

大型宇宙構造物の姿勢制御に関する研究

平成5年6月

木田 隆

1章	序論 1
1.1	技術的背景2
1.2	従来の研究
1	.2.1 問題設定
1	.2.2 モデリング
4	.2.3 制御系設計9
1.3	本研究の動機と目的13
1,4	本論文の構成と概要14
2章	宇宙構造物のモデリング 17
2.1	まえがき
2.2	- 様構造の LSS 19
1	1.2.1 FEM モデル
2	.2.2 モードモデル
5	.2.3 計算例 1
2.3	ハイブリッド構造の LSS
2	.3.1 拘束モードモデルと非拘束モードモデル
-2	.3.2 Collocation 系
5	.3.3 計算例 2
2	.3.4 非 collocation 系
2.4	あとがき40
2.5	付録
3章	周波数成形機能をもたせた最適レギュレータによる宇宙構造物の
	制御 50
3.1	まえがき
3.2	モデル
3.3	ロバスト制御
23	.3.1 設計
515	.3.2 周波数特性
3	.3.3 状態観測器の設計60

目次

i.

3.4 設計例 1 - 1 入力 1 出力系の実験
3.5 ループ成形機能
3.5.1 閉ループ特性
3.5.2 開ループ特性
3.5.3 数值例
3.6 設計例 2 - 多入力多出力系84
3.7 あとがき
3.8 付録
4章 Collocated Feedback による宇宙構造物の制御 99
4.1 まえがき
4.2 DVFB, DVDFB 閉ループ系の安定性102
4.3 振動制御104
4.3.1 PMA
4.3.2 安定性の再考
4.3.3 実験111
4.4 姿勢制御119
4.4.1 2 重ループ制御系120
4.4.2 2 自由度制御系126
4.5 あとがき133
4.6 付録134
5章 結論 136
5.1 まとめと各章の結論137
5.2 今後の研究課題139
謝辞 140
参考文献 141

主な記号

R ^{n×m}	実数を要素とするn×m行列		
I_n	n×nの単位行列		
Ι	適当なサイズの単位行列		
Onxm	n×mのゼロ行列		
0	適当なサイズのゼロ行列		
A^T	転置		
A^{-1}	逆		
A^{-T}	逆転置		
$A^{1/2}$	平方根		
A > 0	正定行列		
$A \ge 0$	半正定行列		
rankA	行列の階数		
detA	行列式		
TrA	行列のトレース		
$diag\{A_i\}$	対角(またはブロック対角)行列		
G^*	複素共役転置		
G	振幅		
$\sigma_i(G)$	特異値		
$\bar{\sigma}(G)$	最大特異値		
$ G _2$	H2 INL		
$ G _{\infty}$	H_{∞} / NA		
Via	全てのい		

1章 序論 1

1.1 技術的背景

人工衛星の三軸姿勢制御がわが国で初めて採用されたのは、1982年に 打ち上げられた技術試験衛星 ETS-III である、これは、センサで観測し た姿勢角度,姿勢角速度を用いたフィードバック制御である、これ以前の 人工衛星は、すべてスピン衛星で、ジャイロ剛性を利用して機械的に姿勢 を安定化していた。

人工衛星の姿勢制御は、現実には3つの慣性主軸まわりに、それぞれ 独立なフィードバックを施すことによって行われる. したがって、その制 御系は3組の1入力1出力系について設計すれば十分であった. それぞれ の制御対象は、トルク入力(操作量)から姿勢角(観測量)までの次の伝 達関数で表される.

$$G(s) = \frac{1}{Is^2} \tag{1.1}$$

とこで、1 は慣性モーメントである、このため、制御則は PID などで比較的簡単に構成できていた。

わが国が開発してきた三軸制御衛星のうち, ETS-III, MOS-1, ETS-V, ERS-I, ETS-VIの特性¹⁾⁻⁶⁾を図1.1,表1.1 に比較する. このう ち, ETS-VIの外観図を図1.2 に示す. これは、1993年に静止軌道に打 ち上げ予定の、わが国の最大規模の人工衛星で、3 つの高精度通信アンテ ナの試験がその主目的である.

表1.1 から、次のような趨勢があることがわかる.まず、大型化が顕 著である.ETS-III では全長が 6[m]、重量が 400[kg] であったのが、10 年後の ETS-VI は 全長 30[m]、重量 2000[kg] である.密度は減少し、軽 量大型の構造となっている.このため、特に太陽電池バネルの構造振動の 最低周波数が、1.7[Hz] から 0.1[Hz] まで低下している.次に、姿勢制御 精度への要求が厳しくなっていることがわかる.定常誤差で、ETS-III の 0.3[度] が、ETS-VI では 0.05[度] となっている.

この2つの傾向は、人工衛星を利用する側からおきた当然の要求であっ た. 例えば通信衛星を例にとって考えれば、通信容量を増大するために、 多くの申継器を衛星に搭載し高精度で地上局にアンテナを指向させるの が望ましい.また、それに対応して多くの電力を発電することが必要であ る.一方、衛星を軌道に投入するためのコストは衛星が軽量であるほど低 滅できる.このため、軽量大型の人工衛星が望ましい.また、このように 衛星を大型化するほど、多数の小型衛星を打ち上げるよりも経済効果が高 まると考えられており²⁾、すでに ETS-VI 規模の人工衛星が宇宙開発計画 にあげられている.この趨勢は海外でも同じである⁷⁾.

図1.1 三軸衛星の推移

表 1.1 特性概要

	ETS-III	MOS-I	ETS-V	ERS-I	ETS-VI
重量 [kg]	386	750	548	1400	2000
パネル:長さ [m]	2.5	5.3	4.0	8.0	13.0
:周波数 [Hz]	1.7	0.4	0.6	0.4	0.1
制御精度 [度]	0.3	0,4	0.08	0.3	0.05

姿勢側御系の設計の側からこれを見ると、姿勢を高精度に制御するた めには、一般に制御系の帯城が広くなる. 姿勢制御系の遮断周波数が高周 波となって、構造の振動周波数に近づくために、これらが干渉しやすくな る. さらにこの構造振動の周波数は、衛星の軽量大型化に伴って低くなっ てくるので、この干渉の問題がますます深刻になる. 従って、このような 大型衛星の姿勢制御系を設計するためには、(1.1)式に構造振動も考慮し たモデルを考えなければならない、その伝達関数は次のようになる.

$$G(s) = \sum_{i=1}^{\infty} \frac{\Phi_i^2}{s^2 + 2\zeta_i \sigma_i s + \sigma_i^2}$$
(1.2)

ここで, σ_i, ζ_i, Φ, はそれぞれ, i番目のモードの周波数, 減衰比, モー ドシェーブであるが詳細は本文で述べる.

ところが実際には、表 1.1 に示した現実の人工衛星のうち ETS-V1 以 外は、姿勢制御系が振動モードを励振しないよう、制御ループの中に 2 次 のローバスフィルタを挿入している^{3,4,5}). これによって、構造振動の影響 を受動的に抑制して安定性を高めることができる、しかしその反面、外乱 抑制機能などは劣化し、達成できる姿勢精度が犠牲になる. この事実か ら、制御性能を向上させるためには、姿勢運動と構造振動を同時に制御す る姿勢制御系が必要となることがわかる.

一方、大型宇宙構造物(LSS: Large Space Structures)のさまざま な構想は、1970年代半ばから活発に提案されてきた。当初は、数GW 級 の太陽発電衛星(SPS: Solar Power Satellite)など文字どおり大規模な システム⁸⁾が考えられていたが、現在では、静止ブラットホーム(Geo-Stationary Platform)、フリーフライヤ(Free Flyer)などに焦点がし ぼられてきている。図1.3 は、これらの宇宙構造物を要素とした、米国航 空宇宙局(NASA)の宇宙開発構想である⁹⁾. とのうち、既に開発の始まっ ているものは宇宙ステーション(International Space Station)である。 これは、1995年に高度 500[km]の円軌道上に構築を開始し、1998年に第 1期が完成する予定であり、図1.4 が Freedom と呼ばれる、その初期の 形態である. これらの、宇宙構造物は規模の差こそあれ、そのモデルはや はり(1.2)式で記述できる。ただし、構造振動モードの周波数は大型人工 衛星に比べて、さらに低くなり、かつ親密に分布する。例えば宇宙ステー ションでは、0.1[H2]以下の周波数帯に13モードが存在するという解析 結果が報告されている¹⁰⁾. そして、必然的に多入力多出力系となる.

とのように、これからの宇宙開発には、構造振動を制御する機能を持 つ姿勢制御系が必要であり、そのための系統的な設計法を確立しなければ ならない。

1.2 従来の研究

1.2.1 問題設定

宇宙構造物の制御の研究は、1980年代初頭から本格化してきた¹¹⁾⁻¹⁵⁾. 2つに大別できる.

ひとつは、宇宙構造物を分布定数系で記述し、制御系を設計しようと するものである.理想的な構造、例えば梁(beam)、に適用した例があ る^{16,17)}.

しかし、宇宙構造物は複雑な構造特性をもっているので、その振動は 有限要素法(FEM: Finite Element Method)などを用いて集中定数系と して、(1.2)式のようなモード方程式で表されるのが普通である¹⁸⁾. この 意味で、集中定数系に基づく設計法がより適用範囲が広い. しかしモード モデルは広い周波数帯域をもつ高次のシステムである. したがって、これ に基づいて設計した制御則もやはり広帯域、高次となりそのままでは実装 ができない.

これに対処できる制御系設計の考え方として3つある。第1は、こう して得られる高次の制御則から低次元制御則を得る方法であり、第2が高 次モデルから直接、低次元制御則を設計する手法である。前者は制御器の 低次元化の問題であり、低次元化によっても閉ループ系が安定である保証 を与える必要がある¹⁹⁾.また後者には、Optimal Projection (OP) が提案 されている²⁰⁾.

しかし、宇宙構造物では、高次モデルをまず低次元化しての低次元モ デルについて制御則を設計する方法が普通である¹¹⁾¹²⁾.

このために例えば, (1.2)式を

$$G(s) \approx \sum_{i=1}^{n} \frac{\Phi_{i}^{2}}{s^{2} + 2\zeta_{i}\sigma_{i}s + \sigma_{i}^{2}}$$
(1.3)

と低次元化する. 設計において無視されたモードを残余モードと呼ぶ. 低 次元モデルが定まれば, それは時不変の線形系であるから,何らかの性能 仕様を満たして閉ループ系を安定とする制御則が求められる. このための 設計ツールは良く整備されている. しかし, この制御則を実際の宇宙構造 物に施した系が安定となる保証はない. 安定性を妨げる最大の原因が設計 に考慮しなかった残余モードの存在である. 制御系と残余モードの干渉は スピルオーバ (spillover)とよばれ,これによって比較的容易に閉ループ 系が不安定となることが示された²¹⁾. このため、宇宙構造物の制御の研 究は、スピルオーバ不安定を抑制する制御系の設計法に焦点があてられて きた.

との観点から行われてきた従来の主な研究の概要と流れを以下に述べる.

1.2.2 モデリング

(a) 低次元化

実用上は、制御モデルは不安定な剛体モードと低い周波数をもつ数個の振動モードで構成される.しかし、構造が複雑になれば、何らかのモデル低次元化の規範が必要となる.当初、これに関しては振動がもつ運動量の完備性²²⁾ などによる力学的な基準が考えられてきた²³⁾.その後、宇宙構造物が白色雑音で加振されたときの出力の2次形式評価関数を基準とした、Modal Cost Analysis²⁴⁾²⁵⁾ が提案され、内部平衡実現²⁶⁾ に基づく低次元 化法との関係が明かにされた²⁷⁾.また、周波数重みをもたせた平衡実現 による方法も試みられている²⁸⁾²³⁾.この他に、q-COVER³⁰⁾、ハンケルノ ルムによる低次元化³¹⁾ の提案もある.

(b) センサ, アクチュエータの個数と配置場所

可制御性、可観測性をみたすセンサ、アクチュエータの個数が明かにされ ³²)、同時にモード方程式の特徴を利用して、可制御、可観測性の度合い として、可制御指数、可観測指数がそれぞれのモード毎に求められている ³³)、これは、センサ、アクチュエータの制御に必要な個数だけではなく、 宇宙構造物上での配置場所を選定する基準を与えている。

また、センサとアクチュエータが同一点に配置されているときを、collocation 系 とよぶ、このとき、制御系が最小位相系となることが示された ³⁴). 筆者らは、多入力多出力系の場合の伝達零の計算アルゴリズムを求め、 collocation であれば、多入力多出力の宇宙構造物と、その低次元モデル の伝達零も複素左半平面にあることを示した⁶⁹⁻⁷¹⁾. また、非 collocation 系の場合の伝達零の分布状態が調べられている³⁵⁾.

1.2.3 制御系設計

(a) LQR , LQG

1980年代初頭には、多入力多出力系に対して系統的な設計法をもつもの として、LQR(Linear Quadratic Regulator)、または LQG(Linear Quadratic Gaussian)が有力なものの一つであった。これは、優れた制 御性能をもつと同時に、円条件で代表される良いロバスト性があることが 知られているが、このロバスト性も残余モードの存在のもとで安定性を を確保するには不十分な場合が多い、実際、比較的容易にスピルオーバ不 安定となる実験結果が報告されている³⁶⁾³⁷⁾. LQR の設計法を用いて、ス ビルオーバ不安定を抑制する制御則としては、その当時、MESS (Model Error Sensitivity Suppression)が唯一の成果であった³⁸⁾. これは、安定 性に大きい影響を与える残余モードを評価関数の中に考慮して、特異摂動 法を用いてそれを消去する手法である.

しかしその後、1980年代半ばから、宇宙構造物の設計法に関する研究 は急速に本格化してきた、これは、折から制御理論の分野で注目されてき たロバスト安定性、ロバスト制御系設計の機運と無関係ではない。

(b) LQG/LTR

その1つが、LQG/LTR (Loop Transfer Recovery)である³⁰⁾. 低次 のLQG 制御則を施したときの一巡伝達関数を、状態フィードパックの一 巡伝達関数に漸近的に近づけることによって本来の最適レギュレータのロ パスト性を回復し、残余モードを不安定としない試みである⁴⁰⁾⁴¹⁾⁴²⁾.

(c) Frequency-Shaped LQR, H2最適制御

周波数応答に注目する古典的な設計法では、ローバスフィルタの挿入 によって信号の高周波成分を除き、制御対象の不確かな部分を励起しない ようにすることが従来から行われてきた。多入力多出力系で、このような 周波数領域での成形ができれば、スピルオーバ不安定を抑制することがで きる.

ループ成形法のひとつとして、2次形式評価関数の重みを周波数依存 とする最適レギュレータの設計法が示された⁴³⁴⁴). 筆者らは、この設計 法を適用して高域遮断特性をもつ最適レギュレータを宇宙構造物の制御に 利用することを提案した⁸³⁻⁸⁸).

この周波数依存の最適レギュレータの設計法を一般化すれば、それは拡 大系の閉ループ伝達関数の II2 ノルムを最小とする設計に帰着する $^{45/46}$ 、 この II2 最適化 を応用した設計例も、同時期に発表されている $^{47/48}$.

(d) H_∞制御

周波数成形を可能とする H_{∞} / ルムを最小とする設計法⁴⁹⁻⁵²)の適用 も行われている.特に、 H_{∞} 制御則の簡単な設計が可能となり、達成でき る制御性能、ロバスト安定性と直結する態度、相補態度などの閉ループ伝 達関数の H_{∞} / ルムを評価関数とした適用例がある⁵³⁻⁵⁵).

(e) DVFB, DVDFB 出力フィードパック制御

以上は数学モデルに基づく線形制御理論を適用した設計法であるが、2階 行列微分方程式で表される力学系には、設計モデルに依存しない安定性が 古くから知られている⁵⁶). センサとアクチュエータが同一点に配置され た collocated 制御系の場合に限って、この安定条件を利用したロバスト な制御則が存在する.

DVDFB(Direct Velocity and Displacement Feedback)制御はアク チュエータと collocate した変位および速度の観測量の静的な出力フィー ドバックであり、それらのフィードバックゲイン行列が正定対称のとき上 述のようなモデルのバラメータによらない安定性が成り立つ、剛体運動を 無視した系の速度フィードバック DVFB(Direct Velocity Feedback)の 研究⁵⁷⁾がその発端であった。

この安定性はゲイン行列の構造にのみ基づいているので、制御対象の パラメータ変動、残余モードの影響は受けない、また、この安定性は入力 端にある種の非線形性や動特性がある場合にも成り立つことが示されてい る⁵⁸).ただし、ゲイン行列が正定対称であることが安定性の本質である.

通常の設計法では正定対称のゲイン行列は一般に得られないので、疑 似逆行列による最小2 乗近似⁵⁹),固有値感度を用いる摂動法⁵⁰),準最適 制御⁶¹),最適制御⁹⁷)などの設計法が検討されてきた。

同様の観点から、collocation のとき宇宙構造物の伝達関数行列が正実 となることに注目して、強正実な動的補償器による制御が提案されている ⁶²)、これも、閉ループ系の安定性は構造的なものなので、残余モードの 影響は深刻ではない。

LACを実現するアクチュエータとして、従来の人工衛星で使われてきた、ホイール、スラスタの他に、PMA(Prrof Mass Actuator)が NASA などで注目を集めていた⁶³⁾. 筆者らは試作器による DVFB 実験を行い、 PMA の動特性を含めた安定性について検討した⁹⁶⁾. 同様の結果がその後、 異なる形式の PMA について発表されている⁶⁴⁾.

(f) LAC/HAC 制御

宇宙構造物でスピルオーバ不安定が起きやすい理由は振動モードの減衰が 小さいととである。そして、この減衰比は正確な同定が最も困難な量であ る。いま、摂動法が意味をもつ程度に微小な DVFB ゲインを与えた場合。 その DVFB 閉ループ極の解は陽に得られることが示されている⁶⁰). とれ を LAC (Low Authority Control)と呼ぶ。そして、この閉ループ系は モード間の干渉を無視できる程度に減衰が多少増加したモデルで表現でき る. これを低次元化したモデルについて例えば LQG 制御などの HAC (High authority Control)を施せば、スピルオーバ不安定は発生しにくく なる. とれは、LAC/HAC 制御と呼ばれ⁶⁵)、その仕組みの簡潔さと実用 性のために広く知られている¹²⁾. HAC の設計には種々の方式が適用でき る⁶⁶). 筆者らは、2自由度制御系による LAC/HAC によって目標値追従 特性を改善するととを検討した⁹⁸).

1.3 本研究の動機と目的

筆者は 1987 年から、宇宙開発事業団との共同研究として、技術試験 衛星 ETS-VI の軌道上での制御実験の研究を企画している⁶⁷⁾. との共同 研究の目的は、従来の人工衛星で採用されてきた古典的な設計法ではな く、いわゆる現代制御理論による姿勢制御則を実衛星に適用し、さらに、 その結果を将来型の宇宙構造物の多入力多出力制御系設計に生かすことで ある.

このために、共同研究に先だつ 1985 年に、宇宙開発事業団に設置された ETS-VI の小型模型を使った予備実験を行った³⁷). 制御則は状態観 御器を併用した通常の最適レギュレータとした. ところが、閉ループ系の 極の値、時間応答などによって残余モードの影響を事前に検討しておいた にも拘らず、実験では容易にスピルオーバ不安定が発生した. その最大の 理由が、サンプル周期、センサの遅れ、アクチュエータの動特性などモデ ル化の困難なむだ時間が随所にあるためであった. これは、一巡伝達関数 のボード線図という古典的な手法によって初めて理解できた. そして、こ の実験系を安定化する2つの手法として、入力端にローバスフィルタを挿 入すること、および振動モードのレートのフィードバックを付加すること が非常に有効であることが判った. しかしながら、これらの成果は実験現 場での作業としてレギュレータに後付けしたものであり、有効ではあって も一般性をもつものではない. 結果的には最適性も失われている.

そこで、この安定化法を整理しなおすことが本研究の主要な動機となっ ている. そしてそのためには、最適レギュレータのような時間領域におけ る設計法でも、その評価を周波数領域で行うことが重要である.

本研究で得られる結果の主なものは、実際に ETS-V1 の搭載計算機用 にコード化され 1993 年に軌道上で実験を行う⁶⁸⁾. そして、その実験結果 を見直して将来の宇宙構造物の設計技術として整備していく予定である. これが、本研究の目的である.

1.4 本論文の構成と概要

本論文の主眼点は多入力多出力の宇宙構造物の制御系設計法の研究に あり、主として、制御用のセンサとアクチュエータが同一点に配置された collocation 系を考察の対象としている。ほとんどの現実の宇宙構造物が この collocation 条件を満たしているからである. 第2章は制御系設計の ために制御対象のシステム的な特性を明確にすることが目的であり、可制 御,可観測かつ collocation のとき制御系が最小位相系とたることを明ら かにする.そして、第3章、第4章では、この特徴を利用した制御則の 設計法を提案する.ところで、宇宙構造物の設計法として2とおりの考 え方ができる.ひとつは、高域の振動モードの振幅を低減することによっ て安定化を図る方式 (ゲイン安定化) であり、もらひとつは位相を進ませ ることによる安定化(位相安定化)である。第3章では、まず、ゲイン安 定化の機能を持つ制御則を考える. 周波数応答に注目する古典的な設計 法では、制御ループ内にローバスフィルタを挿入する方式が従来から行わ れてきているが、とこでは、この考え方を一般化して、周波数依存の最適 レギュレータの設計法を適用して高城遮断特性を持つ制御則を系統的に 設計する方法を提案する、第2章で求めた結果から、可制御・可観測の collocation 系では、閉ループ系を安定化する出力フィードパック制御則 が状態観測器の併用によって構成できること、および、その状態観測器に Loop Transfer Recovery の機能を持たせられることが制御対象の最小位 相性から言える、第4章で位相安定化の考え方を用いた設計法を考える。 第2章で得た条件を満たす可制御・可観測・collocationの宇宙構造物で は、非常に簡単な collocated feedback 制御で位相進みによる安定化が達 成できる、この制御則を現実に有効なものとするために、アクチュエータ 動特性を考慮した安定条件を導く、と同時に、制御性能の向上をはかる制 御系構成法を提案する、このように、第3章および第4章で述べる制御 則はいずれも第2章で明らかにする collocation 系の特徴を利用している。 ただし、第3章で考える制御則は1部の制約を除いて非 collocation 系に も適用できる、どちらの制御則を用いるべきかは問題の性質によるもので ある.

以下に各章の概要をまとめる.

第2章はモデリングに関連する研究である、宇宙構造物の制御則は、 通常、時間領域で設計されるが、閉ループ系の安定性、制御性能を周波数 領域で評価することは重要である、宇宙構造物を伝達関数行列で表した とき、それを特徴づけるもののひとつが、極と零である、この観点から、 多入力多出力系の宇宙構造物の極と伝達零を計算するアルゴリズムを,主 に collocation の場合について求め,その物理的な意味を調べる.そして, モード低次元化,可制御性、可観測性との関係について検討する.字宙構 造物のモデルとして2とおりを考える.ひとつは,一様な構造物の場合 で,有限要素モデルとこれをモード座標で表現したモードモデルの伝達 零を求める.簡単なトラス構造の数値モデルにこの結果を適用し,況用の QZ アルゴリズムの結果と比較し有効性を示す⁷⁰⁾.次に,柔軟構造と剛体 部からなるハイブリッドな宇宙構造物の拘束モデルと,非拘束モデルの伝 達零を求め,これを ETS-VI の数値モデルに適用する.アルゴリズムの 有用性を示す⁷¹⁾.いずれの場合にも,collocation 系であれば,その伝達 零は複素左半平面にあり最小位相系となること,および,その値は入出力 点を固定したときのモード周波数に等しくなることが結論できる.

第3章では、周波数領域におけるループ成形機能をもたせた最適レギュ レータによって残余モードに対して安定な低次元の制御則の設計法を提案 する、低次元モデルに基づいて設計した通常の最適レギュレータを宇宙構 造物に適用すると、ロバストといわれているレギュレータでも、残余モー ドの存在のために比較的容易に閉ループ系が不安定となる、ここでは、2 次形式評価関数の操作量の重みに高域通過特性をもたせることによって、 とのスピルオーバ不安定化を抑制できることを示す. このために、まず、 制御則の設計法を述べる. そして, 得られる最適レギュレータのゲインが 周波数依存となり、それは安定で高域遮断特性をもつてとを示す83)。 こ の状態フィードバック則を実用とするための状態観測器について検討し、 通常の最適レギュレータと同様に分離定理が成り立つこと、および LTR 機能をもたせられることが明かとなる.次に、1入力1出力の地上実験の 結果を示す⁸⁶)。ロバスト安定性の評価はボード線図を使って行える。さ らに、この設計法を拡張して、2次形式評価関数の制御量の重みも周波数 依存とすることによって、ロバスト安定仕様と同時に性能仕様を向上させ る設計法を考え、多入力多出力のトラス構造物の数値モデルに適用して、 有効性を示す87)88)、

第1章は、collocated feedback 制御を利用した制御系についての結果 である。これによっても、残余モードに対してロバスト安定な制御が達成 できる。ここでは、まずアクチュエータと collocate した速度センサの出 力をフィードバックする DVFB、これに collocate した変位センサ出力の フィードバックを加えた DVDFB の安定条件を求める。これらのフィー ドバックゲイン行列が正定対称のとき閉ループ系は漸近安定である。しか し、アクチュエータの動特性を考慮したとき、この安定条件はそのままで は成り立たない場合がある。 DVFB 制御用のアクチュエータとして試作 した PMA を使用した場合について安定性を検討し、ラーメン構造物を 使った実験でこれを確認するとともに、DVFB による振動制御の効果を 示す⁹⁶⁾. このように, collocated feedback 制御は安定性に関して特有の 優れた性質をもっているが、制御性能の仕様を満たすような設計機能はな い、そこで、この特徴を生かした姿勢制御系の構成法を2つ提案する98). ひとつは、2重ループの制御系で DVFB を施した閉ループ系の剛体モー ドに対して低次元のフィードバック制御を設計する LAC/HAC 構成であ る.ただし、この制御即には DVFB 閉ループの残余モードに対するロバ スト安定性をもたせる、DVFBのない通常のロバスト制御則の保守性が 解消されて優れた外乱抑制機能,目標値追従特性を得ることができる.次 に、DVDFB を施した閉ループ系に前向き補償器を付けた2自由度系を 考える.参照モデルにマッチングする補償器を求めて、目標値追従性が向 上できることを示す.いずれの構成においても、振動モードは collocated feedback のみによって制御される. 1入力1出力系の地上実験結果で、そ の有効性を示す.

そして、最後に第5章で全体のまとめと、今後の研究の課題を述べる.

2章 宇宙構造物のモデリング

2.1 まえがき

大型宇宙構造物 (LSS: Large Space Structures) の構造振動は有限要 素法 (FEM: Finite Element Methods) に基く数学モデルで記述される。 ところが、そのモデリングは必ずしも容易ではなく、精度の高いモデル を得ることは難しい、特に LSS は無重力の宇宙空間で構築することが前 提となっている軽量構造物なので、地上 1G の環境下では重力による座 屈、空気抵抗のために、試験によって直接、システムの特性を知ること は容易でない、実機 LSS 全体の地上試験によるモデルの把握が困難なた めに、吊り具を使った近似的な試験、LSS を部分構造にわけて実施した 地上試験結果の合成などを実施し、これによって数学モデルを修正、再 構築する方法が一般にとられるようになってきている。

LSS の制御則は、こうして得られた数学モデルに基づいて通常、時 間領域で行われる、しかし近年、閉ループ系の安定性、制御性能を周波 数領域で評価することの重要性が認識されてきている³⁹⁾. LSS 制御系を 伝達関数行列で表したときに、それを特徴づける量のひとつは極と零であ る、このうち極の定義は一意で計算も簡単であるが、零については、検討 が始められたところである^{34)35/69)}. これは、センサ、アクチュエータの 配置方法など設計問題との関連が深い重要な問題である.

この観点から、ここでは LSS の極と零を計算するアルゴリズムを求 め、その性質を調べる⁷⁰⁾⁷¹⁾.特に、センサとアクチュエータが同一場所に 配置された collocation 系 についてモデリングとの関係を検討する.正方 システムの場合の非 collocation 系についても考察を加える.多入力、多 出力系の零として伝達零⁷⁵⁾⁷⁶⁾を考えている。

LSSモデルとしては、2とおりを考える、全体を一様な連続体として 扱える場合を 2.2 節に、中心剛体に柔軟体が取付られた人工衛星の場合を 2.3 節で検討する、このうち前者は、ひとつの FEM モデルで記述される ¹⁸⁾. 一方、後者は FEM でモデル化された構造振動と剛体の運動を合成 したハイブリッドな方程式で表現される²³⁾⁷²⁻⁷⁴⁾. そして、 制御系設計 のために、いずれもモード解析によってモードモデルに変換される、制御 則は、このうち低次の数モードのみを制御対象として設計する、従って、 低次元化が極、零に与える影響も重要な問題である。

ところで、一般の制御系の伝達零を求める数値アルゴリズムには、す でに多くの方式が提案されている⁷⁷⁻⁸¹. しかし、本章で考察する零とそ れを計算するアルゴリズムは、 LSS 固有の構造を利用したもので、簡単 な固有値計算によって求めることができる特徴を持っている. また物理的 な意味も理解しやすい. 数値例でこれを示す.

2.2 一様構造の LSS

2.2.1 FEM モデル

LSS は一般に、次式の有限要素モデルで記述できる.

$$\begin{array}{rcl} M\ddot{w}+D\dot{w}+Kw &=& Lu \\ y &=& Hw \end{array} \tag{2.1}$$

行列 $M, D, K \in \mathbb{R}^{n \times n}$ は、それぞれ質量、減衰、 剛性行列で M は正定、 K, D は一般に半正定である。半正定性は剛体運動の存在による。 剛体運動は K, D のゼロ固有値に対応する LSS 全体の剛体としての並進、 回転である。すべての剛体運動が拘束されているとき、 これらは正定行列 である。また、 $w \in \mathbb{R}^n$ は節点の物理変位である。そして、 $u \in \mathbb{R}^p$ を操作量(制御力・トルク入力)、 $y \in \mathbb{R}^m$ を観測量(並進・回転変位)とする。 L, H はそれぞれ入力の作用する節点、出力を検出する節点を表す行列で ある。 ここで、

[定義 2.1] $L = H^T$ のとき (2.1)式を collocation 系と呼ぶ.

collocation とは、物理的には入力、出力の数が同じ (p = m) で、入 力点と出力点が同一場所で、かつ同一の自由度方向に作用する場合を意味 している。実際の宇宙構造物では、この条件が満足される場合が多い。

また、LSS の姿勢制御のためには、 その不安定な剛体運動が制御で き、かつ観測できなければならない、このために、 次の性質が成立する 場合を仮定する⁹⁷.

[性質 2.1] LSS 制御系 (2.1) 式は
 (a) [KL], [DL] が行最大ランクを持つとき可安定であり、
 (b) [K]/H], [D/H] が列最大ランクを持つとき可検出である。
 [証明] 付録 2A ■

本節では、(2.1)式の u から y までの伝達関数行列 G(s): y = Gu の 極と零を調べてみる. ここで、 $G(s) = H(Ms^2 + Ds + K)^{-1}L$ である. まず極は、特性多項式 d(s) が

$$d(s) = \det |Ms^2 + Ds + K| = 0$$
(2.2)

を満たす a である. 多入力多出力系の極の定義は、 よく知られていると おり一意で簡単である. しかしながら、多入力多出力系の零は複雑でさまざまな定義がなされ てきた^{75/70)}. ここでは、collocation 系の伝達零 (Transmission zero) を 考える。入出力数が等しい p = m = r 正方システムの伝達零は次のよう に与えられる⁷⁶⁾.

[定義 2.2] G(s) が正方行列のとき、 その伝達零は

 $d(s)\det G(s) = 0$

をみたす 8 である.

そして (2.1)式が可制御, 可観測のとき, 伝達零は不変零 (Invariant zero) と等しい. 可逆な正方システムの不変零は G(s)の状態空間表現で 次のように定義されている⁷⁵⁾.

[定義 2.3] $G(s) = C(sI - A)^{-1}B$ の不変零は

 $\operatorname{rank} \left[\begin{array}{cc} A-sI & B \\ C & O \end{array} \right] < 2n+\tau$

を満たす 8 である.

さて、 簡単のために (2.1) 式が $L^T = [L_o^T O]$ となるように標準形で 表されているものとしよう. $L_o \in \mathbb{R}^{r \times r}$ は正則である. この標準化は、 行 列の基本変換によって常に可能である. そして、 これに対応して M, D, Kを次のようにブロック分割しておく.

M -	M11	M12	D-	D_{11}	D12	- K-	K_{11}	K12
100 -	M_{12}^{T}	M22	1.0-	D_{12}^T	D_{22}	,	K_{12}^T	K_{22}

ただし、 $M_{11}, D_{11}, K_{11} \in \mathbb{R}^{r \times r}$ である. このとき次が成り立つ.

[定理 2.1] FEM モデル (2.1) 式で表現した伝達関数行列 G(s) の伝達零は

 $\det \left[M_{22}s^2 + D_{22}s + K_{22} \right] = 0$

をみたす 5 である.

[証明] detG(s) と d(s) を直接計算すれば得られる. ■

従って伝達零は 2(n-r) 個ある. そして, M_{22} , D_{22} , K_{22} は正定なので、この多項式の根はすべて安定であることがいえる⁵⁶⁾. 即ち,

[性質 2.2] LSS (2.1) 式は,可安定,可検出, collocation のとき最小位 相系である. ■ 定理 2.1 をみたす伝達零は, 原理的には, 次の行列の固有値を計算す ることによって求めることができる.

 $\begin{bmatrix} 0 & I \\ -M_{22}^{-1}K_{22} & -M_{22}^{-1}D_{22} \end{bmatrix}$

ただし、 この行列の次数 2(n-r) は決して小さくない、 ところで、 一 般に LSS では $D \approx 0$ であることに注意すれば、(2.1) 式で行列 M、 D, K のうち添字 $_{11}$ 2_{12} のついたブロックを消去して D_{22} を無視した系の 一般化固有値問題 $K_{22x} = \lambda^2 M_{22x}$ を解くことで、 伝達零が簡単に計算 できることがわかる. ここで、 λ は固有角振動数である。そして、この 計算は (2.1) 式で入出力が作用する節点の自由度を拘束するような境界条 件を与えたときのモード周波数に等価である. つまり、 物理的には伝達 零は入出力方向の自由度を慣性空間に固定したときの拘束モード周波数に 等しい、これは、 汎用の FEM ブログラムのモード解析機能を使って容 易に計算できる量である。

一方、 極も (2.2) 式で $D \approx O$ として $Kx = \lambda^2 Mx$ を解けば求められ る. これは FEM プログラムで、 すべての境界条件を自由端としたとき モード解析で得られる非拘束モード周波数である. なお、 FEM で作る ことのできる行列は $M \geq K$ のみである. D は人為的にさまざまな仮定 にもとづいて付加される量である。低減衰の LSS では、 $D \approx O$ の仮定 のもとに実用的なモデルとして (2.1) 式を考えている.

しかし、いずれにしてもこのモデルでは、FEM プログラムを用いて 伝達零を計算しなければならない。このため計算のコストが高く効率は悪い、入出力点を変更するたびに膨大な計算が必要になる。そこで、次節 ではモード変数を使った。より実際的な伝達零の計算法を考えよう。

2.2.2 モードモデル

FEM モデル (2.1) 式の次数 n は通常, 非常に大きいので制御系設計 に用いるためには, (2.1) 式をモードモデルに変換して低次元モデルを作 る必要がある. このために非拘束境界条件で (2.1) 式全体のモード解析を 行い,

 $\Phi^T M \Phi = I, \ \Phi^T K \Phi = \Sigma^2$

となるモード剛性行列 Σ^2 とモード行列 Φ を求める. このとき (2.1)式 は $w = \Phi \eta$ によって次式に変換できる. η はモード座標である. これを, 非拘束モードモデルと呼ぶ.

$$\ddot{\eta} + 2Z\Sigma\dot{\eta} + \Sigma^2\eta = \Phi^T Lu$$
 (2.3)
 $y = L^T\Phi\eta$

ととで、 $Φ, Z, Σ \in \mathbb{R}^{n \times n}$ である。そして、 $Σ \ge 0$ は対角行列で、その対 角要素は非拘束モード周波数である。また、 $2Z\Sigma$ は半正定対角行列と仮 定する。前節で述べたように、 滅衰がきわめて小さい LSS で通常に使わ れる実用的に意味のある仮定である。

とのモデルからも伝達零は次のように求められる.そのために, (2.1) 式の場合と同様に (2.3) 式の各行列を次のようにブロック分割しよう.

$$\Phi = \begin{bmatrix} \Phi_1 \ \Phi_2 \end{bmatrix}, \ Z = \begin{bmatrix} Z_1 & O \\ O & Z_2 \end{bmatrix}, \ \Sigma = \begin{bmatrix} \Sigma_1 & O \\ O & \Sigma_2 \end{bmatrix}$$

とてで、 $\Phi_1, Z_1, \Sigma_1 \in \mathbb{R}^{r \times r}$ とした.

[定理 2.2] モードモデル (2.3) 式で表現した伝達関数行列 G(s) の伝達 零は

det
$$\left| \Delta (Is^2 + 2Z_1\Sigma_1s + \Sigma_1^2)\Delta^T + (Is^2 + 2Z_2\Sigma_2s + \Sigma_2^2) \right| = 0$$

をみたす s である、ただし、 $\Delta = \Phi_2^T L (\Phi_1^T L)^{-1} \in \mathbb{R}^{(n-r) \times r}$ である、 [証明] 上述の分割に注意して次のように直接計算で求められる.

$$\begin{aligned} \det G &= \det \left[L^T \Phi_1 \Psi_1^{-1} \Phi_1^T L + L^T \Phi_2 \Psi_2^{-1} \Phi_2^T L \right] \\ &= \det \left[L^T \Phi_1 \Phi_1^T L \right] \det \left[\Psi_1^{-1} \right] \det \left[\Psi_2^{-1} \right] \det \left[\Psi_2 + \Delta \Psi_1 \Delta^T \right] \end{aligned}$$

ことで、 $\Psi_a(s) = Is^2 + 2Z_a\Sigma_a s + \Sigma_a^2, a = 1, 2$ とした. 特性多項式は $d = \det \Psi_1 \det \Psi_2$ であるから、定理が得られる、■

ブロック分割の方法は任意でよい. ただし、もし 入出力の個数が剛体モードの数に等しく、 かつ $Z_1 = \Sigma_1 = 0$ ならば、 性質 2.1 および付録 2A から $\Phi_1^T L$ は正則である.また、 (2.3) 式は定理 2.1 の場合と同じ 理由で最小位相系である.

この結果を使うと、LSS 全系のモード解析を非拘束境界条件で行い、 Φ, 2, Σ をひとたび求めておけば、伝達零は FEM プログラムとは独立に 計算できることになる。入出力点を変更したときの零も行列 L を変更す るだけで簡単に求めることができる。物理的には、非拘束モードから定 理 2.1 のような拘束モードが計算できることを示している。非拘束モード は、そのための情報量を多く持っているということである。そして、制 御系設計に使用するモデルも (2.1)式ではなく、(2.3)式である。

通常, 制御系は高次モードを短縮した低次元モデルに基づいて設計 が行われる. この低次元化によって行列 E₂, Z₂, Φ₂ の次数が短縮される. このとき, 零の計算精度は劣化するが, 伝達零を求める式の構造は変わ らないので最小位相性は保存されることも, この定理は示している.

2.2.3 計算例 1

以上の結果を確認するために、図 2.1 のような簡単な 6 節点 9 要素の 平面トラスを考えてみる. 各節点は並進 2 自由度をもつ. LSS 全系の剛 体モードは並進 2, 回転 1 の 3 自由度である. ここでは、 減衰填をゼロ とした非滅衰系を考える.

図 2.1 Collocated LSS の数値モデル

まず,図2.1(a)のように3組の入力,出力をもつ系を考える. 矢印 は collocation のアクチュエータ入力,センサ出力の正方向を示す. これ が可制御,可観測のための最小数であり, n=12, r=3 である.図2.2 は FEM 解析によって計算した全体系の12個の非拘束モードの形状を示 す.図中の数字は各モードの周波数(単位 Hz)である.これが(2.2)式の 計算結果に対応する極で24個ある.明らかに,極、伝達零ともに複素 共役であるので、以下ではその正の虚数部のみを示す.そして,FEM モ デルの入出力方向の自由度を拘束した境界条件でモード解析を行った拘 束モードの形状を図2.3 に示す.図中の数値が拘束モード周波数であり, 定理2.1から,これが伝達零である.伝達零は、2×(12-3)=18個ある.

とれらのモードデータを使って定理2.2を検証してみる. 定理2.2か ら計算した結果を図2.3の拘束モード周波数と比較して表2.1 に示した. 計算には12モードのデータをすべて使っている.よく一致している.表 では、同時に一般的なシステムの伝達零を計算する代表的なQ2アルゴ

図 2.4 4入出力系の拘束モード:零[Hz]とモード形状

 15.2
 18.3
 53.7
 64.9
 81.1
 88.7
 96.9
 100.6
 118.4

 </td

0.0 0.0

0.0

(3)	5 дл, 12	单位[Hz]
FEM	Æ-K	±−×
モデル	モデル	モデル QΖ
		1.6
15.2	15.5	15.5
18.3	18.4	18.4
64.9	65.0	65.0
81.1	81.9	81.9
96.9	96.9	96.9
100.6	101.0	101.0
		00

1000	ло щл, э	単位 [Hz]
FEM	₹- F	
モデル	モデル	モデル QΖ
15.2	15.6	15.6
18.3	18.8	18.8
		46.1
53.7	53.9	53.9
64.9	65.1	65.1
81.1		
88.7	88.4	88.4
96.9 100.6	99.9	99.9
110.4		00
		-

表 (3入)	表 2.3 伝達零 (3入力 3 出力,6 モード) 単位 [Hz]		
FEM	₹-¥	ŧ-F	
モデル	モデル	モデル QZ	
15.2 18.3	17.2 20.5	17.2 20.5 29.1	
53.7 64.9 81.1 88.7	62.0	62.0	
96.9 100.6 118.4			
		00	

表 2.4 伝達零 (4入力 4出力, 12モード) 単位[Hz]			
FEM	mode	mode	
モデル	モデル	モデル QZ	
17.5	17.6	17.6	
29.0	29.1	29.1	
60.7	60.3	55.3	
79.9	80.1	80.1	
82.3	81.9	81.9	
88.7	88.8	88.8	
99.6	100.0	100.0	
113.9	114.0	114.0	
		00	

リズム⁷⁷⁾による結果も併せ示した. との QZ アルゴリズムは 2(n-1) 個の 有限な伝達零と±∞ の伝達零を算出している. とのうち, 1.6, 2.1[Hz] の 2 つの値は真の伝達零ではない. しかし, 真の伝達零を得るためには sorting が必要であるが, その基準はない. 一般系のアルゴリズムの限界 である. 次に, 12 モードを9 モードに短縮して定理 2.2 を使って伝達零 を計算した結果を 表 2.2 に示す. そして, さらに 6 モードまでモード短 縮を行った場合を 表 2.3 に示す. 精度は劣化するが実用上の問題はない.

次に、 図 2.1(b) のように 4 組の入力、 出力のある系を考えてみよう. n=12, r=4 である. との 4 自由度方向を拘束したときの拘束モード周 波数、即ち伝達零と、モード形状を 図 2.4 に示す.また、表 2.4 にモー ドモデルから計算した伝達零を比較して示す.零の個数は 2 x (12-4) = 16 個で、 やはり良い計算結果が得られている. 2.3 ハイブリッド構造の LSS

2.3.1 拘束モードモデルと非拘束モードモデル

前章では全体が一様なLSSを考えたが、柔軟な太陽電池バネルを持つ 人工衛星が現在の宇宙開発計画の中では最も現実的なLSSである。人工 衛星は中心剛体部分と柔軟構造部分から構成されているハイブリッド構造 なので、そのモデリングは前節よりも複雑になる。

図 2.5 人工衛星の一般モデル

図 2.5(a) のような任意個の柔軟構造物をもつ一般的な人工衛星のモデ ルを考える. 図では、全系の質量中心を O、 ひとつの柔軟構造部分の とりつけ点を P、そして、 その柔軟構造部分上の任意の節点を Q と表 している. まず、 ひとつの柔軟構造物の FEM モデル

 $M\ddot{w} + D\dot{w} + Kw = 0$

を 2.2.1 と同様に考える. そして, その取付け点 P を固定した状態での 拘束モードを求める. これは図 2.5(b) のように P 点の境界条件に拘束を 与えてモード解析を行えばよい. 次式が得られる.

 $\ddot{\mu} + 2\Xi\Omega\dot{\mu} + \Omega^2\mu = O$

(2.4)

いま n 個のモードが与えられたものとする. とのとき, $\Omega, \Xi \in \mathbb{R}^{n \times n}$ は いずれも正定対角行列で, Ω の対角要素は拘束モード周波数, Ξ の対角 要素は拘束モード滅衰比である. 衛星全系の運動は (2.4) 式を用いて次の ように定式化される⁷²⁾. その導出を付録 2B にまとめた.

$$M^{c}\ddot{q} + D^{c}\dot{q} + K^{c}q = Lu$$
 (2.5)
 $y = Hq$

$$M^{c} = \begin{bmatrix} J & P^{T} \\ P & J \end{bmatrix}, D^{c} = \begin{bmatrix} O & O \\ O & 2\Xi\Omega \end{bmatrix}, K^{c} = \begin{bmatrix} O & O \\ O & \Omega^{2} \end{bmatrix}$$

ここで、 u は入力 (操作量)、 y が 出力 (観測量)である. また $q^{T} = [p^{T} \mu^{T}]$ は衛星全系の剛体変位 $p \in \mathbb{R}^{n_{0}}$ と構造物のモード座標 $\mu \in \mathbb{R}^{n}$ をまとめた変数である. n_{0} は最大 6(並進3, 回転3) の自由度を持つ. そして、 行列 J は 衛星全体の O 点まわりの質量・慣性行列で、

 $J = J_r + J_e > 0$

と書ける. ここで、 J. は剛体部分の、 J. は柔軟構造部分の J への寄与 分である. また P は構造振動と、 衛星の並進・回転運動との干渉をあら わす行列である. もし、 柔軟構造物が複数個ある場合には、それぞれの 構造物のモードモデルをまとめて行列 Ω, Ξ, P を構築して (2.5) 式を作成 してやればよい.

いま (2.5) 式で衛星の運動を、 p = O と拘束した場合を考えてみよ 5. このとき (2.5) 式は (2.4) 式と同一になる。 つまり片持ちモードモデ ル (2.4) 式は衛星の剛体部分を図 2.5(b) のように慣性空間に固定した時の それぞれの柔軟構造物の振動モードであることがわかる。そこで、 (2.5) 式を拘束モードモデル (constrained mode model) とよぶ、または、 (2.5) 式が実物理座標 p と、モード座標 μ の両者で表されることから、 ハイブ リッド座標モデル (hybrid coordinate model) ともよばれる^{23)73)74).}

必要に応じて、との拘束モードを別の座標に変換することが望ましい 場合がある. 次式の座標 η でモデルを表現することを考えてみる.

$$q = \Phi \eta$$
 (2.6)

(2.7)

とこで Φ は $\Phi^T M^c \Phi = I$, $\Phi^T K^c \Phi = K^a$ を満たす正則行列である. (2.6) 式の変換によって (2.5) 式は次のようになる.

$$\begin{split} \ddot{\eta} + D^{u}\dot{\eta} + K^{u}\eta &= \Phi^{T}Lu\\ y &= H\Phi\eta\\ \eta &= \begin{bmatrix} \eta_{o}\\ \eta_{e} \end{bmatrix}, \ D^{u} = \begin{bmatrix} O & O\\ O & 2Z\Sigma \end{bmatrix}, \ K^{u} = \begin{bmatrix} O & O\\ O & \Sigma^{2} \end{bmatrix} \end{split}$$

この方程式は (2.3) 式のモードモデルと同様な構造を持つことがわかる. (2.7) 式を非拘束モードモデル (unconstrained mode model), または, global mode model, vehicle mode model などとよぶ²³⁾. ただし、Σ, Z ∈ R^{n×n} は正定対角行列で,Σの対角要素は非拘束モード周波数である. そ して, η_o を削休モード, η_e を柔軟モードとよぶ. ここで, (2.7) 式の係 数行列のブロック構造に対応して、Φ は次のように分割表現できる⁷³⁾.

$$\Phi = \begin{bmatrix} \Phi_1 & \Phi_2 \\ O & \Phi_3 \end{bmatrix}$$
(2.8)

ことで、 $\Phi_1 \in \mathbb{R}^{n_0 \times n_0}$ また $\Phi_3 \in \mathbb{R}^{n \times n}$ となるように分割した、 $\Phi_1 \Phi_1^T = J^{-1}$ である、

このようにして、入力 u から出力 y までの伝達関数行列を、異なった内部記述によって、 拘束モデル (2.5) 式の場合には $y = G^{\circ}u$ 、 非拘束 モデル (2.7) 式では $y = G^{\circ}u$ と 2 とおりの表現ができることがわかった. ことで、

$$G^{c}(s) = H(M^{c}s^{2} + D^{c}s + K^{c})^{-1}L$$

$$G^{u}(s) = H\Phi(Is^{2} + D^{u}s + K^{u})^{-1}\Phi^{T}L$$

である。 そしてこれらは (2.6) 式の変数変換で関係付けられているとい う意味で 2 つの伝達関数行列は相似である。

2.3.2 Collocation 系

いま、 $u \in \mathbb{R}^{n_o}$ が衛星の剛体部に作用するトルク(力)で、 $y \in \mathbb{R}^{n_o}$ が 衛星剛体部の回転角(並進)の観測量である現実的な場合を考えてみよう。 代表的な collocation の入出力系である.

とのとき, L, H は付録 2C から次のようになる.

$$L = \begin{bmatrix} I \\ O \end{bmatrix}, \ H = [I \ O]$$
(2.9)

(2.5) または (2.7) 式と (2.9) 式は、 性質 2.1 を満たすので、 剛体運動は可 制御・可観測で、その伝達関数 G は 正方で、かつ厳密にプロバである。 前節と同様の方法で伝達零を求める。 拘束モードモデル (2.5) 式の極、 伝 達零を定理 2.3 に、非拘束モードモデル (2.7) 式の場合を定理 2.4 に示す。

[定理 2.3]

(a) 拘束モデル (2.5) 式で表現した伝達関数行列 $G^{\circ}(s)$ の極は、 $s^{2n_0} = 0$ と

 $\det \left[N^{c}s^{2} + 2\Xi\Omega s + \Omega^{2} \right] = 0$

をみたす s である.ただし、 $N^c = I - P J^{-1} P^T$ であり N^c は正定である. (b) また、 $G^c(s)$ の伝達零は、

$$\det \left[Is^2 + 2\Xi\Omega s + \Omega^2 \right] = 0$$

をみたす s である. [証明] 付録 2D ■

[定理 2.4]

(a) 非拘束モデル (2.7) 式で表現した伝達関数行列 $G^{u}(s)$ の極は、 $s^{2n_{0}} = 0$ と

$$\det \left[Is^2 + 2Z\Sigma s + \Sigma^2 \right] = 0$$

をみたす & である.

(b) また、 G^u(s) の伝達零は、

 $\det\left[N^{u}s^{2} + 2Z\Sigma s + \Sigma^{2}\right] = 0$

をみたす s である、ただし、 $N^u = I + \Phi_2^T (\Phi_1 \Phi_1^T)^{-1} \Phi_2$ で、 N^u は正定 である。

[証明] 付録 2E ■

したがって、いずれのモデルを使っても極、伝達零とも、2n次の行 列の固有値を計算することによって求められる。そして、定理2.3(b)か ら伝達零は拘束モデルを作成するときに与えられる拘束モード周波数であ り、剛体部分の質量特性 J、剛体部分との動的干渉を表す特性 P には依 存しないことがわかる。一方、極は定理2.4(a)から、非拘束モード周波 数そのものである。物理的にいえば、伝達零は collocate な入出力点であ る剛体部分の運動を拘束した系の極であり、これを自由にしたとき全系 の極が求められる。

また, 定理 2.3(b), 定理 2.4(b)の行列多項式の係数行列がすべて正 定であることから, 伝達零は複素左半平面にある. これらの結果は次の ようにまとめることができる.

[性質 2.3]

極 ↔ 非拘束モード周波数 伝達署 ↔ 拘束モード周波数

[性質 2.4] 人工衛星の制御系は、可安定、可検出かつ、 collocation の とき最小位相系である. ■

2.3.3 計算例2

以上, 述べてきた人工衛星のモデリング法と極, 零を実際の数値例 について計算を行った結果を例示してみよう.
数値モデルとして技術試験衛星 VI 型を考える. とれは, 1993 年に字 宙開発事業団が H-II ロケットで静止軌道に打ち上げを子足している, 重 量が 2000[kg], 全長約 30[m] の世界的にも大型の人工衛星である⁶⁷⁾(図 1.2). これには,太陽電池バネルが 2 枚剛体部に取付けられている. そし て, それぞれの太陽電池バネルは, 長手方向が約 14[m] でその構造振動 の最低周波数が約 0.1[Hz] の大型軽量構造である. さらに, 剛体部分に各 種の通信用アンテナが取付けられており, 剛体部分の姿勢制御精度要求 が 0.05[度] である. この要求精度はわが国の開発してきた人工衛星の中 で最も厳しいものである. このために, 姿勢制御系は従来のように剛体 モデルについて設計するのでは不十分であり, 太陽電池バネルの構造振 動の制御が要求されるようになってきた. LSS 制御の必要性が明かとなっ た我国では最初の衛星である.

ETS-VI 衛星の太陽電池バネルは、太陽光の発電効率をあげるために 両バネルの法線方向ができるだけ太陽方向を向くように 24[時間] で1回 転するモータがその軸に付設されている.したがって、干渉行列 P はこ のバネルの角度 γ に依存するものとなる.

表 2.5 は、1 枚の太陽電池パネルの取付点を固定した時の片持ちモー ド周波数を示す。 7 モードモデルである. これは、 FEM 解析ソフトウ エアを用いた解析結果であるが、後に地上試験が行われ性怪良い精度で モード解析が行われていたことが確認されている. 地上実験によるモード 試験は、重力の影響のために、 パネル全体で行うことが不可能であった ために、 パネルを部分構造に分割した試験を実施し、それを合成して全 体のモードを求めている⁶⁸⁾.

モード干渉行列がこの結果から得られ、これから、2.3.2 節の計算を 行い非拘束モードモデルを求めた。定理2.3(a) に従って計算した衛星全 体系の40 個の極のうち、簡単のために、虚数部が正の極の虚数部のみを 表2.6 に示す。ここで、「対称」は2枚のパネルが同方向に変形して、剛 体運動のうち、並進運動と干渉している場合で、「非対称」は逆方向の変 形が剛体の回転と干渉するモードを表している。

との実際的なモデルを使って、衛星の伝達零に関するアルゴリズムを 検証してみよう. 表 2.7 はパネル角度 γ が 180[度] のときの零点の計算結 果である. 表 2.5 の 7 個のモード全てを用いている. 定理 2.3(b) が示すよ うに、拘束モード局波数が真の伝達零であり 28 個ある. とれに対して、 定理 2.5(b) から求めた伝達零を並べ示している. ただし、定理から伝達 零も複素共役であるから、表では虚数部が正の伝達零の虚数部のみを示し ている. 結果は完全に一致しており、定理の正当性を実証している. こ こでも、参考のために QZ アルゴリズムで求めた伝達零も併記した.

表 2.5	拘束	モード 単位[]	周波数 [z]
	ωī	名称	
0. 0. 0. 1. 2. Ω=	094 258 365 807 248 182 826	面所1 面内1 捩面れ2 振面内2 面内2 面子3 面内2	次次次次次次次次
(1	表 2 14 モー	2.6 極 -ド, γ=τ 単 名称	-) <u>@[Hz]</u>
0.0	-	剛体	
0.0		:	
0.0			
0.0	7	剛体	1 14
0.196	面	外非対称	东1次
0.266	田田	ロ内対称	1次 1次
0.368	扳面	れ非対利 内非対利	东1次 东1次
0.813	南	的 非新新	2次
1.248	畫	れ対称	2次
1.249	捩: 百	れ非対称	52次 3次
2.196	面	外非对称	53次
2.844	面	内非对称	12次
Σ=dia	P (m)		

拘束	非拘束	非拘束
モデル	モデル	モデル QΖ
1.5		0.003
0.094	0.094	0.094
0.094	0.094	0.094
0.258	0.258	0.258
0.365	0.365	0.365
0.305	0.305	0.305
0.807	0.807	0.807
1.248	1.248	1.248
2.182	2.182	2.182
2.182	2.182	2.182
2.820	2.820	2.820
		~ 107
		~ 10*
		~ 109
		~ 101

		单位 [H2
拘束	非拘束	非拘束
モデル	モデル	モデル QZ
		0.0046
		0.0157
0.094	0.094	0.094
0.094	0.094	0.094
0.258	0.258	0.258
0.258	0.258	0.258
0.365	0.365	0.365
0.365	0.365	0.365
		7 282

Vienne.	-	
拘束 モデル	界拘束 モデル	非拘束 モデル QZ
).094).094).258).365).365).365).367 1.248 1.248 2.182 2.182 2.182 2.182 2.182	0.086 0.094 0.259 0.364 0.365 0.806 0.807 1.248 2.181 2.182 2.827 2.828	0.086 0.094 0.259 0.364 0.365 0.806 0.807 1.248 2.181 2.182 2.827 2.828 ~ 100 ~ 100 ~ 100

	_	+12 [10
拘束	非拘束	非拘束
モデル	モデル	モデル QZ
0.094	0.094	0.094
0.094	0.094	0.094
0.258	0.258	0.258
0.258	0.258	0.258
0.365	0.365	0.365
0.365	0.365	0.365
		~ 103
		- 1117

	表 2.11 極		
_	(14 4	e-r.7	₩位[Hz]
	σ	*	5称
-0	0	1	体
0	0		:
0	0	A.	体
0	094		-
0	196	面外非统	対称1次
Ó	258		-
0	365		-
0	368	振れ非常	封新1次
0	513	而内非	分数 1 次
0	907	mura#F)	X+1 Mt L X
0	024	TE AL de A	Litte a ve
U	034	国外非	网称2次
1	248	100 1	-
1	249	捩れ非対	对称2次
2	182		-
2	196	面外非方	対称3次
2	826		-
2	844	面内非方	対称2次
ŧ	束 デル	岸拘束 モデル	非拘束 モデル QZ
)94 0		

表 2.8 は、 振動モードとして、表 2.5 の7個のモードのちち低周波 モード3個のみを考慮し、両バネルで6モードを使った非拘束モードモデ ルを作成したときの伝達零を示す. モード短縮の影響はなく良い結果を 得ている.

また,表2.9,表2.10 は,パネル回転角 γ をγ = 45[度] として同様 の計算を行った結果を示したものである.パネルの角度に依存して,パ ネルの構造振動と剛体運動の干渉の様子が変化するので,運動方程式は 異なってくる.従って,極は表2.6 とは違った結果となる.しかし,伝 達零は前節の検討結果から,剛体部分を固定したパネルのモード周波数 であるから,パネル回転に対して不変であるはずである.表2.9 で多少 の誤差があるのは,拘束モードから非拘束モードへの変換時の数値誤差 である.表2.10 では、3 個のモードだけを取り込んだ低次のシステムで あるので,その計算誤差がなく,理論どおりの結果となっていることが わかる.

以上,6自由度の剛体モードのある衛星を考えてきた.しかし,普 通、フィードバック制御を行うのは、このうち姿勢運動のみである.そ こで、もとのモデルから並進に関する量を取り除いたときの極、零も求 めておいた.表2.11,表2.12 がそれである.表2.12の伝達零は表2.7 と同一の結果を得ている.また表2.11には衛星の並進運動が拘束されて いるので、これと干渉する「対称」モードは伝達零と同一となる.予測ど おりの結果である.

2.3.4 非 collocation 系

次に、入力と出力が同一場所でない非 collocation の場合を考察する. 入力は、現実的な制約から、やはり剛体部分に作用するトルク・力とする. そして、観測量として柔軟部分の任意の節点 Q の並進・回転の変位 のみが得られる場合を考えよう.入出力行列は付録 2C から次式となる.

$$L = \begin{bmatrix} I \\ O \end{bmatrix}, \ H = [\ H_r \ H_e \]$$
(2.10)

拘束モードモデルと非拘束モードモデルの伝達零は、 それぞれ次のよう に求められる.

[定理 2.5] (a) 拘束モデル (2.5) 式で表現した伝達関数行列 G^c(s) の伝達零は、次式 の s である.

$$\det \left[N^{\varepsilon} s^2 + 2\Xi \Omega s + \Omega^2 \right] = 0$$

ただし、 $N^c = I - PH_r^{-1}H_e$ とする. (b) 非拘束モデル (2.7) 式で表現した伝達関数行列 $G^u(s)$ の伝達零は、次式の s である.

$$\det\left[N^{u}s^{2} + 2Z\Sigma s + \Sigma^{2}\right] = 0$$

ただし、 $N^u = I + \Phi_2^T (\Phi_1 \Phi_1^T)^{-1} H_r^{-1} (H_r \Phi_2 + H_e \Phi_3)$ とする.

[性質 2.5] 非 collocation の場合には、 N^c , N^u はともに対称行列では ない. したがって、 collocation 系の場合のように、その正定性を使って 零が複素左半平面にあることはいえない. つまり最小位相性は保証されな い. また、 N^c , N^u が正則であるかどうかは、可制御性、可観測性に関 達している、実際、(2.8)(2.10) 式から

$$H\Phi\Phi^T L = H_r\Phi_1\Phi_1^T + (H_r\Phi_2 + H_e\Phi_3)\Phi_2^T$$

なので,

$$= \det[I + (\Phi_1 \Phi_1^T)^{-1} H_{\tau}^{-1} (H_{\tau} \Phi_2 + H_e \Phi_3) \Phi_2^T]$$

 $= \det[JH_r^{-1}]\det[H\Phi\Phi^T L]$

である、 ただし、 ととで関係式 $J^{-1}=\Phi_1\Phi_1^T$ を使った、従って、 $N^{\rm u}$ が 正則であるためには

 $\operatorname{rank}(H\Phi) = \operatorname{rank}(\Phi^T L) = n_o$

でなければならない.

また、 $\det N^{c} = \det[H_{r} - H_{e}P]\det[H_{r}^{-1}]$ であり、(2.10)式から

$$H_{\tau} - H_e P = H \begin{bmatrix} I & O \\ -P & I \end{bmatrix} L$$

と書ける. したがって、 N^c が正則であるためには $\operatorname{rank} H = \operatorname{rank} L = n_o$ であることが必要である.

とれと双対な関係として,柔軟構造上に入力が作用し出力を剛体部分 の変位観測量とする場合には、付録 2C から

$$L = \begin{bmatrix} L_r \\ L_e \end{bmatrix}, \ H = [I \ O]$$
(2.11)

となる、 この場合の零は次のように求められる.

[定理 2.6]

(a) 拘束モデル (2.5) 式で表現した伝達関数行列 G^c(s) の伝達零は, 次式 の s である.

 $\det \left[N^c s^2 + 2\Xi \Omega s + \Omega^2 \right] = 0$

ただし、 $N^c = I - PL_r^{-T} L_e^T$. (b) 非拘束モデル (2.7) 式で表現した伝達関数行列 $G^u(s)$ の伝達零は、次式の s である.

 $\det \left[N^{u}s^{2} + 2Z\Sigma s + \Sigma^{2} \right] = 0$

ただし、 $N^u = I + (\Phi_2^T L_r + \Phi_3^T L_e) L_r^{-1} J \Phi_2$ とする.

[性質 2.6] N^c, N^u が正則であるための条件は性質 2.5 の場合と同様である. ■

2.4 あとがき

以上, collocated LSS 制御系を中心に 極と伝達零を求め、そのモデリ ングとの関係を考えた. そして、 簡単な計算法を得ることができた. こ のために, LSS モデルは (1)FEM モデルとモードモデルで表現できる-様な連続体の場合, (2) 拘束モデルと非拘束モデルで扱える人工衛星の場 合、の2とおりを考えた. いづれの場合にも,極は全系の境界条件を自由 端としたときにモード解析で得られる非拘束モード周波数に等しいこと、 伝達零は, collocation 系のとき,入出力点を拘束したときの拘束モード 周波数に等しく,複素左半平面にあることがわかった. そして幾通りかの 座標系での伝達零の計算法を求め、2つの数値例によって, これらの結 果の正当性と有効性を確認した.

2.5 付録

[付録 2A] 性質 2.1 の証明と2,3の関連事項

(2.1) 式の可安定性,可検出性の証明には次の補題が必要である.

[補題 A1] K が半正定対称で, [KL] が行最大ランクをもつならば, 行 列 K + LL^T は正定対称である⁹⁷⁾.

[証明] $K + LL^T$ は少なくとも半正定対称行列であるから、すべての $w \in \mathbb{R}^n, w \neq O$ にたいして、

 $w^T K w + w^T L L^T w > 0$

である、ことで等号が成り立つのは、 $\bar{w}^T K \bar{w} = 0$ かつ $\bar{w}^T L L^T \bar{w} = 0$ となる $\bar{w} \neq 0$ が存在するときのみである、これは、いいかえれば、 $\bar{w}^T K^{1/2} = 0$ 、 かつ $\bar{w}^T L = 0$ すなわち、

 $\tilde{w}^{T}[KL] = [OO]$

となるときである. しかしこれは, [KL] が行最大ランクをもつという 前提に反する. よって, $K + LL^T$ は正定対称行列である.

さて, (2.1) 式を状態方程式で.

$$\begin{split} \dot{x} &= Ax + Bu \\ y &= Cx \\ A &= \begin{bmatrix} O & I \\ -M^{-1}K & -M^{-1}D \end{bmatrix}, B = \begin{bmatrix} O \\ M^{-1}L \end{bmatrix}, C = \begin{bmatrix} H & O \end{bmatrix} \end{split}$$

と表したとき,A + BFを安定とする行列Fが存在すれば,(A, B)は可安定である.いま, $F = -[L^T L^T]$ とすると

$$A + BF = \begin{bmatrix} O & I \\ -M^{-1}(K + LL^T) & -M^{-1}(D + LL^T) \end{bmatrix}$$

であるので、その固有値λは

$$det[\lambda I - A - BF]$$

= $det[M\lambda^2 + (D + LL^T)\lambda + K + LL^T] = 0$

をみたす、ところが、補題 A1 から係数行列 $D + LL^T$ 、 $K + LL^T$ は正定な ので2次系の安定性に関する定理⁵⁶⁾ から $\operatorname{Re}(\lambda) < 0$ である。従って可安 定性は示せた、(C, A)の可検出性も双対に証明できる、このとき剛体運動 に対応する不安定モードは可制御、可観測である。 以下では、この性質2.1 を本稿で検討する人工衛星の姿勢制御系の拘 束モードモデル (2.5) 式と非拘束モデル (2.7) 式に適用して、入出力行列 が備えるべき条件を求めておく.

まず, 拘束モデルについて, (2.5) 式の係数行列 M^c , D^c , K^c に従って, L, H を

$$L = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}, \quad H = [H_1 \ H_2]$$

と分割する. とこで, $L_1 \in \mathbb{R}^{n_0 \times p}$, $H_2 \in \mathbb{R}^{m \times n_0}$ で, m, p がセンサ, アクチュエータ個数, n_0 を剛体モード数とする. この場合例えば, 性質 2.1(a) のランク条件を満たす行列は,

$$\left[\begin{array}{ccc} K^c \ L\end{array}\right] = \left[\begin{array}{ccc} 0 & 0 & L_1 \\ 0 & \Omega^2 & L_2 \end{array}\right], \ \left[\begin{array}{ccc} D^c \ L\end{array}\right] = \left[\begin{array}{ccc} 0 & 0 & L_1 \\ 0 & 2\Xi\Omega & L_2 \end{array}\right]$$

と書けて、 Ω 、三が正定対角行列であることから可安定であるための必要 十分条件は rank $L_1 = n_o$ であることがわかる、可検出性も同様に求めら れる、

[補題 A2] 拘束モードモデル (2.5) 式が可安定,可検出である条件は

 $\operatorname{rank} L_1 = n_o, \quad \operatorname{rank} H_1 = n_o$

である.

つまり、剛休モード数に等しい数の独立な入力、出力が可安定、可検 出のためには必要である。

また非拘束モードモデル (2.7) 式では入出力行列は (2.8) 式から

$$\Phi^T L = \begin{bmatrix} \Phi_1^T L_1 \\ \Phi_2^T L_1 + \Phi_3^T L_2 \end{bmatrix}, \ H \Phi = \begin{bmatrix} H_1 \Phi_1 & H_1 \Phi_2 + H_2 \Phi_3 \end{bmatrix}$$

となるので次の条件が得られる.

[補題 A3] 非拘束モードモデル (2.7)式が可安定,可検出である条件は

 $\operatorname{rank}\Phi_1^T L_1 = n_o, \quad \operatorname{rank}H_1\Phi_1 = n_o$

である.

ところで、(2.1) 式が可安定であるとき $\operatorname{Re}(s) \ge 0$ なる s について $\operatorname{rank}[sI_{2n} - A B] = 2n$ が成り立つ. しかし、(2.1) 式が可制御である必

要十分条件は、すべての s でとのランク条件がなりたつととである. と れは、

$$\begin{array}{rrr} {\rm rank}[\ sI_{2n} - A \ B \] \\ = \ {\rm rank} \left[\begin{array}{cc} sI_n & -I_n & {\rm O} \\ M^{-1}K & sI_n + M^{-1}D & M^{-1}L \end{array} \right. \\ \\ = \ {\rm rank} \left[\begin{array}{cc} {\rm O} & I_n \ {\rm O} \\ Ms^2 + Ds + K & {\rm O} \ L \end{array} \right] \end{array}$$

なので

$$ank[Ms^2 + Ds + K L] = n, \quad \forall s \tag{A.1}$$

と等価である. (A.1) 式の条件は (2.7) 式の非拘束モードモデルに適用す れば

$$\operatorname{rank} \left[\begin{array}{ccc} s^2 I_{n_s} & \mathcal{O} & \Phi_1^T L_1 \\ \mathcal{O} & s^2 I + 2s Z \Sigma_2 + \Sigma_2^2 & \Phi_2^T L_1 + \Phi_3^T L_2 \end{array} \right] = n, \quad \forall s \quad (A.2)$$

となる. ここでは、モード周波数には重複がなく Σ , Z が対角行列の場合を考えているので、 $\lambda_i^2 + 2\lambda_i Z_i \Sigma_i + \Sigma_i^2 = 0$ をみたす安定な λ_i が存在する. $s \neq \lambda_i$ のとき可安定性と同じである. そして、 $s = \lambda$ のときは、 ($\Phi_i^T L$)_i $\neq 0$ ならば (A.2)式が成り立つ. ただし、添え字 i は第 i 行を示す. 可観測性も同様の議論ができる.

[補題 A4] 非拘束モードモデル (2.7)式が

(a) 可制御である必要十分条件は

 $\operatorname{rank}(\Phi_1^T L_1) = n_0 \quad \text{in the } (\Phi_2^T L_1 + \Phi_3^T L_2); \neq 0$

(b) 可観測である必要十分条件は

 $\operatorname{rank}(H_1\Phi_1) = n_o \quad 2^* \mathcal{O} \quad (H_1\Phi_2 + H_2\Phi_3)_i \neq 0$

である。ただし、i=1,..,n-n₀. ■

物理的にはこの条件は、剛体モード以上の独立なアクチュエータ(セ ンサ)を考えているすべてのモードを励起(検出)できる構造物上の点に 配置することに相当している.

[付録 2B] 人工衛星の運動方程式

剛体部分と柔軟構造部分の運動方程式の導出の概要をまとめる. 次の 記号を用いることにする.

- **况** 剛体
- F 柔軟構造
- C 慣性空間の原点
- O F+R の質量中心
- P R, FのI/F点
- Q F上の任意点
- {i} 慣性系
- {b} 况座標系
- {a} F座標系

$$C$$
 方向余弦行列; $\{a\} = C\{b\}$

- u, R, r $u = \vec{CO}, R = \vec{OP}, r = \vec{PQ}$
- q(γ) **F**の弾性変位(回転)

 $\frac{x_d}{dt}, \frac{x_d^2}{dt^2}$ {x} での時間微分

衛星全系の運動方程式は,

$$F = \frac{i_d}{dt}P, \quad T = \frac{i_d}{dt}H$$

である.ただし, P, H はそれぞれ, 衛星全体 (R+F) の運動量, 角運動量 である.また, F, T は外部から作用する力およびトルクとする.

$$P = \int_{\mathcal{R}+\mathcal{F}} \frac{^{i}d}{dt} w dm$$
$$H = \int_{\mathcal{R}+\mathcal{F}} p \times \frac{^{i}d}{dt} p dm$$

積分は、微分要素 dm に関しておこなう. ここで、p = R + r + q, w = u + pである. いま、 ω, q がともに十分に微少量であるという現実的な場合に並進運動は次式で近似できる.

$$F\approx m^o\frac{{}^i\!d^2}{dt^2}u+\int_{\mathcal{F}}\frac{{}^a\!d^2}{dt^2}qdm$$

m°は衛星全体の質量である.

$$m^o = \int_{\mathcal{R} + \mathcal{F}} dm$$

ただし,弾性変形による質量中心の移動は微少なので無視している. ここで,ベクトル量 F,u,qを表す座標系を

$$F = \{b\}^T F$$
$$u = \{b\}^T u$$
$$q = \{a\}^T q$$

とすると、つぎの並進運動の行列方程式を得る. 行列方程式での は単なる時間徴分である.

$$F = m^{o}\ddot{u} + C^{T}\int_{T} \ddot{q}dm \qquad (B.1)$$

回転も同様にして,

$$T\approx I^{o}\cdot \frac{^{b}\!d}{dt}\omega + \int_{\mathcal{F}}(R+r)\times \frac{^{a}\!d^{2}}{dt^{2}}qdm$$

と線形方程式で近似できる。 I° は非変形時の O 点まわりの慣性ダイアディックである。

$$I^o = \int_{\mathcal{R}+\mathcal{F}} (p \cdot pU - pp) dm$$

ここで、U は単位ダイアディックである. I°,T,R,r の座標系を

$$I^{o} = \{b\}^{T} I^{o}\{b\}$$
$$T = \{b\}^{T} T$$
$$R = \{b\}^{T} R$$
$$r = \{a\}^{T} r$$

とすれば、回転運動の行列方程式が得られる.

$$T = I^o \dot{\omega} + \dot{R} C^T \int_{\mathcal{F}} \ddot{q} dm - C^T \int_{\mathcal{F}} \dot{\tau} \ddot{q} dm \tag{B.2}$$

式中, \bar{r} は 3 × 1 行列 $r^T = [r_1 r_2 r_3]$ から次のように生成される 3 × 3 の反対称行列である.

$$\bar{r} = \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix}$$

次に、(B.1)(B.2)式の積分項を考えよう.物理量 q(r,t) をモード座標 $\mu(t)$ とモード行列 $\Psi(r)$ で

$$q(r,t) = \Psi(r)\mu(t)$$

と書き換えれば,

$$\int_{\mathcal{F}} \ddot{q} dm = \left[\int_{\mathcal{F}} \Psi(r) dm \right] \ddot{\mu}$$

$$\int_{\mathcal{F}} \ddot{r} \ddot{q} dm = \left[\int_{\mathcal{F}} \ddot{r} \Psi(r) dm \right] \ddot{\mu}$$

とできる. 実際は空間的に離散化した FEM モデルで構造物があらわされ ているので, これらの積分は各節点に関する総和でもとめるととができる. いま, N個の節点のモード行列が, F のモード解析によって,

$$\Psi = \begin{bmatrix} \Psi_1 \\ \vdots \\ \Psi_N \end{bmatrix}$$

と求められていたとすれば、本文の J、 PT はつぎのようになる.

$$J = \begin{bmatrix} m^{o}I & O \\ O & I^{o} \end{bmatrix}$$
(B.3)

$$P^{T} = \begin{bmatrix} C^{T} \sum_{i} \Psi_{i} m_{i} \\ \hat{R} C^{T} \sum_{i} \Psi_{i} m_{i} - C^{T} \sum_{i} \hat{r}_{i} \Psi_{i} m_{i} \end{bmatrix}$$
(B.4)

ここで、漆字 i は節点番号を表し、 m_i は節点 i での等価な集中質量である。

[付録 2C] 操作量と観測量の関係式

人工衛星の制御入力は、力およびトルクF、T で、点状 (pointwise) に 作用する操作量である.いま、 f_{R} , t_{R} をそれぞれ点 O に作用する 力、点 O のまわりに作用するトルクとする.そして、構造物の任意点 Q と、そのまわりに f_{F} , t_{F} が作用する一般的な場合を想定しよう. こ のとき、衛星全系に作用する力およびトルクは

$$F = f_{\mathcal{R}} + f_{\mathcal{R}}$$

$$T = t_{\mathcal{R}} + t_{\mathcal{F}} + (R+r) \times f_{\mathcal{F}}$$

となる. とのうち, $f_{\mathcal{R}}, t_{\mathcal{R}}$ は $\{b\}$ 座標で, $f_{\mathcal{F}}, t_{\mathcal{F}}$ は $\{a\}$ 座標で与えら れている. したがって, これを $\{b\}$ 座標で表せば, 全系への制御入力 が もとまる. つぎのように行列式で表せる.

$$\begin{bmatrix} f_{\mathcal{R}} \\ t_{\mathcal{R}} \end{bmatrix} + \begin{bmatrix} C^T & 0 \\ \tilde{R}C^T + C^T \tilde{r} & C^T \end{bmatrix} \begin{bmatrix} f_{\mathcal{T}} \\ t_{\mathcal{F}} \end{bmatrix}$$
(C.1)

構造物の振動の方程式は {a} 座標で表現されている. したがって、 構造物に直接作用する力・トルクは

$$\begin{bmatrix} f_F \\ t_F \end{bmatrix}$$
 (C.2)

となる.

また観測量に関しては、剛体部分では全系の並進・回転の情報を得る センサが利用できる.

$$\begin{bmatrix} w \\ \theta \end{bmatrix}$$
 (C.3)

また, 構造物上の点 Q に その並進とそのまわりの回転をはかるセンサ が設けられているとすれば, その出力はそれぞれ

$$u + \theta \times (R + r) + q$$

 $\theta + \gamma$

ここで、 θ は $\theta \cdot \theta = \theta^2$ となるような衛星の回転を表すベクトルである. これらは、 $\{a\}$ 座標で観測されるので、それぞれ次の行列方程式となる.

$$\begin{bmatrix} I & -C\tilde{R} - \tilde{r}G \\ 0 & I \end{bmatrix} \begin{bmatrix} u \\ \theta \end{bmatrix} + \begin{bmatrix} q \\ \gamma \end{bmatrix}$$
(C.4)

操作量を表す(C.1), (C.2)式と, 観測量を表す(C.3), (C.4)式を比べ れば,その構造的な対称性に気付く、特に,構造物上に作用する入力の作 用点と,構造物上で観測するセンサの観測点が同一場所のとき,上の2 組の式の係数行列は対称である.■

[付録 2D] 定理 2.3 の証明

(2.5) 式の特性多項式 d(s) は,

$$d(s) = \det \left[egin{array}{cc} s^2 J & s^2 P^T \ s^2 P & s^2 Q^{-1}(s) \end{array}
ight]$$

と書ける. ここで、 $s^2Q^{-1}(s) := Is^2 + 2\Xi\Omega s + \Omega^2$ とおいた. 行列式を 直接計算すると、次のようになる.

$$d(s) = det[s^2 J]det[s^2 Q^{-1}(s) - s^2 P J^{-1} P^T]$$

= det[s^2 J]det[N^cs² + 2\Xi\Omega s + \Omega²]

ととで、 $N^c=I-PJ^{-1}P^T$ であり、 N^c は正定対称行列である。何故なら、座標変換

$$x = T \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad T = \begin{bmatrix} I & -J^{-1}P^T \\ 0 & I \end{bmatrix}$$

を考えれば

$$x^{T}M^{c}x = y^{T}T^{T}M^{c}Ty = y_{1}^{T}Jy_{1} + y_{2}^{T}(I - PJ^{-1}P^{T})y_{2}$$

であり、行列 T は正則で、仮定から $M^c > 0$ なので $N^c > 0$ である. さて、伝達関数 G^c は (2.6)(2.9) 式から

$$G^{c}(s) = \begin{bmatrix} I O \end{bmatrix} \begin{bmatrix} Js^{2} & P^{T}s^{2} \\ Ps^{2} & Is^{2} + 2\Xi\Omega s + \Omega^{2} \end{bmatrix}^{-1} \begin{bmatrix} I \\ O \end{bmatrix}$$
$$= s^{-2}(J - P^{T}Q(s)P)^{-1}$$

である. その行列式は次のようになる.

$$1/\det G^c = \det[s^2 J]\det[I - J^{-1}P^T QP]$$

$$= \det[s^2 J] \det[s^{-2} Q] \det[s^2 Q^{-1} - s^2 P J^{-1} P^T]$$

従って、伝達零は det[s²Q⁻¹(s)] = 0 の根である.

[付録 2E] 定理 2.4 の証明

同様にして、(2.8)式から特性多項式 d(s) は

$$d(s) = \det \begin{bmatrix} s^2 I & O \\ O & s^2 R^{-1}(s) \end{bmatrix}$$

である、 ここで $s^2R^{-1}(s) := Is^2 + 2Z\Sigma s + \Sigma^2$ とおいた、 d(s) = 0 から定理 2.4(a) は明かである、また、 入出力行列は非拘束モードの場合に は、 (2.8)、 (2.9) 式から

$$\Phi^T L = \begin{bmatrix} \Phi_1^T \\ \Phi_2^T \end{bmatrix}$$

$$H \Phi = \begin{bmatrix} \Phi_1 \Phi_2 \end{bmatrix}$$

となるので、(2.7)式から伝達関数 G^u は次式である.

$$\begin{aligned} G^{u}(s) &= \left[\Phi_{1} \Phi_{2} \right] \left[\begin{array}{cc} Is^{2} & 0 \\ 0 & Is^{2} + 2Z\Sigma s + \Sigma^{2} \end{array} \right]^{-1} \left[\begin{array}{c} \Phi_{1}^{T} \\ \Phi_{2}^{T} \end{array} \right] \\ &= s^{-2} [\Phi_{1} \Phi_{1}^{T} + \Phi_{2} R(s) \Phi_{2}^{T}] \end{aligned}$$

定理2.1の証明と同様にして,

$$det[\Phi_1\Phi_1^T + \Phi_2 R\Phi_2^T] = det[\Phi_1\Phi_1^T]det[s^2 R^{-1} + s^2\Phi_2^T(\Phi_1\Phi_1^T)^{-1}\Phi_2]$$

定義 2.2 から、最終式の第 3 項をゼロとする s が伝達零である、ととで、 $(\Phi_1 \Phi_1^T)^{-1} = J > O$ なので N^u が正定行列であることは明かである、

3章 周波数成形機能をもたせた最適レギュレータ による宇宙構造物の制御

3.1 まえがき

大型宇宙構造物 (LSS:Large Space Structures) の姿勢制御に最適レ ギュレータ (LQR: Linear Quadratic Regulator) を適用するととを考え る. 最適レギュレータは制御対象の十分な知識を前提として作成した状態 方程式モデルに基づいて設計される. そして, そのモデルは全周波数帯 域にわたって正しいと仮定している. しかし, 複雑な制御対象では正確 な記述は困難であり,特に高域で不正確である. 最適レギュレータを適用 するとき,モデルに基づいて設計した制御系の運断周波数の近傍にこのよ うな不確かさが存在すると,ロバストといわれている最適レギュレータで も安定性がしばしば左右される.

LSS は分布系であるので、その姿勢制御系の数学モデルは多くの振 動モードで記述される高次系である、そこで通常、低周波の振動モード で LSS の低次元モデルを作成し、制御則はこれについて設計される、低 次元化において無視した残余モードが高周波帯域でのモデル誤差となる。 低次元モデルにたいして設計した制御則を実際の LSS に施したとき、残 余モードとの干渉で閉ループ系が不安定化しやすい。これを spillover 不 安定と呼び、この不安定化を抑制できる LSS 制御系の設計法が主要な課 題となっている¹¹⁾¹²⁾.ここでは、そのための 1 方法を frequency shaping LQR の設計法^{43,44)}の考え方を適用して与える⁸³⁻⁸⁸⁾.

周波数応答に注目する古典的な設計法では、この種のモデル誤差に対 して、制御ループ内にローバスフィルタを挿入することによって信号の高 周波成分を取り除き、モデルの不確かな部分を励起しないようにすること が従来から行われている。これを参考にして、評価関数の操作入力の重 みにローバスフィルタの逆数の周波数特性を与え LQ 最適化をはかるこ とを考えてみる。これによって得られる最適制御入力は高周波成分が抑制 されたものとなるはずである。

本章は、この高域遮断特性をもたせた LQR の spillover 抑制機能の 有効性を示すことが目的である.このために、3.2 節 で LSS の低次元モ デルとモデル課差について述べ、3.3 節 で 2 次ローバスフィルタ特性の 逆数を操作入力の重みとしてもつ周波数依存の評価関数の最適化を考え、 その設計法を述べる.この最適制御則は 2 次ローバス特性をもち、その実 装には、実際にローバスフィルタを用いることになるが、その特性は評 価関数の重みに用いたものとは同じにならない、両者の関係を明かにする ⁸³).そして、この高域遮断特性をもつレギュレータゲインを用いて、状 態観測器を併用した出力フィードバック制御器を構成する.通常の LQR と同様に、状態観測器の併用によっても閉ループ系を安定とできること、 LQR の一巡伝達特性を回復する LTR: Loop Transfer Recovert が達成で きることを示す. これらを 1 入力 1 出力の地上実験で検証した結果を 3.4 節 にまとめる⁸⁵⁾⁸⁶⁾.

そして 3.5 節では、評価関数の操作量の重みだけでなく制御量にかか る重みにも周波数特性をもたせて、問題を一般化する. これによって得ら れる制御則の周波数領域でのループ成形機能を使って、 高域の spillover に対してロバスト安定であり、同時に、 低域での周波数特性に依存する 制御性能を向上させる最適レギュレータの設計法を考える⁸⁷⁾. このルー プ成形機能をもつ LQR を多入力多出力系の数値モデルに適用した設計例 を 3.6 節に示してその有効性を実証する⁸⁸⁾. 3.2 モデル

次のモード方程式で LSS を表現できる.

$$\ddot{\eta} + 2Z\Sigma\dot{\eta} + \Sigma^2\eta = \Phi^T Lu$$
 (3.1)
 $z = H\Phi\eta$ (3.2)

これを、 非拘束モードモデルとよぶ. とこで、 $u \in \mathbb{R}^{p}$ が操作量、 $z \in \mathbb{R}^{m}$ が観測量である. また、 η は非拘束モード座標である. 係数行列 Σ 、 $Z, \phi \in \mathbb{R}^{n \times n}$ はそれぞれ、 非拘束モードの周波数、 滅衰比、 モード 形状行列で、 Σ 、 Z は半正定対角行列である. $\Sigma \succeq Z$ のゼロ固有値に対 応するモードを剛体モードと呼ぶ. これは物理的には LSS 全体の無定位 な剛体としての回転運動である. したがって、 入力 u から出力 z までの 伝達関数行列は $\bar{G}(s) = H\Phi(1s^{2} + 2Z\Sigma s + \Sigma^{2})^{-1}\Phi^{T}L$ と表せる.

ところが、実際には、制御に使用するアクチュエータの作動帯坡、計算 機のサンプル周期などの制約から、この数学モデルで表現したすべてのモー ドを制御することはできない、そこで、低次元モデル $G(s) = H \Phi_c (Is^2 + 2Z_c \Sigma_c s + \Sigma_c^2)^{-1} \Phi_c^T I$ を作成し、制御則はこれについて設計する、ここ で、低次元モデルは非拘束モード $\eta^T = [\eta_c^T \eta_r^T]$ のうち剛体モードを含 む低周波のモード η_c で構成する、 η_r を残余モード (residual modes) と 呼ぶ. これに対応して、(3.1) 式の係数行列は

$$\Phi = \begin{bmatrix} \Phi_c \ \Phi_r \end{bmatrix}, \ \Sigma = \begin{bmatrix} \Sigma_c & \mathbf{O} \\ \mathbf{O} & \Sigma_r \end{bmatrix}, \ Z = \begin{bmatrix} Z_c & \mathbf{O} \\ \mathbf{O} & Z_r \end{bmatrix}$$

とブロック分割できる.ここで、 $\eta_c \in \mathbb{R}^{n_c}$ で、 $\Sigma_c, Z_c \in \mathbb{R}^{n_s \times n_c}, \Phi_c \in \mathbb{R}^{n_e \times n_c}$ である.制御則の設計は時間領域で行うので、この低次元モデルを状態方程式で表現しておく.

$$\dot{x} = Ax + Bu \tag{3.3}$$

$$z = Ex$$
 (3.4)

$$A = \begin{bmatrix} \mathbf{O} & I \\ -\Sigma_c^2 & -2Z_c\Sigma_c \end{bmatrix}, \ B = \begin{bmatrix} \mathbf{O} \\ \Phi_c^T L \end{bmatrix}, \ E = [H\Phi_c \ \mathbf{O}]$$

ただし、状態変数を $x^T = [\eta_c^T \ \eta_c^T]$ とした、以下では、(A, B)が可制御, (E, A)が可観測の場合を考える

ここで、設計に使う低次元モデルの伝達関数 G と、もとのモデル \hat{G} の関係は例えば、

$$\tilde{G}(s) = G(s)(I + \Delta(s))$$

と表せる. Δ は 低次元化によるモデル誤差で,安定であり,高周波帯域 で大きい. 制御則は低次元モデルについて設計し,実モデルに適用され る. したがって,その制御を施した閉ループ系がモデル誤差によって不安 定とならないような制御則を設計することが LSS 制御の課題となる. こ の spillover 不安定化を抑制する能力を持つ制御則として,以下で,ルー プ成形機能をもつ frequency - shaping LQR の適用を考え,その設計法 とロバスト安定性に関する諸性質を示す.

3.3 ロバスト制御

3.3.1 設計

まず標準的な最適レギュレータの設計に用いられる次の評価関数 J を 考える.

$$J = \int_{\sigma}^{\infty} (y^T y + \rho u^T u) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (y^* y + \rho u^* u) d\omega$$

ここで y = Cx は制御量で (C, A) が可検出となるように選ぶ、また ρ は 正実スカラのパラメータとする、標準的な最適レギュレータの設計では操 作量の重み ρ は周波数 ω に依存しない定数であり、この評価関数を最小 とする制御則は定係数ゲインのフィードバック制御 u = -Kx となる、重 み ρ を小さくする性ど、高ゲイン、広帯域の制御系となり低態度特性、 外乱抑制などの制御性能が向上する。しかし、高周波帯域においてモデ ルが不正確であれば不安定化しやすい、そこで、制御帯域での性能を保 存したまま、高周波帯域での不確かさに対するロバスト安定性を確保する ために、周波数依存の重み $R(j\omega)$ を考える.

$$J = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (y^* y + u^* R(j\omega)u) d\omega$$

$$R(s) = \rho r^*(s) r(s)$$
(3.5)

ここでは操作入力の高周波成分を抑制するために高周波で $r(j\omega)$ が大きくなるよう、

$$\mathbf{r}(s) = \begin{bmatrix} r_1(s) & \mathbf{O} \\ & \ddots \\ \mathbf{O} & r_m(s) \end{bmatrix}$$
(3.6)

とし、スカラ有理関数の対角要素 $r_i^{-1}(s)$ にローバス特性をもたせる、これは、操作入力 $u^T = [u_1 \dots u_m]$ のそれぞれに高域通過特性の周波数 重みをもたせた評価関数 $u^*Ru = \sum_i |r_i u_i|^2$ を考えていることになる、これによって操作入力 u に高域遮断特性を持たせて、ロバスト安定性を向上させることが目的である、ここでは r_i^{-1} を2次ローバス特性をもつ伝達関数とする、このとき、 $m \times m$ の伝達関数行列 $r^{-1}(s)$ は次のように記述することができる。

$$r^{-1}(s) = \left(s^2 I + 2s Z_o \Omega_o + \Omega_o^2\right)^{-1} \Omega_o^2 \tag{3.7}$$

ただし、 行列 Ω_{o} , $Z_{o} \in \mathbb{R}^{m \times m}$ は r_{i}^{-1} のそれぞれにもたせた 2 次ロー バス特性の遮断周波数, 滅衰係数を対角要素にもつ正定対角行列である. このとき $r^{-1}(0) = I_{m}, r^{-1}(\infty) = O$ となり, 重み行列 R は低城では標 準的な最適レギュレータと同じく ρI_{m} に等しく, 高城で大きい.

評価関数 (3.5) 式の重み $R(j\omega) \ltimes$ (3.6) 式の周波数依存性を考慮して、 これを最小化するレギュレータが求まればそのフィードパック・ゲインは 周波数依存となる. この周波数領域での問題を,通常の時間領域のレギュ レータ問題として解くために、v = r(s)uとおいて評価関数 (3.5) 式の操 作入力の項を v^*v で置き換える. この v を仮想的に入力と考えると、そ の重みがもはや周波数には依存しない評価関数となる.

$$J = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (y^* y + \rho v^* v) d\omega = \int_0^\infty (y^T y + \rho v^T v) dt$$
(3.8)

このとき、 $u = r^{-1}v$ だから v を入力とする仮想的な制御対象は、図 3.1 に示すように、実際の制御対象 (3.3) 式の入力端にフィルタ $r^{-1}(s)$ を前置 した拡大系と考えることができる。伝達関数行列 $r^{-1}(s)$ は状態方程式で

$$\begin{aligned} \dot{x}_o &= A_o x_o + B_o v \quad (3.9) \\ u &= C_o x_o \\ A_o &= \begin{bmatrix} O & I \\ -\Omega_o^2 & -2Z_o \Omega_o \end{bmatrix}, B_o &= \begin{bmatrix} O \\ \Omega_o^2 \end{bmatrix}, C_o &= \begin{bmatrix} I & O \end{bmatrix} \end{aligned}$$

と表現できるから、 拡大系は

$$\begin{split} \bar{x} &= \bar{A}\bar{x} + \bar{B}v \quad (3.10) \\ y &= \bar{C}\bar{x} \\ \bar{x} &= \begin{bmatrix} x \\ x_a \end{bmatrix}, \bar{A} = \begin{bmatrix} A & BC_o \\ \bar{O} & A_o \end{bmatrix}, \bar{B} = \begin{bmatrix} O \\ B_a \end{bmatrix}, \bar{C} = \begin{bmatrix} C & O \end{bmatrix} \end{split}$$

となる.以上より、結局、周波数依存の重みをもつ最適レギュレータを 設計する問題はこの拡大系 (3.10)式に対して (3.8)式の評価関数を最小に する問題に帰着した.そして、この最適制御則 v = -Kx は次式で求め られる.

$$\bar{K} = \frac{1}{\rho}\bar{B}^T X, \ X\bar{A} + \bar{A}^T X - \frac{1}{\rho}X\bar{B}\bar{B}^T X + \bar{C}^T\bar{C} = 0$$
(3.11)

ことで (\overline{A}, B) が可安定かつ $(\overline{C}, \overline{A})$ が可検出のとき、この Riccati 方程式 に t 一意の半正定解 X が存在し v を施した閉ループ系は安定である。こ のための可安定性。 可検出性を保証する条件がつぎの定理で与えられる。

図 3.1 拡大系 Gr^{-1} ($G(s) = C(sI - A)^{-1}B$)

[定理 3.1]

(a) (A, B) が可安定(可制御)のとき、(Ā, B) は可安定(可制御)である.
 (b) (C, A) が可検出(可観測でかつ r⁻¹の極が C(sI - A)⁻¹B の零と一致しない)のとき、(Ĉ, Ā) は可検出(可観測)である.
 [証明] 付録 3A ■

すなわち、 もとの制御対象 (A, B, C) が可安定、 可検出のとき拡大 系 $(\overline{A}, \overline{B}, \overline{C})$ もそうなり拡大閉ループ系 $\overline{A} - B\overline{R}$ は安定となる.

ととろで、 実際の操作入力は v ではなく u である. 仮想的な最適制 御入力 v は制御対象の状態 x とフィルタの状態変数 x_o の線形結合で表 される.

 $v = -Kx - K_o x_o$

ことで $\bar{K} = [K K_o]$ と分割した.このとき, 図 3.2 のように、 実制御入 力 u は実際の制御対象 (3.3) 式の状態 x に周波数依存の最適ゲインをか けたフィードバック制御としてu(s) = -k(s)x(s) と表現できる. ただし k(s) は

$$k(s) = \tau_o^{-1}(s)K$$
 (3.12)
 $\tau_o^{-1}(s) = C_o(sI - A_o + B_oK_o)^{-1}B_o$

である.いま、 $K_o = [K_1 \ K_2]$ と分割すれば (3.7) 式から r_o^{-1} は

$$r_o^{-1}(s) = [s^2 I + (2sZ_o\Omega_o + s\Omega_o^2 K_2) + \Omega_o^2 (I + K_1)]^{-1} \Omega_o^2$$
(3.13)

であり、kの周波数特性は、拡大系を作成するときに実際の制御対象 (3.3) 式の入力端に前置した伝達関数行列 $r^{-1}(s) = C_o(sI - A_o)^{-1}B_o$ とは同じ ではない、しかし、k(s) にもやはり高域遮断特性がある、何故なら、高 周波帯域 $\omega \to \infty$ では (3.13) 式から

$$k(j\omega) = r_o^{-1}(j\omega)K \approx -\frac{1}{\omega^2}\Omega_o^2K$$

であり、その振幅を行列 k の特異値で考えることにすれば、 $\sigma_i(k) \approx (1/\omega^2)$ $\sigma_i(\Omega_o^2 K)$ であり $\sigma_i(r^{-1})$ と同じく -40[dB/dec] の勾配で減少するからである.

次節で、 1入力系に限定して、 $r_a^{-1}(s)$ の周波数特性とロバスト安定性の関係を検討する.

3.3.2 周波数特性

1 入力系 (m = 1) の場合、 評価関数の操作量に対する重みを $R(s) = \rho r^*(s)r(s)$

$$r^{-1}(s) = rac{\omega_o^2}{s^2 + 2\zeta_o\omega_o s + \omega_o^2}$$

と表す. このとき得られる最適制御則は (3.12) 式に示したとおり $u(s) = -r_o^{-1}(s)kx(s)$ であり、定数ゲイン k と伝達関数 r_o^{-1} で構成されている. そして r_o^{-1} は 2次ローバスフィルタ r^{-1} と定数ゲイン k_o で定まることを前節で述べた. ところで、 この r_o^{-1} もまた次のような 2次ローバス特 性をもつことが (3.13) 式からわかる.

$$r_o^{-1}(s) = \frac{\omega_o^2}{s^2 + 2\zeta_o'\omega_o' + \omega_o'^2}$$

とてで (ω'_o, ζ'_o) は $k_o = [k_1 \quad k_2] \in \mathbb{R}^{1 \times 2}$ とすれば設計時に設定したバラ メータ (ω_o, ζ_o) を使って

 $2\zeta' \omega'_o = 2\zeta_o \omega_o + \omega_o^2 k_2$ $\omega'^2_o = \omega_o^2 (1 + k_1)$

とかくことができる. 次の性質が成立する.

[定理 3.2] (A, b) が可安定, (C, A) が可検出ならば, $r_o^{-1}(s)$ は安定である. [定理 3.3] (A, b) が可安定, (C, A) が可検出, かつ

 $C(sI - A)^{-1}b \not\equiv 0 \ \mathcal{O} \succeq \mathfrak{S},$

(a) $\omega'_o \ge \omega_o \ \mathcal{C}$, (b) $\zeta'_o \ h$

(0) 50 12

• $\zeta_0 \geq \frac{1}{\sqrt{2}} \pm \delta \delta t, \quad \zeta_0 \geq \zeta_0 \geq \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} +$

• $\zeta_{0} < \frac{1}{\sqrt{2}} \pm 6 t t$, $\zeta_{0} < \zeta_{0}' < \frac{1}{\sqrt{2}} \pm \pm 3 t$.

[証明] 付録 3B ■

関ち、 ($\omega_{ov}\zeta_{o}$) で与えた重みr(s) をもつ周波数依存型の LQ レギュ レータが、 ($\omega'_{ov}\zeta'_{o}$) で定まる安定な前置フィルタで実現でき、 操作入力 и には 2 次ローバス・フィルタのもつ高域遮断特性、 すなわち、 その 振幅が高域で -40[dB/dec] の勾配で減少する roll-off-rate をもつ. これに よって、 高周波帯域にある残余モードの励起を抑制する機能が最適レギュ レータに与えられる. ここで注意すべきことは、 定理 3.3 にあるように r_{o}^{-1} の濾販周波数は r^{-1} のそれよりも高く、 r_{o}^{-1} の減衰係数は r^{-1} の それよりも 1/√2 に近いことである. このように、k(s)が設計時に指定した $r^{-1}(s)$ の高域遮断特性をもつ ことから、u(s) = -k(s)x(s)を(3.5)式に施したときの一巡伝達関数

 $\ell(s) = k(s) \left(sI - A\right)^{-1} b$

と、その還送差1+1(s)の振幅には次の性質がある.

[定理 3.4]

(a) 高周波帯域 $\omega \to \infty$ で $|l(j\omega)| \propto 1/\omega^3 \ge \Delta b$,

(b) 全ての周波数 ∀ω で

 $|1 + \ell(j\omega)| \ge 1/|1 + k_o(j\omega I - A_o)^{-1}b_o|$

である.

[証明] 付録 3C =

とこで、標準的な LQR の一巡伝達関数の振幅は一般に、 $\omega \to \infty$ で 1/ ω に比例することを考えると、定理 3.4(a) は $\ell(s)$ の振幅の減少率を、 ループ成形によって標準的な LQR の場合よりも大きくできることを示し ている。モデル誤差が問題となる高周波帯域での この特性を使って良い ロバスト安定性を制御系に与えることができる。また 定理 3.4(b) から、 LQR のいわゆる円条件はこの場合には成り立たないことがわかる。しか しロバスト安定性は 4(a) の意味で確保できている。そして、実際の LSS 制御にはこの低らが、 はるかに有効な設計法であることが、次節の実験 でもわかる.

田条件は、モデル誤差 △ の影響が大きい高周波帯域で一巡伝達関数 の位相を-90[度]まで進めるという意味でロバスト性を主張している。と れは、古典的には「位相安定」と呼ばれる安定化の考え方である。しか し、設計どおりの位相安定を達成するためには、高域での正確なモデリ ング、浮遊的な位相遅れの厳密な管理がなされなければならない。複雑 なシステムではこれは困難である。一方、高域遮断特性をもたせた LQR は、そのゲインを減少させることによって安定化を図る「ゲイン安定」に よるロバスト制御を行うものであって、位相安定方式における問題点は 重要ではなくなる。ただし、定理 3.4(b) から低域での低感度特性は標準 的な LQR よりも劣化する可能性はある。

3.3.3 状態観測器の設計

さて以上の議論は、状態量が直接使える場合のレギュレータ設計法で あった. 実際には、 (3.4) 式で表された観測量 z を使った出力フィード パック制御則u(s) = -K(s)z(s) を構成しなければならない. とのために 状態観測器を併用した制御則を

$$K(s) = k(s)(sI - A + Bk(s) + LE)^{-1}L$$
(3.14)

とする. ここで、(E, A) は可観測である. そして、L として次式の Riccati 方程式から得られる推定器のゲインを考えることにする.

$$L = \frac{1}{\mu} Y E^{T}, \quad AY + Y A^{T} - \frac{1}{\mu} Y E^{T} E Y + B B^{T} = 0$$
(3.15)

ことで、 μ は最適レギュレータ設計時の ρ と双対な役割をもつ正実のス カラで、 μ が小さいほど、 広帯域の推定器となる. 状態推定器は拡大系 ではなく (3.3)(3.4) 式のモデル G(s) について設計してやればよい. ま た、 A - LE は (A, B), (E, A) が可制御、 可観測であるから安定となる. 制御則 (3.14) 式は状態方程式では次のように書ける.

$$\dot{w} = Fw + Gz \qquad (3.16)$$

$$u = Hw$$

$$F = \begin{bmatrix} A_o - B_o K_o & -B_o K \\ BC_o & A - LE \end{bmatrix}, \quad G = \begin{bmatrix} O \\ L \end{bmatrix}$$

$$H = \begin{bmatrix} C_o & O \end{bmatrix}$$

そして K(s) には次の2つの性質がある.

[定理 3.5] $\overline{A} - \overline{BR}$, A - LE のそれぞれが安定のとき,制御則 K(s) を G(s) に施した閉ループ系は安定である. [定理 3.6] (A, B, E) が最小位相系のとき,一巡伝達関数 L(s) = GK(s)は $\mu \to 0$ としたとき $L(s) \to \ell(s) = k(s)(sI - A)^{-1}B$ と漸近する. [証明] 付録 3D

つまり定理3.5 は 観測器併用の標準的な LQR の場合と同様に、制御 対象を安定とする周波数依存の最適レギュレータと安定な状態観測器を独 立に設計しても全体系の安定性が保証される、 という分離定理が成り立 つととを意味している、そして定理3.6 によって、その一巡伝達関数 *J* を 状態フィードバックの一巡伝達関数 *t* に漸近させる LTR: Loop Transfer Recovery の機能をもつ状態観測器が普通の LQR の場合³⁹⁾ と同じく構成 できることがわかる、最小位相性はセンサ、アクチュエータが collocation のとき保証される.

ところで、 一巡伝達関数 L(jw) について相補感度関数を

$$T(j\omega) = L(j\omega)(1 + L(j\omega))^{-1}$$

とすれば $\forall \omega$ で, $\bar{o}(T) < \bar{o}(\Delta^{-1})$ が成り立つとき、1 入力 1 出力系で は $|T| < 1/|\Delta|$ のとき、3.2 節で述べたモデル誤差 $\Delta(j\omega)$ にたいして 制御系は安定である. とこで \bar{o} を最大特異値とする. Δ が大きい高周 波帯域では $T \approx L = GK$ と近似できるので, K が高域遮断特性を持つ 事が、ロバスト安定のための条件を満足するためには重要であることが わかる. 実際、上でのべた制御則では k の高域遮断特性が K の周波数 特性にそのまま反映される.特に、定理 3.6 を使えば $L \rightarrow \ell$ であり、 $\ell(j\omega) = k(j\omega)(j\omega I - A)^{-1}B$ は高域遮断特性をもっているので、安定性 に有効であることが直接わかる.

3.4 設計1 --- 1入力1出力系の実験

とこでは、大型人工衛星⁶⁷⁾ を念頭において LSS の姿勢制御実験を行 う、宇宙空間での LSS の挙動を地上で実現するために、1軸エアテーブ ル装置を使用する、写真 3.1 および 図 3.3 にその外観を示す、装置の中 心剛体部分はエアベアリングを用いて空気の静圧で非接触で浮上してお り、図の鉑直軸まわりに無摩擦で回転できる、これによって実際の LSS の 3 軸姿勢運動のうち1軸まわりの運動を地上で検証できる、これに取付 られている柔軟構造物は 2 枚の CFRP の網目状のアイソグリッド構造の パネルをヒンジ結合したもので、実衛星の太陽電池板を模擬している、そ して、操作量は剛体部分に作用するトルク入力で、観測量は剛体部分の 回転角である、それぞれ、ブラシレス DC モータ、非接触磁気エンコー ダを使用している。これらは、人工衛星の姿勢制御に用いられるトルカ、 姿勢センサを原理的に模擬している。制御則の演算は A/D, D/A コン パータを経由してデジタル計算機で行う、制御実験では、連続系として 設計した (3.16)式の制御則 (F,g,h) をサンブル周期 ΔT で離散化したも のを使用する、 $\Delta T = 10[ms] とした。$

との制御対象は1入力1出力系である.したがって、制御モデル G について設計した制御則 K が実モデル G を安定とするかどうかは、多 入力多出力系の場合のような特異値線図ではなく、古典的に使われてき たボード線図を用いて調べることができる.これによって、ゲイン余裕、 位相余裕などの考え方を使って設計した制御系の特性を調べていくことと する.

この実験系の数学モデルは次のように作成する. 全系の運動は次式で 記述できる.

$M\ddot{q} + Kq = Lu \tag{3.7}$	17	ť	ŝ
---------------------------------	----	---	---

2	=	Hq	(3.18
			Tastwo.

$$\begin{split} q &= \left[\begin{array}{c} \theta \\ \mu \end{array} \right], \ M = \left[\begin{array}{c} J & P^T \\ P & I \end{array} \right], \ K = \left[\begin{array}{c} \mathcal{O} & \mathcal{O} \\ \mathcal{O} & \Omega^2 \end{array} \right], \\ \tilde{L} &= \left[\begin{array}{c} 1 \\ \mathcal{O} \end{array} \right], \ H = [1 \ \mathcal{O}] \end{split}$$

ここで、 J は回転軸まわりの全体系の慣性モーメントで、 θ が姿勢角、 u, z が操作量と観測量である。また、 Ω は柔軟構造の振動周波数を表す 正定対角行列であり、剛体部分を固定した片持ち状態。 即ち、(3.17) 式 で $\theta = 0$ とおいた拘束モード方程式

いう 図3.3 実験装置セットア

 $\ddot{\mu} + \Omega^2 \mu = 0$

から求められる. Ω の対角要素を拘束モード周波数と呼ぶ. また, P は 拘束モード座標 μ と衛星全体の回転運動 θ の干渉を表す行列で, 拘束 モード形状行列から計算される量である. この拘束モードモデルは FEM による計算でも求められるが, ここでは実測によって求めた結果を基にし た. そのために柔軟パネルをエアテーブルから取り外し, その取付部分を 片持ち固定した状態でのパネル単体の拘束モードを同定した⁵⁹, こうし て得られたモード形状を 図 3.4 に示す. 図中の数字は拘束モード周波数 Ω_{ii} $\Omega = \operatorname{diag}{\Omega_i}$ である.

さらに (3.17) 式で, M, K ともに対称行列であることを考慮すれば, $\Phi^T M \Phi = I, \Phi^T K \Phi = \Sigma^2$ と同時対角化が可能である. そして, 変数変 換 $q = \Phi \eta \in (3.17)(3.18)$ 式に施せば,非拘束モデル (3.1)(3.2)式が求め られる. 表 3.1 にとれらの計算値をまとめて示した. ただし, これらの 値は,ベネルをエアテーブルに搭載した状態で行った全系のシステム同定 を別途おこない^{90,51},その結果を参考にして計算値を一部修正したもの である、また, 剛体モード以外の振動モードの減衰比は 0.005 と仮定し ている. このときの,操作量 u から,観測量 z までの伝達関数G(s)を 図 3.5 に示した. ただし, 図 3.4 に示した 6 個の拘束モードのうち, 挺 れ振動 11.83[H2] と面内曲げ振動 17.37[H2] は 表 3.1 の 5,7番目の非 拘束モードに対応している、これら 2つのモードは,表からもわかるよ うにモード形状 ϕ ,が,他のモードのそれに比べて小さく,1軸エアテー ブルを使った姿勢制御実験では実用上,非可制御,非可観測なモードで ある、このために、実際,図 3.5の伝達関数にはこれらは表れていたい、 残りの 4 個の振動モードと剛体モードを以下では考える.

制御則はとれの低次元モデルの状態方程式表現

 $\dot{x} = Ax + bu$

z = eu

を用いて設計する. ただし、 $A \in \mathbb{R}^{2n_e \times 2n_e}, b_i e^T \in \mathbb{R}^{2n_e \times 1}$ であり、(A, b, e)は可制御、 可観測、 かつ最小位相である. $n_e = 1, 2, 3$ の場合について制 御系を設計し実験をおこなった結果を以下に示す.

(a) 1モードモデル

まず、剛体モードだけを制御モデルとしたときの設計、実験例を示す. このとき、1次の振動モードが最も大きいモデル誤差であり、安定性を 左右する.

表 3.1 実験系のモードパラメータ*				
mode no. ^b	σ_i	ϕ_i	Gi	
1	[Hz]	Star.		
1	0.00	3.09e ⁻¹	0.0	
2	1.15	-3.71e ⁻¹	$5.0e^{-3}$	
3	4.00	-7.98e ⁻²	5.0e ⁻³	
4	4.17	$2.85e^{-2}$	$5.0e^{-3}$	
5	11.83	3.98e ⁻³	5.0e ⁻³	
6	13.65	$-2.06e^{-1}$	5.0e ⁻³	
7	17.36	$-1.64e^{-3}$	5.0e ⁻³	

a. ことで, $\Sigma = \text{diag} \{ \sigma_i \}, Z = \text{diag} \{ \zeta_i \}, (\Phi^T L)^T = H^T \Phi = [\phi_1, \phi_2 \cdots]$ とした. b. 第1モードは複素平面原点の2重種で, その他の モードは複素共役である.

比較のために、評価関数を $J = \int_0^\infty (y^2 + \rho u^2) dt \ \ell$ して求めた標準的 な LQR に状態観測器を併用した場合の実験例を示してみる. 図 3.6(a) は、 $\rho = 10^{-3}$ とし状態観測器は (3.13) 式で $\mu = 10^{-3}$ として設計したと きの GKのボード線図で、図 3.6(b) が姿勢角度 1[度] のステップ応答の 実験結果である.以下、ボード線図中の実線は GKの, 点線は Kの伝達 関数を表す. また、実験結果のステップ応答の図は姿勢角度 θ [度] と制 御トルク u[Nm] を示す、図中の破線は数値シミュレーションの結果であ る. 図から、1 次振動モードの振幅の交差周波数で位相余裕が失われ、制 御系が不安定となっていることがわかる. spillover 不安定の一例である.

それでは、同じ p,μ の値でこの制御系をロバスト安定とするように 高城遮断特性をもたせた LQR の設計例を示そう. 重み関数 r^{-1} として 2次ローバス特性を与え、 $\omega_o = 1$ [rad/s], $\zeta_o = 0.7$ とした場合の設計 結果を 図 3.7(a) に示す. 制御則の高域遮断特性によって、1次モードの 共振周波数での振幅を 20[dB] 以上下げることができ、これによって制御 系を安定とできている. モードバラメータのうち、 被責比は一桁程度の 精度でしか同定できないといわれている¹⁸⁾ので、振幅にはこの程度の設 計マージンが必要であると思われる. これによって、残余モードのバラ メータ誤差にも強いロバスト安定性を付与できている. そして、観測器 による位相遅れも問題とならない. ボード線図の振幅曲線を見れば、3.3 節 に述べたように状態観測器を併用した制御則 (3.16) 式を用いた一巡伝 達関数 $L(j\omega)$ に高域遮断特性が保存され、うまく作用していることがわ かる. 図 3.7(b) が、このときのステップ応答実験の結果である. 数値シ ミュレーション結果とよく一致している.

(b) 2モードモデル

つぎに、過渡応答、制御精度を向上させるために、1次振動モード も制御モデルに取り入れた 2モードモデルについて、制御系を設計して みる、 $p = 10^{-5}$ 、 $\mu = 10^{-6}$ とし、 r^{-1} の2次ローバス特性として ω_{α} = 10[rad/s], $\zeta_{\alpha} = 0.7$ とした、この場合には、安定性に最も大きい影響 を与える残余モードは、2次振動モードである、その共振周波数での振 幅を、やはり-20[dB] 程度とするように、これらの値を設計した、ボー ド線図を 図 3.8(a) に、実験結果を 図 3.8(b) に示す、1次モードの周波 数近辺で、位相遅れが生じているがこれは制御モードなので、定理 3.1 から安定である、しかし、位相余裕などは必ずしも満足できるものとは、 なっていない、これは、ロバスト安定性を重視したために低周波帯城で の制御性能が犠牲になっていることと、状態推定器を使用したためである と考えられる。

そこで、状態推定器の動特性の影響を改善するために LTR 特性を状態推定器に持たせる設計を行ってみた. とれは、定理 3.6 から可能であり、高域遮断特性をもたせたレギュレータゲインと $\mu \in \mu = 10^{-12}$ と減少させて設計した状態観測器を用いた制御則が 図 3.9(a) である。 制御対象である剛体モード、1 次振動モードに十分な位相余裕を与えることができている。同時に、残余モードである 2 次以上の振動モードは k(s)の高域遮断特性によって、十分なゲイン余裕をもってロバスト安定となっている。図 3.9(b) が実験結果とジミュレーション結果である. ところで、制御に用いたアクチュエータの最大発生トルクには制約がある. このため操作量が 0.37[Nm] で飽和するよう制御則を作成している. この影響で、図 3.9(b) 破線部のシミュレーション結果では制御トルクが飽和しており LTR の効果がそのままステップ応答の改善には反映されていない. また、図 3.9(b) 実験結果の方はシミュレーション結果とは大きく異なっている. これには、振動のモードバラメータ、アクチュエータの作動帯 域などのモデル誤差が影響しているものと考えられる.

(c) 3モードモデル

さらに、2次振動モードも制御対象とした3モードモデルについて設計したときの制御結果を最後に示す. $p = 10^{-6}$, $\mu = 10^{-7}$ で2次ローバスの伝達関数 r^{-1} は、 $\omega_o = 10 [rad/s]$, $\zeta_o = 0.7$ とした. このとき、残余モードの3次振動モードに対してロバスト安定な制御器が図3.10(a)のように設計できた.図3.10(b)がステップ応答の実験結果である.

なお、過渡応答、定常特性などの制御性能は設計に用いたモデルの良 さに依存するもので、高次のモードを考慮してモデルを精密にするほど、 帯域の広い制御則が得られ、制御性能は向上する、実際、ステップ応答 の実験結果から、1 モードモデル 図 3.7(b)、2 モードモデル図 3.8(b)、 3.9(b)、3 モードモデル 図 3.10(b) の順番に良い応答となっていること が判る.

3.5 ループ成形機能

3.3 節では,評価関数の操作量の重みに周波数特性をもたせることに よって高減のモデル誤差に対してロバスト安定な最適レギュレータを設 計することを考えてきた.ことでは,制御量の重みも周波数依存として 一般化した次の評価関数を考える.

$$J = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (y^* Q(j\omega)y + u^* R(j\omega)u) d\omega$$
(3.19)

そして、 $Q(s) \geq R(s)$ の役割を比較する。簡単のため1入力系に限定する。とこで、 $Q = q^*q, R = \rho r^*r$ とし、 $q \geq r^{-1}$ は安定かつプロバな有理関数とする。3.3 節と同様にこの評価関数の最小化のためには、 $w = qy, v = \sqrt{\rho r u}$ として (3.19) 式を

$$J = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (w^* w + v^* v) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \begin{bmatrix} w \\ v \end{bmatrix}^* \begin{bmatrix} w \\ v \end{bmatrix} d\omega (3.20)$$

と書きなおして考えればよい. 拡大系 $\sqrt{pqC} \Phi br^{-1}$ について (3.20)式を最小とする vを求めれば,

$$u(s) = -k(s)x(s)$$
 (3.21)

が得られる. ここで、 $\Phi(s) = (sI - A)^{-1}$ とした. k(s) はやはり状態空間で計算できる. 設計法と状態方程式による実現の詳細を付録 3E にまとめた.

3.5.1 閉ループ特性

ととでは、 制御対象の状態方程式 (3.3) 式に外乱トルク & が加えられ る場合を考えてみよう。

$$\dot{x} = Ax + b(u + \xi) \tag{3.22}$$

そして、 ξ から w, v への閉ループ伝達関数行列を調べてみる. このとき、 入力 ξ, u から、 出力 w, v, x までの開ループの伝達特性は

$$\begin{bmatrix} w \\ v \\ \hline x \end{bmatrix} = \begin{bmatrix} q(s)c\boldsymbol{\Phi}(s)b & q(s)c\boldsymbol{\Phi}(s)b \\ \hline 0 & \sqrt{\rho}r(s) \\ \hline \boldsymbol{\Phi}(s)b & \boldsymbol{\Phi}(s)b \end{bmatrix} \begin{bmatrix} \boldsymbol{\xi} \\ \hline u \end{bmatrix}$$
(3.23)

となるので、(3.21)式から、 ξ から w、vまでの閉ループ伝達特性は次式のように求められる。

$$\begin{bmatrix} w \\ v \end{bmatrix} = \begin{bmatrix} q(s)m(s) \\ \sqrt{\rho}r(s)t(s) \end{bmatrix} \xi$$

(3.24)

ただし, t(s) は,

 $t(s) = (1 + k(s)\Phi(s)b)^{-1}k(s)\Phi(s)b$

であり、 状態フィードバック制御系の相補感度関数である. また、

 $m(s) = c \Phi(s) b (1 + k(s) \Phi(s) b)^{-1}$

はシステム外乱から制御量までの閉ルーブ伝達関数である. ところで、 評価関数 J (3.20) 式は出力信号 $[w^T \ v^T]$ の L_2 ノルムなので、 外乱トルク ξ が単位インバルス $\xi = \delta(t)$ の場合には J は閉ルーブ伝達関数 (3.24) 式 の H_2 ノルムの自乗に等しい⁹⁴⁾⁹⁵⁾. つまり、(3.19) 式を最小とする制御 則は

$$\left\| \begin{array}{c} qm \\ \sqrt{\rho}rt \end{array} \right\|_2$$

を最小とする H₂最適化問題と等価である. ここで, 後に判るように qm, rt はともに, 安定でかつ厳密にプロバな有理関数であるので, H₂ ノル ムが存在する.

m(s) は外乱から制御量までの伝達関数であるから、特に低域で小さい程制御性能がよい. このために、q(s) は低域で大きい重み関数とすればよい. 逆に t(s) は外乱から操作量までの伝達関数で、高域のモデル誤差に対する安定性を左右する量であるから、高域で小さいほど良い. 従って、r(s) を高域で大きい重み関数とすればロバスト安定仕様に対応できる.

3.5.2 開ループ特性

次に、それぞれの周波数重み Q, R から得られるレギュレータゲイン k(s)の周波数特性を考える.そのために、それぞれを分離して次の 2 つの評価関数を比べてみる.

$$J_1 = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (\boldsymbol{y}^* \boldsymbol{y} + \boldsymbol{u}^* \boldsymbol{R} \boldsymbol{u}) d\omega \qquad (3.25)$$

$$I_2 = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (y^* R^{-1} y + u^* u) d\omega \qquad (3.26)$$

ここで、y,u はともにスカラで、 $R = \rho r^* r$ とする. そして、 $r^{-1}(s) = c_o(sI - A_o)^{-1}b_o + d_o$ を安定かつプロバな有理関数とする. 付録 3E の手 順に従って求めた、(3.25)(3.26) 式を最小とするゲインをそれぞれ $k_1(s)$ 、 $k_2(s)$ とすれば、いずれも閉ループ系を安定とする. それでは、この対称 な構造を持つ2つの評価関数から得られるゲインは同一であろうか. r(s)が周波数に依存しない定数の場合は明らかに同じになる. しかし、 周波 数依存の場合は次式に示すように異なった最適ゲインとなり、その周波 数成形の役割も同じではない、次式のように表現できる.

$$k_1(s) = r_1^{-1}k, \ k_2(s) = r_2^{-1}c + k$$

$$\tau_1^{-1} = (c_o - d_o k_o)(sI - A_o + b_o k_o)^{-1} b_o + d_o$$
(3.27)

$$r_2^{-1} = k_o (sI - A_o)^{-1} b_o \tag{3.28}$$

それぞれの制御系の構成を 図 3.11(a), 図 3.11(b) のプロック線図に示す.

[性質 3.2] r_1^{-1} の零点は r^{-1} のそれに等しいが、極は異なる. 一方、 r_2^{-1} はその極が r^{-1} と同じで、零が異なる.

周波数特性を調べるために、それぞれの一巡伝達関数を考えてみる.次 式は、実際の操作量 u の入力点、即ち図 3.11(a) の場合は点 (b) で、図 3.11(b) の場合は点 (c) で開いた一巡伝達関数である.

$$\ell_1 = k_1 \varPhi b, \ \ell_2 = k_2 \varPhi b$$

まず、高城 ($\omega \to \infty$) での一巡伝達関数のゲインは、 (3.25)式 及び (3.26) 式 から

$$|\ell_1(j\omega)| < \frac{1}{m} \left| r_1^{-1}(j\omega)kb \right|, \quad |\ell_2(j\omega)| < \frac{1}{m} \left| (r_2^{-1}(\infty)c + k)b \right|$$

である. ここで, $r_2^{-1}(\infty)$ は r_2^{-1} の直達成分である. この高域では, 相 補感度関数のゲインは $|t| = |\frac{\ell}{1+\ell}| \approx |\ell|$ と近似できるので次の性質が言 える.

[性質 3.3] 重み有理関数 r^{-1} の次数差が m のとき,高坡 ($\omega \to \infty$) で は, $|t_1| \propto \frac{1}{\omega m + 1}$ で, $|t_2| \propto \frac{1}{\omega}$ である.

そして, 低域 $(\omega \to 0)$ でのこれらの還送差1+1のゲインは

$$|1 + \ell_1| \ge 1/|1 + k_o(j\omega I - A_o)^{-4}b_o|, \quad |1 + \ell_2| \ge 1$$

(a) $J_1 = (1/2\pi) \int_{-\infty}^{+\infty} (y^*y + u^*Ru) d\omega$

(b) $J_2 = (1/2\pi) \int_{-\infty}^{+\infty} (y^* R^{-1} y + u^* u) d\omega$

図 3.11 閉ループ制御系のブロック線図 (J₁ と J₂ から得られる制御則の比較) となるので、 感度関数 $s_1 = (1 + \ell_1)^{-1}$, $s_2 = (1 + \ell_2)^{-1}$ は次の性質を持つ.

[性質 3.4] 低城 ($\omega \to 0$) での感度関数のゲインは、 $|s_2| \le 1$ であるが、 $|s_1|$ にはこの保証はない、従って、 k_1 はいわゆる円条件を満たさない、

性質 3.3 と 性質 3.4 を次のようにまとめることができる.

 操作量に周波数重みを持たせた評価関数 J」は高坡でロバスト安定な周 波数成形機能を持つ制御則を与える。しかし低域で低態度を持たせる目 的には使用できない。 円条件も満たさない。

 逆に制御量に周波数重みを持たせたJ2から得られる制御則は低域で低 感度とする周波数成形機能を持つ、高域でのロバスト安定化に用いること はできない。

3.5.3 数值例

これまでの考察の結果を簡単な次の1入力,2次系について計算で確認する.

 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0.31 \end{bmatrix} u$ $y = \begin{bmatrix} 0.31 & 0 \end{bmatrix} x$

これは、 3.4.1 節で用いた1軸エアテーブル実験装置の1モードモデルの 状態方程式表現である.

このモデルについて、評価関数 J₁ (3.25) 式と J₂ (3.26) 式 から、最 適レギュレータゲイン k₁ と k₂ を設計する. 周波数依存の重み r^{-1} と して以下に述べるように 1次ローバス、 1次進み遅れの 2 種類を考える. そして、 その設計結果から 一巡伝達関数 ℓ と感度関数 s, 外乱応答の 関数 m そして 相補感度関数 t を計算して、 両者のループ成形機能を比 較する. 図 3.12, 図 3.13 および, 図 3.14 に (a) ℓ の振幅, 位相曲線 と, (b) s, m, t の振幅曲線を示す. これらの図では、操作量に周波数 重み $|r|^2$ をもたせた評価関数 J₁ による設計結果 t_1 , s_1 , m_1 , t_1 を実線 で、制御量に周波数重み $1/|r|^2$ をもたせた評価関数 J₂ による設計結果 t_2 , s_2 , m_2 , t_2 を破線で示した. また比較のために, r = 1 とした標準 的な最適レギュレータによる設計結果を点線で描いている. 以下の4例で は、 いずれも、 $\rho = 10^{-3}$ としている.

 $[\%] \ 1] \quad r^{-1} = \frac{50}{8+50}$

図 3.12(a) に一巡伝達関数の振幅, 位相曲線を比較する. この場合は, ゲイン交差周波数が 2[rad/s] 程度なので, この設計例では高速でのロバ スト安定性をr によって増大させることを目標としている. 明らかに, t₁ (実線)のみがこの仕様を満たしており, t₂(破線)では満たされていない, 標準型 LQR の場合 (点線) と同じである. また図 3.12(b)から, 感度関 数 s と, 外乱応答の関数 m の振幅にはいずれも顕著な違いはない. そ して, 相補感度関数 t の振幅から, ロバスト安定性を t₁(実線)のみが 向上できていることが判る. ■

$[\mathfrak{M}\ 2] \quad r^{-1} = \frac{1}{s+0.05}$

これは、 $r^{-1}(0) = 20$ として低域での特性を改善することを目標として設定した場合である. 図 3.13 に設計結果を示した. J_2 の場合(破線)は標準型 LQR(点線)に比べて,図 3.13(b)のs, mの振幅曲線が示すように低周波帯域での特性が改善されており,設計目標どおり制御性能が向上できていることがわかる. そして, tの振幅特性からわかるように,高域での特性はループ成形をおこなわない標準型 LQR と同一である. 一方, J_1 の場合(実線)は設計意図とは異なり例1と同様に,高域遮断特性が与えられただけであることが, ℓ , tの振幅からわかる. 低域での特性は標準型 LQR よりむしろ劣化している.

 $[\mathfrak{M} 3]$ $r^{-1} = \frac{s+1}{s+0.05}$

例 2 と同じ意図で, r^{-1} に進み遅れ特性をもたせた場合の設計結果 を 図 3.14 に示した。例 2 と同様, J_1 の場合 (実線) には低域での周波数 特性の成形には何の効果もない。そして, J_2 の場合 (破線), 低域が改 善され高域はその代償として劣化している。

以上で、 5.2節で述べた結論を数値的に確認できた、したがって、高 域、 低域の両方で効果的な周波数成形をおこなうには、 $J_1 \ge J_2$ を混合 した評価関数

$$J_3 = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (y^* Q y + u^* R u) d\omega$$

を考えてやればよい. 実際, $R = pr^*r, Q = q^*q$ として,次の例のよう な周波数重みを与えれば, これが達成できることが示せる.

 $[\mathfrak{M} 4] \quad q = \frac{s+50}{s+50}, \ r^{-1} = \frac{1}{s+0.05}$

このとき制御系は、図 3.15(a)、図 3.15(b) に実線で示したとおり、低 域と高域の制御仕様を同時に満たしている、比較のために標準的な LQR の設計結果を点線で図中に示した.■

3.6 設計例 2 — 多入力多出力系

ととでは 3.5 節 で述べたルーブ成形機能を多入力多出力の数値モデル に適用して、 その機能を実際に調べてみる.

このために、図 3.16 のような平面トラスの制御を考える、操作量、観 測量には、図中に示すように 3 組の制御力 $u \in \mathbb{R}^3$ とそれとコロケーショ ンに配置された 3 組の変位センサの出力 $z \in \mathbb{R}^3$ を使用するものとした、 図の矢印がそれぞれの正方向を示している. この制御対象は並進 2 自由 度、回転 1 自由度の 3 つの剛体モードを持つので、これで可制御、可 観測である. これを 99 要素 45 節点 90 自由度の有限要素モデルで記述す る. そして、モード解析から 15 モードのモデルを作成した. それぞれの モード形状を 図 3.17 に示す. 図中の数値はモード周波数 (単位 [Hz]) で ある. そして、u から z までの伝達関数行列 z = Gu の特異値 $\sigma_i(G)$ を 図 3.18(a) に示す. 制御則の設計に使用する低次元モデルには、このうち 剛体モードを含む 4 モードのみを考える. これを、z = Gu と表わせば. 低次元化によるモデル誤差は

 $\tilde{G}(s) = G(s) + \Delta(s) \tag{3.29}$

とできる. 図 3.18(b), 3.18(c) はそれぞれ伝達関数 G と Δ の特異値線 図である.

制御則は二次形式評価関数

$$J = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (y^* Q(j\omega)y + u^* R(j\omega)u) d\omega$$
(3.30)

を最小とするように求めたレギュレータゲインに状態観測器を併用した出 力フィードバック制御として次のように得ることができる.

 $u(s) = -K(s)z(s) \tag{3.31}$

(3.30) 式で y は制御量である. また、 重み $Q(s) \ge R(s)$ は $Q(s) = q(s)^*q(s), R(s) = \rho r(s)^*r(s) \ge 1, q, r^{-1}$ を安定でプロバな有理関数 行列とする. との制御則のループ成形機能を評価するために、図 3.19 の ように外生信号 w, v に対する閉ループ系の次の 4 つの伝達関数行列を 考える.

$(I+GK)^{-1}G$	(3.32)
$(I + GK)^{-1}$	(3.33)
$GK(I+GK)^{-1}$	(3.34)
$K(I+GK)^{-1}$	(3.35)

ととで、(3.32)式は制御対象の入力端に加わる外乱 w から制御対象の出 力までの伝達関数である。また(3.33)式は感度関数で、 との両者は制御 性能の規範である。また(3.34)式は相補感度関数で、(3.35)式は外乱 vから制御器の出力 u までの伝達関数である。との 2 つは、ロバスト安定 性の規範である。いま、 低次元化によるモデル誤差は(3.29)式のように 加法的に表現されているので、(3.35)式が

 $\bar{\sigma} \left[\Delta K (I + GK)^{-1} \right] < 1 \tag{3.36}$

を満たすとき、モデル誤差に対して安定である. これらの伝達関数行列 の特異値線図を調べながら、以下に設計結果を述べる.

図 3.19 閉ループ系

まず比較のために、

 $r = I_3$

 $q = I_3$

とした標準的な最適レギュレータを設計してみた. そのときの閉ループ伝 達関数行列 (3:32) 式 ~ (3.35) 式の特異値を 図 3.20(a) ~ (d) K, それ ぞれ示す. ただし, 図 3.20(d) Kは (3.36) 式の安定条件をみるために, Δ^{-1} の特異値 $\sigma_i(\Delta^{-1})$ も同時に示している. とれから明らかに安定条件 を満たしていないことがわかる. 実際, この制御系の外乱応答の数値シ ミュレーションを行った結果, 図 3.21(a), (b) のように不安定となるこ とがわかった. このうち, 図 3.21(a) は外乱 w を w^T = [w100] として, w1 を単位インバルスとしたときの応答で, 図 3.21(b) は w1 が単位ステッ プのときの応答である.

この spillover 不安定化を抑制するために, まず, r(s) によるループ 成形を行う.

 $r(s) = \frac{(s/50)^2 + 1.4(s/50) + 1}{(s/400)^2 + 1.4(s/400) + 1}I_3$

$$q = I_3$$

このときの設計結果の閉ループ伝達関数関数の特異値線図を 図 3.22 に, 外乱応答を 図 3.23 に示す. 図 3.22(d) から明かに安定条件 (3.36) 式が満 足されており、この制御系は残余モードに対して安定である. これは rによって高域での特異値の減少を大きくできたためである. ところが、ス テップ外乱応答 図 3.23(b) をみると,大きい定常偏差があり、それは 図 3.21(b) よりもむしろ悪化している. これは、図 3.20(a) と 図 3.22(a) を 比較してもわかるように、ロバスト安定化のための高域での成形の結果、 低域の特性で定まる制御性能を犠牲にしていることによるのであろう.

そこで、r(s)、q(s)の両方に次のような周波数特性を持たせた制御 則を求めるととにする

 $r(s) = \frac{(s/50)^2 + 1.4(s/50) + 1}{(s/400)^2 + 1.4(s/400) + 1} I_3$ $q(s) = \frac{20}{s^2 + 1.4s + 1} I_3$

このときの閉ルーブ伝達関数特性を同様に、 図 3.24 に, 外乱応答のシ ミュレーション結果を 図 3.25 に示した。図 3.24 (c) からわかるとおり, 高域での安定条件はやはり満たされている。そしてさらに、 図 3.24(a) か ら 低周波での外乱抑制機能も図 3.20(a), 図 3.22(a) の場合より改善で きている。これは感度関数 図 3.24(b) にも表れている。そして, 応答の シミュレーション結果 図 3.25(b) から実際, 定常偏差が低減されいる。

以上, 最適レギュレータのループ成形機能を用いて、モデル誤差に対 するロバスト安定性と制御性能のふたつの要求を満足する多入力多出力系 の制御則が設計できることを数値的に確認した.

3.7 あとがき

とこでは、最適レギュレータに高域遮断特性をもたせることによって、 spillover 不安定を抑制する機能をもつ LQR 制御則を設計し、 地上実験 によってその有効性を示した. これは、 モデルが不確かな周波数帯域で その一巡伝達関数の振幅を破少させ、「ゲイン安定」とよばれるロバスト 安定化をはかる設計法に対応している. 同一の動機で、これまで古典的に ローバスフィルタ補償を行った実衛星の設計例³⁻⁶)、最適レギュレータ設 計後にフィルタを付加した地上実験例³⁷⁾などがあるが、全系の安定性を 保証するようにフィルタのバラメータを調整する系統的な設計法をこれ らはもっていない. ここで述べた設計法によれば、比較的容易にロバス ト安定性を備えた多入力多出力 LSS 制御系を設計できる. この考え方を 一般化して、 ルーブ成形機能をもつ LQR についても考察した. そして、 制御性能の改善とロバスト安定性の向上の trade-off による LSS 制御系設 計の役割も明かとした. 3.8 付錄

[付録 3A] 定理 3.1 の証明

拡大系 \overline{A} の次数は 2n + 2m であるから, rank $[sI - \overline{A} \ \overline{B}] = 2n + 2m$ が $\operatorname{Re}(s) \ge 0$ (全ての s) で成り立つとき, $(\overline{A}, \overline{B})$ は可安定 (可検出) であ る. 可検出性 (可観測性) の条件も双対である. これらのランク条件を用 いるとつぎのことがいえる.

1. (A, B): 可安定 (可制御) ⇒ (Ā, B): 可安定 (可制御)

 $\begin{aligned} & \operatorname{rank}[sI - \bar{A} \quad \bar{B}] \\ &= \operatorname{rank} \begin{bmatrix} sI - A & -B & \bar{O} & O \\ O & sI & -I & O \\ O & \Omega_o^2 & sI + 2Z_o\Omega_o & \Omega_o^2 \end{bmatrix} \\ &= \operatorname{rank}[sI - A \quad B] + 2m \end{aligned}$

2(a). (C, A): 可検出 = (Ĉ, Ā): 可検出

$$\operatorname{rank} \begin{bmatrix} \bar{C} \\ sI - \bar{A} \end{bmatrix}$$

$$= \operatorname{rank} \begin{bmatrix} C & 0 & 0 \\ sI - A & -B & 0 \\ 0 & sI & -I \\ 0 & \Omega_o^2 & sI + 2Z_o\Omega_o \end{bmatrix}$$

$$= \operatorname{rank} \begin{bmatrix} C \\ sI - A \end{bmatrix} + 2m, \operatorname{Re}(s) \ge 0.$$

2(b). (C, A): 可観測かつ r^{-1} の極が $C(sI - A)^{-1}B$ の零に一致しない $= (\bar{C}, \bar{A})$: 可観測

 $r^{-1}(s)$ の極は det $[\lambda^2 I + 2\lambda Z_o \Omega_o + \Omega_o^2] = 0$ をみたす λ である. $s \neq \lambda$ のときは、可検出条件と同じ. $s = \lambda$ のとき、それは $C(sI - A)^{-1}B$ の零ではないから、次式の右辺第1項のランクは 2n + m である.

$$\operatorname{rank}\begin{bmatrix} \bar{C}\\ \lambda I - \bar{A} \end{bmatrix} = \operatorname{rank}\begin{bmatrix} C & O\\ \lambda I - A & B \end{bmatrix} + m.$$

[付録 3B] 定理 3.3 の証明

(A,b):可安定, (C,A):可検出, のとき定理 3.1 より, Riccati 方程式 (3.11) は一意の半正定解(X ≥ 0)を持つ. (3.7)式の X を次のようにプ ロック分割する.

	X11	X_{12}	X13]
X =	X_{12}^{T}	X_{22}	X23
	X_{13}^{T}	X23	X33

但し $X_{11} \in \mathbb{R}^{2n \times 2n}, X_{12}, X_{13} \in \mathbb{R}^{2n \times 1}$, その他はスカラである. このとき, $k_1 = \omega_o^2 X_{23}, k_2 = \omega_o^2 X_{33}$ となる. また, (3.11) 式を展開して書き表すと,

$$A^{T}X_{11} + X_{11}A - \omega_{o}^{4}X_{13}X_{13}^{T} + C^{T}C = 0$$
 (B.1)

$$A^{T}X_{12} + X_{11}b - \omega_{o}^{2}X_{13} - \omega_{o}^{4}X_{13}X_{23} = 0$$
 (B.2)

$$A^T X_{13} + X_{12} - 2\zeta_o \omega_o X_{13} - \omega_o^4 X_{13} X_{33} = 0$$
 (B.3)

$$2b^T X_{12} - 2\omega_o^2 X_{23} - \omega_o^4 X_{23}^2 = 0$$
 (B.4)

$$b^{T}X_{13} - \omega_{o}^{2}X_{33} + X_{22} - 2\zeta_{o}\omega_{o}X_{23} - \omega_{o}X_{23}X_{33} = 0$$
(B.5)

$$2X_{23} - 4\zeta_o \omega_o X_{33} - \omega_o^4 X_{33}^2 = 0 \tag{B.6}$$

を得る、 X の半正定性より $X_{33} \ge 0$. だから, (B.6) 式より $X_{23} \ge 0$ となる。従って, $k_1 \ge 0$, $k_2 \ge 0$ $r_o^{-1}(s)$ は安定である。さらに $C(s1-A)^{-1}b \ne 0$ のとき、 $X_{23} > 0$, $X_{33} > 0$ であるととが示せる。 もし、 $X_{33} = 0$ ならば、X が半正定であるためには $X_{23} = 0$ かつ $X_{13} = 0$ でなければならない。 この時 (B.1) 式は

$$A^T X_{11} + X_{11} A + C^T C = 0 (B.7)$$

となる. X の半正定性より, X_{11} も半正定, そして (C, A): 可検出だ から, (B.7)式は A が安定行列であることを意味する. 従って,

$$X_{11} = \int_0^\infty e^{A^T t} C^T C^{At} dt \tag{B.8}$$

と書ける. 他方, (B.3) 式より $X_{12} = 0$ だから, (B.2) 式より $X_{11}b = 0$ となる. これと, (B.8) 式より,

$$\int_{o}^{\infty} b^{T} e^{A^{T} t} C^{T} C e^{A t} b dt = 0$$

だから,結局

 $Ce^{At}b \equiv O$

となる. しかし, これは $C(s1-A)^{-1}b \neq 0$ に矛盾する. 以上より, $X_{33} > 0$, かつ (I) より $X_{23} > 0$ である. 従って, $\omega'_o > \omega_o$ であるととが分かる. また ζ'_o に関しては, (B.6) 式を使って, $\zeta'_o^{2} - 1/2 = (\zeta^{2}_o - 1/2)/(1+\omega^{2}_o X_{23})$ の関係が成り立つととが言えるから, 次の不等式が成立する.

 $\zeta_o \geq 1/\sqrt{2} \text{ obs}, \quad \zeta_o \geq \zeta'_o \geq 1/\sqrt{2}$

 $\zeta_{o} < 1/\sqrt{2} \ \mathcal{O} \ge 2, \ \zeta_{o} < \zeta_{o}' < 1/\sqrt{2}$

[付録 3C] 定理 3.4 の証明

一巡伝達関数 $\overline{\ell} = \overline{k}(sI - \overline{A})^{-1}\overline{b}$ を考えると (3.12)式から,

 $\bar{\ell} = k(sI - A)^{-1}bc_o(sI - A_o)^{-1}b_o + k_o(sI - A_o)^{-1}b_o$

となる. 1入力1出力系の場合に限れば、 還送差は

$$1 + \bar{\ell} = [1 + k_o(sI - A_o)^{-1}b_o]$$

[1 + c_o(sI - A_o + b_ok_o)^{-1}b_ok(sI - A)^{-1}b]

と計算できる. とこで、 右辺第 2 項は (3.12) 式から 還送差 $1 + \ell$ である. ところで、 $\overline{\ell}$ は $|1 + \overline{\ell}| \ge 1$ なる円条件を満たすので定理 4(b) が示せる. 定理 4(a) は、 $\omega \to \infty$ で、

 $|\ell(j\omega)| \le \frac{1}{m} |r_o^{-1}(j\omega)| kb$

より明かである.

[付録 3D] 定理 3.5 の証明

制御則 (3.16) 式の状態量 w は、 $w^T = [x_o^T \hat{x}^T]$ と分割できる. とこで、 \hat{x} は制御対象の状態量の推定値である. (3.16) 式を制御対象 (3.3)(3.4) 式 に施したときの閉ループ系は、u, z を消去すれば、

$$\begin{bmatrix} \dot{x} \\ \dot{x}_o \\ \bar{x} \end{bmatrix} = \begin{bmatrix} A & BC_o & O \\ -B_o K & A_o - B_o K_o & B_o K \\ 0 & O & A - LE \end{bmatrix} \begin{bmatrix} x \\ x_o \\ \bar{x} \end{bmatrix}$$

となる. ここで、状態推定誤差を $\bar{x} = x - \bar{x}$ とおいた. A - LE は安定 であり、(1,1) ブロックは (3.10) 式から $\bar{A} - B\bar{K}$ なので安定である. よっ て、定理 3.5 が成り立つ、また、(A, B, E) は最小位相系なので、(3.15) 式でµ→0 としたとき $\sqrt{\mu}L \rightarrow BU$, ただし $U^T U = I$, となり⁹²)、通常 のレギュレータの場合³⁹⁾と全く同様に $K(s) \rightarrow k(s)(sI - A)^{-1}BG^{-1}(s)$ となることを示せる. 従って、L は ℓ に漸近する、■ [付録 3E] 制御器の状態表現

ループ成形機能をもつ LQR 制御則の一般的な構成をまとめる、評価 関数

$$J = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (y^* q^* q y + u^* r^* r u) d\omega$$

とし、重み関数 qと r^{-1} はプロバで安定な伝達関数行列とする。その状態実現をそれぞれ

$$\dot{x}_1 = A_1 x_1 + B_1 v, \quad u = C_1 x_1 + D_1 v \dot{x}_2 = A_2 x_2 + B_2 y, \quad w = C_2 x_2 + D_2 y$$

と表せば、 v から w までの拡大系 gGr-1 は次のようになる.

$$\begin{split} & \ddot{x} = \bar{A} \ddot{x} + \bar{B} v, \quad w = \bar{C} \ddot{x} \\ & \bar{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix}, \quad \bar{A} = \begin{bmatrix} A_1 & B_1 C & \mathbf{O} \\ \mathbf{O} & A & B C_2 \\ \bar{\mathbf{O}} & \mathbf{O} & A_2 \end{bmatrix}, \\ & \bar{B} = \begin{bmatrix} \mathbf{O} \\ B D_2 \\ B_2 \end{bmatrix}, \quad \bar{C} = \begin{bmatrix} C_1 & D_1 C & \mathbf{O} \end{bmatrix} \end{split}$$

との拡大系について、 Riccati 方程式を解けば v=-ks が求められる.

 $\bar{k} = \bar{B}^T X, \ X \bar{A} + \bar{A}^T - X \bar{B} \bar{B}^T X + \bar{C} \bar{C}^T = 0$

そして、q(s)、 $r^{-1}(s)$ の零とG(s)の不安定極との相殺がなければ、拡 大系 $(\bar{A}, \bar{B}), (\bar{C}, \bar{A})$ はそれぞれ、可安定、可検出なので⁹³)、 \bar{k} によって 閉ループ系 $\bar{A} - \bar{b}\bar{k}$ は安定である、そして、 $\bar{k} = [k_1 \ k \ k_2]$ とおけば、えら れる最適制御入力u, u(s) = -k(s)x(s)は状態空間で次のようにかける.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_1 & O \\ -B_2k_1 & A_2 - B_2k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1C \\ -B_2k \end{bmatrix} x$$
$$u = \begin{bmatrix} -D_2k_1 & C_2 - D_2k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - D_2kx$$

状態観測器のゲイン Lを別途求めれば、最終的に、 観測量 z = Ezの出 カフィードバック制御則u(s) = -K(s)z(s)の K(s)の状態方程式が次の ように得られる.

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} A_{1} & B_{1}C & O \\ -B_{2}k_{1} & A_{2} - B_{2}k_{2} & -B_{2}k \\ -BD_{2}k_{1} & B(C_{2} - D_{2}k_{1}) & A - LE - BD_{2}k \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \dot{x} \end{bmatrix} + \begin{bmatrix} O \\ O \\ L \end{bmatrix} z$$
$$u = \begin{bmatrix} -D_{2}k_{1} & C_{2} - D_{2}k_{2} & -D_{2}k \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \dot{x} \end{bmatrix}$$

4章 Collocated Feedback による宇宙構造物の制御

4.1 まえがき

宇宙構造物の振動は2階行列微分方程式で記述できる。この方程式の 係数行列は質量、減衰、剛性という物理的な意味をもつと同時に、正定または半正定という数学的に特殊な構造をもっている。これは、力学系に固 有の性質である。そして、この性質によって、パラメータの値によらない 安定性が存在することが知られている⁵⁶).この優れた性質はパラメータ の同定誤差が大きく、かつ多数のモードをもつ宇宙構造物の振動制御に有 効である。

この観点にたった制御即のひとつに、DVFB: Direct Velocity Feedback がある57)、これは、速度センサとアクチュエータが同一点に配置された collocation 系で、構造振動レートの観測量に時不変のゲインをかけて直 接フィードバックする静的出力フィードバック制御である、これによって、 減衰係数を増加させ振動モードの安定余裕が増大できる、しかも、高次の 振動モードにたいしてロバスト安定性を保証するという特徴をもってい る、また、入力端での位相遅れもある程度まで許容する58)、しかし、速 度フィードバックだけでは剛体モードの安定化はできないので、姿勢制御 の観点からは不十分である. このために、振動速度とともに振動変位の フィードバックを加えることを考える. これを DVDFB: Direct Velocity and Displacement Feedback とよぶ. これによると、センサとアクチュ エータが同一点に可制御性、可観測性をみたすように配置されているとい ら前提のもとで、フィードバックゲインが正定対称ならば、剛体モードを 安定化でき、かつ振動モードの減衰と剛性を増すことができる.そして、 この安定性は、構造パラメータの不確かさや高次振動モードに影響され たい.

本章では、この collocated feedback を利用した振動制御および姿勢制 御の制御系の構成について検討する。4.2 節 で、その安定性、ロバスト安 定性をまとめる。そして 4.3 節 では、まず DVFB による振動制御を考え る。アクチュエータの動特性を考慮したときの安定性を再検討し、4.2 の 結果は理想的なアクチュエータの使用を前提としたものであることを明か とする。新たな安定条件をもとめ、それを実験で検証する⁹⁶⁾、実験は片 持ちラーメン構造に試作した PMA: Proof Mass Actuator を取り付けて 行う。

ところで、collocated feedback がもつ優れたロバスト安定性のために は、その時不変フィードバックゲインが正定であることが本質的である。 しかし、安定化以上の制御を行おうとして、通常の最適レギェレータ設 計法などを適用しても、一般に正定対称なゲインは得られない、つまり、 collocated feedback は与えられた性能仕様を満足させる設計機能をその 中に持っていない.

そこで、4.4節で collocated feedback 制御の特徴を生かした宇宙構造 物の姿勢制御系の設計法を2つ提案し、実験でそれらの有効性を検証する ⁹⁸⁾まず4.4.1では、collocated feedback 閉ループ系の感度関数を低周波 数帯域で低減する制御則を設計する。これによって、目標値追従、外乱抑 制機能が向上できる。制御系は2重ループ制御系となる。次に4.4.2で、 2自由度制御系によって、目標値追従性を改善することを考える。フィー ドバック補償は DVDFB 制御とし、所望の伝達特性にマッチングする閉 ループ応答を達成する前向き補償器を設計する。いずれの場合にも振動 モードには collocated feedback がもつロバスト安定性が保存されている。

とこで、本章を通じて重要な役割をもつ次の基礎的な安定条件を示しておく⁵⁶).

[補題 4.1] Kelvin-Tait-Chetaev: $M \ddot{w} + C \dot{w} + G \dot{w} + K w = 0$ は, M > 0, C > 0, $G = -G^T$, K > 0 のとき安定である

4.2 DVFB, DVDFB 閉ループ系の安定性

宇宙構造物を次の2階行列微分方程式で一般的に表す.

$$M\ddot{w} + C\dot{w} + Kw = Lu \tag{4.1}$$

ここで、 $w \in \mathbb{R}^n$ は振動変位、 $u \in \mathbb{R}^m$ は制御入力を表す、また、M, C, K はそれぞれ質量、減衰、剛性を表す係数行列で、それらは一般的な特 性として、 $M = M^T > 0$, $C = C^T \ge 0$, $K = K^T \ge 0$ である、半正定 性は剛体モード(K, D のゼロ固有値に対応する)の存在による、また、 $L \in \mathbb{R}^{n \times m}$ はアクチュエータの配置によって決まる列最大ランクをもつ行 列とする、ここで、観測量としてアクチュエータと同一場所に配置された 変位センサ、速度センサが利用できるものとする、それらは、

$$z_1 = L^T w, \quad z_2 = L^T \dot{w} \tag{4.2}$$

と記述できる. ここで, 次の仮定を設ける.

[仮定] [K L], [C L] はともに行最大ランクをもつ.

このとき、2章で述べたように剛体モードは可制御、可観測である、さて、 DVFB、DVDFBは、それぞれ次で定義される。

[定義]

(a) DVFB:
$$u = -Dz_2$$

(b) DVDFB: $u = -Pz_1 - Dz_2$

いま, (4.1) 式に DVFB を施した閉ループ系は,

 $M\ddot{w} + \hat{C}\dot{w} + Kw = 0, \quad \hat{C} = C + LDL^T$ (4.3)

となるので、自然蔵養 C に比べて、Cにははるかに大きい滅衰を付加で きる可能性があることがわかる。さらに、補題 4.1 から、次の安定条件⁵⁷⁾ がすぐに得られる。

[補題 4.2] K > 0, C > 0 のとき D > 0 ならば (4.3) 式は安定である. ■

つまり D が正定対称できえあれば、構造物が本来もつすべての振動 モードを不安定化しない.しかし, K, Cが正定であるという条件は宇宙 構造物が剛体モードをもたないことと等価である.したがって、宇宙構造 物の姿勢制御の観点からは不十分である。そこで、DVDFB 制御を考え、 補題 4.2 を剛体モードをもつ場合に拡張する.DVDFB 閉ループ系は次式 である. $M\ddot{w} + \dot{C}\dot{w} + \dot{K}w = 0, \quad \dot{K} = K + LPL^{T}, \quad \dot{C} = C + LDL^{T}$ (4.4)

との閉ループ系の漸近安定性を示すためには、次の性質⁹⁷⁾が重要である. [補題 4.3] H が半正定で, [H J] が行最大ランクをもつとき, 任意の正 定行列 R について, H + J R J^T は正定である. [証明] 付録 4A. ■

これと仮定から、(4.4)式の係数行列 Č, K は正定対称となるので補 題 4.1 から直ちに次がいえる。

[定理 4.1] Collocation 系 (4.1)(4.2) 式が可制御, 可観測のとき, P > 0, D > 0 ならば, DVDFB 閉ループ系 (4.4) 式は安定である. ■

定理 4.1 あるいは 補題 4.2 の安定性はバラメータ変動にも高次モード の影響に対しても保存される. 何故なら,力学系であるかぎり C, Kの正 定性(あるいは半正定性)は不変だからである. さらに, DVFB の安定 性は入力端での位相遅れもある程度許容する. いま,アクチュエータの動 特性が安定,プロバで最小位相の伝達関数 H(s)で表されるとき次の条件 が成立する.

[補題 4.4] 用(s)D が正実であれば DVFB 閉ループは安定である.■

1入力1出力系の場合は、この条件はすべての周波数 ω で、 $\operatorname{Re}H(j\omega) \ge 0$ であることと等価である。これは、1次の安定な動特性をもつアクチュエー タならば安定性を損なわないこと、いいかえると、90(度)の位相余裕を DVFB が持っていることを示している。
4.3 振動制御

ここでは、DVFB による構造物の振動制御の効果を実験で確認する. 制御には、PMA (Proof Mass Actuator)を使用する. これは、collocated feedback 用のアクチュエータとして広く用いられているものである⁶³⁾. こ のとき、アクチュエータがもつ剛性、減衰の動特性によっては、前節で述 べた安定性が成立しない場合があることを示す. そのために、新たに安定 条件を求め、これを満たすよう DVFB 制御系を再構成して制御実験を行 い、有効性を実証する.

4.3.1 PMA

試作した PMA の構成を 写真 4.1, 図 4.1 に示す. これは弾性ビボッ トとアームを介して宇宙構造物に取り付けられた継鉄と永久磁石からなる マスをコイル電流によって電磁的に駆動するムービング・マグネット型ア クチュエータである.電圧に比例した電磁力を発生させるよう定電流型ア ンプでこれを駆動する.制御力はその反作用力として宇宙構造物に与えら れる.取り付けベース上には、加速度計と変位計が設置されている.サー ボ型加速度計は PMA 取付点の振動の並進方向の加速度を検出し、これ を制御用の計算機で数値積分することによって振動レートの観測値とし DVFB に利用するもので, collocation 条件を満たしている.また渦電流 型の変位計はアームの回転角を計測する.

表 4.1	PMA 諸元 1.6 kg	
重量		
マス部質量	1.0 kg	
寸法	158 x 88 x 79 mm	
可動範囲	$\pm 5 \text{ mm}$	
特性		
最大発生力	2.0 N	
弹性係数	$3.74 \times 10^{-2} \text{ Nm}$	
粘性係数	$1.14 \times 10^{-2} \text{ Nms}$	
計測範囲		
加速度計	± 0.2 g	
変位計	$\pm 1 \text{ mm}$	

PMAの模式図を図 4.2(a) に示す、 PMA 単体の運動は

 $ma^2\ddot{\theta} + c\dot{\theta} + k\theta = af \tag{4.5}$

で表現できる. ここで f は発生する電磁力、8はアーム回転角度である. また、αがアーム長、m がマスの質量、k、α は弾性ビボットまわりのそ れぞれ等価な剛性,粘性係数である、試作器の主要諸元を表4.1 にまとめる. PMA には 図4.2(b) のような リニア型のものもある. ハードウエア 構成上での種々の差異はあるが動作原理は等価であり,以下の議論がその まま成り立つ.

この PMA を使った DVFB による振動制御実験は,写真4.2,図4.3 に示すような片持ち構造物を用いておとなう。これは,アルミ・バイブの ラーメン構造で,その振動は次のモードモデルで記述される.

 $\tilde{\eta} + 2Z\Sigma\dot{\eta} + \Sigma^2\eta = \phi^T u \tag{4.6}$

 $z = \phi \dot{\eta}$

とこで、 ϕ は PMA 取付点のモード形状である. この構造物は剛体モード をもたないので、Z、 Σ は正定である. その単純曲げ振動のモード周波数 は、FEM 解析および実測から表 4.2 のように求められた. また滅衰比は 実測で約 0.003 である、

表 4.2 実験系のモード周波数 単位 [Hz]		
モード番号	実測値	計算值
1	2.45	2.41
2	9.65	9.08
3	17.9	13.3
4		15.9

PMA はこの構造物の先端部に吊り下げているので、PMA のマスへ の重力の影響を考慮すると(4.5)式は次のようになる.

 $ma^2\ddot{\theta} + c\dot{\theta} + \bar{k}\theta = af, \ \bar{k} = k + mag \tag{4.7}$

ここで, g は重力加速度で, これによって PMA のビボットの剛性が見か け上, 増加する, 宇宙空間ではこれはゼロなので, 実験モデルとはちがっ てくる. この地上実験の制約が後で閉ループ系の安定性に重要となる,

4.3.2 安定性の再考

さて、モードモデル(4.6)式に DVFBを施す.

u = -dz

(4.8)

とこで、(4.6)式は1入力1出力系であるから、d は正のスカラである.い ま理想的なアクチュエータの使用を仮想すれば、(4.8)を施した閉ループ 系は(4.6)式から

図 4.2 PMA の動作原理

図 4.3 実験系の構成

$$\ddot{\eta} + (2Z\Sigma + \phi^T d\phi)\dot{\eta} + \Sigma^2 \eta = 0 \tag{4.9}$$

となる、そして、補題 4.2 からこれは安定である、しかし実際には (4.7)式 の PMA の電磁力 f を使って制御入力を u = f と発生させることになる、 このとき全体の閉ループ系は、振動モードと PMA のマスの振動がそれぞ れの慣性力をとおして連成した振動系となる、付録 4B から、 $w^{T} = [\theta \ \eta^{T}]$ とすると次式で表せる。

$$\begin{split} M\ddot{w} + C\dot{w} + Kw &= 0 \tag{4.10} \\ M &= \begin{bmatrix} ma^2 & ma\phi \\ ma\phi^T & 1 + m\phi^T\phi \end{bmatrix}, \ C &= \begin{bmatrix} c & -da\phi \\ 0 & 2Z\Sigma \end{bmatrix}, \ K &= \begin{bmatrix} \bar{k} & 0 \\ 0 & \Sigma^2 \end{bmatrix} \end{split}$$

これが理想的な閉ループ系 (4.9) に対応する 1 入力 1 出力の場合の現実の 系である. (4.10) 式でk = 0, c = 0 とすれば, そのモード振動の部分は (4.9) 式と同一である.

さて、補題4.2、補題4.4 が(4.10)式の現実のシステムの安定性を保 証するかどうかを見てみよう。まず、(4.10)では減衰行列Cが非対称であ るため明らかに補題4.2 の条件は満たさない。また補題4.4 の条件も低周 波領域で成立しない事が付録4Cのように直接計算によって示せる。つま り、上に述べた既存の安定十分条件はいずれもPMAを用いたDVFB閉 ループ系には、そのままでは適用できない。閉ループ系(4.10)式のひと つの安定条件として次が得られる。

[定理 4.2] k > 0, c > 0ならば、 $2Z\Sigma - (da)^2 \phi^T \phi/4c > 0$ のとき閉ループ系 (4.10) は安定である.

[証明] 付録 4D ■

この十分条件は DVFB ゲイン dを大きくする事によって, 閉ループ 系が不安定化され得る事, 及びアクチュエータ固有の粘性係数 c が小さ いほど不安定化されやすい事を示している.

閉ループ系 (4.10) 式の安定性をより詳細に評価するため、以下ではア クチュエータの動特性による不安定化に最も大きい影響を与える1 個の振 動モード、即ち PMA 単体の固有周波数に最も近い周波数を持ちそれとの 連成の影響の最も強いモード、との干渉を考えとの系が安定であるための 必要十分条件を導こう、このために、動吸振器などの受動型ダンパの解析 に従来から用いられてきた無次元化パラメータ⁰⁹⁾を導入する、質量比 r と固有周波数比 u は次式で定義する。

 $r = m\phi_1^2$

 $\nu = \sigma_d/\sigma_1$

ただし、 $\sigma_d^2 = k/ma^2$ は PMA の固有周波数である.また、 σ_1 、 ϕ_1 は σ_d に最も近い周波数をもつモードの周波数およびモード形状で、 ϕ_1^{-2} がその モード質量である.次に、減衰係数比を

 $\gamma = c/c_c a$

とする. ここで、 $c_c = 2m\sigma_1^2$ は σ_1 にたいする臨界滅衰とよばれている. PMA の解析には、これらに加えて、 μ を定義する.

 $\mu = \gamma_c/\gamma$

とこで、 $\gamma_e = d/c_e$ は DVFB による滅衰係数の比である. これらの無次 元パラメータを使えば、(4.10)式の特性多項式は

 $\lambda^4 + 2\gamma [1 + r(1 + \mu)]\lambda^3 + [1 + \nu^2(1 + r)]\lambda^2 + 2\gamma\lambda + \nu^2 = 0$

となる.ただし、 $\lambda = s/\sigma_1$ は無次元化した周波数. これに、Hurwitz の 安定判別を適用すれば次の条件が得られる.

[定理 4.3] 閉ループ系 (4.10) 式はν²μ < (1 + μ)/[r(1 + μ) + 1] のとき安 定である. ■

とれから物理的には次のことがいえる. (a) PMA の固有周波数 σ_d が LSS のモード周波数に比べて小さい程, ν が小さくなり安定である. (b) PMA の減衰係数 c が大きい程 μ が小さくなり安定である. (c) フィー ドパック・ゲイン d が小さい性ど μ が小さくなり安定である, そして (d) PMA の質量が小さい性ど r が小さく安定である. このうち (b)(c) は 定理 4.2 と同等の条件である. これから, (a) を満たすためには少なくと もアクチュエータの固有周波数が構造振動の全モード周波数より小さくな ければならない事がわかる.

従来,構造物の制振には受動型ダンパが用いられてきた⁹⁹⁾. これは (4.10) 式で d = 0 とおいた運動方程式で表される. そして減衰効果はそ の機械的パラメータ k, c を調整する事で最適化される. しかし安定性に 関しては $d = \gamma_c = 0$ であるから,定理 4.2, 4.3 は受動型ダンパによる 制振系が常に安定である事を保証している.

4.3.3 実験

(a) 実験系の数値的評価

以上の安定条件を念頭において、フィードバック・ゲイン d を増加さ せた時の実験系の安定性を数値的に評価してみよう. 図 4.4 は d を増大 した時の全系の極の動きを描いたものである。振動1次モードは d の増 加によって大きい滅衰増加が達成できている。そして 2次モードにも滅衰 が付与されている。しかしながら、安定性に関しては d = 1 でアタチュ エータの振動モードが不安定となる。との結果は上で求めた安定条件を忠 実に反映している。さらに d → ∞ のとき 1次モードとアクチュエータの 極は複素平面の原点上の 3 重根に漸近し、高ゲイン・フィードバックで必 ず閉ループ系が不安定となる事が観測できる。また 2次以上の高次モード が安定性に与える影響は少ない。

以上、今考えている我々の地上実験系では、PMA が持つ動特性のために補題 4.2 の理想的な安定条件が成り立たない事、及び 定理 4.2、4.3 が示すとおり安定性の制約からゲイン d を任意に大きくできなくなり満 足な減衰効果が得られない事を示した。これは、試作した PMA の剛性 k はもともと宇宙空間 0 G 下で作動するよう設計した値であるにも拘らず、 地上実験 1 G 下では重力加速度の寄与分が優勢となる事によるものであ り、宇宙構造物の制御動作をあらかじめ地上で確認するときの大きな障害 となる。

しかしこの不安定化を抑制するための手段も実は、定理 4.2, 4.3 が 示唆している. そして、それは簡単な補償器によって実現できる事を次に 示す.

(b) 補償器による安定化

いま考えている実験系の安定領域は、(1) 減衰係数 c の増加、(2) PMA の剛性 k の減少、によって拡大でき、これによってより大きいゲイン dが達成でき、振動減衰効果が高くなることがわかった。これらを数値的に 見直してみる。図4.5 は c を現実の値の 10 倍の仮想値とした場合である。 c の増加によって PMA の極の安定余裕が図4.4 に比べて増加し不安定化 は d = 21 で始めて表れる。また図4.6 では k のうち地上実験に伴う重力 項を除き無重力下での設計値 k = k とした結果である。d = 32 まで安定 である事が判る。図4.4 に比べて系の安定性を保ったまま 30 倍の DVFB ゲインが達成できている。

これらの結果を考慮して、アクチェエータ固有の滅衰、剛性係数をマ イナ・ルーブ補償によって可調整とできる制御系を考える. これによって 安定度を高め、高減衰を達成する事が可能となる. 図 4.7 がそのブロック 線図で係数 α 、 β がその補償ゲインである. この制御系は次式で記述で きる.

 $ma^2\ddot{\theta} + c\dot{\theta} + \bar{k}\theta = a(f_c + f) \tag{4.11}$

図 4.4 根軌跡 1 (地上実験系の場合)

とれは、アクチュエータ動特性(4.7)式に、更に電磁力発生の動特性を導入したモデルを用いている。ととで、f は DVFB 制御力であり、f_o i_o e_c は補償用の電磁力、コイル電流、制御電圧である。 K_P 、 K_D はそれぞれアクチュエータの電磁回路で定まる定数、ドライバアンプのゲインである。また ϵ は電磁回路で発生する渦電流損に対応する係数で実満より ϵ =0.05 であった。このマイナループ補償 f_c を施したとき閉ループ系は次式となる。

$$m\hat{a}^2\ddot{\theta} + \hat{c}\dot{\theta} + \hat{k}\theta = af$$

(4.12)

220,

$$\dot{a}^2 = a^2 + \epsilon \beta a g \alpha \approx a^2$$

 $\dot{c} = c + m a g \alpha (\epsilon - \beta)$
 $\dot{b} = \bar{b} - m a g \alpha$

である。したがって、補償パラメータ α 、 β によってアクチュエータ単体 の破衰、剛性を自由に設定できる事がわかる。これによって、 c, kが上 で求めた安定条件を満たすように調整すれば、安定な DVFB 閉ループ系 を達成できる。ただし $\epsilon\beta$ は以下の実験では微小で無視できる。

(c) 実験結果

以上の安定裡に関する考察を反映させて、DVFBの振動滅衰効果を実験的に評価した。図 4.8 は DVFB による滅衰増加を行わない非制御時(自由滅衰)の PMA 取り付け点の加速度を示す。図 4.9 はこれに対して PMA によって滅衰増加を行った結果で、加速度および PMA マスの回転角を示す。DVFB ゲインを d = 1,補償パラメータを $\alpha = 0.7$, $\beta = 0.05$ とした。いずれも、時刻 t=0[sec] でインバルス状の外乱を加えた時の応答である。加速度計の応答から、自由滅衰時の滅衰比く = 0.003 (図 4.8)が DVFB によって $\zeta = 0.045$ (図 4.9) となり 1 桁以上大きい滅衰比を達成 できていることがわかった。滅衰・剛性の補償を行なわない ($\alpha = \beta = 0$) ときは既に数値的に示したとおり不安定となり、実験においてマスが ストッパに衝突する現象が起きる。図 4.10 は d = 3 として滅衰をより大 きくした結果である。図 4.11(a) は DVFB ゲインを d = 5.0 と高くし滅

図 4.12 ボード線図 (*d*=5)

衰を更に増加させようと試みたものである. このときも安定条件は満たさ れているが,実際には加速度計の応答に 0.04 [m/sec²] 程度の振幅を持つ 振動が持続する. これは 2 次振動モードであり,デジタル制御にともなう サンプル・ホールド,計算むだ時間がその原因である. 実験は制御計算機 のサンプル周期を 20[msec] として実施した. 図 4.11(b) は,これらの要 因を考慮して行なったシミュレーション結果である. また,図 4.12 はそ のときのボード線図であり,2 次モードの共振周波数でゲイン余有が殆ど なくなっている.

4.4 姿勢制御

人工衛星の姿勢制御には、閉ループ系の安定化と同時に、目標姿勢 角の追従性、外乱除去たどの制御性能が要求される.安定性に関しては collocated feedback は優れた性質を持っている.しかし、この安定性は フィードバックゲイン P, D が正定であることが不可欠であるので、さ まざまの性能に対する要求を満たすゲイン行列の設計は容易でない。つま り、collocated feedback 制御だけでは姿勢制御として不十分である.

そこで、本節では collocated feedback のロバスト安定性を保存した まま、制御性能を向上する制御系の構成法を検討する. このために、4.4.1 では感度関数を低周波帯域で低減する制御系を、4.4.2 では目標値から制 御量までの閉ループ伝達関数を所望の伝達特性にマッチングきせる制御系 を設計する. いずれの場合も、振動モードは collocated feedback によっ て制御する. そして、そのロバスト安定性を保存し同時に制御性能を改善 する制御器を設計して、これを collocated feedback 閉ループ系に付加し て全体系を構成することを考える.

このために、いま(4.1)(4.2) 式がモード空間で与えられているとする.

$$\ddot{\eta} + 2Z\Sigma\dot{\eta} + \Sigma^2\eta = \Phi^T L u \qquad (4.13)$$

$$y = \begin{bmatrix} L^T \Phi \eta \\ L^T \Phi \dot{\eta} \end{bmatrix}$$
(4.14)

このとき操作量 u から、観測量 y までの伝達関数行列 G は、

$$y = \bar{G}u, \quad \bar{G} = G(I + \Delta) \tag{4.15}$$

と表せる、ここで、剛体モードがG(s)に含まれているとすれば、 Δ は振動モードによるモデル誤差で安定である.これに、collocated feedback 制御を

$$u = v - K_0 y, \quad K_0 = [P \ D]$$
(4.16)

と施した場合を考える(図4.13).

図 4.13 collocated feedback 閉ループ系

このとき、 v から y への閉ループ伝達関数は (4.15)(4.16) 式から、

$$y = G_D v, \quad G_D = G_D (I + \Delta_D) \tag{4.17}$$

と表せる. ただし G_D は G の collocated feedback 閉ループ伝達関数で, $G_D = (I + GK_0)^{-1}G$ である. 以下では、この閉ループ低次元モデルを新 たた制御対象として制御性能を向上させる制御則を設計し、これを付加す ることによって、collocated feedback のもつロバスト安定性を保存した 姿勢制御系が構成できることを示す. H_∞ 制御の考え方を使って制御則を 求める.

設計は3章で扱った1軸エアテーブルモデルについて行い、その有効 性を実験によって実証する。1軸エアテーブルのモードモデルのうち振動 モードはすべて collocated feedback によって制御する. したがって、低 次元モデル G(s), $G_D(s)$ は剛体モードに対応する次の1入力2出力2次 系となる.

$$G(s) = \frac{1}{Ms^2} \begin{bmatrix} 1\\ s \end{bmatrix}, \ G_D(s) = \frac{1}{Ms^2 + Ds + P} \begin{bmatrix} 1\\ s \end{bmatrix}$$

 $\mathcal{L} \subset \mathcal{T}, M = (L^T \Phi \Phi^T L)^{-1} > 0 \ \mathcal{T} \otimes \mathcal{S},$

4.4.1 2重ループ制御系

Collocated feedback として、 P = 0, D > 0 とした DVFB 制御を施 す. このとき低次元モデル G_D は複素平面原点に1 個の極をもつが Δ_D は 安定である. ここでは、閉ループ系を安定化すると同時に、参照入力から 追従誤差までの閉ループ伝達関数である感度関数を低周波帯域で小さくす ることによって姿勢角の目標値追従性能を改善する制御器

 $v = -K_1(s)y$

を設計する。このために低次元モデル GD について

$$||W_1S||_{\infty} < 1/\gamma; \quad S := (I + K_1G_D)^{-1}$$
(4.18)

を満たす安定化制御器 $K_1(s)$ を求めることにする。おもみ関数 $W_1(s)$ に は低域でその振幅が大きい有理関数を選ぶ。ただし閉ループ系は Δ_D に 対して安定でなければならないので、条件

$$||W_2T||_{\infty} < 1, T := K_1 G_D (I + K_1 G_D)^{-1}$$
(4.19)

も考慮し Δ_D が安定であることに注意して、スモールゲイン定理を満た すように、おもみ W_2 を $|W_2(j\omega)| > |\Delta_D(j\omega)|, \forall \omega$ と選ぶ. 最終的に得 られる制御則は

$$u = -(K_0 + K_1(s))y$$

となる. collocated feedback ゲイン Ko は制御器の直達成分である.

(4.18)(4.19) 式を同時に満足させるように評価関数

 $\left\| \begin{array}{c} \gamma W_1 S \\ W_2 T \end{array} \right\|_{\infty} < 1$

を満たす制御器 K1(s) を設計する. これは、拡大系

$$z_{1} = W_{1}(d_{1} - v)$$

$$z_{2} = W_{2}v$$

$$y = G_{D}(d_{1} - v) + \epsilon d_{2}$$
(4.20)

に Glover & Doyle のアルゴリズム51)100) を適用して求めるととができる。 とこで、 z_1 、 z_2 および d_1 、 d_2 は仮想的な出力および入力で、 ϵ は十分 に小さい正の定数である。

との設計法を1軸エアテーブルに適用してみる。図4.15 は1軸エア テーブルの伝達関数G(点線)とD = 10のときの 閉ループ伝達関数 G_D (実 線)を表す。 G_D は複素平面原点に極を持つために、このままでは拡大系 (4.20)式が虚軸上の零をもち条件を満たさない。標準的な設計問題とする ために重み W_1 に制御対象の伝達関数 G_D をもたせる方式¹⁰¹)をここで は採用する。

$$W_1 = [1 \ 0 \]G_D \tag{4.21}$$

これは外乱入力から制御量までの閉ループ伝達関数 G_DS の振幅を小さく することによって間接的に S の低域での振幅を小さくしようとするもの である.また W_2 は直達成分をもつプロバな伝達関数で

$$W_2 = \frac{36s^2}{s^2 + 8s + 36} \tag{4.22}$$

と選んだ。図 4.16 に W_2 と Δ_D の関係を示す。以上の設定によって標準 のアルゴリズムの適用に必要な全ての仮定が成り立つ。 パラメータ γ の 調整によって評価関数を満たす安定化制御則を求めた。

設計結果として、図4.17(a) に 感度関数と相補感度関数を、図4.17(b) に 仮想入力 v の入力端からみた一巡伝達関数 K1GD の振幅と位相を示 す.しかし、実際の操作入力は u なので設計した制御系のゲイン余裕、位 相余裕などは u の入力端からみた一巡伝達関数 (Ku+K1(s))G のボード 線図で評価しなければならない、図4.17(c) にこれを示す. K₁(s) の設計 には剛体モードのみを考慮しただけであったにも拘らず、1次振動モード まで位相進みによって安定化されている(位相安定). このためゲインの 交差周波数が高くできている。 これが collocated feedback による効果で ある. 比較のために, collocated feedback を併用しない制御器を同じ混 合感度問題から設計してみる. 評価関数は (4.24)(4.25) 式の Gn を G に 置き換えて全く同一の構造のものとした。図4.18 が設定した W。と残余 モードによるモデル誤差 △ の関係であり、設計結果として図 4.19(a) に 感度,相補感度関数の振幅を,図4.19(b)に一巡伝達関数 K,Gのポード 線図を示す。図 4.19(b) から全ての振動モードはゲインを低減することに よって安定化されている (ゲイン安定)、スモールゲイン定理に依存した ロバスト安定化による予期した結果である、このために、図 4.17(c)の設 計結果よりも制御帯域の狭い制御系となっている.

以上の設計結果を実験によって確認した。図4.20(a) は姿勢目標値を 1度としたときのステップ応答(実線)である、collocated feedback を 併用しない制御系(点線)に比べてはるかに良い追従性があることがわか る、また図4.20(b) は大きさ 0.35[Nm]の外乱トルクを1秒間加えたとき の外乱応答である。

4.4.2 2 自由度制御系

collocated feedback として P > 0, D > 0 の DVDFB 制御を施せば、 その閉ループ系は剛体モードを含めて安定となる。そこで、この安定性を 保存したまま参照入力の追従特性を向上させるよう図 4.21 のような 2 自 由度制御系を構成することを考える。

そのために、ここでは参照モデルを設定しその伝達関数 G_M に r か ら y までの閉ループ伝達関数を次式の意味でマッチングさせるように前向きの補償器 K_1 , K_2 を求める.

 $||W_o \tilde{G}_M||_{\infty} < 1/\gamma; \ \tilde{G}_M := G_M - G_{yr}$ (4.23)

ここで、 G_{yr} は低次元モデル G のみを考慮したときの r から y までの閉 n-プ伝達関数で、 $G_{yr} = G_D(K_1 + K_0K_2)$ である. この低次元化仕安

定性には影響しない. $W_o(s)$ は周波数重みである.また、前向きの操作量 $v_1 = K_1r$ 、および、 $v_2 = K_2r$ が過剰にならないよう次の制約も考慮して設計する.

$$\|W_1 G_{v\tau}\|_{\infty} < 1 \tag{4.24}$$

ここで、 G_{vr} は r から $v^T = \begin{bmatrix} v_1^T & v_2^T \end{bmatrix}$ への伝達関数である.

図 4.21 2 自由度制御系

(4.23)(4.24) 式を同時に満足させるように評価関数

$$\left|\begin{array}{c} \gamma W_o \hat{G}_M \\ W_1 G_{vr} \\ \end{array}\right| \ll$$

を考えれば、 K_1 , K_2 はやはり、拡大系

$$z_0 = W_o(G_M r - [G_D G_D K_o]v)$$

$$z_1 = W_1 v$$

y = r

に、Glover & Doyle のアルゴリズムを適用して求めるととができる。前 向き補償器は

$$v = \begin{bmatrix} K_1 \\ K_2 \end{bmatrix} r \tag{4.25}$$

となる.

ふたたび、1軸エアテーブルについて設計し、実験で確認する. DVDFB ゲイン[PD]には次の3つのケースを考える.

(a) 126[10.1], (b) 10[11], (c) 8[0.21]

これらの値は図 4.25(a) - (c) に示すように, $K[PD] K \to \infty$ とした ときの根軌跡から定めた. すなわち, (a) は図 4.22(a) の + 印で示すよう に,最も低い周波数の閉ルーブ極が小さい滅衰比をもつ複素共役の場合 で, (b) は滅衰比が性低 $1/\sqrt{2}$ のとき(図 4.22(b)),そして, (c) は臨界 滅衰の場合(図 4.22(c))である. 図 4.23(a) は,この3つの場合に目標 値 r = 1[度]を与えたときの,エアテーブル姿勢角のステップ応答の実験 結果である.また,図 4.23(b) は図 4.20(b) と同様に,大きさ 0.35[Nm] の 外乱バルスを1 秒間加えたときの応答である.

これにたいして、2自由度系を設計する.参照モデル GM を

$$G_M(s) = \frac{k}{s^2 + cs + k}$$

の2次系とし、k, cは臨界制動、 $c^2-4k = 0$ となるように $k = 1/2, d = \sqrt{2}$ と与える。そして、これにマッチングさせる伝達関数 G_{yr} を、剛体モードだけを考慮した2次の低次元閉ループ系とする。おもみ関数を、ここで $tW_o = W_1 = 1$ とした、1[度]のステップ応答の実験結果を図4.24(a) に示す。2自由度系の効果が明かである。また、0.35 [Nm]、1[s]のパルス外乱トルクを加えた外乱応答の実験結果を図4.24(b) に示す。DVDFB の みの特性が、そのまま2自由度系のときに保存されている。このときの、設計結果 G_{yr} と、これを実モデルに適用したときの \bar{G}_{yr} は図4.28(a) - (c) であった。

以上, collocated feedback 制御だけでは宇宙構造物の姿勢制御には 不十分であることを述べ、DVFB、DVDFB 閉ループ系に別途設計した フィードバックまたはフィードフォワード制御系を付加することによって、 望ましい制御性能が達成できることを設計、実験例を用いて示した.しか し、いずれの場合も、宇宙構造物の振動モードは collocated feedback に よって制御されている.それが持っている優れたロバスト性を生かした制 御系なので、スピルオーバ不安定などの問題は一切おこらない点がキーで ある.

4.5 あとがき

との章では、センサとアクチュエータが同一点に配置された宇宙構造 物の制御方式を考察した。バラメータに依存しない、その独特の安定性 について述べた。そして、DVFBによる振動制御問題について、制御用 アクチュエータの動特性を考慮したときにも、よい振動制御効果をもつ制 御系を構成して実験で確認した。次に、DVFB、DVDFBによって振動 モードを制御した系の姿勢制御系の構成を2つ提案した。これは従来の LAC/HAC 制御の考え方⁶⁵⁾を拡張したもので、感度関数を低減する2重 ループ制御と目標値追従性を向上させた2自由度制御系の有効性を実験で 確認した。

4.6 付錄

[付録 4A] 補題 4.3 の証明

 $H\geq 0$, V>0より, 少なくとも $H+JVJ^T\geq 0$ であるから、すべての $w\in {\bf R}^n,~w\neq 0$ にたいして

 $w^T H w + w^T J V J^T w \ge 0.$

ととで、等号が成立するのは、

 $\tilde{w}^T H \tilde{w} = 0 \not \gg \mathcal{D} \tilde{w}^T J V J^T \tilde{w} = 0$

となる 亚 ≠ 0 が存在するときのみである. これは, いいかえれば

 $\tilde{w}^T H^{1/2} = 0 \text{ is } \mathcal{D} \quad \tilde{w}^T J = 0$

つまり

 $\bar{w}^T [H^{1/2} J] = [0 0]$

となるときである. これは、[H J]が行最大ランクをもつという仮定に反 するので、

 $H + JVJ^T \ge 0.$

が成り立つ.

[付録 4B] 運動方程式 (4.10) の導出

PMA と構造振動の連成系は次式で記述できる.

$$\ddot{\eta} + 2Z\Sigma\dot{\eta} + \Sigma^2\eta = \phi^T f \tag{B.1}$$

$$m(\phi\ddot{\eta} + a\theta) = -f \tag{B.2}$$

ことで、(B.1)式は構造振動の、(B.2)式は PMA マスの運動をあらわす. f は相互間に作用する内力であり、機械的な拘束力と制御入力の和で表される.

$$af = c\theta + k\theta + au, \quad u = -d\phi\dot{\eta}$$
 (B.3)

(B.1)(B.2)から内力fを消去すれば、(4.10)のηに関する式が、(B.2)(B.3) からfを消去して θ に関する式が得られる. もし、c=0、 $\bar{k}=0$ であれば (B.1)式は理想的な DVFB 閉ループ系 (4.9)式である. また、(B.3)式で u=0ならば受動型ダンパの連成振動の式がえられる.

[付録 4C] PMA 伝達関数の非正実性について

PMA を使った DVFB には補題 4.4 の十分条件が成り立たないことを示す.

このため、(B.1)-(B.3) 式から,操作量 u から実際の制御力 f までの 伝達関数 H(s) f(s) = H(s)u(s)を調べる.いま,すべての振動モード周 波数 $\sigma = \text{diag}[\sigma_i]$ よりも十分低い周波数帯域 $0 < \omega \ll \min_i \sigma_i$ を考える. このとき,

$$\theta(j\omega) \approx \frac{f(j\omega)}{\omega^2}$$

となり、(B.3)式から

$$H(j\omega) \approx \frac{1}{1 - (\bar{k} + j\omega c)/ma^2 \omega^2}$$

ここで, $\omega^2 < \bar{k}/ma^2$ なる ω にたいして ${\rm Re}H(j\omega) < 0$ となることがわ かる.

[付録 4D] 定理 4.2 の証明

閉ループ系(4.10)式は、次のように書きかえられる.

 $M\ddot{w} + C_s\dot{w} + C_a\dot{w} + Kw = 0$

$$C_s = (C + C^T)/2, \quad C_a = (C - C^T)/2.$$

これが漸近安定である十分条件は補題 4.1 より、M、C、およびKが正定 であることである。明らかに、M、K は正定である。また、

$$C_s = \begin{bmatrix} c & -da\phi/2 \\ -da\phi/2 & 2Z\Sigma \end{bmatrix}$$

が正定である必要十分条件は、 c>0 かつ

 $2Z\Sigma - (da)^2 \phi^T \phi/4c > 0$

である。この証明は多入力多出力系にそのまま拡張できる。

5.1 まとめと各章の結論

本論文では、宇宙構造物の姿勢制御、振動制御の制御系設計法を中心 とした研究結果について述べた。まずモデリングの問題として、宇宙構造 物の極と零について検討し、その後、制御系設計法として、周波数領域で のループ成形機能をもたせた最適レギュレータと、collocated feedback 制 御とそれを利用した制御系の構成法を提案し、それぞれの制御則の性質を 整理した。そして、地上実験を行いその有効性を確認して、実利用が可能 であることを示した、本論文の結果は、大型化、高精度化するこれからの 人工衛星、宇宙構造物の制御系設計に生かされるものである。

以下に,各章の主な結果と結論をまとめる.

2章

(1) 一様な構造をもつ宇宙構造物の FEM モデルとモードモデルの伝達零 を求めるアルゴリズムを collocation 系について求めた.またハイブリッ ド構造の宇宙構造物の拘束モード、および非拘束モードのモデルの伝達零 も求めた.

(2) collocation のとき伝達零は複素左半平面にあること、および、モード 短縮を行ってもこの最小位相性が保存されることが明かとなった。また、 この伝達零はセンサ、アクチュエータの配置点を固定したときのモード周 波数に等しいことを示した。

(3) 得られたアルゴリズムを、トラス構造と人工衛星の数値モデルに適用 し、汎用の QZ アルゴリズムによるよりも優れた結果が得られることを 示した。

3章

(1)評価関数の操作量の重みを周波数依存とし、2次の高減通過特性をもたせることによって得られる最適フィーバックゲインは、安定で2次の高減運断特性もつことを示した、そして、この特性を利用して、残余モードに対して閉ルーブ系が安定な制御則を設計できることを提案した。また、これを、出力フィードバックとして利用するための、状態観測器の構成法を示し、通常の最適レギュレータの場合と同様に分離定理が成り立つこと、Loop Transfer Recover 機能をもたせることができることを明かとした.
(2)1軸エアテーブル装置を使った1入力1出力系の制御実験によって、この設計法を使った低次の制御器でスピルオーバを発生させることなく高精度に制御ができることを実証した.

(3) さらに、評価関数の制御量の重みにも周波数特性をもたせた制御則に 拡張し、高域で重要なロバスト安定性仕様と低域での性能仕様のトレード オフが可能な設計法を示した。

(4) これを、多入力多出力のトラスモデルに適用し、有効性を確認した.

4章

(1) collocated feedback 制御として、DVFB、DVDFB 制御閉ループ系の安定条件を整理した. これは、モデルのパラメータに依存しない力学系に固有の構造的な安定性である。いずれの場合もフィードバックゲイン行列が正定対称であることが、漸近安定のための十分条件である。

(2) DVFB 制御を実施するためのアクチュエータとして、Proof Mass Actuator を試作し、その振動制御の効果を実験的に調べた. ここで、PMA の動特性と宇宙構造物の振動の干渉のために、理想的なアクチュエータに 対して得られた安定条件が不十分であることを示し、新たに安定条件を求 め、この結果を DVFB 振動制御実験に反映させている.

(3) collocated feedback 制御は安定性に優れてはいるが、性能仕様を満たす設計機能はその中にもっていない、そこで最後に、この collocated feedback 制御の固有のロバスト安定性を生かした姿勢制御系の構成法を提案し設計例を示した、ひとつは、DVFB 閉ループ系にロバスト制御器を施した2重ループ制御系で、DVFB によってロバスト制御系の保守性を改善できることが判った。そしてもうひとつは、DVDFB 閉ループ系に前向きの補償器を加えた2自由度制御系である。目標値追従特性が改善できる、1軸エアテーブルを使った1入力1出力系の実験によって、その有効性を実証した。

5.2 今後の研究課題

本論文は線形で時不変の宇宙構造物の姿勢制御系を扱っている.

現在計画中の大型人工衛星,大型宇宙システムのほとんどすべてが, モード方程式で記述できるので,本論文の結果,あるいは,他の設計手法 によるロバスト制御則を適用できる. とこで,残余モードに対するロバス ト制御という考え方が,この分野ではキーになる.よりよい制御則を求め るためには,制御系設計ツールの改良と同時に,制御対象をより制御しや すいものにする事も大切である.幸い,宇宙構造物は他の制御対象に比べ て,比較的制約が少ない.例えば,センサ,アクチュエータの配置場所, 宇宙構造物の構造設計などは、制御の容易さを考慮した設計,あるいは制 御と同時に構造を最適化することが,原理的に可能であり,必要な技術で ある.

しかし、宇宙ステーションのように将来の宇宙システムは、必ずしも 線形時不変系ではない。

まず、大型宇宙システムは軌道上で一般に数個のモジュールを結合するこ とによって構築される。したがって、各モジュールが自律的に安定であっ て、同時にそれらが結合されていく建造中にも全体系が安定である必要が ある。これに対応できる制御則、例えば分散制御、の研究が求められる。

これに類似の問題として、システムが時変系となる宇宙構造物がある。例 えば、宇宙ステーションには可動型の大型クレーンが設置されていて、こ れによるペイロードが移動される。このとき、ステーション全体の質量配 分は時間依存となる。姿勢制御系にはこれに対応できる例えばゲイン・ス ケジューリングなどの、機能が要求される。

最後に、非線形性の問題がある.特に、大型宇宙システムが大角度の姿勢 変更、姿勢マスーパ、をするときその剛体運動にはジャイロ項が加わり、 これによって振動にも非線形性が表れる.この問題は、まだほとんど研究 がなされていない.

ここに述べた3つが今後の研究の課題であると筆者は考えており、実 際いくらかの研究結果も発表されはじめているが、いずれにも、本論文の 結果はその基礎的技術として重要であろう。
終わりにあたり、本論文をまとめるに際して懇切なご指導とご鞭撻を 賜った、東京大学工学部 北森俊行教授,森下厳教授、有本卓教授、吉本 堅一教授、新誠一助教授に対し謹んで感謝の意を表します.

また、本研究は、科学技術庁航空宇宙技術研究所において行ったもの であるが、実施に当たって終始熱心にど指導とご助言をいただいた、東京 工業大学 狼嘉彰教授(当時のグループリーダ)と神戸大学 池田雅夫教 授(客員研究官)に対し厚く感謝の意を表します.さらに、多大など尽力 をいただいた(株)東芝の平子敬一、上野誠也(現在横浜国立大学)、千 田有一の各氏に感謝いたします.

最後に、日頃から有益など助言、ど協力を頂いている、三菱電機(株) 山田克彦、宇都宮大学助教授 足立修一の両氏、および、航空宇宙技術研 究所 小松敬治、山口功、両主任研究官を初め多くの諸氏に心からの感謝 を表します。

謝辞

参考文献

- [1] 科学技術庁監修: 宇宙開発ハンドブック 91,(社)経済団体連合(1991)
- [2] 宇宙開発技術総覧, (株)エス・ディ・シー (1985)
- [3] T. Matsueda, T. Shimoda, K. Okada, T. Yamaguchi and H. Kato: Attitude and Orbit Control Subsystem for MOS-I, XIth IFAC Symposium on Automatic Control in Aerospace, 83/88, Tsukuba, July 17-21 (1989).
- [4] T. Anzai, K. Okada, T. Nakamura and H. Kato: Attitude and Orbit Control Subsystem for ETS-V and its Flight Experiments, ibid, 89/94.
- [5] T. Suzuki, A. Nakashima, K. Yasuda and N. Natori: Attitude and Orbit Control Subsystem for ERS-I and its Subsystem Test, ibid, 95/100.
- [6] T. Kitahara, S. Ichikawa, Y. Kawada, H. Kishimoto, M. Mine, H. Soga, T. Toriumi, Y. Yamaguchi and T. Tanamachi: Attitude Control System for Engineering Test Satellite-VI, ibid, 77/82.
- [7] 下世古, 狼: 大型衛星技術と放送ミッション, 日本航空宇宙学会誌, 31-355, 410/427 (1983).
- [8] T.A.Hagler: Building Large Structures in Space, Astronautics & Aeronautics, May, 56/61 (1976).
- [9] NASA: 1986 Long-Range Program Plan, Aug. (1985).
- [10] T.R.Sutter, P.A.Cooper and J.W.Young: Dynamics and Control Characteristics of a Reference Space Station Configuration, AIAA SDM Issues of the International Space Station, AIAA 88-2485, 144/154, Williamsburg, VA, April 21-22 (1988).
- [11] 狼, 木田, 石島: 大型柔軟宇宙構造物の制御問題, 計測と制御, 23-1, 69/74 (1984)
- [12] 土屋, 柏瀬, 真鍋: 柔軟衛星の姿勢制御, 計測と制御, 24-5, 410/416 (1985)
- [13] 市川: 宇宙構造物の制御 技術の現状と動向 -, 日本機械学会誌, 89-811, 668/673 (1986)
- [14] 木田: 大型宇宙構造物のロバスト制御, 計測と制御, 30-8, 695/700 (1991)

- [15] 池田,木田: 大型宇宙構造物におけるこれからの制御技術,計測と制御, 31-1, 170/173 (1992)
- [16] L.Meirovitch, H.Baruh, R.C.Montgomery and J.P. Williams: Nonlinear Natural Control of Experimental Beam, J. of Guidance, Control and Dynamics, 7-4, 437/442 (1984)
- [17] Y.Sakawa and Z.H.Luo: Modeling and Control of Coupled Bending and Torsional Vibrations of Flexible Beams, IEEE Trans. Automat. Contr., 34-9, 970/977 (1989)
- [18] 小松: 大規模柔軟構造物のモデリング, 計測と制御, 28-4, 358/364 (1989)
- [19] B.D.O.Anderson and Y.Liu: Controller Reduction: Concepts and Approaches, IEEE Trans. Automat. Contr., 34-8, 802/812 (1989)
- [20] D.C.Hyland and D.S.Bernstein: The Optimal Projection Equations for Model Reduction and the Relationships Among the Metods of Wilson, Skelton and Moore, IEEE Trans. Automat. Contr., 30-12, 1201/1211 (1985)
- [21] M.J.Balas: Feedback Control of Flexible Spacecraft, IEEE Trans. Automat. Contr., 23-4, 673/679 (1978)
- [22] P.C.IIughes: Modal Identities for Elastic Bodies, with Application to Vehicle Dynamics and Control, ASME J. of Applied Mechanics, 47-1, 177/184 (1980)
- [23] 狼,藤井:柔軟衛星のモデリング ハイブリッド・システムとトランケー ション –,日本航空宇宙学会誌, 32-364, 263/274 (1984)
- [24] R.E.Skelton and P.C.Hughes: Order Reduction for Models of Space Structures Using Modal Cost Analysis, JGC, 5-4, 351/357 (1982)
- [25] H.B.Hablani: Stochastic Responce Analysis, Order Reduction and Output Feedback Controllers for Flexible Spacecraft, J. of Guidance, Control and Dynamics, 8-1, 94/103 (1985)
- [26] B.C.Moore: Principal Components Analysis in Linear Systems: Controllability, Observability, and Model Reduction, IEEE Trans. Automat. Contr., 26-1, 17-32 (1981)

- [27] C.Z.Gregory: Reduction of Large Flexible Spacecraft Models Using Internal Balancing Theory, J. of Guidance, Control and Dynamics, 7-6, 725/732 (1984)
- [28] D.F.Enns: Model Reduction with Balanced Realization: An Error Bounds and a Frequency Weighted Generalization, Proc. 23rd Conf. Decision Contr., Las Vegas, NV, 127/132 (1984)
- [29] B.J.Bacon and D.K.Schmidt: Multivariable Frequency-Weighted Order Reduction, J. of Guidance, Control and Dynamics, 12-1, 97/107 (1989)
- [30] A.Yousuff, D.A.Wagie and R.E.Skelton: Linear System Approximation via Covariance Equivalent Realization, J. Math. Anal. Appl., 106-1, 91/115 (1985)
- [31] K.Glover: All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and their L[∞] -error Bounds, Int. J. Contr., 39-6, 1115/1193 (1984)
- [32] J.N.Juang and M.J.Balas: Dynamics and Control of Large Spinning Spacecraft, J. of the Astronautical Sciences, 28-1, 31/48 (1980)
- [33] P.C.Hughes and R.E.Skelton: Controllability and Observability for Flexible Spacecraft, J. of Guidance, Control and Dynamics, 3-5, 452/459 (1980)
- [34] B.Wie and A.E.Bryson, Jr.: Pole-Zero Modeling of Flexible Space Structures, J. of Guidance, Control and Dynamics, 11-6, 554/561 (1988)
- [35] T.Williams: Transmission-Zero Bounds for Large Space Structures, with Application, J. of Guidance, Control and Dynamics, 12-1, 33/38 (1989)
- [36] D.B.Schaechter: Hardware Demonstration of Flexible Beam Control, J. of Guidance, Control and Dynamics, 5-1, 48/53 (1982)
- [37] 木田,山口,岡本,狼,市川,田中:大型柔軟衛星の三軸制御に関する実験的 検討,日本航空宇宙学会誌、35-407,9/16 (1987)
- [38] J.R.Sesak, P.W.Likins and T.Coradet: Flexible Spacecraft Control by Model Error Sensitivity Suppression, J. of Astronautical Sciences, 27-2, 131/156 (1979)

- [39] J.Doyle and G.Stein: Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis, IEEE Trans. Automat. Contr., 26-1, 4/16 (1981)
- [40] N.Sundararajan, S.M.Joshi and E.S.Armströng: Robust Controller Synthesis for a Large Flexible Space Antenna, J. of Guidance, Control and Dynamics, 10-2, 201/208 (1987)
- [41] P.A.Blelloch and D.L.Mingori: Robust Linear Quadratic Gaussian Control for Flexible Structures, J. of Guidance, Control and Dynamics, 13-1, 66/72 (1990)
- [42] A.J.Calise and J.V.R. Prasad: Approximate Loop Transfer Recovery Method for Designing Fixed-Order Compensators, J. of Guidance, Control and Dynamics, 13-2, 297/302 (1990)
- [43] N.K.Gupta: Frequency-Shaped Cost Functionals: Extension of Linear-Quadratic-Gaussian Design Methods, J. of Guidance, Control and Dynamics, 3-6, 529/535 (1980)
- [44] B.D.O.Anderson and D.L.Mingori: Use of Frequency Dependence in Linear Quadratic Problems to Frequency-Shape Robustness, J. of Guidance, Control and Dynamics, 8-3, 397/401 (1985)
- [45] M.G.Safonov, A.J.Laub and G.L.Hartmann: Feedback Properties of Multivariale Systems: The Role and Use of the Return Difference Matrix, IEEE Trans. Automat. Contr., 26-2, 47/65 (1981)
- [46] G.Stein and M.Athan: The LQG/LTR Procedure for Multivariable Feedback Control Design, IEEE Trans. Automat. Contr., 32-2, 105/114 (1987)
- [47] H-H.Yeh, S.S.Banda, P.J.Lynch and T.E.McQuade: Loop-Transfer Recovery via Hardy-Space Optimization, J. of Guidance, Control and Dynamics, 11-1, 86/90 (1988)
- [48] Ph.C. Opdenacker, E.A. Jonckheere, M. G. Safonov, J. C. Juang and M. S. Lukich: Reduced-Order Compensator Design for a Flexible Structures, J. of Guidance, Control and Dynamics, 13-1, 46/56 (1990)
- [49] 木村: LQG から H[∞]へ, 計測と制御, 29-2, 111/119 (1990)

- [50] B.A.Francis: A Course in H[∞] Control Theory, Springer (1987)
- [51] K.Glover and J.C.Doyle: State-Space Formulae for All Stabilizing Controllers that Satisfy an H_∞ -norm Bound and Relations to Risk Sensitivity, Systems & Control Letters, 11-2, 167/172 (1988)
- [52] J.C.Doyle, K.Glover, P.P.Kkhargonekar and B.A.Francis: State-Space Solutions to Standard H₂, H_∞ Control Problems, IEEE Trans. Automat. Contr., **34**-8, 831/847 (1989)
- [53] 黒田, 柏瀬, 土屋: H[∞] 最適制御理論による柔軟宇宙構造物の制御系設計, SICE 第4回誘導制御シンボジウム資料, 13/18 (1987)
- [54] M.G.Safonov, R.Y.Chiang and H.Flashner: H[∞] Robust Control Synthesis for a Large Space Structures, J. of Guidance, Control and Dynamics, 14-3, 513/520 (1991)
- [55] Y. Chida, T. Kida, I. Yamaguchi, M. Mine and H. Soga: Robust Controller Design for LSS Attitude Control and Experimental Demonstration, IMACS / SICE, Kobe (1992)
- [56] E.E.Zajac: The Kelvin-Tait-Chetaev Theorem and Extensions, J. of the Astronautical Sciences, 11-2, 46/49 (1964)
- [57] M.J.Balas: Direct Velocity Feedback Control of Large Space Structures, J. of Guidance, Control and Dynamics, 2-3, 252/253 (1979)
- [58] S.M.Joshi: Robustness Properties of Collocated Controllers for Flexible Spacecraft, J. of Guidance, Control and Dynamics, 9-1, 85/91 (1986)
- [59] L.E.Elliot, D.L.Mingori and R.P.Iwens: Performance of Robust Output Feedback Controller for Flexible Spacecraft, Proc. of 2nd Virginia Polytechnic Institute & State University / AIAA Symposium, Blacksburg, VA, 409/420 (1979)
- [60] J.N.Arbrun: Theory of the Control of Structures by Low-Authority Controllers, J. of Guidance, Control and Dynamics, 3-5, 444/451 (1980)
- [61] A.Arbel and N.K.Gupta: Robust Collocated Control for Large Flexible Space Structures, J. of Guidance, Control and Dynamics, 4-5, 480/486 (1981)

- [62] M.D.McLaren and G.L.Slater: Robust Multivariable Control of Large Space Structures Using Positivity, J. of Guidance, Control and Dynamics, 10-4, 393/400 (1987).
- [63] D.C.Zimmerman, G.C.Horner and D.J.Inman: Microprocessor Controlled Force Actuator, J. of Guidance, Control and Dynamics, 11-3, 230/236 (1988)
- [64] D.C.Zimmerman and D.J.Inman: On the Nature of the Interaction Between Structures and Proof-Mass Actuators, J. of Guidance, Control and Dynamics, 13-1, 82/88 (1990)
- [65] J.N.Aubrun: Active Control of Space Structures (ACOSS) PhaselA, LMSC Technical Report, RAND-TR-82-21, March (1982)
- [66] 外本,後藤: LAC/HAC 概念に基づく柔軟構造物の新制御法,日本航空宇 宙学会誌(掲載予定)
- [67] T.Kida, I.Yamaguchi, Y.Ohkami, S.Ichikawa and Y.Kawada: A Flight Experiment of Flexible Spacecraft Attitude Control, 39th IAF, Bangalore, India, October 8-15 (1988)
- [68] 木田,小松,山口,市川:技術試験衛星 VI 型による柔構造制御軌道上実験 に関する研究(その1):航空宇宙技術研究所 - 宇宙開発事業団共同研究 成果報告書 NASDA SE-601017 (1989)
- [69] T.Kida, Y.Ohkami and S.Sanbongi: Poles and Transmission Zeros of Flexible Spacecraft Control System, J. of Guidance and Control, 8-2, 208/213 (1985)
- [70] 木田,小松,池田: Collocated LSS 制御系の伝達零,計測自動制御学会 論文集, 27-9, 1076/1078 (1991)
- [71] 木田,山口:人工衛星姿勢制御系の伝達零,航空宇宙技術研究所報告 TR-1166 (1992)
- [72] P.W.Likins: Dynamics and Control of Flexible Space Vehicles, Rev.1, JPL/NASA TR 32-1329 (1970)
- [73] P.C.Hughes and R.E.Skelton: Modal Trancation for Flexible Spacecraft, J. of Guidance and Control, 4-3, 291/297 (1981)

- [74] H.B.Hablani: Constrained and Unconstrained Modes: Some Modeling Aspects of Flexible Spacecraft, J. of Guidance and Control, 5-2, 164/173 (1982)
- [75] 須田: 極と零点, 計測と制御, 17-8, 622/635 (1978)
- [76] H.Kwakernaak and R.Sivan: Linear Optimal Control Systems, Wiley-Interscience, New York, 39/42 (1972)
- [77] A.J.Laub and B.C.Moore: Calculation of Transmission Zeros Using QZ Techniques, Automatica, 14 557/566 (1982)
- [78] E.J.Davison and S.H. Wang: Properties and Calculation of Transmission Zeros of Linear Multivariable Systems, Automatica, 10 634/650 (1974)
- [79] A.G.J. MacFarlane and N. Karcanias: Poles and Zeros of Linear Multivariable Systems: A Survey of the Algebraic, Geometric and Complexvariable Theory, Int. J. of Contr., 24-1, 33/74 (1976)
- [80] A. Emami-Naeini and P.V.Dooren: Computation of Zeros of Linear Multivariable Systems, Automatica, 18-4, 415/430 (1982)
- [81] B.A.Francis and W.M.Wohnam: The Role of Transmission Zeros in Linear Multivariable Regulators, Int. J. of Contr., 22-5, 657/681 (1975)
- [82] B.D.O. Anderson and J.B.Moore: Optimal Control, Prentice-Hall, Inc., 354/355 (1991)
- [83] 木田, 池田, 山口: 高城運断特性をもたせた最適レギュレータとその大型 宇宙構造物の制御への応用, 計測自動制御学会論文集, 25-4, 448/454 (1989)
- [84] T. Kida, Y. Tsubokawa and M. Ikeda: Robust LSS Controller Design by Frequency Shaping, AIAA 89-3535 AIAA Guidance, Navigation and Control Conference, Boston, MA August 14-16 (1989)
- [85] T.Kida and M.Ikeda: Robust Control for Large Space Structures: Spillover Suppression by Frequency-shaped Optimal Regulator, IFAC Symposium on Automatic Control in Aerospace, Tsukuba, July 17-21 (1989)
- [86] 木田、山口、 池田: 大型字宙構造物の姿勢制御実験-LQR ループ成形機 能によるロバスト安定化 -、計測自動制御学会論文集, 28-1, 107/115 (1992)

- [87] 木田, 池田: 最適レギュレータの周波数成形について、SICE第 19 回制 御理論シンポジウム資料, 271/274 (1990)
- [88] 木田、山口、小松:多入力多出力 LSS のロバスト制御-LQR ループ成 形の適用例 -, SICE 第8回誘導制御シンボジウム資料, 127/132 (1991)
- [89] 甲斐: 構造シミュレーション模型パドル部の振動試験結果, 航技研ニュー ス, No.316 (1985)
- [90] 足立,重政,山口,木田:大型宇宙構造物の同定実験,計測自動制御学 会論文集,26-11,1275/1282 (1990)
- [91] 山口,木田:大型字宙構造物の同定実験 矩形波入力による時間領域での同定っ、計測自動制御学会論文集,28-8,982 / 990 (1992)
- [92] H. Kwakernaak and R. Sivan: The Maximally Achievable Accuracy of Linear Optimal Regulators and Linear Optimal Filters, IEEE Trans. on Automat. Contr., 17-1, 79/86 (1972)
- [93] M.L.J. Hautus: Input Regularity of Cascaded System, IEEE Trans. on Automat. Contr., 20-1, 120/123 (1975)
- [94] J.C. Doyle, B.A. Francis and A.R. Tannenbaum: Feedback Control Theory, Macmillan Publishing Co., 13/31 (1992)
- [95] S.P.Boyd and C.H.Barratt: Linear Controller Design, Prentice Hall Inc., 69/126 (1991)
- [96] 木田,山口,上野,平子:大型宇宙構造物の DVFB 制御 安定性に関する 考察およびその地上実験,計測自動制御学会論文集,25 - 12,1324 / 1330 (1989)
- [97] 糀谷, 池田, 木田: Collocated Feedback による宇宙構造物の最適制御, 計 測自動制御学会論文集, 25 - 8, 882 / 888 (1989)
- [98] 木田,山口,千田: Collocated Feedback を利用した宇宙構造物の制御系設計, SICE 第 21 回制御理論シンポジウム資料, 127/130 (1992)
- [99] 亘理: 機械力学, 共立全書, 73 / 92, 共立出版 (1966)
- [100] R.Y.Chiang and M.G.Safonov: Robust-Control Toolbox User's Guide, The MathWorks, Inc. (1988)

[101] 平田ほか: ハードディスクの H[∞]制御, 第 34 回自動制御連合講演会前刷集。 99/102 (1991) 149

