに示している。

図2.1 および図2.8に検証用データ180体に対する若林・南式のせん断耐力予測精度の検 証結果を示す。 図2.7において、縦軸および横軸はそれぞれ実験値Q****および若林・南式 によるせん断強度計算値Q*を表わし、●印はσ***<6000kgf/cm³のデータを示している。 また、図2.8は計算値に対する実験値の比率Q****/Q*の頻度分布を示したものであり、図中 のハッチ部分はσ***<6000kgf/cm³のデータ72体に対するものを表わしている。

全検証用データに対するQ***/Q*の平均値μおよび変動係数レは、μ=1.10およびレ=15. 2%である。 また、それらのデータのうちσ***<6000kgf/cm³のデータに対する予測精度は μ=1.15およびレ=10.6%であり、極めて良好である。一方、σ***≥6000kgf/cm³のデータに 対する予測精度はμ=1.06およびレ=17.1%と、σ***<6000kgf/cm³のデータに対するものよ りも若干低下しており、さらに、Q***/Q*<0.8となるデータが10体存在する。しかしなが ら、これら10体のデータは全て、多量で、かつ高強度の主筋とせん断補強筋を併用した試 験体のものであり、 後述の3.4.2節で明かにされるように、鋼材が未降伏で、コンクリー

図2.7 若林・南式によるせん断強度計算値と実験値の比較

図2.8 若林・南式のせん断耐力予測精度

トの圧壊が先行して終局強度に至ったデータである。すなわち、これらのデータは、破壊 モードが若林・南理論で仮定しているものと異なっており、本来、適用範囲外とすべきデ ータであると考えられる。なお、Q.**。/Qw≧0.8のデータの中にも適用範囲外のものが若干 数含まれているかもしれないが、それら適用範囲外のデータを排除すれば、若林・南式は 鉄筋コンクリート部材の終局せん断強度を十分な精度で評価できるものと推察される。特 に、本検証の範囲では 降伏強度が6000kgf/cm³未満のせん断補強筋を使用した部材に対す る予測精度は極めて高いものとなっている。

2.8. まとめ

本論文で示す鉄筋コンクリートおよびX形配筋部材のせん断強度式、付着割裂強度式お よび靭性評価式の基礎理論である『若林・南理論』について概説した。以下に、この理論 の主な特徴をまとめる。

- 軸力、曲げおよびせん断の組合せ応力を受ける鉄筋コンクリート梁および柱部材のせん断抵抗機構として、はり機構とアーチ機構の混在を仮定している。
 - 2) 鉄筋コンクリート部材の終局せん断強度は、はり機構による強度とアーチ機構による 強度を累加することによって求めることができ、(2-31)式から(2-37)式のn-q方程 式によって与えられる。

- 3) 鉄筋コンクリート部材は、はり機構およびアーチ機構のそれぞれにおけるコンクリート斜め圧縮束材の応力度がコンクリート圧縮強度に到達し、かつ、主筋あるいはせん 断補強筋の何れか一方が降伏応力度に達したとき、その最大強度を発現するものと仮 定している。
- 4) 若林・南理論で与えられるせん断強度は、断面の曲げ解折から求められる終局曲げモ ーメントMuより2・Mu/Lとして算定されるせん断強度を常に上回ることはない。
- 5) せん断補強筋強度が σ*r<6000kgf/cm²の検証用データ72体に対するせん断耐力予測 精度は、平均値および変動係数がそれぞれ1.15および10.6%であり、極めて良好である。
- 6) せん断補強筋強度がσwy≥6000kgf/cm²の検証用データ108体に対するせん断耐力予測 精度は、平均値および変動係数がそれぞれ1.06および17.1%であり、σwy<6000kgf/cm² のデータに対するものに比して若干低下する。

第3章 鉄筋コンクリート部材のせん断強度式

3.1. はじめに

2章で示したように、若林・南理論は既往の鉄筋コンクリート梁および柱部材の実験デ ータに対するせん断耐力予測精度が良好であり、鉄筋コンクリート部材の終局せん断強度 評価法として極めて有効な理論である。しかし、その関係式(若林・南式)の構成は複雑 であり、かつ、式から算出されるせん断強度は終局曲げモーメントから求まるせん断強度 (曲げ強度)に対して独立なものではなく、常に曲げ強度を上回ることはない。したがっ て、若林・南式では、曲げ設計とせん断設計を分離して行なう現行の設計手順、すなわち、 曲げに対する設計が終了し、曲げ補強筋の配筋が決定した部材に対して、その曲げ強度を 確保するようにせん断補強を行なうという設計手順に従ってせん断設計を行うことができ ない。

そこで、本章では、若林・南式を現行の設計手法に適用できるように修正したせん断強 度式を提案する。また、提案式の持つ物理的意味および若林・南式との相違点を明確にし、 その強度特性に及ぼす主要構成因子の影響について考察する。さらに、既往の実験データ に対する予測精度を高強度せん断補強筋を使用した鉄筋コンクリート部材も含めて検証し、 提案式の適用限界および有効性について検討する。

3.2. せん断強度式

若林・南理論に基づいた鉄筋コンクリート部材の実用せん断強度式として (3-1)式を提 案する。

提案式((3-1)式)の右辺第1項ははり機構による負担せん断力を、第2項はアーチ機 構による負担せん断力をそれぞれ表わす。また、Qsの上限値(b・d・Fc/2)γ/αは アーチ機 構の負担せん断力が0となる場合であり、いわゆる全補強式に相当する。なお、この場合 のせん断補強筋係数 Ψ....は、(3-1)式の右辺第2項より次式で与えられる。

 $\Psi_{m+k} = 0.5 \cdot \gamma / \alpha \qquad (3-2)$

図8.1に 提案式で仮定しているせん断抵抗機構モデルと各抵抗機構のn-q相関曲線およびその累加則を示す。 なお、図中のn-q相関曲線はせん断補強筋係数単が0、Ψ。および2・Ψ。の場合について示されている。

図3.1(a)の抵抗機構ははり機構に相当するものであり、若林・南式との相違点は主筋の 強度を無限大とし、かつせん断力と曲げモーメントのみを負担し、軸力は負担しないもの と仮定しているところである。したがって、材端部において主筋に作用する引張力。Tおよ び圧縮力。Cと負担せん断力。Q。((3-1)式の右辺第一項)の間には

の関係が成立するものと仮定している。

図3.1(b)は若林、南式におけるアーチ機構に相当する抵抗機構である。若林・南式との 相違点は、コンクリート斜め圧縮束材の角度が $\theta = \tan^{-1} \left\{ 1/(2 \cdot \eta) \right\}$ で一定と仮定している ところと、有効断面幅を($\eta / \alpha - 2 \cdot \Psi$)・bで与えることによって軸力の効果を考慮している 点である。 一方、図3.1(c)の抵抗機構は主筋のみによって構成され、軸力のみを負担す るものであり、主筋には降伏強度を考慮している。

提案式では(b)と(c)の抵抗機構による強度を累加したものをアーチ機構の負担せん断力 ((3-1)式の右辺第2項)とみなしており、若林・南式におけるアーチ機構の負担せん断 力とは若干異なる。なお、せん断補強筋のない部材($\Psi=0$)に対して、(3-1)式の右辺第2 項における係数αは若林・南式によるアーチ機構の無次元化最大せん断力((2-24)式にお いて、n=0.5および,b₁=1とした場合)に相当し、係数γは0≤,n≤0.5(この場合、n=n+ 2Φ)の範囲における無次元化せん断力を与える。したがって、提案式は軸力比が n>0.5 -2Φの範囲で(2-34)式と一致し、若林・南式における最大せん断力を与えることになり、 n≤0.5-2Φの範囲では若林・南式におけるアーチ機構の軸力効果に近い効果を係数γによ って考慮している。

提案式(実線)と、若林・南式(点線)および曲げ強度式(一点鏡線)の関係をn = q相関曲線上で比較したものを図3.2に示す。同図においても図3.1と同様に、提案式は $\Psi = 0$ 、 $\Psi_oおよび2, \Psi_oの場合について示している。また、図中の破線は提案式による無次元化せん断強度: q₅(= Q₅/(b·D·F_c))の上限値を示す。$

若林・南式では主筋の降伏を考慮しているため、せん断耐力に寄与できるせん断補強筋 係数はΨ≤Ψ。と制限され、2.6節で示したように式から算定されるせん断強度は常に曲げ

強度に比して小さくなる。しかしながら、提案式では前述したように、アーチ機構におい てのみ係数γによって主筋の降伏を間接的に考慮するが、はり機構においては主筋の強度 を無限大と仮定することによって、曲げ強度を上回るせん断強度の算定を可能にしている。 すなわち、提案式では せん断補強筋の増加に伴うせん断力の増分Q_{3.5}(せん断補強筋の負 担せん断力:Q₅-γ・b・D・F_c)が、主筋の降伏強度および軸力比に拘らず次式で与えられる。

また、提案式の軸力の効果は、アーチ機構における軸力とせん断力の相関曲線を考慮し たものであり、実用的な軸力範囲で、若林・南式に対してより近い値を与えることを意図 したものである。したがって、従来のコンクリート基・規準におけるせん断強度式に適用 されていることが多い斜張力強度の概念とは根本的に異なるので、斜張力破壊によって耐 力が決定される部材、すなわち、無補強あるいは補強筋量の少ない架部材等に対する提案 式のせん断耐力予測精度は低下するであろう。しかしながら、この問題に関しては、実設 計で対象となる部材ではせん断補強筋がある程度配筋されていること、および後述の3.4. 3節で示しめすように提案式に対して最少せん断補強筋比の規定を設けることによって解 決できよう。

図3.2 各式のn-q相関曲線による比較

3.3. せん断強度式の強度特性に及ぼす主要構成因子の影響

提案式の強度特性に対して部材の主要構成因子が及ぼす影響を、無次元化せん断力 q と せん断補強筋係数 Ψ の関係によって検討したものを図3.3に示す。 同図は引張主筋係数 Φ =0.1および主筋間隔比d₁=0.78の断面を有する部材を対象に描かれており、(a)は軸力比を n=0.3と固定し、柱長さ比を変数として、 (b)は柱長さ比を η =2と固定し、軸力比を変数と してそれぞれ表現している。図中の実線、一点鎖線および点線は、それぞれ提案式、はり 機構の負担せん断力Q₈、およびせん断補強筋の負担せん断力Q₈s((3-4)式)を表わしてい る。また、●印はQ₄の上限値を示す。 なお、図中のQ₈、Q₅₅およびQ₈の上限値についても、 b·D·F₆で除した無次元量で示している。

提案式は、せん断補強筋係数単の増加に伴いはり機構の負担せん断力は増加するが、ア ーチ機構の負担せん断力が減少するところに特徴がある。これは単が増加することにより、 はり機構において単に釣合うために必要なコンクリート斜め圧縮束の幅が増加し、その分 だけアーチ機構に寄与するコンクリート幅が減少するためである。また、はり機構におい てコンクリート斜め圧縮束材の角度を若林・南理論に基づき 45°に固定しているため、せ ん断補強筋の負担せん断力が古典トラス理論によるものと等しいと解釈しがちである。し かし、実際にははり機構の負担せん断力Q_{*}(一点鎖線)が古典トラス理論によるものと等 しいのであり、せん断補強筋による負担せん断力Q_{*}(点線)はそれらよりも少ない。 さ らに、Q₅₅と単の関係には(3-4)式で示されるように、柱長さ比かいさくなるほど減少する。 すなわち、提案式によれば、柱長さ比がいさな部材ほどせん断補強効果が低下することに なる。

また、図3.3(b)に示すように、提案式では同一のΨに対して、軸力の大きさに拘らずは り機構もしくはせん断補強筋の負担せん断力が一定値を採るが、アーチ機構の負担せん断 力は、n≤0.5-2Φの範囲で軸力が大きくなるほど増加する。すなわち、前述したように、 提案式の軸力の効果はアーチ機構において考慮されており、作用軸力が大きな部材ほどせ ん断強度が増加するという実験事実をせん断強度式に反映している。

図3.4は提案式と、若林・南式および曲げ強度式との関係をq-Ψ関係によって比較した ものである。同図も図3.3と同様にΦ=0.1 およびd,=0.78の部材を解析対象としており、 (a) dn=0.3と固定しnを変数として、(b) dn=2と固定しnを変数としてそれぞれ描かれて いる。図中の実線、一点鎖線および点線は、それぞれ提案式、若林・南式および曲げ強度 式を示し、〇印は提案式によるせん断強度と曲げ強度が等しくなる点を示している。また、 図3.5には提案式、若林・南式および曲げ強度式の関係をq-Φ関係によって比較したも のを示している。同図はΨ=0.1.n=2およびd,=0.78の部材に対して、n=0および0.3の場合 について示しており、各式の表示方法は図3.4と同じとした。

図3.3 提案式における各抵抗機構の負担せん断力

図3.4 各式のq-Ψ曲線による比較

若林・南式は q-Ψ曲線上で表現した場合、Ψの増加に伴ってせん断力が増加する領域 と、Ψの値に拘らずせん断力が一定値を採る領域に二分される。理論上、前者は主筋が未 降伏でせん断補強筋が降伏している領域であり、後者はせん断補強筋が未降伏で主筋が降 伏している領域を表わしている。本章で提案するせん断設計式((3-1)式)は前者に相当 するものであり、後者に対しては曲げ強度式が適用される。すなわち、部材の終局せん断 強度Quは、提案式による計算値Qsと曲げ強度式による計算値Qsによって次式で与えられる。

 $Q_u = \min(Q_s, Q_t)$ (3-5)

また、若林・南式は q - Φ曲線上で表現した場合にも、Φの増加に伴ってせん断力が増 加する領域と、Φの値に拘らずせん断力が一定値を採る領域に二分される。この場合には、 前者が主筋降伏領域であり、後者がせん断補強筋降伏領域となる。したがって、提案式は 後者に対して適用され、前者に対しては曲げ強度式によって評価されることになる。

図3.4および図3.5に示すように、(3-5)式で与えられるせん断強度Quは 若林・南式によ るものよりも常に大きな値となる。その度合は柱長さ比が小さくなるほど、かつ軸力比が 大きくなるほど増加する傾向にある。また、実設計において主筋の降伏応力度に対するコ ンクリート圧縮強度の比率Fc/σ xが 0.1程度の値を探ると考えると、配筋可能なΦの値は

図3.5 各式の q - Φ 曲線による比較

0.15程度以下となろう。そのような部材に対してはΦが増加するほど、Quが若林・南式に よるせん断強度算定値に比して大きなる傾向がある。

なお、Quと若林・南式によるせん断強度の差が顕著に現われるのは、曲げ強度式で耐力 が決定される領域であり、提案式で耐力が決定される領域ではその差は少ない。したがっ て、せん断破壊した部材に対しては (3-5)式は若林・南式と同程度の耐力予測精度を有す るものと考えられる。

3.4. せん断強度式の耐力予測精度

ここでは、せん断強度提案式のせん断耐力予測精度を2.7節で示した検証用データ180体 を用いて検証する。特に、高強度せん断補強筋を使用した部材および斜張力破壊³³が先行 した部材に対する妥当性を検討し、提案式の適用限界を明確にする。

3.4.1. 降伏強度が5000kgf/cm²未満のせん断補強筋を使用した部材に対する予測精度

図3.6および表3.1に σwv<6000kgf/cm²の検証用データ72体に対する提案式のせん断耐 力予測精度の検証結果を示す。縦軸および横軸は、実験値Q...,およびせん断強度計算値Q。 をそれぞれ曲げ強度計算値Q,で除した値であるQ...,Q,およびQs/Q,を表わしている。

同図において $Q_{4}/Q_{1} \ge 1.0$ および $Q_{4}/Q_{1} < 1.00$ 領域は、計算上、それぞれ曲げ強度式およびせん断強度式で部材の強度が決定される場合である。したがって、全データに対する耐力予測精度のみならず、これらの領域における予測精度を個別に検証することによって、せん断強度式の持つ曲げ破壊データとせん断破壊データの判別能力を判定することができる。また、 $Q_{4}/Q_{1} < 1.0$ かつ $Q_{4\times p}/Q_{1} < 1.0$ の領域に属するデータはせん断破壊によって強度が決定したデータと考えられ、これらのデータに対する予測精度はせん断強度式そのものの良否を判定する上で重要である。以後、 $Q_{4}/Q_{1} \ge 1.0$ および $Q_{4}/Q_{1} < 1.0$ の領域をそれぞれ曲げ破壊領域およびせん断破壊領域と呼び、 $Q_{4}/Q_{1} < 1.0$ かつ $Q_{4\times p}/Q_{1} < 1.0$ の領域に属するデータをせん断破壊データと呼称する。

計算値に対する実験値の比率の平均値μおよび変動係数vは、全検証用データ72体に対 してμ=1.08およびv=9.6%であり、その内訳はせん断破壊領域に属するデータ18体に対し

注)本論文では「斜張力破壊」を、斜張力ひび割れが発生した後、トラス的なせん断抵 抗機構が形成される以前に耐力劣化を生じ、結果として斜張力ひび割れ強度によって 部材強度が決定される破壊と定義する。

図3.6 0.xp/0,-0s/0,関係 (σwy<6000kgf/cm2)

18.000110		梁およ	び柱
検証対象データ	数	平均值	変動係数
せん断破壊データ	14	0.99	15.5 %
全 体	72	1.08	9.6 %
せん断破壊領域	18	1.04	15.7 %
曲げ破壊領域	54	1.10	6.1 %

表3.1 σwv<6000kgf/cm²のデータに対する検証結果

てµ=1.04およびµ=15.7%、および曲げ破壊領域に属するデータ54体に対してµ=1.10およ びµ=6.1%である。また、せん断破壊データ14体についてはµ=0.99およびµ=15.5%である。 せん断破壊領域に属するデータ、あるいはせん断破壊データに対しては、予測精度のば らつきが曲げ破壊領域に属するデータに対するものに比して若干大きくなっており、しか 6Q...,/Qs<0.8となるデータが2体(●印)ある。しかし、これらのデータは若林・南式 においてもQ...,/Qu<0.85となったデータであり、何れもせん断補強筋係数がΨ≤0.03と比 較的せん断補強筋質の少ない架部材のもので、斜張力破壊が先行したデータと考えられる。 したがって、これらのデータを除けば、提案式の耐力予測精度は良好であり、降伏強度が 6000kgf/cm^{*}未満 のせん断補強筋を使用した部材に対する実用せん断強度式として十分適 用可能である。 3.4.2. 降伏強度が6000kgf/cm²以上のせん断補強筋を使用した部材に対する予測精度

図3.7に降伏強度が6000kgf/cm²以上のデータに対する提案式のせん断耐力予測精度の検 証結果を架および柱部材別に示す。図中の表示方法は図3.6と同じとした。また、表3.2に は検証結果を示している。

梁データに対する提案式の耐力予測精度は、全データ35体に対して、平均値μ=0.91および変動係数ν=15.2%、せん断破壊データ22体に対して、μ=0.87およびν=13.4%と、何れの 場合でも実験データに対してかなり危険側の評価を与える結果となっている。

柱データに対する提案式の耐力予測精度は、全データ73体に対して μ =1.02 および ν =1 5.4%であり、せん断破壊データ36体に対しては μ =0.99および ν =19.5%であった。予測値 の平均値だけを見ると、良好な値を示しているが、そのばらつきは大きい。

ここで、高強度せん断補強筋を用いた鉄筋コンクリート部材に対する提案式のせん断耐

図3.7 0.xp/0,-0s/0,関係 (σwy≥5000kgf/cm²)

検証対象データ	数	梁 平均值	変動係数	数	柱 平均值	変動係数
せん断破壊データ	22	0.87	13.4 %	36	0.99	19.5 %
全 体	35	0,91	15.2 %	73	1.02	15.4 %
せん断破壊領域	23	0.88	13.9 %	36	0.99	19.5 %
曲げ破壊領域	12	0.98	15.4 %	37	1.05	9.9 %

表3.2 σwy≥6000kgf/cm²のデータに対する検証結果

カ予測精度に及ぼす部材の主要構成因子の影響を検討する。検討対象とした因子は、せん 断補強筋の降伏の有無、コンクリート強度、主筋の降伏の有無、柱長さ比、および軸力比 の5種類であり、検討結果はq-Ψ関係を用いて図3.8~図3.10に示している。図中の◇、 ●および○印は、それぞれ主筋が降伏したデータ、せん断補強筋が降伏したデータ、およ び主筋とせん断補強筋が共に未降伏のデータを表わす。また、図中の実線および点線は、 それぞれ提案式および曲げ強度式を表わす。なお、同図には比較のため、若林・南式によ る計算結果も一点鎖線で示している。

1) コンクリート強度

図3.8に コンクリート強度を変数とした梁の実験⁽¹¹⁴⁾から得られた実験データを示す。 なお、これらの実験データは高強度主筋(8140kgf/cm²)を併用したものである。

提案式および若林・南式では、コンクリート強度が Fc=360kgf/cm²程度のデータに対し てはせん断補強筋が降伏したデータとの適合性が良好であり実験結果をよく説明できてい るが、Fc=570kgf/cm²程度のデータに対しては せん断補強筋が降伏したデータでも若干過 大評価となっている。一方、提案式ではコンクリート強度に拘らず、せん断補強筋が未降 伏のデータに対する耐力予測精度が過大となっており、平が大きいほど実験値と理論値の 差は大きい。また、若林・南式でもせん断補強筋が未降伏のデータに対する予測精度は過 大となっているが、その度合は提案式に比して小さい。

なお、両式共にコンクリート強度が大きなデータほど、せん断補強筋が未降伏のデータ に対する予測精度が向上する傾向にある。この理由は、コンクリート圧縮束材の強度を高 めることによって、多量で高強度の主筋とせん断補強筋を併用した部材でも、終局強度時 において、理論で仮定しているものに近いせん断抵抗機構が形成されるためであると考え られる。

II) 主筋の降伏および柱長さ比

図3.9に文献[112]に示されている鉄筋コンクリート架に関する実験シリーズNo.1~No.3 のデータを示す。この実験に用いた試験体は、コンクリート強度がFc=281~324kgf/cm³、 引張主筋比がP,=3.2%、および主筋の降伏応力度がσy=3499~3750kgf/cm³の梁部材である。

このような高主筋量の部材に対しても、柱長さ比が η=3および4のデータに見られるように、主筋の降伏を伴えば、Ψの値が大きい場合でも、提案式および若林・南式によって 耐力を適切に評価できることが示される。

一方、n=2のデータに見られるように、主筋が未降伏の場合には、せん断補強筋の降伏の有無が耐力予測精度に及ぼす影響は大きい。提案式では、せん断補強筋が降伏しているデータに対する予測精度は良好であるが、未降伏のデータに対しては過大評価となっている。若林・南式では、せん断補強筋の降伏の如何に拘らず予測精度は良好であるが、せん断補強筋が未降伏のデータでは主筋も未降伏であり、理論に反する結果となっている。

なお、せん断補強筋の降伏しているデータにおいて、柱長さ比が両式の耐力予測精度に 及ぼす影響はあまり顕著には認められない。

Ⅲ) 軸力比

図3.10に 軸力比を実験変数とした柱の実験^[120]から得られた実験データを示す。なお、 このデータもせん断破壊先行型とするため 高強度主筋(8790kgf/cm²)を使用している。

軸力比が提案式および若林・南式のせん断耐力予測精度に及ぼす影響は大きい。せん断 補強筋の降伏が確認されたデータにおいて、斜張力破壊が先行したと考えられる軸応力度 が $\sigma_{\circ}=3kgf/cm^{*}$ で、かつ $\Psi=0.029$ のデータ1体を除いては、 $\sigma_{\circ}\leq144kgf/cm^{*}$ の場合にお ける両式の耐力予測精度は良好である。したがって、軸力比がn ≤0.4 程度の範囲では、高 査度せん断補強筋を用いた鉄筋コンクリート部材に対しても両式によってせん断耐力を適 切に評価できているものと考えられる。それに対して、軸応力度が $\sigma_{\circ}=216kgf/cm^{*}$ と高圧 縮力を受ける部材の場合には、両式による計算値が実験値をかなり過小評価する結果とな っている。また、せん断補強筋が未降伏のデータに対しては、軸力比に拘らず両式が過大 評価となる傾向がある。

以上示したように、提案式の高強度せん断補強筋を用いた鉄筋コンクリート部材に対す るせん断耐力予測精度は、必ずしも良好とは言い難いが、適合精度の悪いデータに対して も、その理由あるいは傾向を適切に把握することができる。なお、提案式は若林・南理論 に基づいて構築されたせん断強度式であり、上記の検討結果からも明らかなように、提案 式の耐力予測精度に関わる基本的な問題点は、若林・南式においても存在する。したがっ て、本来なら、若林・南式に対してもそれらの問題点あるいは適用範囲を明確にすべきで あるが、本章では、実用的なせん断強度算定式の提案に問題を限定して、提案式のみにつ

図3.10 軸力比の影響 (文献[120])

いて以後の議論を進めることにする。以下に、上記の検討から得られた提案式の主要な問 題点を列挙する。

- (1) 提案式では、せん断補強筋の降伏、あるいは主筋の材端降伏に伴うコンクリートとの付着力の上限強度到達のどちらか一方と、コンクリート斜め圧縮束材の降伏(圧縮強度到達)が同時に生じる破壊モードを想定している。したがって、鋼材が未降伏で、コンクリート圧縮束材の降伏が先行する、いわゆる圧縮破壊系のモードを考慮していない。
- (2) 提案式では、コンクリートのせん断抵抗機構としてアーチ機構を考えており、終局 状態においてはコンクリート斜め圧縮東材の降伏を想定している。したがって、コン クリートの引張強度が主要因となる斜張力破壊系のモードを考慮していない。
- (3) 提案式ではコンクリート有効圧縮強度係数を 1.0としているが、本来、この係数は、 コンクリート強度、軸力比および横拘束量等の因子によって設定されるべきである。

また、各抵抗機構で仮定されているコンクリート圧縮束材の角度に関しても議論のある ところであろう。しかし、せん断補強筋の降伏が確認された部材に対する耐力予測精度の 良好さを考慮すれば、作用軸力に応じて変化するアーチ機構の角度と、45°で与えられる はり機構の角度で概ね評価できているものと考られる。さらに、本章では検討対象外とし たが、付着破壊を伴う部材に対して提案式を適用する場合には、主筋とコンクリートの付 着力の上限値を設定する必要があろう。この問題については第4章で検討する。

なお、上記の問題点が生じるケースは、せん断補強筋量が極めて少ない梁のような斜張 力破壊が先行する部材、あるいは、高軸力下または高強度で多量の鋼材を有する部材とい った特殊な条件下で多い。したがって、通常の設計で対象とすることが多い主筋がSD35程 度で、コンクリート強度がFc=210~420kgf/cm³、せん断補強筋係数がΨ≥0.03、および軸 力比がn≤0.4の条件を満足するものであれば、高強度せん断補強筋を使用した部材に対し ても、提案式によって終局せん断強度を適切に評価できる。

3.4.3. 適用範囲外の部材に対する適用条件

3.4.1および3.4.2節に示した検証結果で明らかにしたように、提案式では、斜張力破壊 系あるいは圧縮破壊系の破壊モードが先行する部材は適用範囲外となる。しかし、実用設 計式としては、いかなる破壊モードの部材に対しても適用可能なものが望ましい。特に、 近年、その需要が高まってきている高強度せん断補強筋を用いた部材に対して適用できる 式であることが肝要である。

そこで、本章では便宜的ではあるが、圧縮破壊および斜張力破壊が先行する部材に対し て、それぞれ制限値を設けることによって提案式の耐力予測精度の向上を計る。すなわち、 圧縮破壊系に対しては、せん断補強筋強度の上限値を

と制限し、斜張力破壊系に対しては、せん断補強筋比の下限値を次式で規定する。

 $p_{\Psi} \ge p_{\Psi} \min$ (3-7) $C \subset (C, p_{\Psi} \min = 0.03 \cdot F_c / \sigma_{\Psi \Psi} \le 0.03 \sqrt{F_c} / 400$

(3-6)式の根拠は以下のような理由による。 すなわち、圧縮破壊系の部材では、はり機 構においてせん断補強筋もしくは主筋が降伏する以前にコンクリート圧縮束材が圧壊する ことによって終局強度に達するものと考えられる。したがって、終局強度時におけるせん 断補強筋の実応力度は、コンクリートの圧縮強度に関係するものと推察される。そこで、 3.4.2節の1)~□)で示したデータの中で せん断補強筋および主筋共に未降伏のデータ28 体について、せん断補強筋の実応力度σ*を 提案式((3-1)式)に基づいて(3-8)式より算 定し、さらに図3.11に示すように、それらの応力度と降伏応力度をコンクリート強度で基 準化することによって整理した。

図3.11 σw/VFc-σwv/VFc関係

図8.11の縦軸および横軸は、実応力度および降伏応力度を、それぞれ $\sqrt{F_c}$ で除した値で $ある\sigma*/\sqrt{F_c}$ および $\sigma**/\sqrt{F_c}$ を表わす。 図に示されるように、(3-8)式から求められる 実応力度の値は若干ばらついているものの、 $\sigma**/\sqrt{F_c}$ の値に拘らず 200 $\sqrt{F_c}$ ~600 $\sqrt{F_c}$ の 範囲にある。 そこで、せん断補強筋強度の上限値として、平均的な値で かつ $\sigma**<$ 6000 kgf/cm³のデータ およびせん断補強筋が降伏したデータに対する検証結果に影響が少ない と考えられる400 $\sqrt{F_c}$ を採用した。

また、(3-7)式は 3.4.1および3.4.2節の検証結果において、提案式のせん断耐力予測精 度がQ...,/Qs<0.8となるデータが全てせん断補強筋係数がΨ<0.03の架であったことに加 え、図3.12に示すQ...,/Qs-Ψ関係による検証結果を参考に決定した。図3.12は(3-6)式を 考慮した提案式の全検証用データに対する検証結果のうち、せん断破壊データ78体につい てQ...,/Qs-Ψ関係を軸力比別に整理したものである。 なお、図中の●印はΨ<0.03とな るデータを表わしている。

軸力比がn≤1/6の場合には、Ψ<0.03となるデータに対する提案式の耐力予測精度がΨ

図3.12 0.xo/0s-4関係

- 67 -

≥0.03となるデータに対するものよりも明かに低下する傾向が認められ、 Ψ=0.03程度を 境に部材の破壊形式が異なるものと推察される。一方、Ψ<0.03となるデータでも、軸力 比が増加するに従って実験値が計算値を上回る傾向にあるが、これは斜張力ひび割れ強度 自体が高圧縮軸力の影響で、提案式で仮定している抵抗機構(はり機構とアーチ機構)に よる強度を上回ったためと考えられる。したがって、高軸力、特にn>1/3の軸力を受ける 柱に対しては安全側の評価となるが、斜張力破壊を防止する目的でせん断補強筋係数の下 限値を0.03とし、(3-7)式を得た。

図3.18に(3-6)式および(3-7)式の制限を加えた場合の提案式の全検証用データに対する 耐力予測精度を、梁および柱部材別にQ.xs/Qr-Qs/Qr関係によって示す。 図中の表示方法 は、図3.6と同じとした。また、表3.3に検証結果を示している。

提案式の耐力予測精度の平均値は、梁および柱データ共に、全データおよびせん断破壊 領域に属するデータに対してμ=1.1程度であり、かつ、変動係数が13%程度とばらつきも非 常に少ない。また、せん断破壊領域および曲げ破壊領域のそれぞれに属するデータに対す る検証結果においてもμ=1.1程度、かつν=13%程度であり、提案式によってせん断破壊デ ータと曲げ破壊データを適切に判別できている。

このように提案式は、せん断補強筋強度の上限値として(3-6)式を、また、せん断補強筋 量の下限値として(3-7)式をそれぞれ設けることによって、 適用範囲外の部材に対しても その耐力予測精度を改善することができ、高強度せん断補強筋を用いた部材も含めて鉄筋 コンクリート部材の実用せん断強度式として十分適用できる。

なお、せん断破壊データ68体についてQ,***くゆ*・Q*の確率が5%となる場合の強度低減 係数ゆ*を求めるとゆ*=0.87となる。 したがって、提案式を用いる場合の強度低減係数と しては、0.9程度の値が考えられる。

3.5. せん断強度式の耐力予測精度に及ぼす主要構成因子の影響

3.4節では 提案式の持つ全体的なせん断耐力予測精度を検証したが、ここではさらに、 部材の主要構成因子が予測精度に及ぼす影響について考察する。

前述のせん断破壊デーク68体に対して、せん断耐力予測精度 $Q_{***}/Q_s \ge 、せん断補強量 <math>P_{*}'\sigma_{**}$ 、せん断補強筋強度 σ_{**} 、コンクリート強度 F_c 、軸力比 n、柱長さ比ヵおよび引 强主筋比 p_{*} の関係を調べたものを図3.14の(a)~(f)に示す。なお、図中の実線は最小自 乗法によって求めた回帰曲線を示している。

Q****/Q*-Pw・σ wv関係では、pw・σ wvの値が増加するに従って Q****/Q*の値は1.0に漸近 し、かつ、ばらつきも減少しており、せん断耐力予測精度が向上する傾向にあることが認 められる。 この理由としては、(3-6)式によってせん断補強筋強度の制限値を設けたこと

図3.13 0.xp/0,-0s/0,関係 [(3-6)式、(3-7)式考虑]

検証対象データ	数	梁 平均值	変動係数	数	柱 平均值	変動係数
せん断破壊データ	31	1.08	12.4 %	37	1.13	13.8 %
全 体	41	1.09	13.3 %	116	1.10	9.2 %
せん断破壊領域	35	1.10	13.2 %	41	1.13	13.1 %
曲げ破壊領域	6	1.03	13.1 %	75	1.09	5.5 %

表3.3 全検証用データに対する検証結果 [(3-6)式、(3-7)式考慮]

により、pw・σwvの値が比較的大きな部材に対して 耐力予測精度が向上したことが挙げら れよう。 一方、pw・σwv $\leq 25 \text{ kgf/cm}^2$ の範囲では提案式が実験データに対して1.2程度の安 全率を有しているが、予測精度のばらつきは大きい。 これについては、pw・σwv $\leq 25 \text{ kgf/}$ cm²の領域に属するデータの中に 3.4.2節で示した軸力比がn>0.7となるもの^[120]が4体 含まれており、それらに対する予測精度が過大となったことによる影響が大きい。

Q***/Q*-σ**関係においては、せん断補強筋強度の大きさに拘らずQ***/Q*の平均値は 1.1程度となっており、(3-6)式の制限を設けることによって、提案式の耐力予測精度がせ ん断補強筋強度にほとんど影響を受けなくなったことが示される。

Q.x.p/Qx-Fc関係については、Q.x.p/Qsの平均値が Fc=200kgf/cm²程度の部材に対しては 1.2程度であるが、Fc=600kgf/cm²程度の部材では 1.0程度となっており、コンクリート強 度が増加するに従って、提案式による予測値が実験値に対して安全側から危険側の評価へ と移行する傾向が認められる。この原因の一つとして、提案式でははり機構およびアーチ 機構ともに斜め圧縮束材のコンクリートを剛塑性材料とし、かつ その有効強度係数を ν 。 =1.0と仮定していることが挙げられよう。 すなわち、Fc=200kgf/cm³程度のコンクリート の場合には、その応力-ひずみ関係において、最大強度時以前の形状が放物線に近いもの であること、最大強度時のひずみが ε 。=0.002程度と比較的小さな値であること、さらに は、せん断補強筋による拘束効果によって最大強度時以降の強度低下が少なくなること、 などを考慮すると、巨視的にはコンクリート強度が増加するに従って最大強度時以前の 応力-ひずみ関係の形状が放物線から三角形に変移し、 ε 。も増加することに加えて、最大 強度時以降の強度劣化も大きくなる傾向があるため、コンクリートを剛塑性材料とみなす 仮定の妥当性が薄れ、結果として、提案式による予測値が危険側の評価を与えるものと考 えられる。したがって、Fc≥600kgf/cm³の部材に対してはQ..../Q.e<1.0となることが予想 され、超高強度コンクリートを使用した部材に対して提案式を適用する場合には 1.0未満 のコンクリート有効強度係数を考慮する必要があろう。

Q...,/Q.- n関係については、軸力比が増加するほど提案式による計算値が実験値に対し て安全側の評価を与える傾向がある。これについては、軸圧縮力の増加によって、①せん 断補強筋による拘束効果が増大したことや、② Collins等^[29]が指摘しているように、圧 縮ストラットと直交する方向の引張ひずみが減少することによってストラットの圧縮強度 の低下が少なくなったこと、などがせん断耐力の上昇に寄与したものと推察でき、提案式 では考慮しにくい要因による影響が大きいものと考えられる。なお、n>0.5のデータを除 けば、図中の一点鎖線で示すように耐力予測精度に及ぼす軸力比の影響はさほど大きくは なく、提案式においてn≤0.5-20の範囲で軸力の影響を考慮している効果が現われている とも言えよう。

Q...,/Q.- n関係においては、柱長さ比のせん断耐力予測精度に及ぼす影響は大きく、η が増加するほど提案式による予測値が安全側の評価となっている。また、Q...,/Q.- p.関 係からは引張主筋比の増加に伴って、若干ではあるが予測値が危険側に移行する傾向が認 められる。これらについては、η=2程度で、かつ、p.が大きな部材の場合に提案式が原式 (若林・南式)に比してアーチ機構の負担せん断力を過大に評価する傾向があり、そのよ うな部材に対して若林・南式によるせん断耐力予測精度が良好な場合でも、提案式による 予測値が過大評価となることが多いことが原因の一つとして挙げられる。

以上示したように、提案式のせん断耐力予測精度はせん断補強量、コンクリート強度、 柱長さ比および引張主筋比などの因子に影響を受けるが、せん断補強筋強度の影響はほと んど受けない。また、軸力比に関しては、n≤0.5であれば耐力予測精度に及ぼす影響は少 ないと考えられる。

3.6. 既往のせん断強度式との比較

1.2.2節で紹介した日本および諸外国のコンクリート規・基準におけるせん断強度式の中から塑性理論に基づいて構築された理論式と提案式を $q - \Psi$ 関係によって比較したものを図3.15に示す。比較に用いたせん断強度式は学会指針式 (A法およびB法)¹⁺¹、CEB式(3⁴¹⁾およびCSA式¹³⁺¹の4式である。同図は柱長さ比 η =2.5、主筋間隔比d₁=0.8および引張主筋係数 Φ =0.1の部材に対して、無次元化軸力が n=0 および0.3の場合について検討している。また、A法におけるコンクリート有効強度係数、およびCEB式におけるコンクリートの負担せん断力はそれぞれ F_e=300kgf/cm²として計算し、CSA式における材軸方向のひずみは e_x =0.001とした。 なお、CEB式およびCSA式ではコンクリート斜め 圧縮束材の角度 θ が最小値を採る場合、すなわち、せん断補強筋量が最少となる場合について示している。

提案式、A法およびB法では、せん断抵抗機構としてトラス機構(はり機構)とアーチ 機構の2種類を考慮している。一方、CEB式およびCSA式で考慮しているせん断抵抗 機構は、基本的にはトラス機構のみであるが、CEB式に関してはΨが小さな領域でコン クリートの負担せん断力も経験的な手法で考慮している。また、提案式およびB法ではト ラス機構における斜材の角度を45°と固定しているため、qとΨの間には線形比例関係が ある。それに対して、A法、CEB式およびCSA式ではΨが増加するに従ってトラス機 構の斜材の角度が下限値から45°まで増加するため、qの増加率は低下する。なお、これ

図3.15 q-Ψ関係による既往のせん断強度理論式の比較

ら5式の中で、軸力の効果を考慮しているのは提案式のみである。

図3.15に示すように、各式によるせん断強度とせん断補強筋係数の関係はかなり異なる。 同一のせん断補強筋係数に対して与えられる各式によるせん断強度を比較すると、以下の 傾向が認められる。すなわち、軸力の大きさに拘らず、CEB式およびCSA式による計 算値がA法およびB法によるものよりもかなり低い。 提案式は他の4式に対して、n=0の 場合に中間値を与え、n=0.3の場合には最高値を与える。

図3.16 および表3.4は、提案式と既往のせん断強度式の耐力予測精度を比較したもので ある。 比較対象としたせん断強度式は上述の4式に加え、修正荒川mean式^[2]、ACI式 ⁽³⁴⁾およびNZ式^{(34]}の計7式とした。 なお、図3.16は検証用データ180体に対する各式 のせん断耐力予測精度をQ_{***}/Q₁ - Q₅/Q₁関係によって示したものであり、図中の表示方法 は図3.6と同じとした。 また、表3.4には全検証用データとせん断破壊データ(Q_{***}/Q₁ < 1.0、かつ、Q₅/Q₁<1.0)のそれぞれに対する検証結果を示している。

提案式では、3.4.3節でも示したように、耐力予測精度の平均値が 全データおよびせん 断破壊データに対して 共にμ=1.1程度であり、かつ、変動係数が13%程度とばらつきも非 常に少ない。学会指針式B法でも、提案式と比較して耐力予測精度のばらつきが若干大き いものの、全データおよびせん断破壊データに対して予測精度の平均値が共に 1.1程度と 良好な値を示している。学会指針式A法および修正売川mean式では共に、全データに対し てμ=1.17、およびせん断破壊データに対して μ=1.24となっており、 計算値が実験値に

せん断強度式	せ数	た断破壊 平均値	データ 変動係数	数	全検証用: 平均値	データ 変動係数
提案式	6.8	1.11	13.3 %	157	1.10	10.4 %
学会指針式: A 法	82	1.24	19.1 %	180	1.17	15.9 %
学会指針式: B法	77	1.10	15.7 %	180	1.10	11.9 %
修正荒川mean式	81	1.24	14.9 %	180	1.17	13.4 %
ACI式	86	1.69	22.8 %	177	1.45	27.1 %
NZ式	81	1.11	14.2 %	180	1.13	16.0 %
СЕВ式	81	1.52	35.8 %	180	1.34	33.0 %
C S A 式	82	1,60	30.8 %	180	1.40	33.1 %

表3.4 既往のせん断強度式の耐力予測精度の比較

図3.16 既往のせん断強度式の耐力予測精度の比較

対して若干安全側の評価となっている。また、予測精度のばらつきに関しては、修正荒川 nean式が学会指針A法に比して全データおよびせん断破壊データ共に若干少ない結果となっている。

諸外国のせん断強度式について見ると、NZ式が全データに対してµ=1.13 およびµ=1 6.0%、せん断破壊データに対してµ=1.11 およびµ=14.2%と4式の中で最も良好であるが、 提案式に比較して全データに対する予測精度のばらつきが若干大きい。一方、ACI式に 関しては、全てのデータに対して実験値が計算値を上回っており、1.5倍程度の安全率を 有する式となっているが、予測精度のばらつきは大きい。また、CEB式およびCSA式 でも全データおよびせん断破壊データ共に耐力予測精度の平均値がµ=1.5程度になってい るが、変動係数が30%以上の値を示しており、ばらつきが極めて大きい。

日本および諸外国のコンクリート規・基準に示されているせん断強度式の中から代表的 な7式についてその精度の検証を行なったが、各式共に検証用データに対する耐力予測精 度の平均値は1.0以上となっている。特に、学会指針式A法およびB法、修正荒川mean式 およびNZ式では実験値との適合性が良好であり、実用的に優れたせん断強度式である。 一方、本検証の範囲では、ACI式、CEB式およびCSA式は実験値を過小評価する傾 向がある。また、提案式はこれらの式と比較して、耐力予測精度の点でより優れたものと なっており、鉄筋コンクリート部材のせん断強度式に適用することは極めて有効である。

3.7. まとめ

本章では、鉄筋コンクリート染および柱部材の実用的なせん断強度式として (3-1)式を 提案した。提案式は鉄筋コンクリート部材のせん断抵抗機構としてはり機構とアーチ機構 の2種類を仮定し、それらの抵抗機構による強度の累加によってせん断強度を求める「若 林・南理論」を基礎にして構築されたものである。以下に、提案式の強度特性、耐力予測 朝度および適用限界に関する検討結果を要約する。

- 提案式は、軸力比がn>0.5-2Φの範囲でその最大値を与え、n≤0.5-2Φの範囲ではア ーチ機構において軸力の影響を考慮している。また、はり機構においては主筋の強度 を無限大と仮定することによって、曲げ強度を上回るせん断強度の算定を可能にして いる。
- 2) 提案式では、せん断補強筋量の増加に伴い、はり機構の負担せん断力は増加するが、 アーチ機構の負担せん断力は減少する。さらに、せん断補強筋量の増加に伴うせん断 強度の増加率は 45'トラス理論によるものよりも少なく、柱長さ比が小さくなるほど

減少する。

- 3) 若林・南式は、せん断破壊が先行する部材と曲げ破壊が先行する部材の何れに対して もせん断強度を評価できるが、提案式は前者に対して適用するものであり、後者に対 しては曲げ強度式によって評価する。なお、せん断破壊が先行する領域では、提案式 と若林・南式のせん断強度算定値に大差はない。
- 4)提案式は、SD35程度の主筋を使用し、コンクリート強度がFc=210~420kgf/cm³、せん 断補強筋係数がΨ≥0.03、および軸力比がn≤0.4の条件を満足するものであれば、せ ん断補強筋強度の制限を設けることなく、高強度せん断補強筋を使用した部材も含め た鉄筋コンクリート部材の終局せん断強度を適切に評価できる。
- 5)提案式では、斜張力破壊あるいはコンクリートの圧縮破壊が先行する部材は適用範囲外である。しかし、そのような破壊モードが予想される部材に対しても、せん断補強筋強度の上限値として(3-6)式を、また、せん断補強筋量の下限値として(3-7)式をそれぞれ設けることによって、実用せん断強度式として適用できる。
- 6)提案式のせん断耐力予測精度に対してせん断補強量、コンクリート強度、柱長さ比および引張主筋比などの因子が影響を及ぼすが、せん断補強筋強度の影響はほとんどない。また、n≤0.5であれば軸力比の影響も少ない。
- 7)提案式は学会指針式、修正荒川mean式、ACI式、NZ式、CEB式およびCSA式 といった代表的なせん断強度式と比較しても、せん断耐力予測精度が優れている。

以上示したように、本章で提案したせん断強度式は、式の構成が理論的かつ明解であり、 せん断補強筋比、主筋比、鋼材強度、軸力比、および柱長さ比など、部材の主要構成因子 がせん断強度算定値に及ぼす影響を適切に評価できる。また、既往の実験データに対する せん断耐力予測精度は、適用範囲に属するデータに対して極めて良好であり、適用範囲外 のデータに対しても適切な制限値を設けることによって、実用上問題のない程度に改善で きる。したがって、提案式は、鉄筋コンクリート部材の実用せん断強度式に適しており、 合理的なせん断設計法を確立する上で極めて有効な強度算定式である。

第4章 鉄筋コンクリート部材の付着割裂強度式

4.1. はじめに

3章ではせん断破壊あるいは曲げ破壊の何れかを生じる鉄筋コンクリート梁、柱部材を 対象として、若林・南理論に基づいせん断強度式を構築し、実用設計式としての有効性を 確認した。一方、鉄筋コンクリート部材の脆性的な破壊形式としてはせん断破壊の他に付 着割裂破壊が考えられ、この破壊に対する安全性を保証することも耐震設計上、極めて重 要な事項である。そこで、本章ではせん断強度提案式((3-1)式:以後、せん断強度式と いう。)と同様に、はり機構とアーチ機構の2種類の抵抗機構の混在を考慮した付着割裂 強度式を提案する。また、付着割裂強度式の耐力予測精度を既往の付着割裂破壊実験のデ ータを用いて検証し、その有効性を検討する。さらに、主筋の曲げ降伏後に付着割裂破壊 が生じる部材に対する変形能力の評価法についても併せて検討する。

4.2. 付着割裂強度式

図4.1は 筆者らが過去において行なった実験^{(**1}の中で、典型的な付着割裂破壊を生じ た桂試験体の正載荷時における主筋の応力度分布を示している。図中の実線および点線は それぞれ柱頭で引張側(A)および圧縮側(B)となる主筋の応力度を示し、△および○ 印は付着割裂ひび割れ発生時および相対部材角Rが0.01rad.の時をそれぞれ表わしている。 また、一点鎖線は主筋の降伏応力度σ νを示す。 なお、主筋の応力度は鉄筋の応力度-ひ

図4.1 付着割裂破壊を生じた柱における主筋の応力度分布 (**)

ずみ度関係を完全弾塑性型と仮定して、各測定点に貼り付けたひずみゲージ(W.S.G.)の 測定値から換算して求めている。

同図より、付着割裂ひび割れ発生以後、R=0.01rad.に到るまでA主筋およびB主筋共に 各ひずみ測定位置間での付着勾配はほとんど変移せず、かつ、応力度分布が引張側に推移 していることが認められる。さらに、付着ひび割れ発生時において、A主筋ではひずみ測 定位置1~4の範囲で、B主筋では2~5の範囲でそれぞれ主筋に沿う付着応力度がほぼ 一定となる傾向がある。したがって、この領域での付着応力度が最大付着強度に達したこ とによって、部材が付着割裂強度に到達したと考えることができる。

そこで、これらの実験結果を参考にして、付着割裂強度時の有効主筋長し。を

 $L_r = L - d \qquad (4-1)$

と仮定する。ここに、Lは部材長、およびdは上下端の主筋間距離(多段配筋の場合は塑性 重心間距離)とする。

また、鉄筋コンクリート部材の付着割裂強時の抵抗機構としては、3章で示したせん断 強度時に対する場合と同様に、はり機構とアーチ機構の混在を仮定する。ここで、はり機 構に関しては上記の有効主筋長 L.を考慮して、図4.2に示すようなコンクリート斜め圧縮 束が両材端部で扇形状で、かつ、中央部では 材軸に対して45°の角度をなす抵抗機構を仮 定する。

このはり機構において、有効主筋長以外の領域に分布する付着応力度が微小であるとし、 かつ、有効主筋長の範囲で主筋の平均付着応力度が最大付着強度 τ ω に達したとき、部材

図4.2 付着抵抗機構

としての付着割裂強度が発現されるものとすると、その時の片側主筋の材長に分布する付着応力度の総和Raは、

ここに、 ψ: 主筋の周長

E φ:片側主筋の周長の総和

で与えられる。 したがって、付着割裂強度時のはり機構の負担せん断力。Q。はモーメントの約合いより、

 $Q_b = \tau_{bu} \cdot \Sigma \ \phi \cdot L_{a} \cdot d/L \qquad (4-3)$

と求められる。

一方、せん断強度式において、はり機構が。Q。のせん断力を負担するために必要なせん 断補強筋係数をΨ、とすると、Ψ。は(3-3)式および(4-3)式より、

 $\Psi_{e} = \tau_{bu} \cdot \Sigma \phi \cdot L_{e} / (b \cdot L \cdot F_{c}) \qquad (4-4)$

と与えられる。すなわち、付着割裂破壊時のアーチ機構の負担せん断力,Q₆は、(3-1)式の 右辺第二項に(4-4)式を代入することによって次式で求められる。

したがって、鉄筋コンクリート部材の付着割裂強度式は、(4-3)式および(4-5)式より、 せん断強度式と同様な形で(4-6)式で与えられる。

 $\begin{aligned} Q_{\mathfrak{b}} &= \tau_{\mathfrak{b}\mathfrak{a}} \cdot \Sigma \, \phi \cdot L_{\mathfrak{a}} \cdot d/L \, + \, (\gamma - 2 \cdot \alpha \cdot \Psi_{\mathfrak{a}}) \cdot b \cdot \mathbb{D} \cdot \mathbb{F}_{\mathfrak{c}} \quad \cdots \cdots \quad (4 - \delta) \\ & \uparrow t t \in L_{\mathfrak{a}} \, Q_{\mathfrak{b}} \, \leq \, (b \cdot \mathbb{D} \cdot \mathbb{F}_{\mathfrak{c}}/2) \, \gamma \, / \, \alpha \end{aligned}$

なお、柱長さ比が n < diの部材に対してはL. < 0となるが、そのような場合には(4-4)式 および(4-7)式においてL. = 0として計算する。 また、付着割裂強度Q.を求める際の最大付 着強度 r. o. は (4-7)式で与えられる藤井・森田式¹⁷²⁾によって、最外縁主筋に対して求め るものとした。図4.3に藤井・森田式で考慮している付着割裂パターンを示す。 なお、次

式に用いた記号は原論文[72]のものとは若干異なっている。

No:最外縁主筋の本数

なお、水平上端筋以外の主筋は(4-7)式から得られる強度に1.22を乗じる。

上記の付着割裂強度式((4-6)式)は、はり機構におけるせん断補強筋の強度を無限大 と仮定し、主筋回りの平均付着応力度が最大付着強度に達することと、コンクリート斜め 圧縮束材の応力が圧縮強度に到達することを降伏条件としている。すなわち、(4-6)式は 曲げ破壊あるいはせん断破壊を生じる以前に付着割裂破壊が発生する鉄筋コンクリート部 材の耐力評価に有効な強度式である。したがって、(4-6)式と3章で示したせん断強度式 および曲げ強度式を併用することによって、曲げ破壊、せん断破壊あるいは付着割裂破壊 の何れかを生じる部材の耐力評価が可能となる。

図4.4に付着割裂強度式(実線)、せん断強度式((3-1)式:一点鎖線)および曲げ強度 式(破線)の関係をq-車曲線上で比較した一例を示す。付着割裂強度式を考慮した場合 の計算上の部材耐力は、図中の 線で示されるように、曲げ強度、せん断強度および

図4.4 q-Ψ関係による曲げ強度式、せん断強度式および付着割裂強度式の比較

付着割裂強度のうちの最小値で与えられる。さらに、これら3式によって決定される計算 上の破壊形式は、せん断補強筋量の増加に伴って、せん断破壊から付着割裂破壊、曲げ破 壊へと移行していくことが示される。

4.3. 付着割裂強度式、せん断強度式および曲げ強度式による部材の強度特性

本節では、3章で示したせん断強度式および曲げ強度式に、さらに付着割裂強度式を考 虚した場合の部材の強度特性とそれらに及ぼすせん断補強筋強度、柱長さ比、コンクリー ト強度および主筋量の影響について考察する。

(3) せん断補強筋強度の影響

せん断補強筋強度の異なる2種類の架部材に対する曲げ強度、せん断強度および付着割 裂強度の各計算値を $q - \Psi$ 曲線上で比較したものを図4.5に示す。解析対象とした部材は 片側主筋が4-D25の一段配筋であり、b=20cm、D=40cm、 $d_1=0.8$ 、 $\eta=3$ 、 $\Phi=0.25$ および $F_c=$ $400kgf/cm²とした。同図(a)および(b)はそれぞれせん断補強筋強度が<math>\sigma$ wr=4000および800 0kgf/cm²の部材に対するものであり、図中の表示方法は図4.4と同じとした。

Q-Ψ関係によって各強度式を比較した場合、曲げ強度式ではせん断補強筋係数の影響 を受けないため、Ψの増加あるいはせん断補強筋強度の大きさに拘らず一定の曲げ強度を 与える。また、せん断強度式に関してはせん断補強筋係数の影響を大きく受け、更の増加 の増加に伴ってせん断強度が増加するが、 はり機構の負担せん断力((3-1)式の右辺第一 項)にpw・σwvの項が関係しているため、 同一の更に対してはせん断補強筋強度に拘らず 同量のせん断強度を与える。一方、付着割裂強度式ではせん断補強筋強度の大きさに関係 なく更=0の場合には同一の付着割裂強度を与えるが、せん断補強筋強度の大きな部材ほ ど更の増加に伴う付着割裂強度の増加率は小さくなる。この理由は、付着割裂強度を求め る際の最大付着強度 τ w.が (4-7)式で示されるように、せん断補強筋比の影響を受けるが、 せん断補強筋強度に関係なく与えられるので、同一の更に対してせん断補強筋強度が大き くなるほどせん断補強筋比が小さくなり、結果として算定される付着割裂強度が小さくな るためである。

したがって、付着割裂強度式を考慮した場合、鉄筋コンクリート部材の耐力はせん断補 葡筋強度が大きくなるほど、g-Ψ曲線上において付着割裂強度によって決定される領域 が大きくなる。

(1) 柱長さ比の影響

曲げ強度式、せん断強度式および付着割裂強度式と柱長さ比の関係を調べたものを図4. δ に示す。 解析対象とした部材は片側主筋が一段配筋の4-D13 (Φ =0.06:図4.6(a)) およ U4-D25(Φ =0.25:同図(b))の梁部材であり、両部材ともb=20cm、D=40cm、d₁=0.8、Ψ= 0.05、p==0.005およびFc=400kgf/cm[®]とした。 図中の縦軸は無次元化せん断力 q を、縦軸 は柱長さ比 n をそれぞれ表わし、点線、一点鎖線および実線はそれぞれ曲げ強度式、せん 断強度式および付着割裂強度式を示している。

柱長さ比の増加に伴い曲げ強度、せん断強度および付着割裂強度は共に減少するが、そ の減少度合は曲げ強度が最も大きい。また、n≥1の範囲では主筋量あるいは主筋径に拘 らず、せん断強度と付着割裂強度の減少度合は同程度であるが、若干せん断強度によるも のが大きくなる傾向にある。鉄筋コンクリート部材としての耐力は、柱長さ比が増加する に従って付着割裂強度からせん断強度、曲げ強度の順で決定される。また、主筋量の少な い部材ほど、耐力が曲げ強度で決定される領域が大きくなる。

(に) コンクリート強度の影響

図4.7は曲げ強度式(点線)、せん断強度式(一点鎖線)および付着割裂強度式(実線) とコンクリート強度Feの関係を調べたものである。解析対象とした部材は片側主筋が一段 配筋の4-D13(図4.7(a))および4-D25(同図(b))の架部材であり、両部材ともb=20cm、D =40cm、 $d_1=0, 8$ 、 $\eta=3$ 、 $\sigma_{\gamma}=4000 kgf/cm^2$ 、 $p_w=0.005 および\sigma_{w\gamma}=4000 kgf/cm^2 とした。$

解析対象とした部材が梁であるため、曲げ強度は主筋量の多少に拘らず引張鉄筋の降伏 で決定され、コンクリート強度に拘らずほぼ一定の値を示す。一方、せん断強度式に関し

-

こはp*・σ **=20kgf/cm²と一定であるため、コンクリート強度に拘らず はり機構の負担せ ん断力は一定値を採るが、アーチ機構の負担せん断力がコンクリート強度の増加に伴って 増加するため、結果としてせん断強度は増加する。付着割裂強度式に関してもせん断強度 式と同様にコンクリート強度の増加に伴ってアーチ機構の負担せん断力が増加するため付 着割裂強度は増加する。しかし付着割裂強度式では、はり機構においても最大付着強度が コンクリート強度に比例して増加するため、コンクリート強度の増加に伴う部材強度の増 加率はせん断強度式よりも若干大きい。なお、せん断強度式および付着割裂強度式共に主 筋量が少ない部材ほどコンクリート強度の増加に伴う部材強度の増加率が減少しているが、 この原因はアーチ機構の負担せん断力に関係する係数7の値が小さくなるためである。

鉄筋コンクリート部材の耐力は、コンクリート強度が増加するに従って付着割裂強度、 せん断強度および曲げ強度の順で決定されている。また、同一のコンクリート強度に対し て、主筋量が少なくなるほど各式によって算定される諸強度は低下する。しかしこの場合、 曲げ強度の低下率がせん断強度および付着割裂強度の低下率に比して大きいため、部材耐 力が曲げ強度で決定される領域が大きくなる。

4.4. 付着割裂強度式の耐力予測精度

図4.8および表4.1に 狩野らによる鉄筋コンクリート架13体の付着割裂破壊実験⁽¹²³⁾に 対する付着割裂強度式の耐力予測精度の検証結果を示す。図中の縦軸および横軸は、それ ぞれ実験値Quanおよび計算値Quanを表わし、各データの番号は表4.1あるいは文献[123]の 表3に示されている試験体番号と対応している。なお、せん断補強筋が降伏したと報告さ れているデータについては、データ番号を丸印で囲んでいる。〇および△印はそれぞれ付 着割裂強度式およびせん断強度式によって耐力が決定されたデータであり、●印は〇印の データに対するせん断強度計算値を表わしている。

曲げ強度式、せん断強度式および付着割裂強度式による強度の最小値で与えられる計算 値に対する実験値の比率 Qxxx/QcALの平均値μおよび変動係数vはそれぞれμ=0.994およ びv=9.1%であり、両者の適合性は極めて良好である。一方、付着割裂破壊を生じたにも 拘らずせん断強度式によって耐力が決定されているデータが5体あるが、これらは何れも せん断補強筋が降伏したと報告されているものであり、表4.1に示されるように 付着割裂 強度Qaとせん断強度Qxの差が極めて少ないデータである。また、●印で示されるように付 看割裂破壊を生じたデータに対して、せん断強度式のみによって耐力を算定するとかなり 超大評価となるが、それらに付着割裂強度式を考慮することによって耐力予測精度が極め て向上していることが認められる。

	実験値(tf)	10 A	ţ算值(t	f)	実験値/計算値	計算上の	
NO.	QEXP	Q,	Qs	Q.	Qxxr	破壊形式	
					$\min(Q_1, Q_5, Q_6)$	1	
1	16.0	44.4	16.0	19.0	0.997	せん断	
2	19.0	44.4	20.5	20.5	0.931	せん断	
3	22.4	44.4	25.0	22.7	0.988	付着	
4	12.5	44.3	14.1	17.1	0.888	せん断	
5	16.4	44.3	18.0	18.0	0.910	せん断	
6	18.5	44.3	24.4	18.5	0.995	付着	
7	16.7	44.3	17.0	17.0	0.983	付着	
8	19.7	44.3	24.7	18.9	1.047	付着	
9	20.4	44.3	29.8	20.1	1.015	付着	
10	23.8	44.3	40.0	21.6	1.103	付着	
11	23.0	48.3	25.0	28.4	0.919	せん断	
12	29.1	48.3	41.4	31.3	0.929	付着	
13	43.5	48.3	66.6	35.7	1,220	付着	

図4.8 狩野らの実験データに対する実験値と計算値の比較

図4.9と表4.2および図4.10と表4.3には、それぞれ筆者ら⁽¹⁾⁴⁾ および小谷ら¹⁰⁴¹による 実験データに対する検証結果を示している。なお、これらはすべて主筋の曲げ降伏後に付 者割裂破壊を生じた架部材のデータである。 図中の縦軸および横軸の表示方法は図4.8と 同じであり、□印および△印はそれぞれ曲げ強度式およびせん断強度式で耐力が決定され たデータを表わしている。また、図中の番号は表4.2および表4.3の試験体番号と対応して いる。なお、小谷らの実験データについては文献[69]に示されている32体のうちスラブ付 きでないもの15体を検証対象とした。

Qtar/QcALの平均値および変動係数は、筆者らの実験データ9体に対してμ=1.12および μ=3.8%であり、小谷らの実験データに対しては μ=1.09およびμ=9.6%となっており、何 れのデータに対しても実験値と計算値の対応は極めて良い。また、筆者らのデータのうち 3体はせん断強度式で計算上の耐力が決定されているが、それらは表4.2に示されるよう に曲げ強度計算値との差が極めて少ないデータであり、その他のデータの耐力はすべて曲 げ強度式で決定されている。すなわち、これら24体のデータは最終的には付着割裂破壊を 生しているが、それ以前に主筋が曲げ降伏して最大強度に達したという実験結果と対応し ている。

以上示したように、本章で提案した付著割裂強度式は、終局強度に関して付着割裂破壊 データと曲げ破壊データあるいはせん断破壊データとの判別を精度良く行なうことが可能 である。したがって、曲げ強度式およびせん断強度式に、さらにこの付着割裂強度式を考 慮することによって、曲げ破壊、せん断破壊もしくは付着割裂破壊の何れかを生じる鉄筋 コンクリート部材の終局強度を的確に評価できると考えられる。

4.5. 曲げ降伏後に付着破壊を生じる鉄筋コンクリート部材の変形能力の評価

4.4節で示したように 鉄筋コンクリート部材の付着割裂破壊に関しては、主筋の曲げ降 伏以前に発生する場合と曲げ降伏以後に発生する場合が考えられる。構造物の崩壊型を子 め設定する終局強度型の耐震設計法では、塑性ヒンジを計画しない部材(非靭性部材)に 対しては前者の破壊を防止するだけで十分であるが、塑性ヒンジを計画する部材(靭性部 材)に対しては後者の破壊に対する安全性をも考慮する必要がある。すなわち、靭性部材 では、塑性ヒンジ形成後においても付着割裂破壊によって耐力低下が生じることなく、設 計で要求される変形能力を保持していることが重要である。そこで、本節では曲げ降伏後 に付着破壊を生じる鉄筋コンクリート部材に対する変形能力の評価式を提案し、靭性部材 において付着割裂破壊を防止するための条件を導く。

図4.11は4.4節で示した筆者らの実験データ¹¹¹⁴¹の中でせん断補強筋比のみを実験変数 としたデータNo.1、No.2およびNo.3 (文献[124]では 試験体C5132S、C5134SおよびC5136S

	実験值(tf)	90	十算值(t	f)	実験値/計算値	計算上の	
NO.	0	0.	0.	0.	QEXP	1 INT HA INS	
				4.0	min(Qr,Qs,Qo)	WX 432 //> J	
1	24.7	23.2	22.1	30.7	1.120	せん断	
2	26.8	23.2	28.6	32.7	1.155	曲げ	
3	26.7	23.2	35.2	34.6	1.150	! 曲 げ	
4	25.3	22.8	22.5	26.0	1. 123	せん断	
5	17.5	15.6	28.4	24.7	1.120	曲げ	
6	31.1	30.8	28.6	32.9	1.087	せん断	
7	21.1	20.7	30.3	26.7	1.019	曲げ	
8	26.8	23.2	28.6	32.7	1.155	曲げ	
9	25.6	23.2	28.6	32.7	1.103	曲げ	

表4.2 曲げ降伏後に付着割裂破壊を生じた実験データに対する検証結果(筆者ら「124」)

表4.3 曲げ降伏後に付着割裂破壊を生じた実験データに対する検証結果(小谷ら1891)

No	実験値(tf)	1	†算值(t	f)	実験値/計算値	計算	上の
NO.	Qexp	Q,	Qs	Q.	$\frac{Q_{EXP}}{\min(0, 0, 0)}$	破壊	形式
1	23.3	23.6	37.4	33.0	0.985	dth	14
2	22.8	23.6	37.4	33.0	0.965	dh	14
3	24.4	23.5	42.2	31.0	1.039	曲	14
4	24.6	23.5	42.2	31.0	1.045	th	IF
5	25.3	23.9	57.7	34.8	1.059	rtta	IF
6	23.6	23.9	43.6	32.4	0.988	(#1	17
7	28.0	25.0	42.6	36.6	1.120	rth	IF
8	28.9	25.0	42.9	36.7	1.156	rlfi	if
9	24.1	18.2	35.2	42.8	1. 325	rth	IT
10	23.2	18.3	37.8	43.7	1.267	dH	IF
11	28.3	29.7	43.9	34.3	0.954	itti	15
12	32.0	29.7	56.7	36.5	1.079	曲	げ
13	32.6	29.3	52.3	35.7	1.113	曲	IF
14	32.7	29.7	69.5	38.7	1.103	tth	IF
15	32.3	29.7	69.5	38.7	1.089	曲	付

図4.9 筆者らの実験データに対する実験値と計算値の比較

- 88 -

に相当する。)の荷重-変形曲線と主筋の応力度分布を示したものである。主筋の応力度 は図4.1と同様に応力度-ひずみ度関係を完全弾塑性型と仮定して、各測定点でのひずみ 測定値から換算して求めている。 図中の一点鎖線は主筋の降伏応力度σxを表わし、正載 荷時における曲げ強度到達時(R=0.015rad.;○印)とR=0.02、0.03 および0.04rad.(△、 □および▽印)の各部材角における応力度分布について示している。また、各試験体の荷 重-変形曲線上には曲げ強度計算値を破線で示している。

荷重-変形曲線においてせん断補強筋比が大きい試験体はど、計算上の曲げ強度を維持 する部材角、あるいは付着割裂破壊による耐力低下が顕著となる部材角が増加する傾向が ある。また、各試験体共に曲げ強度到達時以降、付着割裂破壊が生じる部材角に達するま での変移振幅では、上端および下端主筋共に変形量に拘らずほぼ曲げ強度到達時の応力度 分布を維持している。しかし、付着割裂破壊が生じた部材角以上の変形量では付着勾配の

○ : R=0. 015 rad.
△ : R=0. 020 rad.

図4.11 曲げ降伏後に付着破壊を生じた梁部材の荷重一変形曲線と主筋の応力度分布

- 89 -

低下が顕著となり、付着劣化が生じていることが認められる。さらに、各試験体共にせん 断補強筋量に拘らず曲げ強度到達時の主筋の応力度分布の形状は類似しており、曲げ降伏 以前に付着割裂破壊を生じる部材(図4.1参照)と同様に 有効主筋長の範囲で付着勾配が ほぼ一定となっている。

以上の考察より、曲げ降伏が先行する部材に関しても 図4.2と同様な付着抵抗機構が形 成されるものと考えられる。さらに、曲げ降伏後の付着割裂破壊は曲げ強度時に主筋の曲 げ降伏によって有効主筋長し。の範囲に入力される平均付着応力度で。rに対して、その領域 での付着強度 r。が下回ることによって発生するものと推察できる。 ただし、この場合の r。は(4-7)式による最大付着強度 r。とは異なり、図4.12に示すように付着すべり量の増 大や繰り返し載荷による影響で、部材角Rが増加するに従ってr。から低下するものと考え ることができる。

したがって、付着強度で、と相対部材角Rの関係が求められれば、曲げ降伏後に付着破壊 を生じる部材の変形能力を評価することができる。なお、付着割裂破壊時の限界部材角R。。 は図4.12に示すように て、が曲げ強度時の平均付着応力度て、、と等しくなる時の部材角で あるので、実際には て、とRの関係はて、、とR。、の関係を求めることによって得られる。 こ こで、て、、t (4-6)式より

 $ttL, \tau_{vt} \leq d_{v} \cdot \sigma_{vu}/(2 \cdot L_{e})$

ここに、Q, :曲げ強度計算値

σyu:主筋の上限曲げ強度算定用強度

と与えられる。なお、τ,,の上限値; d,,σ,νu/(2.L.)は、有効主筋長L,の範囲で主筋の両

図4.12 付着強度と変形能力の関係

- 90 -

図4.13 付着割裂破壊時の限界部材角Rbuの定義

※にそれぞれのvoの引張応力度と圧縮応力度が生じた場合の主筋回りの平均付着応力度に 相当する。

本章ではて。rとRooの関係を既往の実験データを参考にして求めることにする。 すなわ ち、表4.2に示した筆者らの実験データ¹¹³⁺¹8体(No.1~No.8:なお、No.9は付着特性に 及ぼすキャップタイの影響が大きいので除外した。)を用いて、付着割裂破壊時の限界部 材角Rooと 曲げ強度時の平均付着応力度に対する最大付着強度の比で表わされる付着応力 余裕度てoo/てorの関係を整理することによっててorとRooの関係式を導く。なお、付着割 裂破壊時の限界部材角は図4.13に示すように、実験で得られた荷重-変形曲線において

(a) 第一サイクルの包絡線上での強度が最大強度の90%に低下したときの部材角

(b) 同一変位振幅における第二サイクルの除荷点の強度が 第一サイタル時の強度の80% 以下であるときの除荷点部材角

のうち、小さな方の値と定義した。 学会指針⁽⁴⁾によれば、鉄筋コンクリート部材の信頼 曲げ強度(主筋の降伏強度として JIS規格値を用いて計算した曲げ強度)は、既往の実験 から得られた鉄筋コンクリート部材の曲げ強度の90%程度であると報告されている。 そこ で、上記(a)では 部材耐力が最大強度から信頼曲げ強度程度に低下した時点を想定して、 ^{90%耐力時}を限界部材角とした。また、(b)については繰り返し載荷によって急激な耐力低 下を伴って付着割裂破壊に到る場合を考慮したものである。

図4.14にRuoーでus/てusll保を示す。図中の〇印は筆者らの実験データを表わし、実線 はそれらに対して最小自乗法によって求めた相関曲線を示す。また、比較のため小谷らの 実験データ^(**)に対する結果も●印で示している。点線は後述する靭性部材の付着割裂破 壊に対する防止条件を表わしている。なお、終局強度型耐震設計法では籾性部材は上限曲 ^{行強度}を用いて設計されることを考慮して、各データに対して(4-8)式のQ₁を上限曲げ強 度Q₁、(この場合、実測された主筋の降伏応力度を1.1倍して求めた曲げ強度を採用した。) としててuslを求めた。また、最大付着強度てuslk(4-7)式によった。 筆者らの実験データ8体に対してRooとroo/ronの間には良好な相関関係がみられ、それらを最小自乗法によって整理すると次式が得られる。

一方、小谷らのデータは筆者らのデータに比して同量の付着余裕度に対して2倍程度の 変形能力を有しており、(4-9)式による変形能力の予測値が過小評価する結果となっている。 この原因については、実験における載荷法則の相違によるところが大きいものと考えられ る。両者の実験データの中でて・su/て siの値がほぼ等しい試験体C5136S(表4.20No.3)と 試験体T5(表4.30No.5)の荷重-変形曲線を比較したものを図4.15に示す。 両実験共に

図4.14 Rbu-Tbu/Tbr 関係

図4.15 文献[124]と[69]による付着割裂破壊実験の載荷法則の比較

部材角がR=0.01rad.までの載荷法則は同じであり、図4.14に示されるように限界部材角の 評価においてもR_{6.0}=0.02rad.程度のデータについては実験の違いによる差異は認められな い。しかしながら、R=0.01rad.以降、R=0.04rad.に到るまでの載荷法則について見ると、 筆者らの実験では10回の漸増繰り返し載荷を行なっているのに対して、小谷らの実験では 4回のみであり、R_{6.0}=0.03rad.以上となるデータに対して実験による限界部材角の評価の 違いが極めて大きくなっている。すなわち、この繰り返し回数の差、あるいは制御部材角 の違いが付着劣化の進行度合に影響を及ぼし、付着割裂破壊時の限界部材角に差が生じた ものと考えられる。

このように付着割裂破壊時の限界部材角については、載荷法則などの影響によって一律 に評価することは困難である。しかしながら、実際の地震によって部材に生じる繰り返し が(動的と静的の違いはあるものの)筆者らの採用した載荷法則より厳しいというのは極 めて希であり 安全側の評価を与えるであろうと判断して、筆者らの実験データを(4-9)式 を得る際の評価資料とした。

終局強度型耐震設計法における靭性部材の設計では(4-9)式で与えられる限界部材角R_v。 が設計用保証変形R_oよりも大きいことを確認すればよい。しかしながら、実際の設計手順 を考慮すると、R_v。>R_pを確認するよりも R_oに対する付着割裂破壊の防止条件を提示する 方が好ましい。 そこで、靭性部材の付着割裂破壊防止条件を(4-9)式に基づいて以下のよ うに提案する。

	$\tau_{bf} \leq \min(\tau_{b1}, \tau_{b2})$	******	(4-10)
	$\tau_{b1} = \tau_{bu} / (100 \cdot R_{D} - 1)$		(4-11)
	τ _{b2} = τ _{ba} /1.5		(4-12)
cck.	て。::曲げ強度時の平均付着	応力度	
	(上限曲げ強度を考慮	した(4-8)式による)	
	τ »»:最大付着応力度((4-)	7)式による)	
	Ro :設計用保証変形		

(4-11)式は(4-9)式の限界部材角R₀、を設計用保証変形R₀に読み変えて、R₀に対する付着 強度を算出する式として略算的に表わしたものである。(4-12)式は(4-9)式が R₀、 \leq 0.025 rad.以下のデータに対して危険側の評価を与える場合があることを考慮して設けた付着強 度の上限値である。さらに、(4-10)式が靭性部材における付着破壊防止条件であり、設計 手順としては、上限曲げ強度に対して(4-8)式から算出される平均付着応力度 τ u_{f} が、R₀ に対して(4-11)式から求められる付着強度でいと(4-12)式による付着強度の上限値でいの 両方を下回ることを確認すればよい。 ちなみに、設計用保証変形をRo=0.03rad.とすると 付着割裂破壊防止条件は ていきてい/2となり、曲げ強度時の平均付着応力が(4-7)式によ る最大付着強度の1/2以下であることを確認すればよい。

4.6. まとめ

本章では、鉄筋コンクリート架および柱部材の付着割裂強度式および靭性部材に対する 付着割裂破壊防止条件をそれぞれ提示した。以下に、鉄筋コンクリート部材の付着割裂強 度に関して得られた知見を要約する。

- 1)鉄筋コンクリート部材の付着抵抗機構は、有効主筋長L.を考慮し、せん断補強筋の強度を無限大と仮定したはり機構によってモデル化できる。この場合の降伏条件は、主筋回りの平均付着応力度が最大付着強度に達することと、コンクリート斜め圧縮束材の応力が圧縮強度に到達していることである。なお、本章では最大付着強度は藤井・ 森田式によった。
- 2) 鉄筋コンクリート部材の付着割裂強度は、付着抵抗機構(はり機構)の強度と等価せん断補強筋係数要,を考慮したアーチ機構の強度を累加することによって、(4-6)式で与えられる。
- 3)鉄筋コンクリート部材の終局強度理論値は、曲げ強度式、せん断強度式((3-1)式)および付着割裂強度式による強度のうちの最小値で与えられる。
- (1)既往の付着割裂破壊が先行した実験データに対する付着割裂強度式の耐力予測精度は 良好である。また、曲げ強度式およびせん断強度式に、さらにこの付着割裂強度式を 考慮することによって、曲げ破壊、せん断破壊および付着割裂破壊の何れかを生じる 鉄筋コンクリート部材の終局強度を適切に評価することができる。
- 5) 靭性部材に対する付着割裂破壊防止条件は、曲げ強度時の平均付着応力度で。。((4-8) 式)が設計用保証部材角Roにおける付着強度で。以下であるという条件より(4-10)式 で与えられる。

第5章 鉄筋コンクリート部材の靱性評価式

5.1. はじめに

本論で対象としている終局強度型耐震設計法(学会指針)⁽⁴⁾は、地震時における構造物 の最終崩壊形(梁降伏先行型の全体崩壊形)を予め設定した設計法である。したがって、 塑性ヒンジを計画しない部材(非靭性部材)と計画する部材(靭性部材)とでは、自ずと せん斯設計手法が異なったものとなる。前者については3章で示したせん斯強度式によっ て部材の保有するせん断耐力が設計用応力を上回ることを確認し、部材がせん断破壊を生 じないことを保証すればよい。一方、後者においてはせん断強度式によって算定される保 育せん断耐力が曲げ強度(上限曲げ強度)を上回っていることを確認し、部材が曲げ降伏 することを保証すると共に、部材に要求する変形量(設計用保証変形)以下で曲げ降伏後 のせん断破壊、あるいはその他の要因によって急激な耐力低下を生じないことを保証する 必要がある。すなわち、靭性部材に対する設計ではせん断強度のみならず、最大強度時以 降の変形能力(靭性)を適切に評価することが重要になる。

そこで、本章ではまず、マクロモデルによる鉄筋コンクリート架および柱の荷重-変形 解析法を提案する。提案する荷重-変形解析法は2章で示した『若林・南理論』の考え方 を基礎としたものであり、軸力、曲げおよびせん断の組合せ応力状態にある部材に対して せん断破壊、曲げ破壊の区別なく統一的にせん断力-変形(相対部材角)関係を求めるこ とが可能である。筆者らが行なった鉄筋コンクリート柱の曲げせん断実験のデータ12体に 対して解析結果と実験結果を比較し、解析モデルの妥当性を検証する。さらに、せん断補 堕筋比、主筋比、軸力比および柱長さ比についてパラメトリック解析を実行し、鉄筋コン クリート部材の変形能力に及ぼす主要構成因子の影響を検討する。

また章の後半では、上記の荷重-変形解析法を応用して、学会指針に適用可能な靭性評 価式の誘導を行なう。さらに、既往の曲げ破壊が先行した実験データ19体に対する評価式 の変形能力予測精度を検証し、実用設計式としての有効性を示す。

5.2. 荷重-変形解析法の適用範囲と基本仮定

解析対象とする部材は、矩形断面で主筋が対称配筋されており、かつ、せん断補強筋が 主筋に垂直に配筋されている鉄筋コンクリート梁および柱とする。それらの部材には逆対 称の曲げモーメントとせん断力が作用し、さらに、柱の場合には一定量の軸方向力が同時 に作用しているものとする。なお、付着割裂破壊を生じる部材は適用範囲外とする。 本章で示す荷重一変形解析法は、若林・南理論を拡張、応用したものである。したがっ
て、鉄筋コンクリート部材は 図2.1に示したような「はり機構」と「アーチ機構」の2種 類のせん断抵抗機構によってせん断力が伝達されるものと仮定する。また、コンクリート の引張強度は無視する。なお、若林・南理論は極限解析における下界定理を利用し、鉄筋 コンクリート部材の終局せん断強度のみに着目したものであり、鉄筋およびコンクリート は共に完全剛塑性体と仮定している。しかし本解析では、鉄筋およびコンクリートの力学 的特性は材料試験から得られるものに近いものと仮定し、はり機構およびアーチ機構の各 終局状態(最大強度時)のみにおいて、コンクリート斜め圧縮束材の角度あるいは主筋お よびせん断補強筋の応力度分布などが若林・南理論で仮定したものと一致するものとする。 解析の概要は、以下の通りである。

まず、はり機構およびアーチ機構のそれぞれが負担する断面幅および終局強度時に負担 する軸力を若林・南理論によって与えられる負担割合によって決定する(5.3節)。 各抵 抗機構をトラス材に置換し、それぞれに対して変形の適合条件と材料の構成条件を設定し、 任意の変形(相対部材角)に対して応力の釣合条件を満足させることによって各抵抗機構 のせん断力を求める(5.4節、5.5節)。さらに、はり機構とアーチ機構のそれぞれに対し て得られたせん断力を累加することによって、鉄筋コンクリート部材としてのせん断力と 変形関係を求める(5.6節)。

5.3. はり機構およびアーチ機構の負担軸力

若林、南理論では、鉄筋コンクリート部材の終局せん断強度がはり機構による強度とア - チ機構による強度を累加することによって得られ、その理論解が閉解で与えられるとこ ろに特徴がある。さらに、この理論では図5.1に示すように、各せん断抵抗機構の強度ベク トルから終局強度時の負担せん断力および負担軸力を求めることができる。 図5.1の実線、 敬線および点線は、それぞれ鉄筋コンクリート部材、はり機構およびアーチ機構のn-q 相関曲線を表わし、了、了。および了。はそれぞれの強度ベクトルを示している。また、表 5.1には若林・南理論から得られた鉄筋コンクリート部材のn-q相関方程式と、終局強 度時におけるはり機構およびアーチ機構の無次元化負担せん断力(。q。および,q。)と無次元 化負担軸力(。n。および,n。)をそれぞれ示している^(D)。 なお、図5.1に示されるn-q相関 曲額上の特定点:X1(i=0~7)の値および方程式に用いた記号は表2.3および表2.4による。

(注) 各せん断抵抗機構の負担軸力および負担せん断力の表示方法について: 本章では荷重-変形解析法の誘導する上で、若林・南理論から求められる終局強度時の負担力とそうでない場合の負担力を区別するために、特に終局強度時の場合には 各負担力の記号に添字uを付けている。

図5.1 はり機構およびアーチ機構の終局強度時の負担軸力と負担せん断力

- 97 -

: $q_u = (\sqrt{4(n+2\cdot\Phi)(1-n-2\cdot\Phi)+\eta^2}-\eta)$	/2 (2-31)
ь q = 0	.q. = q.
$b n_u = -2 \cdot \Phi$	$n_w = n - b n_w$

$: q_u = \lambda_1 (n-n_1) + q_1$	····· (2-32)
$_{b}q_{u} = \Psi \cdot d_{1} \cdot (q_{u}-q_{1})/(q_{2}-q_{1})$	$_{\mu}q_{\mu} = q_{\mu}{\mu}q_{\nu}$
$\mathbf{b}\mathbf{n}_{u} = \Psi \cdot (\mathbf{d}_{1} + \eta) (\mathbf{n}_{-}\mathbf{n}_{1}) / (\mathbf{n}_{2} - \mathbf{n}_{1}) - 2 \cdot \Phi$	$n_u = n - b n_u$
: $q_u = \delta \left\{ \sqrt{4 \cdot n_* (1 - n_*) + \eta^2} - \eta \right\} + \Psi \cdot d_1$	(2-33)
pq _w = Ψ·d ₁	$\mathbf{q}_{u} = \mathbf{q}_{u} - \mathbf{b} \mathbf{q}_{u}$
$bn_u = \Psi \cdot (d_1 + \eta) - 2 \cdot \Phi$	* n • = n - • n •
	•••••••
: $q_{w} = \delta (\sqrt{1 + \eta^{2} - \eta}) + \Psi \cdot d_{1}$	····· (2-34)
${}_{\mathfrak{b}} q_{\mathfrak{u}} = \Psi \cdot d_{\mathfrak{l}}$	$\mathbf{q}_{u} = \delta \left(\sqrt{1+\eta^{2}} - \eta\right)$
$b \Pi_{u} = \Pi - \Pi_{u}$	•n _u = δ
$: q_{\bullet} = \delta \left(\sqrt{4 \cdot n_{\bullet} (1 - n_{\bullet}) + \eta^{2}} - \eta \right) + \Psi \cdot d_{1}$	(2-35)
squ = Ψ·di	$*q_u = q_u - pq_u$
$\mathbf{b} \mathbf{n}_{u} = \Psi \cdot (\mathbf{d}_{1} - \eta) + 2 \cdot \Phi$	$n_u = n - b n_u$
$q_{u} = \lambda_{2}(n-n_{s}) + q_{s}$	(2-36)
$\mathfrak{sq}_{\mathfrak{s}} = \Psi \cdot \mathfrak{d}_1 \cdot (\mathfrak{q}_{\mathfrak{s}} - \mathfrak{q}_{\mathfrak{s}}) / (\mathfrak{q}_{\mathfrak{s}} - \mathfrak{q}_{\mathfrak{s}})$	$a q_u = q_u - b q_u$
$\mathfrak{sn}_{\mathfrak{u}} = \Psi \cdot (\mathfrak{d}_1 - \eta) (\mathfrak{n} - \mathfrak{n}_{\mathfrak{s}}) / (\mathfrak{n}_{\mathfrak{s}} - \mathfrak{n}_{\mathfrak{s}}) + 2 \cdot \Phi$	"n." = u-"u
$q_{\mu} = {\sqrt{4(n-2\cdot\Phi)(1-n+2\cdot\Phi)+n^2}-n}$	/2 (2-37)
	14 01)
bq = 0	.0. = 0.
	$\begin{array}{l} : \ q_{u} = \left\{\sqrt{4(n+2\cdot\Phi)(1-n-2\cdot\Phi)+\eta^{-2}}-\eta\right\}\\ \circ q_{u} = 0\\ \circ n_{u} = -2\cdot\Phi \\ \end{array}$ $\begin{array}{l} : \ q_{u} = \lambda_{1}(n-n_{1})+q_{1}\\ \circ q_{u} = \frac{1}{2}\cdot\frac{1}{$

表5.1 鉄筋コンクリート部材のn-q相関方程式と 各せん断抵抗機構の負担せん断力および負担軸力

- 98 -

各抵抗機構の初期負担軸力

はり機構およびアーチ機構に作用する初期負担軸力:。N1および、N1は、鉄筋コンクリー ト部材に軸力のみが作用している状態で、平面保持仮定から得られるコンクリート部分お よび主筋部分の負担軸力:。N1および、N1によって次式で与えられるものとする。

»Ne		. N 1	***************************************	(5-1)
.Nr	÷	cN.		(5-2)

各抵抗機構の終局強度時における負担軸力

はり機構およびアーチ機構に対して、それぞれのせん断力-変形関係における最大強度 時に作用する軸力は、原則的には、若林・南理論から求められる終局強度時の負担軸力: »N。および、Nuで与えられるものとする。ただし、次節で述べるように、アーチ機構におけ る最大強度時の部材角、Ruがはり機構における最大強度時部材角。Ruに比して小さな場合に は、両機構の負担軸力は若林・南理論によるものと若干異なる値を採る。

各抵抗機構の負担軸力

任意の部材角Rにおけるはり機構およびアーチ機構の負担軸力:。Nおよび。Nは、Rとアー チ機構における最大強度時の部材角。Ruの大小関係によって次式で与えられるものとする。

R≤.R.のとき				
$_{b}N = (_{b}N_{u}{b}N_{i})$	· .Q/ .Q. + .N.			(5-3
•N = N - •N		********	••••	(5-4
R>.R.のとき				
•N = N - •N		******	******	(5-5
				15-0

ここに、。Qおよび、Qはそれぞれ任意の部材角におけるはり機構およびアーチ機構による 負担せん断力であり、.R。は後述の5.5.5節で与えられる(5-77)式による。 また、(5-6)式 のθ、はアーチ機構における最大強度時のコンクリート圧縮束材の材軸と成す角度を表し、 後述の(5-71)式(5.5.4節)で与えられる。

(5-3)式は、部材角がR≤.R.の場合に図5.2に示すように、はり機構の負担軸力。Nが負担

図5.2 はり機構の負担軸力

図5.3 はり機構およびアーチ機構のせん断力-変形関係における仮定

^{せん断力。Q}に応じて初期軸力。N₁と最大強度時の負担軸力。N₄の間で線形比例して変化する ものと仮定したものである。 また、(5-6)式はアーチ機構において最大強度に達した後の ^{コンクリート}斜め圧縮束材に作用する応力の低下に伴う負担軸力の低下を考慮したもので あり、(5-5)式は その低下分をはり機構に負担させることを意図したものである。

はり機構における最大強度時部材角。R_aが.R_aに比して小さな場合(図5.3(a))には、R= sR_aの時点で はり機構およびアーチ機構の負担軸力はそれぞれ。N_aおよび、N_aに達し、さら に、R=.R_aとなるまで それらの軸力を維持した状態で両機構は変形するものとする。この 場合、R=.R_a~.R_aにおいて、はり機構の負担せん断力は最大負担せん断力。Q_aを維持する。 また、アーチ機構の負担せん断力の増加はコンクリート斜め圧縮束材の材軸と成す角度 θ が増加することによってもたらされ、R=.R_aで最大負担せん断力、Q_aとなる。 一方、。Ruが、Ruに比して大きな場合(図5.3(b))には、R=、Ruの時点ではり機構および アーチ機構は共に最大せん断力を負担するものと仮定している。この場合、はり機構の負 担せん断力は bQuに比して小さな値を採るので、負担軸力も。Nuとは異なった値となる((5 -3)式)。したがって、アーチ機構の負担せん断力および負担軸力も。Quおよび、Nuとは異 なった値を採るが、負担せん断力については、Quとの差が極めて小さくなるので、この差 を無視して、以後の計算を実行することにする。

各抵抗機構の負担断面幅

はり機構およびアーチ機構の負担断面幅: sbおよび.bについても、若林・南理論に従っ て次式で与えられるものとする。

$bb = 2 \cdot Q_u / (d \cdot F_c)$	******************************	(5-7)
.b = bb		(5-8)

5.4. はり機構におけるせん断力-変形関係

5.4.1. 応力の釣合条件

はり機構は図5.4に示すように 主筋、せん断補強筋、および断面幅が。bで材軸とゆの角 度を成すコンクリート斜め圧縮束材で構成されるものとする。材軸方向(以後、軸方向と いう。)の釣合いより、はり機構の負担軸力。Nは材端において主筋に作用する引張力。Tお よび圧縮力。Cとコンクリートに作用する軸方向圧縮応力度。σ」によって

 $\delta N = \delta C - \delta T + \delta D \cdot d \cdot \delta \sigma_{\perp} \qquad (5-9)$

と与えられる。ここで、主筋に生じる平均応力度を σ_s (ただし、引張力を正とする。)お よび引張主筋比を p_s (= $a_1/(b \cdot D)$)とすると

 $_{b}T - _{b}C = 2 \cdot p_{t} \cdot b \cdot D \cdot \sigma_{s}$ (5-10)

となり、(5-9)式および(5-10)式より、軸方向圧縮応力度。σ」は次式で与えられる。

 $b \sigma_{L} = (2 \cdot p_{1} \cdot b \cdot D \cdot \sigma_{S} + b N) / (b \cdot d) \dots (5-11)$

また、材軸と直交する方向(以後、橫方向という。)の釣合いより、せん断補強筋に作 用する引張応力度をσ w およびせん断補強筋比をpwとすると、コンクリートに作用する横 方向圧縮応力度 ωσ,は次式で与えられる。

 $b \sigma_{t} = p_{w} \sigma_{w} b / b$ (5-12)

一方、主筋に生じる平均付着応力度で。は、部材長をLおよびコンクリート斜め圧縮束材の応力度を。σ。とすると

 $\tau_{B} = {}_{b}\sigma_{a} \cdot \sin\phi \cdot \cos\phi = ({}_{b}T + {}_{b}C)/({}_{b}b \cdot L) \quad \dots \dots \quad (5-13)$

となる。また、材端に作用する曲げモーメント。Mとせん断力。Qの間には、

 $_{b}Q = 2 \cdot _{b}M/L = (_{b}T + _{b}C) \cdot d/L \cdots (5-14)$

の関係が成立する。したがって、コンクリート斜め圧縮束材の応力度。σ。は、(5-13)式および(5-14)式より

となる。ここで、。てははり機構に生じる平均せん断応力度である。

さらに、図5.5に示すようなコンクリートの微小要素を考えると、 コンクリートの引張 応力は無視しているので、材軸とφの角度を成す軸に直交する方向の応力度は0となり、 ¹⁰ μ, *σ, *σ «および «τ の間には以下の関係が成立する。

$b\sigma_{L} = bT \cdot \cot \phi$	******************************	(5-16)
$b\sigma_{1} = b\tau \cdot tan\phi$	***************************************	(5-17)
b σ d = b σ L + b σ t		(5-18)

図5.5 コンクリート微小要素の応力度の釣合い

5.4.2. 変形の適合条件

はり機構における微小要素として、図5.6に示すような一辺の長さが1で、斜材の角度 がすの長方形トラス材を考える。幾何学的関係より、軸方向ひずみ度。Eiによるせん断ひ ずみ度。Ri、横方向ひずみ度。Eiによるせん断ひずみ度。Ri、および斜材のひずみ度。E。に よるせん断ひずみ度。Roは、それぞれ次式で与えられる。

»RL	=	»ει·cotφ	•••••••	(5-19)
»R.		νει·tanφ	·····	(5-20)
6Ra	=	$b \varepsilon d \cdot (tan \phi + cot \phi)$		(5-21)

したがって、総せん断ひずみ度。Rは

 $bR = bR_{L} + bR_{3} + bR_{4}$ $= (b \varepsilon_{L} + b \varepsilon_{4}) \cdot \cot \phi + (b \varepsilon_{3} + b \varepsilon_{4}) \cdot \tan \phi \qquad (5-22)$

となる。本解析では、総せん断ひずみ度。Rがはり機構における相対部材角に相当するものとする。

図5.6 はり機構の変形の適合条件

5.4.3. コンクリート斜め圧縮束材の角度

若林・南理論によれば、部材の終局せん断強度時におけるはり機構のコンクリート斜め 圧縮束材の材軸と成す角度々は、主筋の材長に対する付着力Ruが最大値を採るという条件 から、々=45'と仮定している((2-3)式)。本解析法でも、はり機構の最大強度時以前の 変形過程におけるコンクリート斜め圧縮束材の角度は若林・南理論に従って、

と仮定する。一方、最大強度時以後の変形過程では、コンクリート斜め圧縮束材の角度は 負担せん断力,Qに応じて変化するものと仮定し、次式で与える。

 $\phi = \tan^{-1}(\mathbf{b} \cdot \mathbf{d} \cdot \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{d} \cdot \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{d} \cdot \mathbf{b} \cdot \mathbf{b$

ここで、。σ₁。は はり機構の最大強度時におけるコンクリートに作用する横方向圧縮応 力度であり、はり機構およびアーチ機構のそれぞれにおける最大強度時の部材角: »R。お ^{よび}・R_{*}の大小関係によって、(5-25)式および(5-26)式で与えられる。なお、»R。は後述の 5.4.5節で与えられる(5-42)式による。

₀R,≤.R.のとき

 sRu>.Ruのとき

。σ_t, = ,σ_t, ······(5-26) ここに、,σ_t, : 部材角, R_aにおける横方向圧縮応力度

(5-24)式は、最大強度時以降の変形過程においても、コンクリートに作用する横方向圧 縮応力度。σ、が 最大強度時の横方向圧縮応力度。σ、。を維持するものと仮定し、(5-17)式 から求めたものである。なお、横方向圧縮応力度が一定値を採ることは、せん断補強筋の ひずみ度。ε、が一定値を採ることに対応するが、本解析法でははり機構の最大強度時以後 のせん断補強筋のひずみの増加およびそれに伴う応力の増加は、すべてコンクリートの拘 束効果に寄与するものと考え、後述のはり機構およびアーチ機構におけるコンクリート斜 め圧縮束材の応力-ひずみ関係に考慮するものとした。

5.4.4. 構成材料の力学的特性

はり機構を構成する主筋の平均応力度 σ_s と平均ひずみ度 ε_s の関係は、弾性係数を E_s と すると(5-27)式で与えられる。

 $\sigma_s = E_s \cdot \varepsilon_s$ (- $\varepsilon_x \le \varepsilon_s \le \varepsilon_x$)(5-27) ここに、 ε_x :主筋の降伏ひずみ度(引張を正とする。)

また、主筋の平均ひずみ度 ε sと軸方向ひずみ度 se o間には

の関係が成立する。ここで、、٤ι、は主筋の初期ひずみ度であり、次式で与えられる。

»ειι = σsι/Es = -«N1/(2·p1·b·D·Es) ············(5-29) ここに、σsι:主筋の初期応力度(引張を正とする。)

せん断補強筋の応力度σwとひずみ度εwの関係は(5-30)式で与えられる。

 $\sigma_w = E_{ws} \cdot \varepsilon_w$ (0 $\leq \varepsilon_w \leq \varepsilon_{wv}$)(5-30) ここに、 E_{ws} : せん断補強筋の弾性係数 ε_{wv} : せん断補強筋の降伏ひずみ度

図5.7 はり機構における主筋およびせん断補強筋の応力度-ひずみ度関係

また、せん断補強筋のひずみ度 ε *と横方向ひずみ度。 ε,の間には次式の関係がある。

なお本解析では、主筋の平均ひずみ度をsは図2.1で示されるような一端で引張力が、他 端で圧縮力が作用する状態での材長に対する平均的なひずみ度として定義しており、材端 部での引張あるいは圧縮降伏による局部的な塑性ひずみは考慮していない。したがって、 (δ -27)式に示されるように、 ε sは常に降伏ひずみ度 ε v以下であると仮定している(図5. 7(a)参照)。また、せん断補強筋のひずみ度 ε vについても部材全体に分布するせん断補 強筋の平均的なひずみ度を考えているため、局所的なせん断補強筋の降伏は考慮していな い。したがって、 ε vも(δ -30)式で与えられるように常に降伏ひずみ度 ε vv以下であると 仮定している(図5.7(b)参照)。

コンクリート斜め圧縮東材の応力度。 σ 。とひずみ度。 ε 。の関係は、Kent-Park式^(1:0)を 参考にして、(5-32)式および(5-33)式で与えられるものとする(図5.8参照)。ただし、 本解析では、応力下降直線の勾配2。の与えられ方がKent-Park式とは異なり(5-34)式で与 えられるものとし、最大応力時のひずみ度 ε 。はコンクリート強度に拘らず一律に ε 。=0.0 02とした。さらに、Kent-Park式では ε 。。の面値を横補強筋体積比psを用いて算定している が、本解析では略算的にコンクリートコアの面積を0.64・b・Dとし、せん断補強筋比pwを用 いて算定するものとした。なお、(5-32)式~(5-34)式においてコンクリート強度の単位は Xef/cm³とする。

図5.8 はり機構におけるコンクリート斜め圧縮束材の応力度-ひずみ度関係

bEc≦Eoのとき

 $b \sigma = F_{c} \cdot \{2 \cdot b \varepsilon c / \varepsilon \circ - (b \varepsilon c / \varepsilon \circ)^{2}\} \quad \dots \quad (5-32)$ $b \varepsilon c > \varepsilon \circ O \geq \pm$ $b \sigma a = F_{c} \cdot \{1 - Z_{b} \cdot (b \varepsilon c^{-} \varepsilon \circ)\} \quad \dots \quad (5-33)$

second and a provide large to second second size

(5-34)式は、 Kent-Park式で定義されている横補強筋による拘束効果を考慮した応力下 降直線の勾配に、さらに、限界せん断補強筋比pwoに対するせん断補強筋比の比率の影響を 考慮した係数レ1、および軸力比の影響を考慮した係数レ3をそれぞれ乗じたものである。 なお、限界せん断補強筋比は2章でも述べたように、若林・南理論によるはり機構におい て、上端および下端主筋を共に降伏させるのに必要な最少せん断補強筋比である。したが って、係数レ1は曲げ降伏破壊に対する余裕度の影響を下降勾配に考慮することを意図し たものである。また、係数レ1およびレ3については、筆者らの行なった鉄筋コンクリート 柱の曲げせん断実験⁽¹⁾²³を参考にして経験的に定めた。

なお、コンクリート斜め圧縮束材のひずみ度。とことトラスモデルにおける斜材のひずみ

なお、コンクリート斜め圧縮束材のひずみ度。Ecとトラスモデルにおける斜材のひずみ 度。Ecの間には次式の関係がある。

s ε c = s ε a ······ (5-35)

5.4.5. はり機構におけるせん断力-変形関係

軸方向ひずみ度。8ょと負担せん断力。Qの関係は、(5-11)式、(5-16)式、(5-27)式、(5-2 8)式および(5-29)式より

 $b \varepsilon_{L} = (bQ \cdot \cot \phi - bN + bN_{1})/(2 \cdot p_{1} \cdot b \cdot D \cdot E_{s}) \quad \dots \quad (5-36)$

と与えられる。横方向ひずみ度。8,については、(5-12)式、(5-17)式、(5-30)式および(5-31)式より(5-37)式を得る。

 $b \varepsilon_{i} = b Q \cdot \tan \phi / (p_{w} \cdot b \cdot d \cdot E_{wb}) \qquad (5-37)$

さらに、斜材のひずみ度。ε。は、(5-15)式、(5-23)式、(5-24)式、(5-32)式、(5-33)式 および(5-35)式より、(5-38)式および(5-39)式で与えられる。

最大強度時以前 (R≤.R_{*}のとき) * $\varepsilon_{0} = \varepsilon_{0} \cdot (1 - \sqrt{1 - 2 \cdot Q/(b \cdot d \cdot F_{c})})$ (5-38)

最大強度時以降(R>.R,のとき)

 $b \mathcal{E}_{\sigma} = \mathcal{E}_{\sigma} + (1 - [1 + (bQ/(bD \cdot d \cdot b \sigma \cdot v))^{2}] \cdot b \sigma \cdot v/F_{c}) / Z_{b}$(5-39)

はり機構のせん断力 - 変形関係は、最大強度時以前に対しては(5-22)式、(5-23)式、(5-36)式、(5-37)式および(5-38)式によって(5-40)式で、また、最大強度以降に対しては(5-22)式、(5-24)式、(5-36)式、(5-37)式および(5-39)式によって(5-41)式でそれぞれ与えられる。

最大強度時以前

$$sR = \frac{sQ - sN + sN_1}{2 \cdot p_1 \cdot b \cdot D \cdot E_s} + \frac{sQ}{p_w \cdot b \cdot d \cdot E_{ws}} + 2 \cdot \varepsilon_0 \cdot (1 - \sqrt{1 - \frac{2 \cdot sQ}{sb \cdot d \cdot F_c}}) \quad \dots \quad (5-40)$$

最大強度時以降

$${}_{\mathfrak{s}} \mathbb{R} = \frac{({}_{\mathfrak{s}} \mathbb{Q} \cdot \cot \phi - {}_{\mathfrak{s}} \mathbb{N} + {}_{\mathfrak{s}} \mathbb{N}_{1}) \cdot \cot \phi}{2 \cdot \mathfrak{p}_{1} \cdot \mathfrak{b} \cdot \mathbb{D} \cdot \mathbb{E}_{\mathfrak{s}}} + \frac{{}_{\mathfrak{s}} \mathbb{Q} \cdot \tan^{2} \phi}{\mathfrak{p}_{\mathfrak{w}} \cdot \mathfrak{b} \cdot d \cdot \mathbb{E}_{\mathfrak{w}} \mathfrak{s}} + (\tan \phi + \cot \phi) \cdot [\varepsilon_{\mathfrak{s}} + \frac{1}{Z_{\mathfrak{s}}} - (1 + (\frac{{}_{\mathfrak{s}} \mathbb{Q}}{{}_{\mathfrak{s}} \mathfrak{b} \cdot d \cdot {}_{\mathfrak{s}} \sigma_{\mathfrak{s}}})^{2}) \cdot \frac{{}_{\mathfrak{s}} \sigma_{\mathfrak{s}}}{F_{\mathfrak{c}} \cdot Z_{\mathfrak{s}}}]$$

$$\cdots \cdots \cdots \cdots \cdots \cdots (5-41)$$

また、最大強度時の部材角。R.は(5-40)式より、次式で与えられる。

5.4.6. はり機構における主筋の応力

主筋に生じる平均応力度σsと 負担せん断力。Qの間には、(5-27)式、(5-28)式、(5-29) 式および(5-36)式より

 $\sigma_{s} = ({}_{b}Q \cdot \cot \phi - {}_{b}N)/(2 \cdot p_{s} \cdot b \cdot D) \qquad \dots \qquad (5-43)$

の関係が成立する。また、上式に(5-3)式を代入することによって次式を得る。

$$\sigma_s = \left({}_{b}Q \cdot \cot \phi - \left({}_{b}N_u - {}_{b}N_t \right) \cdot {}_{b}Q / {}_{b}Q_u - {}_{b}N_t \right) / \left(2 \cdot p_1 \cdot b \cdot D \right)$$

一方、はり機構の最大強度時における負担軸力は、主筋の平均応力度をσs。とすると(5-43)式より

 $sN_* = sQ \cdot \cot \phi - 2 \cdot p_1 \cdot b \cdot D \cdot \sigma_{s*} \cdots (5-45)$

と与えられ、さらに、(5-29)式で与えられる主筋の初期応力度 σ_{s1} を考慮すれば、(5-44) 式は(5-46)式となる。

 $\sigma_{s} = (\sigma_{sv} - \sigma_{si}) \cdot \sqrt{\rho_{v}} + \sigma_{si} \qquad (5-46)$

材端部における引張側および圧縮側の主筋の応力度をそれぞれσs,およびσsc(共に引 張を正とする。)とすると、両者には(5-10)式より次式の関係が成立する。

 $\sigma_{s} = (\sigma_{s1} + \sigma_{sc})/2$ (5-47)

また、図5.9に示すはり機構の。n-。q相関曲線より、終局せん断強度時における負担軸力 比が。n。 $\leq -2 \cdot \Phi + \Psi \cdot (d_1 + \eta)$ の場合には(ただし、 $\Psi > 2 \cdot \Phi / \eta$ のときは $\Psi = 2 \cdot \Phi / \eta$ とする。 記号は表2を参照)、引張主筋が降伏している状態にある。したがって、 σ_{s_1} および σ_{s_2} は、 $\sigma_{s_1} = \sigma_{s} \sigma$ 条件の下で(5-46)式および(5-47)式によって

と求められる。同様にして、 $n_u \ge 2 \cdot \Phi + \Psi \cdot (d_1 - \eta)$ の場合には、圧縮主筋が降伏する条件より、

σ	sc	-	-(a	Y	+	σ_{si} , $\rho_{0}/\rho_{0} + \sigma_{si}$	•••••	(5-50)
σ	51	=	2.0	s	-	σ sc		(5-51)

となる。一方、終局せん断強度時に主筋は未降伏で、せん断補強筋のみが降伏している状態、すなわち、-2・Φ+Ψ・(d₁+η)<₀n_{*}<2・Φ+Ψ・(d₁-η)の場合には、(5-52)式から(5-5 §)式で与えられる。

図5.9 bn-bq相関曲線

- 110 -

ono≦onのとき

 $\sigma_{st} = (\kappa_1 \cdot \sigma_2 - \sigma_{s1}) \cdot {}_{s} Q / {}_{s} Q_{u} + \sigma_{s1} \qquad \dots \dots \dots \dots \dots \dots (5-52)$ $\sigma_{sc} = 2 \cdot \sigma_{s} - \sigma_{s1} \qquad \dots \dots \dots \dots \dots \dots \dots (5-53)$ $c \in [\nabla \cdot (d_1 + \eta) - {}_{s} n_u] / (2 \cdot \Phi)$

sn.≥sq.のとき

	$\sigma_{sc} = -(\kappa_c \cdot \sigma_v + \sigma_{si}) \cdot {}_bQ/{}_bQ_u + \sigma_{si}$	***********	(5-54)
	$\sigma_{si} = 2 \cdot \sigma_s - \sigma_{sc}$		(5-55)
C C K.	$\kappa_{c} = -(\Psi \cdot (d_{1} - \eta) - h_{u})/(2 \cdot \Phi)$		

以上示したように、本解析法では主筋の応力度分布を線形と仮定しているため、両材端 部における主筋の応力度、および材中央部における主筋の応力度(平均応力度)を負担せ ん断力から簡単に求めることができる。

5.5. アーチ機構におけるせん断力-変形関係

5.5.1. 応力の釣合条件

アーチ機構は図5.10に示すような断面幅が.bで、材軸とθの角度を成すコンクリート斜 め圧縮東材のみによって構成されるものとする。軸方向および横方向の約合いより、アー チ機構の負担軸力.N および負担せん断力.Qは、軸方向圧縮応力度.σおよび平均せん断応 力度.τによってそれぞれ次式で与えられる。

.N = .b·D·k·.σ (5-56) .Q = .b·D·k·.τ (5-57) ここに、k:断面せいDに対するコンクリート斜め圧縮束材のせいの比

また、幾何学的関係により、.σおよび.τとコンクリート斜め圧縮束材の応力度.σ。の 間には次式が成立する。

. 0	= $\sigma_{d} \cos^{2} \theta$	***********	(5-58)
.τ	= $\sigma_{a} \cdot \sin\theta \cdot \cos\theta$		(5-59)

一方、断面せい比kについても幾何学的に(5-60)式となる。

図5.10 アーチ機構

 $k = 1 - \eta \cdot \tan \theta \qquad (5-60)$

したがって、コンクリート斜め圧縮束材の応力度.σ。と負担せん断力.Qの関係は、(5-5 7)式、(5-59)式および(5-60)式より、次式で与えられる。

 $\boldsymbol{\sigma}_{\boldsymbol{\sigma}} = (1 + \cot^2 \theta) \cdot \boldsymbol{Q} / \{ (\cot \theta - \eta) \cdot \boldsymbol{b} \cdot \boldsymbol{D} \} \quad \dots \dots \quad (5-61)$

5.5.2. 変形の適合条件

アーチ機構における部材変形は、図5.11(a)に示されるような剛体回転によって与えられるものと仮定する。したがって、アーチ機構における変形要素としては、コンクリート斜め圧縮束材のひずみ度のみを考慮する。ここで、はり機構の場合と同様に、コンクリート 約5.11(b))

図5.11 アーチ機構の変形の適合条件

- 112 -

を考え、斜材のひずみ度を、E。とすると、せん断ひずみ度、Bは次式で与えられる。

 $\mathbf{R} = \mathbf{e} \cdot \mathbf{e} \cdot (\tan \theta + \cot \theta) \qquad (5-62)$

このせん断ひずみ度.Rがアーチ機構における相対部材角に相当するものと仮定する。

5.5.3. コンクリート斜め圧縮束材の力学的特性

アーチ機構におけるコンクリート斜め圧縮東材の応力度,σ。とひずみ度、ε。の関係は、 修正Kent-Park式⁽¹²⁴⁾を参考にして、(5-63)式および(5-64)式で与えられるものとする (図5.12参照)。ただし、この場合もはり機構の場合と同様に、応力下降直線の勾配2.4 5.4.4節で示した係数ν,およびν。を考慮することによって、(5-66)式で与えられるもの とする。また、強度割増し係数Kについても、文献[126]では横補強筋体積比P₃の関数で与 えられているが、本解析では略算的にコアコンクリートの面積を0.8b×0.8Dとし、せん断 補強筋比P₄を用いて(5-65)式で与えられるものとする。なお、(5-63)式~(5-66)式におけ るコンクリート強度の単位はkgf/cm³とする。

· € c≦K· € oのとき

 $\sigma_{e} = \mathbb{K} \cdot \mathbb{F}_{e} \cdot (1 - \mathbb{Z}_{\bullet} \cdot (\bullet \varepsilon_{e} - \mathbb{K} \cdot \varepsilon_{o})) \qquad (5-64)$

 $K = 1 + 1.25 \cdot (b/D+1) \cdot p_w \cdot \sigma_{wv}/F_c$ (5-65)

 $Z_{*} = \nu_{1} \cdot \nu_{2} / (2 \cdot (\varepsilon_{500} + \varepsilon_{500} - K \cdot \varepsilon_{0})) \qquad \dots \dots \dots \dots \dots (5-66)$ $C \subset E_{*} \nu_{1}, \nu_{2}, \varepsilon_{500}, \varepsilon_{500} + \delta U \varepsilon_{0} d (5-34) \exists E \in S_{0}$

なお、コンクリート斜め圧縮束材のひずみ度、εεと トラスモデルにおける斜材のひず み度、εεの間には

の関係がある。 ここで、、Esitはアーチ機構の負担軸力による初期ひずみ度であり、(5-63)式より次式で与えられる。

 $. \varepsilon_{a1} = K \cdot \varepsilon_{0} \cdot \{1 - \sqrt{1 - .N/(.b \cdot D \cdot K \cdot F_{c})}\}$ (5-68)

5.5.4. コンクリート斜め圧縮束材の角度

アーチ機構における負担軸力。Nと負担せん断力。Qの間には、(5-56)式~(5-59)式より次式の関係が成立する。

最大強度時以前(R≤.R.) におけるコンクリート斜め圧縮束材の角度θは、(5-69)式により

と与えられ、負担軸力と負担せん断力の関係によって圧縮束材の角度が変化するものとした。なお、最大強度時の圧縮束材の角度θ。は、負担軸力が.N.で、かつ、束材の応力がK ^Fεであることを考慮して、(5-56)式、(5-58)式および(5-60)式より

 $\theta = \tan^{-1} \left[\frac{1}{\eta} \left[\sqrt{\left(1 + \frac{\cdot b \cdot D \cdot K \cdot F_{c} \cdot \eta^{2}}{2 \cdot N_{u}} \right)^{2} - \eta^{2} - 1} - \frac{\cdot b \cdot D \cdot K \cdot F_{c} \cdot \eta^{2}}{2 \cdot N_{u}} \right] \right]$

と得られる。一方、最大強度時以降(R>.R。)における圧縮束材の角度は、

と一定値を探るものと仮定する。したがって、最大強度時以降のアーチ機構の負担軸力は (5-69)式からも明らかなように、負担せん断力の減少に伴って低下することになる。この 低下分は、5.3節でも述べたようにはり機構において負担されるものとする((5-5)式)。

5.5.5. アーチ機構におけるせん断力-変形関係

アーチ機構におけるトラスモデルの斜材のひずみ度・ε。は、(5-63)式、(5-64)式、(5-67) 式および(5-68)式より、(5-73)式および(5-74)式で与えられる。

最大強度時以降(R>.R。のとき)

 $\mathcal{E}_{a} = \mathbb{K} \cdot \mathcal{E}_{b} \cdot \sqrt{1 - \mathbb{N}/(\mathbb{D} \cdot \mathbb{D} \cdot \mathbb{K} \cdot \mathbb{F}_{c})} + (1 - \mathbb{\sigma}_{a}/(\mathbb{K} \cdot \mathbb{F}_{c}))/\mathbb{Z},$ (5-74)

ただし、(5-73)式および(5-74)式における、σ。は(5-61)式による。

アーチ機構のせん断力-変形関係は、最大強度時以前に対しては(5-62)式および(5-70) 式によって(5-75)式で、また、最大強度時以降に対しては(5-62)式および(5-72)式によっ て(5-76)式でそれぞれ与えられる。

最大強度時以前

最大強度時以降

また、最大強度時の部材角。R_uは、,N=,N_u、,σ₀=K·F_cおよびθ=θ_uを考慮して、(5-62) 式および(5-73)式より

 $R_{u} = K \cdot \varepsilon_{\alpha} \cdot \sqrt{1 - N_{u}} / (.b \cdot D \cdot K \cdot F_{c}) \cdot (\tan \theta_{u} + \cot \theta_{u}) \quad \dots \quad (5-77)$

と与えられる。

5.6. 鉄筋コンクリート部材のせん断力-変形関係

鉄筋コンクリート部材のせん断力Qは、はり機構の負担せん断力。Qと アーチ機構の負担 せん断力、Qによって次式で与えられる。

 $Q = {}_{b}Q + {}_{a}Q + {}_{a}Q + {}_{a}Q$

以下に、本理論による鉄筋コンクリート部材の荷重-変形解析の手順を示す。なお、図 5.13には計算プログラムのフローチャートを示している。

- (1)若林・南理論による鉄筋コンクリート部材の終局強度時におけるはり機構およびア ーチ機構の負担せん断力、負担軸力および負担断面幅の計算(表5.1、(5.7)式および(5.8)式)。
- (2) 各抵抗機構に用いるコンクリートモデルの諸係数の計算((5-34)式、(5-65)式、(5-6 6)式)。
- (3) 各抵抗機構の初期負担軸力の計算((5-1)式、(5-2)式)。
- (4) 各抵抗機構における最大強度時の部材角の計算((5-42)式、(5-77)式)。
- (5) 部材角の入力。
- (6) R≤.R.の判定。
- RS.R.の場合
- (7) はり機構の負担せん断力および負担軸力とアーチ機構の負担軸力の計算((5-40)式 もしくは(5-41)式、(5-3)式、(5-4)式)。
- (8) アーチ機構の負担せん断力の計算((5-75)式)。

R>.R.の場合

- (7)アーチ機構の負担せん断力および負担軸力とはり機構の負担軸力の計算((5-76)式、 (5-5)式、(5-6)式)。
- (8) はり機構の負担せん断力の計算((5-41)式)。

 (9) 鉄筋コンクリート部材のせん断力、主筋の応力度などの計算および出力((5-78)式、 (5-43)式)。

なお、(7)と(8)あるいは(7)と(8)では、フローチャートに示すように適当なせん断力 ("Q および、Q) を仮定して部材角("Rおよび、R)を求め、その部材角が 入力部材角に等 しくなるように繰り返し収束計算を行ない、せん断力を求める。

図5.13 鉄筋コンクリート部材の荷重-変形解析手順

5.7. 既往の実験データによる解析モデルの妥当性の検証

本章で示した鉄筋コンクリート部材の荷重 - 変形解析法の妥当性を検証するために、既 住の鉄筋コンクリート柱の曲げせん断実験データ12体^(97,94,132)に対して、実験結果と 解析結果を比較したものを図5.14から図5.18に示す。同図には、各試験体に対してせん断 力0と相対部材角Rの関係、および主筋の平均ひずみ度をsとRの関係をそれぞれ示しており、 実線が解析値を、点線が実験値をそれぞれ表わす。なお、平均ひずみ度の実験値は、各試 酸体の上端および下端主筋に対して部材中央部で測定されたひずみ度の平均値であり、各 サイクルの除荷点での値を連結して表わしている。また、Q-R関係における〇印は解析に よる最大強度時を表わしており、●印はひび割れ発生時の理論値を示す。

ひび割れ強度の計算値Qcxはせん断補強筋比pwと限界せん断補強筋比pwo(= Ψ_{o} ·Fc/ σ wv) の関係、軸力比nおよび柱長さ比 η の大きさによって、(5-79)式~(5-81)式によって評価 した。すなわち、pw≥pwoの場合には 曲げ降伏が先行するものとして、ひび割れ強度を曲 げひび割れ強度で評価した((5-79)式)。一方、pw<pwoの場合には せん断破壊が先行す るものとして、柱頭部から柱脚部に対角線状にせん断ひび割れが生じると予想される部材 については(5-80)式で、また、柱頭および柱脚の偶角部に発生した結張力ひび割れが剛性 低下の要因となると予想される部材に対しては(5-81)式によって、それぞれひび割れ強度 を算定した。

pw≥pwoの場合

 $Q_{cR} = 2 \cdot (F_{t} + \pi \cdot F_{c}) \cdot Z_{s} / L$ (5-79)

pw<pwoの場合

n < 2.5 かつ n>0.2のとき

Qcm = √F₁·(F, + n·F_c)·b·D/1.5(5-80) その他のとき

ここに、2.: 有効断面係数

F.: コンクリートのひび割れ強度(F.=1.6√Fc)

また、ひび割れ発生時の部材角の計算は次式によった。

 $R_{cw} = (L^2/(12 \cdot E_c \cdot I_c) + k/(G_c \cdot D \cdot D)) \cdot Q_{cw}$ (5-82) ここに、E_c: コンクリートの弾性係数 Gc:コンクリートのせん断弾性係数 lc:コンクリートの断面二次モーメント k :比例定数 (k=1.2)

図5.14、図5.15および図5.16は 文献[122]に示されたせん断破壊先行型の試験体の実験 結果と解析結果をそれぞれせん断補強筋比、軸力比および柱長さ比別に比較したものであ る。5.4.4節で述べたように、本解析におけるコンクリートモデルの係数ッ,およびょうは、 これらの実験結果を参考に定めている。したがって、最大強度時以降の変形過程における 解析値と実験値の対応は良好である。一方、最大強度時以前の変形過程でも解析値は実験 値を概ね評価できているが、若干剛性を低く評価する傾向にある。特に、柱長さ比および 軸力比が大きくなるほどその傾向が顕著に現われている。この原因としては、本解析では 結振力ひび割れが生じた後の鉄筋コンクリート部材を想定して各せん断抵抗機構をモデル 化しており、コンクリートの引張強度を無視し、主筋とコンクリートの相互作用(テンシ メンスティフニング効果)なども考慮していないことが挙げられよう。特に、コンクリー +強度が直接的に影響を及ぼすアーチ機構においては、柱長さ比および軸力比が大きくな るほどコンクリート斜め圧縮束材の角度が減少し、(5-62)式からも分かるようにトラスの 剛性が低下する。しかしながら、実際には、引張束材による負担せん断力の増加や圧縮コ ンクリートの応力重心位置が圧縮緑よりに存在することなどによって、仮定したトラスモ デルよりも弾性的な変形機構が形成されているものと推察される。

なお、最大強度時の部材角については、かなり良い精度で評価できており、図中に破線 で示したように、(5-79)式から(5-82)式によるひび割れ強度と併用してスケルトンカーブ を理論的に求めることも可能である。

一方、主筋の平均応力度については、実験値は部材が最大強度に達する付近までは部材 角の増加に伴って引張応力が増加する傾向にあるが、最大強度時以降では逆に引張応力が 減少し圧縮側に転移する傾向が認められる。解析値は最大強度時以降においては実験値に 比して過大となる傾向があるものの、実験値の推移状況を最大強度時以降におけるまで概 ね追跡できている。また、解析値の実験値に対する適合精度は、脆性的な破壊が回避でき、 ある程度の変形能力を有する試験体ほど良好である。したがって、最大強度時以降におい てアーチ機構の圧縮束材の劣化に伴う負担軸力の低下分がはり機構によって負担される、 という本解析の仮定はある程度妥当性を有するものと考えらる。

図5.17は文献[92]に示されている平行配筋柱試験体PU081、PU083 およびPU085の実験結 果と解析結果を比較したものである。これら3体は軸力比のみが異なるデータであり、す べて最大強度時に主筋が曲げ降伏している。せん断力一変形関係に関しては、各試験体共 に軸力比の大きさに拘らず、実験結果と解析結果の対応は良好であり、本解析法が曲げ降 伏先行型の部材に対しても有効であることが示されている。また、スケルトンカーブにつ いても、理論値が最大強度時部材角を若干小さく評価する傾向があるものの、かなりの精 度で実験結果を評価できている。なお、最大強度時以前の荷重 – 変形関係に着目すると、 せん断破壊先行型のデータと同様に軸力比が大きくなるほど、解析結果は実験結果に対し て若干過小評価となる傾向が認められるが、これらのデータのようにせん断補強筋比がpw =0.76%と比較的大きい場合には、解析結果と実験結果に大差がない結果となっている。こ の理由は、せん断補強筋比が増加するほどはり機構による。Q-。R曲線の剛性が大きくなる こと((5-40)式)に加えて、部材の初期剛性に影響を及ぼすアーチ機構の負担割合が減少 するためであると考えられる。したがって、はり機構のせん断強度負担率が大きい部材ほ ど、最大強度時以前における解析精度が向上する傾向にあると言えよう。

主筋の平均応力度 – 変形関係については、せん断破壊先行型のデータの場合とは逆に最 大強度時以前における解析結果と実験結果の対応は良好である。しかし、最大強度時以降 では、解析値が実験値を過小評価する結果となっている。この原因は、材端部で主筋が引 張降伏した後、降伏領域が部材内部へ伸展したことによって、部材中央部での引張ひずみ が増加したためである。

図5.18には文献[94]における平行配筋柱試験体P470およびP635に対する検討結果を示し ている。これらのデータはそれぞれ470kgf/cm²および650kgf/cm²の高強度コンクリートを 使用したものであり、部材の最大強度時に主筋の引張降伏が確認されている。せん断カー 変形関係および主筋の平均応力度 – 変形関係共に、コンクリート強度の相違に拘らず解析 結果が実験結果を精度よく追跡できており、本解析法が高強度コンクリートを使用した部 材に対しても有効であることが示されている。なお、せん断カー変形関係については、コ ンクリート強度が高い部材ほど最大強度時以前の変形過程で解析による耐力が実験値を若 干通小評価する傾向が認められる。また、主筋の平均応力度 – 変形関係に関しては、図5. 11と同様に材端部での主筋の引張降伏の影響で、最大強度時以降において解析値が実験値 を過小評価する結果となっている。

図5.14から図5.18で示されたように、本解析法はせん断破壊先行型あるいは曲げ破壊先 行型の区別なく、コンクリート強度が Fc=600kgf/cm²程度までの鉄筋コンクリート部材の せん断力-変形関係を統一的に評価することが可能である。また、主筋の平均応力-変形 関係の検証結果からも、解析で仮定したマクロモデルの妥当性、有効性を確認することが できる。

図5.14 せん断補強筋比の異なるせん断破壊先行型の柱に対する実験値と解析値の比較

- 121 -

図5.15 軸力比の異なるせん断破壊先行型の柱に対する実験値と解析値の比較

- 122 -

図5.16 柱長さ比の異なるせん断破壊先行型の柱に対する実験値と解析値の比較

- 123 -

図5.17 軸力比の異なる曲げ降伏先行型の柱に対する実験値と解析値の比較

- 124 -

図5.18 コンクリート強度の異なる柱に対する実験値と解析値の比較

§.8. 鉄筋コンクリート部材のせん断力-変形関係に及ぼす主要構成因子の影響

本解析法によって得られる鉄筋コンクリート部材のせん断力-変形関係に対して、部材 の主要構成因子がどのような影響を及ぼすかを調べるために、せん断補強筋係数Ψ、柱長 さ比η、軸力比n および引張鉄筋係数Φに関して行なったパラメトリック解析の結果を図 \$.18に示す。同図は無次元化せん断力qと相対部材角Rの関係によって表現しており、〇印 は7-チ機構における最大強度時を、●印ははり機構における最大強度時をそれぞれ示し ている。

(a) せん断補強筋係数単の影響

図5.19(a)にせん断補強筋係数がΨ=0.03、0.05、0.10および0.15の場合についてせん断 カー変形曲線を比較したものを示す。 解析対象とした部材は、d₁=0.8、η=2、Φ=0.10お よびn=0.3とした。

鉄筋コンクリート部材の最大強度は、Ψの増加に伴って増加する。しかし、Ψが限界せん断補強筋係数Ψ。(= 2・Φ/η:この場合にはΨ=0.10に相当する、)以上の場合には、Ψ の増加に伴う最大強度の増加割合は極めて少なくなる。最大強度時の部材角はΨの増加に 伴い若干減少する傾向があるが、Ψの値に拘らずR=0.006rad.程度となっている。さらに、 最大強度時の部材角は、Ψが比較的少ない場合にはアーチ機構の最大強度時部材角で決ま っているが、Ψが増加するに従ってはり機構による最大強度時部材角で決定される傾向が ある。最大強度時以降に関しては、Ψが増加するほど変形能力が増加しており、特に、Ψ ≥Ψ₀の場合には強度劣化の少ないせん断力-変形曲線が得られることが示される。

(i) 柱長さ比ηの影響

図5.19(b)に柱長さ比η=2、3、4および5の場合のせん断力-変形曲線を比較したものを 示す。解析対象は、d₁=0.8、Ψ=0.05、Φ=0.10およびn=0.3の部材である。

^{部材}の最大強度に関しては η が減少するほど増加し、かつ、その増加割合は η が小さな 場合ほど大きくなっている。最大強度時の部材角は η が増加するに従って若干減少し、R= 0.005~0.006 rad.程度となっている。また、 η の増加に伴ってアーチ機構における最大強 度時部材角が急増する傾向にあり、その結果、部材の最大強度時部材角を決定する抵抗機 ^{構か7}ーチ機構からはり機構に移行している。最大強度時以降の変形能力については η が ^{増加}するほど向上しているが、その度合は η が小さな場合ほど顕著である。

(1) 軸力比nの影響

図5.18(c)に軸力比 n=0.1、0.2、0.3および0.4の場合についてせん断力-変形曲線を比 ^{枚したものを示す。}解析対象とした部材は、d₁=0.8、7=2、Ψ=0.10およびΦ=0.10とした。 解析対象とした軸力比の範囲では、nの増加に伴って最大強度が増加する(ただし、本解 新法によれば、n>0.5の場合にはnの増加に伴って最大強度は減少する傾向にある)。部材 の最大強度時部材角については、解析対象とした部材がΨ=Ψ。(=0.10) であるため、軸 力比に拘らず はり機構の最大強度時部材角で決定されており、R=0.006rad.程度となって いる。また、最大強度時以降に関しては、nが増加するに従って強度劣化が大きくなり、 かつ、高軸力になるほどnの増加に伴う強度劣化の進行度合は大きくなる。

(1) 引張主筋比Φの影響

図5.19(d)には、d1=0.8、カ=2、Ψ=0.08、およびn=0.3の部材を解析対象として 引張主 新比Φ=0.05、0.10、0.15および0.20の場合に対するせん断力 – 変形曲線を比較している。 部材の最大強度に関しては、Φが増加するほど増加する傾向にあるが、Φ>0.15の場合 にはほとんど増加していない。この理由は、解析対象とした部材ではΦ>0.15の場合に最 大強度がせん断補強筋の降伏によって決定され、Φに依存しなくなるためである。最大強 度時部材角についてはΦの増加に伴って増加し、R=0.005~0.007rad.程度となっている。 さらに、Φが増加するに従って、最大強度時部材角を決定する抵抗機構がはり機構からア -F機構に移行する傾向にある。最大強度時以降に関しては、Φが増加するほど強度劣化 が大きくなっている。

上記の検討結果を要約すると、

① せん断補強筋係数の増加に伴って最大強度および変形能力共に増加する

② 柱長さ比の増加に伴って最大強度は減少するが、変形能力は増加する

③ 軸力比の増加に伴って最大強度は増加するが、変形能力は減少する

④引張主筋係数の増加に伴って最大強度は増加するが、変形能力は減少する となり、既往の鉄筋コンクリート部材の実験から得られる一般的な事象と合致する点が多い。したがって、提案した荷重-変形解析法、あるいは解析モデルはある程度の整合性を 育するものであると言えよう。

また、各部材のはり機構における最大強度時部材角。R.(●印)およびアーチ機構にお [↑]5最大強度時部材角,R.(○印)と部材の変形能力の関係に着目すると、。R.(< 。R.の場 ^含に変形能力が極めて少なく、脆性的な性状を示す解析結果となっているものが多い。逆 ^{ε、},R.≥。R.の場合には 脆性的な性状を示すものは認められず、,R.が増加するに従って ^{変形能}力は向上する傾向が認められる。

€こで、図5.19に示した部材の中から、前者および後者に属する代表的なものについて、
 □り機構およびアーチ機構によるせん断力-変形関係を比較したものを図5.20に示す。図
 平の実線、点線および破線は、それぞれ鉄筋コンクリート部材、はり機構およびアーチ機
 ④のせん断力-変形関係を表わしている。図5.20(a)は.R.<<.R.の場合の代表例であり、

図5.20の(a)と(b)を比較すると、 Wが増加することによってはり機構の負担せん断力は 増加するが、 アーチ機構の負担せん断力は減少することが認められる。 この原因は、 Wが 増加することによってはり機構の負担軸力が増加し、 逆に、 アーチ機構の負担せん断力が 減少するためである。また、最大強度時の部材角については、 Wの増加に伴いはり機構で は減少するが、 アーチ機構では増加する傾向にある。

-方、図5.20の(a)と(c)を比較すると、はり機構はnの値に関係なくほぼ一定のせん断 力を負担するが、アーチ機構の負担せん断力はnの増加に伴って減少することが示される。 さらに、アーチ機構ではnの増加に伴って最大強度時の部材角が増加し、かつ、最大強度 時以降の変形能力が向上している。

以上示したように、鉄筋コンクリート部材の変形能力はアーチ機構の変形能力に大きく 依存する。したがって、鉄筋コンクリート部材の靭性の向上を図るためには、アーチ機構 による負担せん断力および負担軸力を低減し、逆にはり機構の負担せん断力を増加させる ことが肝要である。この解析的知見は、鉄筋コンクリート部材の靭性向上を図るために従 来から採られてきた方法、すなわち、せん断補強筋の増量、短柱化の回避、作用軸力およ び主筋量の制限、の正当性を理論的に裏付けるものである。

図5.19 解析結果: q-R関係

- 129 -

RC昭拉 苡じ醸締 アーチ醸繕 30 $d_1 = 0.8$ $\psi = 0.05$ $\phi = 0.10$ n = 0.3 $\eta = 4$ (カによる比較) (10⁻³ rad.) 25 ٠. 20 -----12 (c) aRu ≧ bRu の場合 30 R (10⁻³ rad.) 10 各抵抗機構のせん断力-変形関係 25 40 (a) aRu < bRuの場合 20 5 0.20 0.15 0.10 0.05 0 15 30 $d_1 = 0.8$ W = 0.15D = 0.10n = 0.3 $\eta = 2.3$ R (10⁻³ rad.) (サによる比較) 10 25 图 5. 20 5 20 0 0.20 0.15 0.10 0.05 0 (b) aRu ≧ bRu の場合 12 10 11010 10 5 0.20 0.15 0.10 0.05 0

- 130 -

5.9. 鉄筋コンクリート部材の靭性評価式

5.7節で示したように、本章で提案した解析法によって、鉄筋コンクリート部材の荷重 -変形関係を十分な精度で追跡することができる。特に、靭性評価に不可欠な最大強度時 以降の荷重 - 変形特性に関しては、部材の主要構成因子の影響が解析結果に適切に反映さ れており、変形の増加に伴う耐力劣化の度合を解析的に求めることが可能である。しかし ながら、図5.13からも分かるように解析手順が複雑であり、耐震設計法に適用する靭性評 価法としては実用性に欠ける。また、設計法で対象とする靭性評価法では部材の荷重 - 変 形関係そのものを推定する必要はなく、設計で許容する限界状態における変形能力(限界 部材角)を評価することができればよい。

そこで、本節では荷重-変形解析結果に基づいた実用的な靭性評価式の構築を試みる。 具体的な構築手順は以下のとおりである。まず、変形限界状態における鉄筋コンクリート 部材のせん断抵抗機構を、3章で提案したせん断強度式の場合と同様に、はり機構とアー +機構が混在するものと仮定してモデル化する。次に、設計で許容し得る変形限界状態を 定義し、その状態に対応する限界部材角を荷重-変形解析法によるパラメトリック解析か ら求める。最後に、パラメータ毎に得られた限界部材角と仮定したせん断抵抗機構から求 かられる必要せん断補強筋量の関係を統計的に整理することによって靭性評価式を導出す る。

5.9.1. 靭性部材におけるせん断抵抗機構

図5.21に朝性部材に対して仮定するせん断抵抗機構を示す。 学会指針 ⁽⁴⁾ では、朝性部 材においてヒンジ領域と非ヒンジ領域を考慮している。ヒンジ領域の長さはせん断スパン 比、輪方向応力度、引張主筋比、横補強筋量などの構造因子に影響される。しかし、既往 の研究によれば、せん断スパン比が3.0以下の部材では ヒンジ領域は長くとも有効せいの 1.5倍程度であり、また、それ以上のせん断スパン比の部材でも ヒンジ領域の長さの増大 は少ないと考えられる。以上の理由から、学会指針ではヒンジ領域の長さを危険断面から 1.5・D (D:部材のせい)の領域と定義している。本論でも学会指針の考え方を踏襲し、ヒ ンジ領域の幅を1.5・Dと仮定する。 また、ヒンジ領域においても非ヒンジ領域と同様には 0機構とアーチ機構の2種類のせん断抵抗機構が混在するものと仮定する。

物性部材では、最大強度時(曲げ強度時)以後の変形の増大はヒンジ領域の変形能力に 旅存すると考え、一般的にはヒンジ領域に配筋するせん断補強筋量を非ヒンジ領域に比し で多くする。したがって、ヒンジ領域のせん断補強筋の応力度は、最大強度時においては ^{非ヒンジ領域の応力度よりも小さく、変形の増大に伴って増加するものと考えることがで きる。}

(b) 変形限界時(B点)におけるせん断抵抗機構

図5.21 靭性部材におけるせん断抵抗機構

図5.22 理想化した靭性部材の荷重-変形関係

ここで、 非ヒンジ領域のせん断補強筋比が上限曲げ強度Q,。を確保するために必要な最 少補強筋比(以後、曲げ降伏保証補強筋比と呼称) pwsであり、ヒンジ領域のせん断補強筋 比がpwo(\geq pws) である靭性部材を考える。ただし、せん断補強筋の降伏応力度は非ヒン ジ領域およびヒンジ領域共に σ wvとする。また、その部材の荷重一変形特性としては、図 5.22に示すようなA点でQ,。に達した後、その強度を維持したまま変形が増大して B点で 急激な強度劣化を生じるような理想化したものを考える。

A点では図5.21(a)に示すようなせん断抵抗機構が形成され、 ヒンジ領域および非ヒン ジ領域共にはり機構におけるコンクリート斜め圧縮束材の角度が45°で、かつ はり機構お よびアーチ機構のコンクリート斜め圧縮束材の応力度がFcに達しているものと仮定する。 したがって、非ヒンジ領域におけるせん断補強筋の応力度はσwvに達するが、ヒンジ領域 での応力度は pws, σwv/pwoとなる。一方、B点では図5.21(b)に示すようなせん断抵抗機 構が形成され、非ヒンジ領域およびヒンジ領域共にせん断補強筋応力度が降伏応力度σwv に達するものと仮定する。すなわち、靭性部材においては変形が最大強度時(A点)から変 形限界時(B点)まで増加することによって、ヒンジ領域のせん断補強筋応力度がpws: σwv /pwoからσwvに増加するものと考える。なお、B点ではヒンジ領域において非ヒンジ領域 との境界での力の釣合いを満たすために、はり機構のコンクリート斜め圧縮束材の角度が び以上の値を採るものと仮定する。また、変形の増加に伴うひび割れの伸展によって、 ヒンジ領域でのコンクリートの圧縮力伝達能力が低下することを考慮して、はり機構およ がアーチ機構におけるコンクリート斜め圧縮束材の応力度が非ヒンジ領域に比して低下す ものとする。

B点において ヒンジ領域でのはり機構のコンクリート斜め圧縮束材の角度をφ a、コン クリート強度有効係数を μ c (≤1.0) とすると、ヒンジ領域のせん断強度Qa1は 3 章で示 したせん断強度式の考え方を参考にして

Qsi = b.d.pwp. owr.cot o .

+ $\{\gamma - (1 + \cot^2 \phi_{D}) \alpha \cdot \Psi_{D} / \nu_{c}\} \cdot b \cdot D \cdot \nu_{c} \cdot F_{c} \cdots (5-83)$ $\hbar f_{c} L, Q_{s}, \leq b \cdot d \cdot \nu_{c} \cdot F_{c} \cdot \cot \phi_{D} \cdot \gamma / \{(1 + \cot^2 \phi_{D}) \alpha\}$

ここに、Ψp;ヒンジ領域のせん断補強筋係数(= pwp・σwy/Fc)

^{と与えられる。}一方、非ヒンジ領域ではせん断補強筋比が曲げ降伏保証補強筋比pwsであ ⁶⁰で、せん断強度Qs2は(3-1)式より

 $Q_{sa} = b \cdot d \cdot p_{ws} \cdot \sigma_{wv} + (\gamma - 2\alpha \cdot \Psi_s) \cdot b \cdot p \cdot F_c \qquad (5-84)$ $t \cdot t \cdot L \cdot Q_{sa} \leq b \cdot d \cdot F_c \cdot \gamma / (2\alpha)$

ここに、Ψs:非ヒンジ領域のせん断補強筋係数 (= pws+σwy/Fc)

と与えられる。なお、中間荷重が作用していないものとすると部材内では一定のせん断力 が伝達されることになり、さらに、せん断抵抗機構では最大強度時以降も靭性部材は上限 曲げ強度を維持するものと仮定しているので、ヒンジ領域と非ヒンジ領域の境界条件は

となる。

なお、(5-83)式において¢oとveが未定となっているが、これらはヒンジ領域の変形能 カに応じて決定される変数である。 ここでは便宜的に、コンクリート有効強度係数veが はり機構のコンクリート斜め圧縮束材の角度¢oの関数として

 $\nu_{\rm c} = \cot \phi_{\rm D} \qquad (5-86)$

と仮定すると、 ¢oは(5-83)式、(5-84)式、(5-85)式および(5-86)式によって

$$\phi_{p} = \tan^{-1} \left[\frac{2\alpha \cdot \Psi_{p}}{d_{1} \cdot \Psi_{p} + \gamma - \sqrt{(d_{1} \cdot \Psi_{p} + \gamma)^{2} - 4\alpha \cdot \Psi_{p} \left[(d_{1} - 2\alpha) \cdot \Psi_{s} + \alpha \cdot \Psi_{p} + \gamma \right]} \right]$$
......(5-87)

と求められる。 (5-87)式において、dι、α、γおよびΨ。は部材の形状、引張主筋係数、 物力比および曲げ強度といった因子によって与えられる定数である。 したがって、φ。は ヒンジ領域のせん断補強筋係数Ψ。のみの関数で与えられることになる。

また、曲げ降伏保証補強筋比p*sは(5-84)式および(5-85)式より

$$p_{ws} = \frac{(Q_{Tw}/(b\cdot D\cdot F_c) - \gamma) \cdot F_c}{(d_1 - 2\alpha) \cdot \sigma_{wx}} \qquad (5-88)$$

と与えられる。

(5-83)式から(5-85)式の関係を $q - \Psi$ 曲線によって比較したものを図5.23に示す。同図 (a)および(b)は、それぞれ非ヒンジ領域((5-84)式)およびヒンジ領域((5-83)式)に対 $^{\dagger \delta q} - \Psi$ 曲線を示しており、一点鎖線は上限曲げ強度((5-85)式)を表わしている。ま た、ハッチ部分は各領域におけるアーチ機構の負担せん断力を表わしている。なお、同図 ^{は住長さ比 $\pi = 4$ 、主筋間隔比d₁=0.8、引張主筋比 $\Phi = 0.15$ および軸力比n = 0.3の部材を解析 ^{対象}としている。}

各領域における無次元化せん断力なとせん断補強筋係数単の関係について比較すると、

- 134 -

図5.23 ヒンジ領域と非ヒンジ領域の q - Ψ関係の比較

とンジ領域では非ヒンジ領域に比して、はり機構におけるコンクリート斜め圧縮束材の角 度が大きく、かつ、はり機構およびアーチ機構のコンクリート斜め圧縮束材の応力度が低 下するため、軍の増加に伴う q の増加率が少なくなることが示される。

また、せん断強度については、ヒンジ領域および非ヒンジ領域共に上限曲げ強度によっ て与えられるため等しくなるが、各領域でのはり機構とアーチ機構のせん断力負担割合が 異なる。すなわち、ヒンジ領域では非ヒンジ領域に比してせん断補強筋量が多く、かつ、 アーチ機構におけるコンクリート斜め圧縮束材の応力度が低下するため、はり機構のせん 断力負担割合が大きくなる。

5.9.2. 靭性評価式の提案

学会指針では曲げ設計が終了し、主筋の配筋が決定した部材に対して靭性設計を行なう という設計手順を踏む。したがって、ここで取り扱う靭性設計とは、主筋の配筋が決定し た部材に対して設計で要求する変形量(設計用保証変形)以上の変形能力を保持するため に必要な機補強筋(せん断補強筋)量を算定することに帰着する。

一方、前節で仮定した靭性部材のせん断抵抗機構によれば、最大強度時以降変形が増大 するに従って、ヒンジ領域のせん断補強筋の応力度がpws・σ wv/pwoからσ wvまで変動し、 ⁰ vrに達した時、部材が変形限界に達する。したがって、最大強度時の補強筋応力度が降 ² kk力度に対して小さければ小さいほど、変形限界時の部材角が増加し、靭性が向上する と考えることができる。すなわち、最大強度時におけるヒンジ領域の補強筋応力度と変形 8月時の部材角とを関係付ることができれば、部材の変形能力をせん断補強筋量に応じて 評価することが可能となる。

そこで、本節では前述の荷重-変形解析から得られる限界部材角Roと最大強度時におけ るせん断補強筋応力度に対する降伏応力度の比率pwo/pws(すなわち、(5-88)式で与えられ &pwsに対するヒンジ領域のせん断補強筋比pwoの比率)の関係を整理することによって、 とンジ領域のせん断補強筋量と変形能力の関係の導出を試みる。

なお、この検討を行なうに際して、解析から得られる荷重-変形関係における限界部材 角の定義を明確にしておく必要がある。 5.9.1節では図5.22に示すように、最大強度時以 準、変形限界に到るまで耐力低下が生じないものと理想化して、ヒンジ領域のせん断補強 新が降伏する部材角を限界部材角と定義した。しかし、実際の部材、特に柱部材において 最大強度時以降、耐力低下を伴わずに変形が増加することは極めて希であると考えられる。 学会指針では、荷重-変形包絡線が 最大強度の80%に低下した時の部材角を限界部材角と 定義している。本検討においても学会指針の考え方を参考にして、柱部材に対しては荷重 -変形曲線が最大強度の80%に低下した時の部材角を、また 梁部材については最大強度の 10%に低下した時の部材角を、それぞれ限界部材角と定義する(図5.24)。

学会指針による設計では、建物を架降伏先行型の全体崩壊形と想定するため、靭性部材 のほとんどが架部材となる。したがって、架部材の耐力は直接的に建物の保有耐力に影響 を与えるため、一律に最大強度の80%の耐力まで許容することは危険であると判断した。 また、4.5節でも述べたように、鉄筋コンクリート部材の信頼曲げ強度は、実験から得ら れる最大強度の90%程度であると報告されている^(*1)。そこで、梁部材では耐力が信頼曲げ 強度程度に低下した時の部材角を想定して限界部材角を定義した。一方、柱部材について は、荷重-変形曲線において軸力によるP-δ効果の影響も含めた形で限界部材角を評価 することにし、最大強度の80%耐力時の部材角とした。

図5.25(a)~(e)に柱部材に対する $R_{u} = p_{wv}/p_{ws}$ 関係を示す。 同図は、(5-88)式で与えら れる曲げ降伏保証補強筋比 p_{ws} に関係する4因子、柱長さ比ヵ、引張主筋比Φ、材料強度 Ur_{e}/σ_{wv} 、および軸力比n について検討しており、 η =3、4および5の3種類、 Φ =0.05、

0.10および0.15の3種類、および $F_c/\sigma_{wv}=0.05$ 、0.10および0.15の3種類の計27種類の部 対について示している。 図中の縦軸は荷重 – 変形解析から得られた最大強度の80%耐力時 の部材角 B_0 を、横軸は曲げ降伏保証補強筋比に対するせん断補強筋比の比率 p_{wo}/p_{ws} をそ れぞれ表わす。 また、実線はn=0.2、0.3および0.4の3種類の軸力比に対する解析結果を 表わし、点線は後述する(δ -89)式を示している。

なお、本検討では住長さ比が $\eta > 3$ の場合でも、ヒンジ領域と非ヒンジ領域の区別なく、 きん断補強防が部材内で一様に配筋されているものとして荷重-変形解析を行なっている。 また、(5-88)式から得られた p_{ws} が0.03·Fc/ σ_{wv} 以下の場合には $p_{ws}=0.03$ ·Fc/ σ_{wv} とした。 この理由は、 p_{ws} が 実際に非ヒンジ領域に配筋されるせん断補強筋量の最少値に相当する ため、その下限値 ((3-7)式) を考慮したことによる。

一方、 $pwp/pws \leq 1.00$ 場合には、pwp/pwsの値に拘らず R_{0} が一定となる傾向がある。 これに関しては、部材に配筋されているせん断補強筋比pwpが曲げ降伏保証補強筋比pwsより かさな場合に、部材が脆性的なせん断破壊を生じるという解析結果となり、限界部材角 がpwpに拘らずほぼ最大強度時の部材角程度になるためである。

^{また、pwo/pws=1.0}の場合、すなわち 上限曲げ強度を確保するために必要な最少せん断

福祉筋量が部材に配筋されている場合の限界部材角は、 Fe/σwwが増加するほど増加する g向がある。

図5.25には梁部材に対する $R_u - p_{wa}/p_{ws}$ 関係を示す。 同図も図5.25と同様にカ、Φおよ $\delta F_c/\sigma_{wv}$ の影響について検討しており、 $\eta = 3$ 、4および5の3種類、および $F_c/\sigma_{wv} = 0.05$ 、 0.10および0.15の3種類の計9ケースについて示している。図中の縦軸は荷重 - 変形解析 $から得られた最大強度の90%耐力時の部材角<math>R_u$ を、横軸は p_{wa}/p_{ws} をそれぞれ表わす。また、 実線は $\Phi = 0.05$ 、0.10 および0.15の3種類の部材に対する解析結果を表わし、点線は後述 † δ (5-90)式を示している。

果部材では 柱部材に比してpwn/pwsの増加に伴うRuの増加率が極めて大きく、変形能力 の向上に対してせん断補強筋の増量の影響が敏感であることが示される。 また、pwn/pws <1.0の場合でも Ru ≥ 0.04 rad. となる場合があり、その傾向はゆが減少するほど、あるい はかおよびFc/σwrが増加するほど顕著となっている。すなわち、架部材ではpwn/pwsの増 加に伴うRuの増加率が、Φの減少あるいはかおよびFc/σwrの増加に伴って増加している。 この結果は、前述の柱部材に対する検討結果と異なる。この原因は、本検討の範囲ではほ とんどの場合に 曲げ降伏保証補強筋比pwsがその下限値(0.03-Fc/σwr)で決定されてお 0、Φとかが pwn/pwsの増加に対して影響せず、Ruの増加に対してのみ影響を及ぼすため である。

さらに、pws=0.03・Fc/のwvと制限されるため、pwo/pws<1.0となる場合でも部材に配筋 されているせん断補強筋比が、実際に上限曲げ強度を確保するために必要な最少せん断補 箇胎に比して大きくなる。したがって、pwo/pws<1.0の場合でも解析から得られる荷重 -変形曲線は曲げ破壊先行型になり、pwo/pwsの増加に伴ってRuが増加する傾向にある。 図5.25および図5.26の検討結果を参考にして、 鉄筋コンクリート部材のRu-pwo/pws関 係を以下のように定式化する。

柱部材 : $R_u = (2 \cdot (p_{wv}/p_{ws}-1) \cdot \Phi/\eta + 0.05) \sqrt{F_c/\sigma_{wv}}$ (5-89) 梁部材 : $R_v = (0, 1 \cdot p_{wv}/p_{ws} - 0.05) \sqrt{F_c/\sigma_{wv}}$ (5-90) ただし、 $R_u \ge 0.05 \sqrt{F_c/\sigma_{wv}}$

(5-88)式はΦ≥1.0の部材に対して、Ru-pwn/pws関係が軸力比の大きさに拘らずほぼー z > x = 0 z > x = 0 z > x = 0 z > x = 0 z > x = 0 z = 0z

図5.25(a) 柱部材に対するRu-pwo/pws関係 (Fc/σwv=0.05)

- 139 -

図5.25(b) 柱部材に対するRu-Pwo/Pwa関係 (Fc/Owv=0.10)

- 140 -

図5.25(c) 柱部材に対するRu-pwo/pws関係 (Fc/σwv=0.15)

- 141 -

図5.26 梁部材に対するRu-pwo/pws関係

- 142 -

図5.27 Ru-中o関係

- 143 -

図5.27に柱部材に対して(5-89)式によって与えられる限界部材角Ruとその時のヒンジ領 域におけるはり機構のコンクリート斜め圧縮束材の角度φuの関係を検討したものを示す。 ここで、φoは(5-88)式および(5-89)式を(5-87)式に代入することによって求めた。 同図 ば軸力比n=0.3の部材に対して、引張主筋比Φ=0.05、0.10および0.15の3種類、および材 料強度比Pe/σwr=0.05、0.10および0.15の3種類の計9ケースについて検討している。ま た、図中では住長さ比η=3、4および5の3種類の部材について比較している。

同一の限界部材角Ruに対する々。は、ヵの増加あるいはФおよびFc/σwvの減少に伴って 増加する傾向がある。また、(5-89)式ではRu $\leq 0.05\sqrt{Fc/\sigmawv}$ において Ruが一定値を採る ので、Фおよびヵの大きさに拘らず、Fc/σwvが増加するほど々。=45°を維持する限界部材 物が大きくなっている。なお、本検討の範囲では最も々。の角度が大きくなるヵ=5、Φ=0. NSおよびFc/σwv=0.05の部材に対しても、Ru ≤ 0.04 rad、であれば々。 $\leq 65°$ となることが認 かられる。

図5.28に既往の柱実験データ19体に対する(5-89)式の変形能力予測精度の検証結果を示 す。検証対象とした実験データは、文献[127]~[130]に示されているものの中から、断面 せいDと主筋径d。の比がD/d。>18で、かつ 副帯筋を併用したものであり、何れも主筋の曲 げ降伏が先行し、かつ 付看割裂破壊を生じていないデータである。 図中の縦軸および横 結は、それぞれ最大強度の80%耐力時における部材角の実験値Rsxr および計算値Rcx1を表 わしている。 また、図5.29には比較のため、学会指針A法およびB法^[4]による靭性評価 式の検証結果を示している。

図5.28 (5-89)式の変形能力予測精度

図5.29 学会指針式の変形能力予測精度

(5-89)式では、実験値の計算値に対する比率 B_{EXE}/R_{CAL} の平均値 μ および変動係数 ν が、 それぞれ μ =1.23 および ν =19.9%であり、鉄筋コンクリート柱の変形能力を精度良く推定 できている。また、実験値が計算値を下回るデータは3体のみで、何れも $R_{EXE}/R_{CAL} \ge 0.8$ となっており、実験結果に対して若干安全側の評価を与える式となっている。一方、A法 およびB法では、計算値が実験値をかなり過小評価する結果となっており、特に、A法で $dR_{EXE} \le 0.04$ rad. となるデータに対してその傾向が顕著である。このように、本検証の範 部では、(5-89)式は学会指針に示されている靭性評価式に比して変形能力予測精度が優れ ており、実用的に有効な評価式であると言えよう。

なお、(5-90)式については、筆者が収集した梁部材の実験データにおいて靭性評価式検 E用データとして適当なものが不足しているため、その検証を行なっていない。しかしな から、前述のように(5-90)式が荷重-変形解析による計算結果に対して安全側の評価を与 えるように定式化されていることを考慮すると、(5-90)式も(5-89)式と同様に実験結果に 対して安全側の評価を与える式となっているものと予想される。何れにせよ、梁部材に対 する(5-90)式の予測精度の検証が今後の課題として残されている。

以上示したように、鉄筋コンクリート部材の限界部材角Reは曲げ降伏保証補強筋比に対 するヒンジ領域のせん断補強筋比の比率 peo/pesによって推定することが可能であり、そ 9関係式は(5-89)式および(5-90)式で与えられる。したがって、学会指針によって靭性部 将を設計する場合には、(5-89)式あるいは(5-90)式による限界部材角Reが設計用保証変形 Backりも大きいことを確認すればよい。しかし、実際の設計手順を考慮すると、Roの変形 他力を確保するために必要なpwnを算定することになる。 そこで、(5-89)式および(5-90) 式より、鉄筋コンクリート部材の靭性評価式をヒンジ領域の必要せん断補強筋算定式の形 で以下のように提案する。

< <p>(柱部材) pwp = ((√ σ wy/Fc·Rp - 0.05) η/(2. (2.05) η/(2.</p>	$(\Phi) + 1 + p_{w_1} + \dots + (s_{-\alpha_1})$
〈梁部材〉	(0-91)
$p_{w_D} = (10\sqrt{\sigma_{w_Y}/F_c} \cdot R_b + 0.5) \cdot p_{w_S}$	(5-92)
ただし、 pwp ≧ 1.2·pws	
$\sigma_{wy} \leq 400 \sqrt{F_c}$	
ここに、pwsは(5-88)式による。	

(5-88)式で与えられる曲げ降伏保証補強筋比pweは、 非ヒンジ領域に必要な最少せん断 補強筋比に相当する。したがって、ヒンジ領域に必要なせん断補強筋比は、(5-91)式およ び(5-92)式により、設計用保証変形Roに応じて非ヒンジ領域の必要せん断補強筋比の倍数 で与えられることになる。ここで、Fc=300kgf/cm²、 σ wy=3500kgf/cm²、 Φ =0.1 および η =iの部材に対して Ro=0.025rad.とすると、ヒンジ領域の必要せん断補強筋比pwo は、柱部 材に対して pwo=1.88・pws、および梁部材に対してpwo=1.35・pwsとそれぞれ求められる。す なわち、この場合には、ヒンジ領域のせん断補強筋量を非ヒンジ領域に対して、柱部材で は1.9倍および梁部材では1.4倍程度にしておけばよいことになる。このように、本章で提 差した靭性評価式によれば、ヒンジ領域のせん断補強筋量を設計用保証変形に応じて非ヒ ンジ領域のせん断補強筋量から算定することができ、韧性設計の手順が極めて簡便なもの となる。なお、上記の議論はヒンジ領域と非ヒンジ領域のせん断補強筋の降伏強度が同じ であるときに成立する。したがって、ヒンジ領域と非ヒンジ領域のせん断補強筋の降伏強 変が異なる場合には、ヒンジ領域のせん断補強筋強度を用いて(5-88)式から算定したpws ドムってpwoを求める必要がある。

なお、pwa≥1.2・pwsの制限は、靭性評価式を構築する際に定義した限界部材角の理論的 ^{複数が希薄}であること、さらには聚部材に対する変形能力予測精度の検証を行なっていな ^{いこと}を考慮して設けた。 5.10. まとめ

本章では、若林・南理論を応用した鉄筋コンクリート梁および柱部材の荷重 – 変形解析 法を提案し、さらに、その解析結果を利用して終局強度型耐震設計法に適用可能な靭性評 価式を導いた。以下に、鉄筋コンクリート部材の荷重 – 変形解析および靭性評価法から得 られた知見を要約する。

(a) 鉄筋コンクリート部材の荷重-変形解析について

1) 提案した荷重 - 変形解析法は、はり機構とアーチ機構を表現するトラスモデルに対し てそれぞれ材料の構成則および変形の適合条件を設定し、任意の変形(相対部材角) に対して応力の釣合い条件を満足するせん断力を求め、さらに、各抵抗機構によるせ ん断力を累加することによって鉄筋コンクリート部材としてのせん断力 - 変形関係を 求めるものである。

2)本解析法では、軸力、曲げおよびせん断の組合せ応力状態にある部材を解析対象としており、せん断破壊あるいは曲げ破壊の区別なく統一的に鉄筋コンクリート部材の荷重-変形関係を求めることが可能である。ただし、付着割裂破壊を生じる鉄筋コンクリート部材は適用対象外である。

1) せん断補強筋比、柱長さ比、軸力比およびコンクリート強度を変数とした鉄筋コンク リート柱14体に対する解析結果は、せん断力-変形関係および主筋の平均応力度-変 形関係共に実験結果と良好な対応を示した。なお、せん断力-変形関係における初期 期性については、解析結果が実験結果に比して低くなる傾向があるが、最大強度時に おけるはり機構のせん断力負担割合が大きな部材ほど解析結果と実験結果の差が少な くなる。

(1)鉄筋コンクリート部材の荷重-変形関係に関するパラメトリック解析より、以下の結果を得た。

① せん断補強筋係数の増加に伴って最大強度および変形能力共に増加する
 ② 桂長さ比の増加に伴って最大強度は減少するが、変形能力は減少する
 ③ 軸力比の増加に伴って最大強度は増加するが、変形能力は減少する
 ④ 引張主筋係数の増加に伴って最大強度は増加するが、変形能力は減少する
 これらの結果は既往の実験から得られる強度と靭性に関する一般的な事象と合致して

おり、本解析における仮定あるいは解析モデルの妥当性、整合性が確認できた。

- 5)本解析によれば、アーチ機構による負担せん断力および負担軸力を低減し、逆にはり 機構の負担せん断力を増加させることによって、鉄筋コンクリート部材の靭性を向上 させることができる。この解析結果は、鉄筋コンクリート部材の靭性向上を図るため に従来から採られてきたせん断補強筋の増量、短柱化の回避、作用軸力および主筋量 の制限、といった方法の正当性を理論的に裏付けるものである。
- (b) 鉄筋コンクリート部材の靭性評価法について
- 6) 初性部材におけるせん断抵抗機構をはり機構とアーチ機構の混在を仮定してモデル化した。このモデルでは、最大強度時にはヒンジ領域および非ヒンジ領域共に、はり機構のコンクリート斜め圧縮束材の角度が 45'であり、かつ、はり機構およびアーチ機構の斜め圧縮束材の応力度が共に圧縮強度に達しているものとし、さらに、せん断補強筋の応力度は両領域共に降伏応力度以下であると仮定している。一方、最大強度時以降においては、非ヒンジ領域では最大強度時の抵抗機構を維持するが、ヒンジ領域では変形の増大に伴って各抵抗機構の斜め圧縮束材の応力度が圧縮強度から低下し、かつ、はり機構の斜め圧縮束材の角度が 45'以上の値を採る。また、ヒンジ領域のせん断補強筋が降伏応力度に達することによって、部材が変形限界に達するものと仮定している。
- 7)変形限界時におけるヒンジ領域と非ヒンジ領域のせん断強度は境界条件((5-85)式) により常に等しいが、それぞれの領域におけるはり機構とアーチ機構の負担せん断力 の割合が異なり、ヒンジ領域では非ヒンジ領域に比してはり機構のせん断力負担割合 が大きくなる。
- 5) 朝性部材の変形能力とヒンジ領域におけるせん断補強筋量の関係を求めるために、荷 重-変形解析から得られる限界部材角Ruとせん断抵抗機構で仮定している最大強度時 のせん断補強筋応力度に対する降伏応力度の比率 pwp/pwsの関係について検討し、以 下の結果を得た。
 - ① 柱および梁部材共にRuはpwo/pwsの増加に伴って増加する。
 - ② 同一のpwo/pwsに対しては、桂部材では引張主筋比Φおよび材料強度比Fc/σwvの 増加あるいは柱長さ比ηの減少に伴って、Ruは増加する。
 - ③ 梁部材では η およびFe/σwrの増加あるいはΦの減少に伴って、Ruは増加する。
 - ④ Ru-pwo/pws関係は桂および架部材に対して、それぞれ(5-89)式 および(5-90)式 で定式化できる。

- 9) (5-89)式による鉄筋コンクリート柱の限界部材角予測精度は、既往の実験データ19体 に対して実験値の計算値に対する比率の平均値 µ および変動係数 v が それぞれ µ=1、 23および v =19.9%であり、極めて良好である。また、(5-90)式については梁部材の実 酸データが不足のため予測精度の検証を行なうに至らなかったが、荷重-変形解析に よる計算結果に対して安全側に定式化したことを考慮すると、実験結果に対しても安 全側の評価を与えるものと推察できる。
- (1)(5-89)式および(5-90)式に基づいて鉄筋コンクリート部材の靭性評価式として(5-91) 式および(5-92)式を提案した。提案式はヒンジ領域の必要せん断補強筋算定式の形で 与えられており、ヒンジ領域のせん断補強筋量を設計用保証変形Roと非ヒンジ領域の せん断補強筋量に相当する曲げ降伏保証補強筋比 Pws((5-88)式)のみによって算定 することができる。したがって、提案式によれば靭性設計の手順が極めて簡便なもの となる。

j.11. 記号

本章で提案した荷重-変形解析法の誘導の際に用いた記号を以下に示す。なお、その他 2記号は本論文末に示す(記号)によるものとする。

1 : コンクリート強度割増し係数 ((5-65)式)

,N, : アーチ機構の初期負担軸力 ((5-2)式)

"N』: アーチ機構の最大強度時の負担軸力

»Ni : はり機構の初期負担軸力 ((5-1)式)

。N。: はり機構の最大強度時の負担軸力

cN: : 平面保持仮定から得られるコンクリートの初期負担軸力

、私: 平面保持仮定から得られる主筋の初期負担軸力

.n.: アーチ機構の最大強度時の無次元化負担軸力 [= .N./(b·D·Fc)]

■ : はり機構の最大強度時の無次元化負担軸力 [= Nu/(b+D・Fc)]

.Q.: アーチ機構の最大強度時の負担せん断力

»Q。: はり機構の最大強度時の負担せん断力

,q.: アーチ機構の最大強度時の無次元化負担せん断力 [=.Q./(b.D.F.c)]

₀q。: はり機構の最大強度時の無次元化負担せん断力 [= ₀Q₀/(b·D·Fc)]

.R : アーチ機構におけるせん断ひずみ度(相対部材角)

.R.: アーチ機構によるせん断力-変形関係における最大強度時の部材角 ((5-77) 式)

»R : はり機構における総せん断ひずみ度(相対部材角)

ile: はり機構における斜材のひずみ度。と。によるせん断ひずみ度 ((5-21)式)

x81 : はり機構における軸方向ひずみ度。ε ιによるせん断ひずみ度 ((5-19)式)

.8. : はり機構における横方向ひずみ度。ε,によるせん断ひずみ度 ((5-20)式)

sla : はり機構によるせん断力-変形関係における最大強度時の部材角 ((5-42)式)

7. : アーチ機構のコンクリート斜め圧縮束材の応力-ひずみ曲線における応力下降 直線の勾配 ((5-66)式)

2. : はり機構のコンクリート斜め圧縮束材の応力-ひずみ曲線における応力下降直 線の勾配 ((5-34)式)

[©]。: コンクリートの応力-ひずみ曲線における最大応力時のひずみ度 (= 0.002)

8s: 主筋の平均ひずみ度

**: アーチ機構のコンクリート斜め圧縮束材のひずみ度 ((5-67)式)

***: アーチ機構によるトラスモデルにおける斜材のひずみ度

^{・6}。1: アーチ機構によるトラスモデルにおける斜材の初期ひずみ度 ((5-68)式)

- 150 -

, Ec: はり機構のコンクリート斜め圧縮束材のひずみ度 ((5-35)式) ***: はり機構によるトラスモデルにおける斜材のひずみ度 .E.: はり機構によるトラスモデルにおける軸方向弦材のひずみ度 ,ει: はり機構によるトラスモデルにおける軸方向弦材の初期ひずみ度 ((5-29)式) 。E: はり機構によるトラスモデルにおける横方向弦材のひずみ度 σ : アーチ機構においてコンクリートに作用する軸方向圧縮応力度 ((5-58)式) .σ.a: アーチ機構におけるコンクリート斜め圧縮束材の応力度 ((5-61)式) +0:: 主筋の平均応力度 sσ s1: 主筋の初期応力度 »σss: はり機構の最大強度時における主筋の平均応力度 sσa: はり機構におけるコンクリート斜め圧縮束材の応力度 ((5-18)式) 、σ、: はり機構においてコンクリートに作用する軸方向圧縮応力度 ((5-16)式) 、σ,: はり機構においてコンクリートに作用する横方向圧縮応力度 ((5-17)式) **νσιι:** 部材角.R.でのはり機構においてコンクリートに作用する横方向圧縮応力度 , g 1.: はり機構の最大強度時においてコンクリートに作用する横方向圧縮応力度 t:: 主筋に生じる平均付着応力度 ((5-13)式) .t : はり機構に作用する平均せん断応力度 [= .q/(.b·D)]

st : はり機構に作用する平均せん断応力度 [= ₀Q/(₀b・d)]

θ。: アーチ機構の最大強度時におけるコンクリート斜め圧縮東材の材軸と成す角度 ((5-71)式)