

半溶融加工に関する基礎的研究

(1)

半溶融加工に関する基礎的研究

杉山澄雄

半溶融加工に関する基礎的研究

	日次
第1章	序論1
1. 1	緒言1
1. 2	言葉の定義 2
1. 3	研究の概要3
(1)研究の流れ
(2)研究の目的
(3)研究の範囲
(4)研究の意義
1 4	関連分野の研究・技術開発・応用動向7
1 4	1 半次融・半軽因会属の基本的特性に関する動向7
1. 4) 社座・社人新折拾
(1)用相衷の測定
1 4	9 米效動。米縣田加理全國社科の製造技術に関する動向 9
1. 4	. 2 千裕融・千義回処理並属材料の設定文制に因する動用 。
(1) 干裕 舰处理法
(2) 午藤固処理法
1. 4	. 3 溶癥酰回現象を伴う裂症法に関する動向 11
(1)溶渍戰這法
(2) ダイキャスト法
(3)レオキャスト法
(4)チクソモールディング法
(5)スプレーフォーミング法
(6)溶融焼結法
1. 4	. 4 理論解析・数値シミュレーションに関する動向14
(1)ミクロ的モデルによる理論解析
(2)マクロ的モデルによる理論解析
1. 5	本論文の構成 16
参考文前	17
第2章	半溶融金属の特性調査45
2. 1	緒言45
2. 2	半溶融状態の直接観察46
2. 2	. 1 観察方法46
2. 2	 2 観察結果および考察 46
2. 3	半溶融金属の変形特性 48
2. 3	. 1 変形抵抗の測定方法および測定条件 48
(1) 測定方法
(2)測定条件
(3) 応力・ひずみの 算出方法
2. 3	2 測定結果および考察 49
(1)応力とひずみの関係
(2)温度(固相率)と変形抵抗の関係
1 .	A DESCRIPTION OF A DESC

的利用加工作用于专业都有的利用

(3)ひずみ速度と変形抵抗の関係	
(4) 試験片寸法(アスペクト比)と変形抵抗の関係	
(5) 試験片材質と変形抵抗の関係	
(6) 圧縮試験後の試験片の外面性状ならびに内部組織の検討	
2. 4 \$ < b	55
2.5 結言	56
参考文献	57
第3章 半溶融(半凝固)金属の固相率推定法の提案	99
3.1 緒言	99
3. 2 変形抵抗から固相率を推定する方法	100
3. 2. 1 はじめに	100
3.2.2 固相率推定の根拠	100
3.2.3 推定方法	100
3.2.4 固相率推定結果	101
3.2.5 本推定法の制限・制約	100
3. 2. 6 まとめ	102
3.3 電気的特性(比抵抗・電位差)から固相率を推定する方法	103
3. 3. 1 はじめに	100
3.3.2 固相率推定の根拠	103
3. 3. 3 電位差(比抵抗)の測定方法および測定条件	105
3.3.4 二元合金の無次元化電位差と固相率の関係	106
 3.3.5 多元(実用)合金の固相率の推定 	107
3.3.6 固相率推定結果ならびにその検証	100
3. 3. 7 まとめ	100
3.4 結言	105
参考文献	110
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	140
第4章 半凝固処理金属材料の製造法の促業	140
4.1 緒言	145
4.2 実験方法および実験条件	150
4.2.1 実験装置	150
4.2.2 ロールおよび固定冷却シューの材質・小広・ルバ	150
4.2.3 ロールと固定冷却シューとの回原改定	150
4.2.4 ロールならびに固定希却シューの子照力法	151
4.2.5 注湯万法 新田間始点	151
4.2.6 被処理材の材質・縦直開知品	152
4.2.7 実験手順	153
	154
4.3 実験結果およい考察	154
4.3.1 SUK材の外面性状の調査 (1) pb 10.0% SAA	
(1) Pb-19. Z%5n合金	
(2) A2017 (2) A5056	
(5 / A5050	

		(4)	ADC	12																
		(5)	鉄系	合	金															
		(6)	過步	5晶	A1-	Si	合金	È												
		C	7)	製道	上過	程。	p o)外	面	性	状の	推	移								
4.	3		2		SC	R	材	の内	部	組	歳 (の調	査							 	15	6
		C	1)	Pb-	19.	2%5	Sn 合	金													
		C	2)	120	17																
		6	3	5	A50	5.6																
		i	4	5	ADC	12																
		č	5	5	針王	A																
		è	6	1	品士		A.T.	Si.	44	5												
		2	7	1	地テ	S BB	¥12 1	tin		1/1. 1/17 :	н	(# m	- 16:	17								
	0	6	0	1	没现	D	任:	T A	1 FT	- th	44	Lt	1111	19 \$11 \$	# m	RE A	E			 	16	1
4.	3		0		10	K	11 0	10 7	下回	H.	IN I	cn	da l	THE R	au	DE DE	*				10	29
4.	4	S	C	ĸ	材 0.	う符	E	同金				Ld.			-						10	20
4.	4	•	1		内普	多租	藏(の常	发	112	RF 1	旺						-	-	 		20
		6	1)	71	VE	-	21	合	金												
		Ç	2)	鉄系	~ 合	金															
4.	4		2		硬さ	特	性													 	16	53
4.	4		3		臣和	冒強	度	特哲	È											 		53
		(1)	試髮		お	よび	K試	験	条	件										
				a) 計	式験	片															
				b) 🛔	式験	条	件														
				с) 日	E縮	前(の言	、験	片	0	内部	3組	織								
		ć	2)	压新	富試	験	結果	しお	よ	UK :	考察	6									
				a) 14	志力	と	ひす	= 7	0	関	係										
				b) 8	E縮	後	の言	、験	片	側	面の	あ	53	t							
4.	4		4		押出	HL	加	I #	生性											 	16	66
		C	1)	押出	HL	加	工首	in	S	С	R 材	0	内部	部組	織						
		ć	2	>	就員	金結	果	ti J	275	老	察											
4	5	#	r	x																 	10	69
	-	6	1)	SO	R	林	04	い面	件	状	に限	L	T								
		C	2	5	SI	R	tt.	DP	口部	細	総	に限	11	T								
		ì	3	5	50	R	tt .	0-	- 1/2	thn	T	特例	1-	RA I	1.7							
4	e	**	-	·		- IL	43			. /11		19 14		14						 		71
4.		THE	-																			72
管考.	XN	X																				
	-							-	-	-	44	- 41.	-	44	4.6							
第5 章	í.	*	R	÷ k	被扑	月 田	10	0)	奉	4	利	F性	0)	梗	剖					 	- 2:	00
5.	1	緒	言																	 1111		50
5.	2	棒	線	管	材の	り加	I												19.41	 		00
5.	. 2	2.	1		はし	580	に													 		56
5.	. 2	2.	2		実	食方	法	お。	t U	実	験	条件								 		56
5.	. 2	2.	3		実	食 結	果	お。	t U	考	察									 		57
		(1)	4.	イス	出	側涩	昰度	5	残	留著	友相	成	分の	関(系					
		(2)	押礼	HL	荷	重る	ヒス	. ト		- 7	0	関(系							

(3) 押出し加圧力と固相率の関係
(4)製品の表面性状
(5) 製品の機械的特性
a)引張り荷重と変位の関係
b) 引張り強さ、硬さ、伸び
(6) 製品の内部組織および成分分析結果
5 2 4 ± 2 b262
5.3 積層型複合棒材の加工264
5 8. 1 HUDE264
5 3 2 実験方法および実験条件264
5 3 3 実験結果および考察265
(1) 推出し加圧力の検討
(2) 押出しの安定性
(3) 製品の機械的特性
a) 硬含分布
b) 引張り強さ・伸び特性
(4) 製品の内部組織
(5) 司抜き加工による強度特性の変化
5 8 4 # + X268
5 4 約子論化型複合棒材の製造と加工270
5 4 1 HLX E270
5.4.2 製造・加工法の概要270
5 4 3 実験方法および実験条件271
5. 4. 4 康齡結果お上び老婆272
(1) 細出し加圧力の検討
(1) 計出 0 加出 2 0 0 0 0 (2) 製品 の機械的特性
(2) 製品の内部組織
5 4 5 まとめ276
5 5 チタン毎繊維強化型複合棒材の製造と加工277
5 5 1 HUDE277
5.5.2 実験方法および実験条件277
5 5.3 実験結果および考察278
(1) 押出し加圧力の検討
(2)製品の内部組織
(3)製品の機械的特性
(4)繰り返し半溶融押出しと特性変化
(5) 熱処理による特性変化
5. 5. 4 \$ 20281
5.6 炭化珪素短繊維強化型複合棒材の製造と加工283
5. 6. 1 はじめに
5. 6. 2 製造・加工法の概要283
5.6.3 実験方法および実験条件283
5.6.4 実験結果および考察284
 F R M グリーンの製造
(2) F R M 素材中の繊維の損傷・分散・配向

			(3)	F	R	М	製	品	中	0	纎	維	0	損	傷		分	散	•	配	向						
			(4)	F	R	М	製		0	機	械	的	特	性													
E	5.	6		5		ま	2	35											-									-28	88
5.	7		結	言																							 	-29	90
余言	Ĕψ	搧																										-29	92
6	5~	. 19%																											
5 G	**		44	10	S E	ich (453y	浩	σ	t	t-	*	杜	树	= (ה	梌	뉤	ŀ								 	 38	9
0 58	早		44	**	TR	105, 1	MX.	LE .		1 4	2	4~	19	Ч			U.C.	на									 	- 31	89
0.	1		和	E At	-	-	-	1																				 - 21	90
6.	2		W	默 1	0)	111	1				-																	 - 2	00
	5.	2	•	1		12	U EA	00 +	1-				dr	-	M	14												 - 2	90
(5.	2	•	2		実	职	力	田田	4	5	5	天土	歌	*	T												- 21	01
(5.	2	۰.	3		夫	駅	和	朱	4	5	0	*5	祭	-		-	1		1								0	51
			0	1)	裂		0	51	囬	性	状																	
			(2)	製		0	内	部	組	織																	
			(3)	製	B	0	硬	さ	特	性																	
			(4)	成	分	分	析	結	果																		
			(5)	応	用	例																					
(6.	2		4		ま	5	8							-												 	- 3	94
6.	3		粒	子	強	化	複	合	材	料	Ø	製	造	E	加	I	-										 	 - 3	96
(6.	3		1		は	U	80	に																	-	 	 - 3	96
(6.	3		2		製	造	•	加	I	法	Ø	概	要													 	 - 3	96
1	6.	3		3		実	験	方	法	お	よ	U	実	験	条	件											 	 - 3	96
(6.	3		4		実	験	結	果	お	よ	U	考	察	-												 	 - 3	97
			(1)	鍛	造	Æ	力	2	内	部	組	織	0	関	係												
			(2)	強	12	粒	子	0	含	有	率		鍛	造	温	度	12	製		0	外	面	性	状			
						内	部	組	織	2	0	関	係																
			(3)	金	刑	0	予	熱	温	度	E	外	面	i 性	状		内	部	組	織	0	関	係				
			2	4	5	御		0	機	械	的	特	件																
			1	5	5	家	· · · · · ·		104	0	成	田	例																
	6	q	1	5	1	+	L	X			10.																 	 -4	00
6		0	-		刑	の	7	26	14	10	4	##	*	0	25	は	1	· fm	IT								 	 -4	02
0.	G 4	4	104	1	35	14	. 1.	X	10	- BR	-	143	11	~	-												 	 - 4	02
	с.	4	•	0		10	1 :25	0)	te	T	*	0	ter	雨													 	 - 4	02
	о. с	4	•	4 0		30	馬	+	111 1	++	H +	75	194	医	*	. 44											 	 - 4	03
	0.	4	•	0		天中	EA	5	田田	4	6 1	78	大米	201	*	. 11											 	 -4	04
	6.	4	•	4		天	駅	14	禾	- +0-	4	5 #	5	新ナ	-	445		-	155	+	. 7	+11.	4						
			(1	2	和	1 1	· 513	10	极	TT O	11	不 件 新聞	x	. A	: 100		10	1 /22	9	0	-100	-						
					a	2	戰	迎	· m	度	0	影	留 (四)																
					b)	載	道道	出	刀	0)	影	督																
					C)	茶	板	材	質	0	彩	智																
					d)	製		0	機	械	的	特	性															
			(2) !	演	化	拉·	fi	83	茶木	友~	1	直	陵,	出.	~	9	51	易个	台								07
	6.	4	•	5		ŧ	5	: 80)						-													-4	01
6.	5		紀	言言							-																 	 -4	08
容	考了	に削	- 1						i e i									14										 -4	10

第7章	半溶融圧延の基本特性の検討481	
7. 1	緒言481	
7. 2	アルミニウム合金ならびに鋳鉄の板材加工482	
7.	2. 1 はじめに482	
7.	2. 2 実験方法および実験条件482	
7.	 2.3 実験結果および考察483 	
	(1)単位幅当り圧下力-圧下率線図	
	(2)製品の外面性状	
	(3) 圧延条件と製品の内部組織との関係	
	(4)製品の機械的特性	
7.	2. 4 まとめ487	
7. 3	積層型複合板材の製造488	
7.	3. 1 はじめに488	
7.	3. 2 実験方法および実験条件488	
7.	3.3 実験結果および考察489	
	(1) 亜鉛粉末/アルミニウム板	
	(2) 亜鉛粉末/アルミニウム合金板	
	(3) 亜鉛粉末/銅板	
	(4) アルミニウム粉末/チタン板	
	(5) 亜鉛粉末/チタン板	
	(6) (亜鉛粉末+アルミニウム粉末) /チタン板	
	(7) 鋳鉄粉末/ステンレス鋼板	
	(8) 鋳鉄粉末/純鉄板、鋳鉄粉末/SPCC板	
	(9) (鋳鉄粉末+還元鉄粉) / SPCC板 (0)	
7.	3. 4 \$\mathcal{z}\$ \$z	
7.4	アルミニウム基積層型粒子強化復合板材の製造と加上493	
7.	4. 1 はじめに 495	
7.	4.2 実験方法および実験条件 455	
7.	4.3 実験結果および考察 400	
	(1) 強化粒子を素板へ直接圧入9 る場合	
	a) 圧延圧下半の影響	
	 D) 圧 延 温 度 の 影 響 (a) 没 化 粒 子 の 粒 座 の 影 響 	
	C) 無11 程士の程度の影音 () 制日の機械的特性	
	(2) 裏面の成体的行任(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	
	(2) 低合初末(アルマニッジ合立切床と気に起す) と 表板へ鼓層する場合	
	a) 圧砾圧下率の影響	
	h) 表板と積層部の接合特性	
	c)繰り返し半溶融圧延による積層化の検討	
	(3) 半溶融圧延による積層化の様子	
7	4. 4 \$\mathcal{z} \dots	9
7	5 鉄基積層型粒子強化複合板材の製造と加工501	
7	5. 1 HUDE-50	1
	0. 1 1a 0 0 1a	

		7		5		2		実	験	方:	法	お	よう	UK :	実員	è :	条件				- 71			12.5			 5 (01
		7		5		3		実	験	結:	果	お	よう	UK:	考奖	*											 5 (02
					(1)	製		0	内	部	組;	織														
					(2)	퀧		0	機	械	的	特	性													
							a)	素	板	E	積	層	部	のま	妾.	合料	推										
							b)	麼	耗	特	件																
							c	5	dh	14	tm	T	结	14:														
					0	2	1	15	III	林	编	-	10	LL														
					ć	0	-	DL.	515	h	267	,	*	14	154 E	E 3	ATF 1-	- F	Z	我リ		D I	с. н. 1	111	14			
							d	-	和米	9	赵	2	+	iffr i	NDA L	L ;	座れ	1.347	2	15	++	の魚	0 00	14	14			
							D	2	短の	16	杜	1	tit) :	辰	良く	HI I	間生	12	11	TX ·	10 1	100	と知	215				
		_					С)	多.	胎	稱:	道	植	100	型和	M.	十班	115	极	1 ·	102 /	13 0) 没处	E				0.0
		7	•	5	•	4		Ŧ	5	80						-											 	00
1	7.		6		サ	2	k	1	ッ	チ	型	粒	子	強	化者	腹·	合板	材	0	製:	造	と加	IT				 5	08
		7		6	•	1		は	U	8	に										-				197		 5	08
		7		6		2		実	験	方	法	お	よ	UK	実	険:	条件	F									 5	08
		7		6		3		実	験	結	果	お	よ	UK	考复	茶					- 11.						 5	08
					(1)	製	品	0	内	部	組	織	お。	k	び製	品	性	状	0	検診	t					
					(2)	変	形	機	構	0	検	討														
		7		6		4		ま	2	8																	5	11
-	7.		7		結	言										-											 5	12
-	*	老	×	献																44							 5	14
		Ĩ	-																									
dr.	0	4	-		*	35		e1 4	-	~	-		4	-					-	44	. 4.						0.1	9
12	- 24							sun a	FEI -	,	111		(\mathbf{n}	л. :	木	た	仕	σ	- K ff	1 22.5					A	 h I	
韦	0	-	44		44	任	f R	裡 1	関	台	Л.		_ (D	基	本	特	性	0	筷	(日)						 6	19
韦	8.	-	1		緒	作言	FR	把1	限 一	台 ,	加.		+0	D	基	本	特	性	0	筷	E #:						 6	19
书	8.	-	1 2		「緒ア	作言ル	R 111	2 1	皮 ウ	合ム	加合	金	粉	の末	基のも	本版	;特 加工	性	0	筷							 6 6	19 20
书	8.	8	1 2	2	「緒ア・	作言ル1	F 11	細一ニは	皮 ウ じ	合 ムめ	加合に	金	粉	の末	基の材	本版	;特 加工	性	0	梗	(fr:						 6 6	19 20 20
书	8.8.	8 8	1 2	2 2	「緒ア・・	作言ル12	F	一二は実	良 ウじ験	合 ムめ方	加合に法	金お	おおよ	の末び	基の相実	本版論	、特 加工 条件	性	0	梗	· ···						 6 6 6	19 20 20 20
书	8.8.	8 8 8	1 2 .	2 2 2	「緒ア・・・	作言ル123	F 11	独一ニは実実	皮 ウじ験験	台 ムめ方結	加合に法果	金おお	おおよよ	カ 末 びび	基のすります	本版論	新 加工 条件	性	0	使	· ···						 6 6 6 6	19 20 20 20 20
韦	0 8. 8.	8 8 8	1 2 .	2 2 2	「緒ア・・・(作言ル1281	FR = =)	一二は実実内	皮 ウじ験験部	ロームめ方結 組	加合に法果織	金 おおの	およよ検	の 末 びび討	基の実考	本版餘家	加工 条件	性	0	快							 	19 20 20 20 20
邦	0 8. 8.	888	1 2 .	2 2 2	「緒ア・・・(作言 ル 1 2 8 1	f n =) a	出一二は実実内)	し ウじ験験部鍛	日ムめ方結組造	加一合に法果織工	一金おおの程	い物よよ検の	の 末 びび討影	基の実考響	本版錄察	加工条件	性	0	筷							 	19 20 20 20 20
お	0 8. 8.	888	1 2 .	2 2 2	「緒ア・・・(作言 ル 1 2 3 1) a b	(二は実実内))	し つじ験験部鍛圧	台ームめ方結組造延	加一合に法果織工工	一金おおの程程	い物よよ検のの	の末びび討影影	基の実考響響	本版餘察	加工 条件	性	0	筷							 61 6 6 6	19 20 20 20 20
书	o 8. 8.	888	1 2 .	2 2 2 2	「緒ア・・・((作言ル 1281 2) a b)	一二は実実内))製	し つじ験験部鍛圧品	台ームめ方結 組造延の	加一合に法果総工工機	一金おおの程程械	- 粉 よよ検のの的	D 末 びび討影影特	基の実考響響性	本版餘察	:特加工 条件	性	0	筷	(ff) 						 61 6 6 6	19 20 20 20 20
お	08.8.	8888	1 2	2 2 2 2 2 2	「緒ア・・・(・	作言ル 1281 24) a b	一二は実実内))裂ま	し つじ験験部鍛圧品と	台ームめ方結 組造延のめ	加合に法果総工工機	一金おおの程程械	およよ検のの的	の末びび討影影特	基の実考響響性	本版餘察	·特加工 条件	性	0	筷							 6 6 6	19 20 20 20 20
お	8.8.	8888	1 2	2 2 2 2 2	「緒ア・・・(・粒	作言ル1281 24子) a b) 強)	一二は実実内))裂ま化	し ウじ験験部鍛圧品と複	台ームめ方結組造延のめ合	加合に法果織工工機一板	一金おおの程程械一材	およよ検のの的の	の末のび討影影特ー製	基の実考響響性造	本版験察	:特 加工 条 イ 加工	性	0	筷								19 20 20 20 20 20 20 20
お	8.8.	8888 8 8	1 2	2222 2 3	「緒ア・・・(・粒・	作言ル1231 24子1	テーミ) a b) 強	四二は実実内))裂ま化は	し ウじ験験部鍛圧品と複じ	台ームめ方結組造延のめ合め	加合に法果総工工機一板に	一金おおの程程械材	いわ よよ検のの的 の	の末びび討影影特製	基の実考響響性造	本版除察	特加工条件	性	0	筷							6 6 6 6 6 6	19 20 20 20 20 20 20 20 20 20 22 20
お	8.8	8888 8 88	1 2	2 2 2 2 3 3	「緒ア・・・((・粒・・	作言ル1231 24子12	F 「 こ) a b) 強	一二は実実内))裂ま化は実	し つじ験験部鍛圧品と複じ験	台ームめ方結組造延のめ合め方	加一合に法果総工工機一板に法	一金おおの程程械一材お	1 粉 よよ検のの的 の よ	の末びび討影影特し製び	基の実考響響性造実	本版験察と験	特加工条件加工条件	性	0	筷							61 6 6 6 6 6 6 	19 20 20 20 20 20 20 20 20 20 20 22 25 25 25
お	8.8.	8888 8 888	1 2	222 2 333	「緒ア・・・ (・粒・・・	作言ル1231 24子123	Frine E) a b) 強	四二は実実内))裂ま化は実実	し ウじ験験部鍛圧品と複じ験験	台ームめ方結組造延のめ合め方結	加一合に法果総工工機一板に法果	金 おおの程程械 材 おお	1 粉 よよ検のの的 の よよ	の末びび討影影特製びび	基の実考響響性・造実考	本版除来と映察	、特加工条件加工条件	性	0	筷								20 20 20 20 20 20 20 20 20 20 20 22 25 25 25 25
お	8.8.	8888 8888	1 2	2222 2 333	「緒ア・・・((・粒・・・(作言ル1231 24子1231) a b) 強)	四一二は実実内))裂ま化は実実半	し ウじ験験部鍛圧品と複じ験験溶	台ームめ方結組造延のめ合め方結融	加一合に法果総工工機一板に法果鍛	金 おおの程程械 材 おお造	1 粉 よよ検のの的 の よよ工	の 末 びび 討影影特 製 びび 程	基の実考響響性造り実考の	本版除来	特加工条件 加工条件 加工条件 の工 条件		の 	使								20 20 20 20 20 20 20 20 20 20 20 220 22
お	8.8.	8888 8 888	1 2	222 2 333	「緒ア・・・((・粒・・・())	作言ル1231 24子12319	Friend States (Annual States	四一二は実実内))裂ま化は実実半半	限一ウじ験験部鍛圧品と複じ験験溶液	台ームめ方結組造延のめ合め方結融融	加合に法果総工工機 板に法果鍛鍛	金 おおの程程械 材 おお造造	1 粉 よよ検のの的 の よよ工温	の「末」びび討影影特一製」びび程度	基の実考響響性一造・実考のの	本版除客と除客有途	、 特 加 工 条 イ 加 工 条 イ の 工 、 条 イ の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の	性	の 	使								20 20 20 20 20 20 20 20 20 20 20 20 20 2
书	8.8.	8888 8888	1 2	222 2 333	「緒ア・・・((・粒・・・())	作言ル1231 24子123123	A D A D A D A D A D A D A D A D A D A D	四一二は実実内))裂ま化は実実半半熱	限一ウじ験験部鍛圧品と複じ験験溶溶問	台ームめ方結組造延のめ合め方結融融圧	加合に法果織工工機 板に法果鍛鍛延	金 おおの程程械 材 おお造造の	1 粉 よよ検のの的 の よよ工温圧	の 末 びび 討影影特 製 びび 程度下	基の実考響響性一造実考のの率	本版験察した験察有険の	特エークターカー条の一部目輪	性	の 計	使							 61 6 6 6 6 6 6 6	20 20 20 20 20 20 20 20 20 20 20 20 20 2
お	8.8.	8888 8888	1 2	222 2 333	「緒ア・・・((、粒・・・(()))	作言ル1231 24子1231234	F ミ) a b) 強))))	四一二は実実内))製ま化は実実半半熱	し つじ験験部鍛圧品と復じ験験溶溶間ル	台ームめ方結組造延のめ合め方結融融圧約	加合に法果織工工機一板に法果鍛鍛延工	金 おおの程程械 材 おお造造のの	1 粉 よよ検のの的 の よよ工温圧粒	の 末 びび討影影特 製 びび程度下度	基の実考響響性造実考のの率・	本版の家と、「飲客有険の今	特 工 件 工 件 の 割 た 海 志 た の の 割 た の た の の の の の の の の の の の の の	性 	の 	夜								20 20 20 20 20 20 20 20 20 220 225 25 25 25
お	8.8.	8888 8888	1 2	222 2 333	「緒ア・・・((・粒・・・()())	作言ル1231 24子1231234 5	F ミ) a b) 強)))))	四二は実実内))製ま化は実実半半熱強一	し つじ験験部鍛圧品と複じ験験溶溶間化」	台ームめ方結組造延のめ合め方結融融圧粒:	加合に法果総工工機 板に法果鍛鍛延子	金 おおの程程械 材 おお造造ののな	1 粉 よよ検のの的 の よよ工温圧粒 ?	の 末 びび討影影特 製 びび程度下度は	基の実考響響性造い実考のの率・頭	本版の家と、「「」」を、「「」」であるので、「」で、「」で、「」で、「」で、「」で、「」で、「」で、「」で、「」で、「」	キャック オンキャック オンキャック オンキャック オンキャック オンキャック オンキャック オンキャック オンキャック オンチャック オーチャー オーチャック オーチャー オーチャー オーチャー オーチャー オーチャー オー オーチャー オーチャー オーチャー オー オー オー オー オー オー オー オー オー オー オー オー オー	性 	の 	使								20 20 20 20 20 20 20 20 20 20 20 20 20 2
书	8.8.	8888 8888	1 2	222 2 333	「緒ア・・・((・粒・・・()()()	作言ル1231 24子123123450	F-ミ) a b) 強))))))	四二は実実内))裂ま化は実実半半熱強マ	し」 ウじ験験部鍛圧品と複じ験験溶溶間化ト へ	台ームめ方結組造延のめ合め方結融融圧粒リ	加一合に法果織工工機一板に法果鍛鍛延子ッサ	金 おおの程程械 材 おお造造ののクの	」 粉 よよ検のの的 の よよ工 温 圧 粒 ス ほ	の 末 びび 討影影特 製 びび 程度下度 材 さ	基一の実考響響性一造一実考のの率・質」	本版の家と、秋季有険の含の世	特工件エー件の記字記述	性 	の 計 検 四	使							6 6 6 6 6 6 6	20 20 20 20 20 20 20 20 20 20 20 22 25 25 25
书	8.8.8	888 8 888	1 2	222 2 333	「緒ア・・・((・粒・・・()))	作言ル1231 24子1231234567	F-ミ) a b) 強))))))	四一二は実実内))製ま化は実実半半熱強マ復せ	以一ウじ験験部鍛圧品と複じ験験溶溶間化ト合	台ームめ方結 組造延のめ合め方結融融圧粒リ板	加合に法果総工工機 板に法果鍛鍛延子ッ材は	金 おおの程程械 材 おお造造ののクの	」 物 よよ検のの的 の よよ工 温 圧 粒 ス 硬 環	り 末 びび 討影影特 製 びび 程度下度 材さっ	基一の実考響響性一造一実考のの率・質と	本版の家と、「「「」」で、「「」」で、「「」」で、「「」」で、「「」」で、「」」で、「」	第二加 条 加 条 無討検有検げが 第二 件 の 割滓割付け	性 	の 計 検 関 #	使							6 6 6 6 6 6 6	20 20 20 20 20 20 20 20 20 22 25 25 25 25

第1章 序論

1

加工条件のまとめ

研究業績謝辞

				Ċ	8)	複	合	板	材	0	曲	げ	成	形	例	1													
	8		3		4		主	r	25																				-63	29
8	-	4	-	x	2	*	鋼	板	ち	利	用	L	た	各	種	複	[合]	鋼材	版の)製	造	2	加口	C -					- 63	31
	8		4		1	-	は	1:	8	E						-													- 63	31
	8		4		2		我以	浩		加	T	法	0	概	要														- 6	31
	8		4	1	3		宝	驗	市	法	お	ł	TK	実	驗	*	を件									-			- 6	32
	8		1		4		東	助	結	里	ち	F	TK	老	家	-													- 6	33
	0				1	3	大東	而	加	不明	刑	21		0	内	割	114 2	織												
				0	2	ì	私	1ml BS	刑	御見	-	D	内	部	組	総	the state of	194												
				č	3	1	A	t	++	板板	刑	御史		0	内	部	日相	織												
				0	1	5	++	~	K	1		不干	刑	御日		0	内	部	組織	龍と	機	械	的牛	寺住	ŧ					
	8		4		5	1	#	L	x		<u>_</u>																		- 6	37
0	0		4	· ±1	A	**	A .	元	加加	4	411	15	σ	-	浩	1	- m	T											- 6	39
0	0	0	5	da	1	194	1+	1.	K	17	~	200	-	-	10	-	- 104												- 6	39
	0	•	0	•	0		10	20	0)	tm	т	*	6	100	- 305										-				- 6	40
	0	•	0	•	4 0		2X ch	胆	+	Nu	+++++++++++++++++++++++++++++++++++++++	4	78	194	医	4	K. 44												- 6	41
	0	•	0	•	0		天中	EA.	1	田田	4	4 4	78	大	200	~	K IT												- 6	42
	0	•	D	• ,	4	x	天	- HR	14	*	10	4	+	11	25	-	Eh	4	+++	+ +	: 1									
				1	+)	×	: PE	11	2	60	2	9	914	1100	. 11	15 4 04	н	42.4	2 /1	-	4								
						a)	A	1 40	相	和政	14	C																	
				,	0	D	1	(11) 410	1 55	1 152	1	-																		
				0	2)	四	「市	相	() 借	力	IL J	1																	
						a	2	13	日日	加相	和	13	C																	
						b)	制	」扔	2 73	PH -																		6	14
	8	•	5	•	5		3	2	: 80)																			6	45
8	•	6		精	E	-																							- 6	17
容	考	X	商	6	-																								0	
																													7	01
第 9)	章		若		論							-														-			21
9	•	1		緒	官	- 1										1													- 1	21
9	•	2		研	所务	20) 反	5.具	£ -					-				1												22
	((1)	半	R	子局	虫会	之加	50) 进	5本	(的	」朱	手栏	E O) #	解明													
	((2)	固	1 相	12	區 推	自反	王治	E. 0.) 损	1条	2						-											
	1	(3)	*	高	E	目处	山田	E 4	之原	る材	卡彩	10) 事	보권		法の	提	案											
	1	(4)	*	液	子局	由书	日日	41	, 0) 提	54	に作	手忆	ŧ 0,) 1	検討	t.												
	1	(5)	¥	清	¥ R	法舅	致道	10) 表	5 4	、代	宇枢	£ 0.	0 杉	El	討													
	1	(6)	*	消		快日	EQ	E 0	D 者	5 4	、名	宇化	ŧ o	り杉	ÈÌ	討													
	1	(7)	4	清	S R	被者	24	1		C. 0.)]	57	学 2	寺忆	ŧ (の検	討												
9		3		4	行行	20	の物	食 嘗	寸龍	聚冕	Ø -					-												***	1	731
9		4		彩		5-												1.2.4								-			1	733
首	1	支	CH	伏				-																						734

1.1 緒言

近年、機械・金属・電気・土木建築など各産業分野の発展にともない、金属製 品の多用化とその製造法の多様化には目を見張るものがある。とりわけ、金属材 料の凝固現象を伴う高温下での製造法は、連続鋳造法・溶湯鍛造法・ダイカスト 法・アキュラッド法・レオキャスト法・チクソキャスト法・コンポキャスト法・ 溶融焼結法・スプレーフォーミング法など多岐に渡っている。これらの製造法は、 従前的な枠組みによる鋳造法と熱問塑性加工法の境界領域に位置するものが多く、 (a) 液相成分の良好な流動性・造形性、(b) 液相成分のもつ接合性・分離性・混合 性、(c) 急冷凝固にともなう結晶粒の微細化現象を巧みに利用している点にその 特徴がある(図1-1、図1-2、図1-3参照)。

半溶融加工法においても、液相成分の凝固現象を制御しつつ加工を行わんとす る点において鋳造法と熱間塑性加工法の境界領域に位置する製造法であるといえ る。しかし、上述の製造法が溶融金属を出発点とし、(a)(b)(c)に示すように、 主に液相成分の特性を利用した製造技術として見ることができるのに対し、半溶 融加工法は固体金属を出発点とし、液相成分の持つ上記特性のほか、固相成分の 特性(例えば剛性・塑性変形性・均質性)の利用をも含めた製造かつ加工技術と して捉えることができる。すなわち、半溶融加工法は固体金属を加熱し、主に結 晶粒界に液相成分を現出させ、液相成分と固相成分が混在するがゆえに有する流 動性・造形性・接合性・分離性・混合性・加工性を利用し、製造ならびに加工に 対し固相成分と液相成分の二相を積極的に制御対象とした製造・加工法であると いえる(図1-4参照)。

半溶融加工法は固液二相を制御対象にする複雑さ故に可能性と問題点が混在し、 未だ実用的な技術となり得ていない。半溶融加工法の基本的特性を明確にすると ともにその可能性を引き出すことは、溶融凝固現象をともなう製造・加工技術体 系の確立において、かつまた今後の金属材料加工技術の新しい方向を提示する上 においてきわめて重要な意義を有するものと考える。本論文はこのような観点に 基づき、「半溶融加工に関する基礎的研究」と題しまとめたものである。

2 言葉の定義

本論文で使用する言葉の定義を以下に示す。

半溶酸状態:固体状態にある金属(合金)材料を均一に加熱し、その内部特に結晶粒界が部分的に溶融しているものの、未溶融の結晶粒が固相成分として残存している状態。加熱の程度により、液相成分が結晶粒界の限られた一部に存在する場合(高固相率状態)もあれば、液相成分中に固相粒が浮遊しているごとき場合(低固相率状態)もある(図1-5、図1-6、表1-1参照)。

半溶酸加工法:金属(合金)材料の半溶融状態を加工の出発点とし、主に高い静水圧(圧縮力)の作用により、液相成分の流動特性の利用のみならず、固相成分の変形特性をも積極的に利用し、目的とする製品を製造する方法。これには、半溶融押出し法、半溶融鍛造法、半溶融圧延法などがある(図1-7、図1-8参照)。

半溶融処理材:固体状態にある金属(合金)材料を均一に加熱し、その内部に固 相成分と液相成分との構成を意図的に分散させた材料、またそれを凝固させた材 料。半溶融処理材の製造法としては均一加熱法、SIMA(Strain Induced Melt Act ivated)法などがある。

半級固状態:溶融状態にある金属(合金)材料を冷却し、時には発生した初晶デ ンドライトを撹拌しつつ破砕して溶湯中に分散させ、溶湯と固相粒子とが混合し た状態。冷却および撹拌の程度により、固相率および固相粒子の大きさ・形状が 異なる。半溶融状態にある金属と半凝固状態にある金属とは、内部構造の基本的 な相違は無いものと考える。

半凝固加工法:金属(合金)材料の半凝固状態を加工の出発点とし、主に液相成 分の流動特性を利用し、目的とする製品を製造する方法。これには、レオキャス ト法、コンポキャスト法、粘鋳法などがある(図1-9参照)。

半概固処理材:溶融状態にある金属(合金)材料を冷却しつつ機械的方法あるい は電磁的方法などで撹拌し、溶湯と固相粒子とを意図的に分散させた材料、また それを凝固させた材料。半凝固処理材の製造法としては、電磁搅拌法、機械搅拌 法超音波法、Flow-Cast法などがある。

1.3 研究の概要

(1)研究の流れ

2

固液共存領域を対象とした研究は大きく2つの分けて考えることができる。そ の一つは、鋳造技術の開発を目的とした研究であり、加工対象金属を金属溶湯の 延長上として捉えた半凝固域での研究である。もう一つは塑性加工技術の開発を 目的とした研究であり、加工対象金属を固体金属の延長上として捉えた半溶融域 での研究である。

半凝固域での研究は、鋳造技術との関係から、古くから多くの研究者により行 われてきている。国内では、1965年、萩原ら¹⁾による、半凝固状態にあるA1-Cu 合金を機械的に搅拌することにより、偏析の防止と結晶の微細化の事実を見い出 した「鋳塊の結晶粒微細化と偏析防止のための新凝固法」の研究論文がある。ま た、1970年代、1980年代では、安江ら⁷⁾、加山ら⁹¹、市川ら¹⁶⁾²⁰⁾²¹⁾、木口ら¹ ⁷⁾、渋谷ら¹⁴⁾、森ら²⁴⁾の半凝固域での粘度測定ならびに粘性挙動の研究があり、 現在においても研究が続けられている^{37)3*)}。海外では、1970年初期から始まる Flemingsらによる半凝固域での一連の研究²⁾が有名である。Flemingsら¹¹⁾は、 まず同心二重円筒法により粘性挙動の研究を行い、粘度と固相率との関係を明ら かにした。また、半凝固域で機械的搅拌を行うことにより、デンドライト組織が 破壊された等軸晶の素材が製造されることを見い出し、レオキャストと名付け、 同素材の製造ならびにその加工法の研究を行った。Flemingsらの研究は多くの研 究者に引き継がれ、日本においても市川⁷²⁾らに引き継がれ、レオキャスト法に よる結晶粒微細化技術を応用し、真空中で1000回転以上の高速回転凝固を行う粘 鋳法の研究に発展させた。

一方、木内らは、金属の塑性加工の立場から、熱間状態よりさらに温度を上げ、 結晶組織に一部液相が含まれる温度での加工を目指した研究、すなわち半溶融加 工の研究を1970年代初期から開始した。当初、Pb-19.2%Sn合金やA1-5.7%Cu合金 などの二元合金を用い、半溶融域での圧縮変形抵抗に関する研究を行い^{31,61,49}、 続いて、同合金の半溶融押出し加工に関する研究^{43,50,141}を行った。半溶融域で の研究は、木内らの研究以外には、1970年後半から始まる浅枝ら^{122,130,160,190}の 「アルミニウム合金の半溶融加圧成形の研究」があるにすぎず、半凝固域での多 くの研究に比べ極めて少ない。

(2)研究の目的

熱問塑性加工の延長上に位置づけられる半溶融加工法の研究は、加工法自体の 系統的な研究はもちろんのこと、半溶融状態の基本的な特性についても十分解明

第1章 序論

されているとはいえず、技術的にもまた学問的にも確立しているとはいい難い。 本研究は、木内らが始めた半溶融加工の研究を継続し、半溶融加工によって何が でき何ができないかをより系統的にまとめ、技術的・学問的確立の基礎を築くこ とを目的とする。具体的には、後述する範囲での、半溶融金属の基本特性の解明 と半溶融加工法の基本特性の解明を目指す。

(3)研究の範囲

本研究が対象とした範囲を以下に示す。この中で、半溶融金属の基本特性の解 明を目指した研究は以下の(a)(b)(c)(d)であり、半溶融加工法の基本特性を目指 した研究は(e)(f)(g)(h)である。

(a)半溶融金属の直接観察

溶融金属の凝固過程を対象とした高温顕微鏡による直接観察例については、凝 固組織の粗大化の研究やデンドライトの成長の研究などこれまで2、3の研究が あるが、固相金属の溶融過程を直接観察した例については見当たらない。本研究 では、高温顕微鏡を使用し、固体金属を加熱し半溶融状態にまで昇温させた際の 内部組織変化などについて観察する。

(b)半溶融金属の圧縮変形特性の検討

高固相率状態下における半溶融金属の変形抵抗・変形挙動に関しては、これま で一部の金属材料について、限られた試験条件のもとで調査されたものであり、 十分解明されたとはいえない。本研究では、研究室で溶製し作製した5種類の二 元合金と38種類の市販の実用合金(アルミニウム合金36種類と銅合金2種類)を 用い、半溶融状態下でのカムプラストメータ(定ひずみ速度圧縮試験機)を用い た一軸圧縮試験を行い、半溶融金属の変形抵抗におよぼす温度(固相率)・ひず み速度・試験片寸法比・試験片材質などの影響について検討する。

(c)半溶融・半凝固状態にある金属の固相率推定法の検討

固相率の測定技術の確立は、半溶酸加工における最適加工条件や製品特性など に大きな影響をおよぼし、半溶酸・半凝固加工技術の開発にとって欠くことので きない課題である。しかし、この方面の研究はようやく始まったばかりである。 本研究は固相率測定の可能性を探る目的で、(a)半溶酸・半凝固状態での金属材 料の(圧縮)変形抵抗を求め、その値をもとに推定する方法、ならびに、(b)半 溶酸状態あるいは半凝固状態にある金属材料の二点間の電位差(または電気抵抗) を計測し、その値をもとに推定する方法について検討する。

(d)半溶融加工に供する半凝固処理金属素材の製造法の検討

金属溶湯から、一旦鋳造材を造ることなく、連続的に製品を製造するプロセス が近年盛んに研究されている。こうした連続製造プロセスにおいては、製造・加 工行程に到達する前行程での当該金属材料の性状(微細化・均質化・等軸晶化・ 強化粒子などの均一分散化)が最終の製品性状に重要な影響をおよぼすことが一 般によく知られている。これまで、溶湯を冷却しつつ撹拌し、生成する樹枝状晶 組織を破砕し、固相結晶粒と被相成分とが均一・微細かつ等方的に分散したいわ ゆる半凝固処理金属材料(以後処理材とする)を製造する方法としては、(a)Fle mingsらによって提案されたレオキャスト法(機械攪拌法)、(b)Winterらによっ て提案された電磁攪拌法があり、それぞれ実験室的あるいは半量産的規模での実 用化を目指した研究が広く行われている。しかし、レオキャスト法の場合におい ては、高固相率の処理材の製造が困難であり、高融点金属については工具材料と して適切なものが見あたらないこと、電磁撹拌法の場合においては、同様に高固 相率の処理材の製造が困難であり、また製造装置が大型化することなどが指摘さ れ、いまだ検討の余地が残されている。

本研究では、上述の半凝固処理材製造の問題点を解決すべく、新たにせん断冷 却ロール法(SCR法)を提案し、実用合金を対象とした半凝固処理金属材料 (SCR材)の製造を試み、その外面性状・内部組織・機械的特性などの調査を 行うとともにSCR法の特徴について検討する。

(e)半溶 融押出しの基本特性の検討

4

通常の押出しては製造や加工が困難であるかまたはできない、①小荷重・高加 工率を目指した棒管材の加工、②難加工材の加工、③同心円状に積層した複合棒 線材の製造と加工、④粒子強化型複合棒材の製造と加工、⑤チタン短繊維強化型 複合棒材の製造と加工、⑥炭化珪素短繊維強化型複合棒材の製造と加工、の問題 に半溶融押出し法を中心に据えた半溶融製造加工法の適用を試み、その基本特性 について検討する。

(f)半溶融鍛造の基本特性の検討

通常の鍛造では製造や加工が困難であるかまたはできない、①鋳鉄の加工、② 金属基複合材料の製造と加工、③積層型粒子強化複合材料の製造と加工、の問題 に半溶融鍛造法を中心に据えた半溶融製造加工法の適用を試み、その基本特性に ついて検討する。

(g)半溶融圧延の基本特性の検討

通常の圧延では製造や加工が困難であるかまたはできない、①アルミニウム合 金ならびに鋳鉄の板材加工、②積層型複合板材の製造、③アルミニウム基積層型 粒子強化複合板材の製造と加工、④鉄基積層型粒子強化複合板材の製造と加工、 ⑤サンドイッチ型粒子強化複合板材の製造と加工、の問題に半溶融圧延を中心に 据えた半溶融製造加工法の適用を試み、その基本特性について検討する。 (h)半溶融複合加工の基本特性の検討

第1章 序論

冷間・熱間加工またはこれまで述べてきた単独の半溶融加工では達成できない、 ①アルミニウム合金粉末の板材への製造と加工、②粒子強化複合板材の製造と加 工、③めっき鋼板を利用した各種複合鋼板の製造と加工、④部分接合型複合鋼板 の製造と加工、の問題に半溶融加工法と既存の冷間・熱間加工法とを組み合わせ た半溶融複合加工を新たに提案し、その基本特性について検討する。

(4)研究の意義34)(2)

半溶融加工法により製造可能な製品としては、形状・構造面から分類して、一 般金属の棒線管板材、難加工金属の棒線管板材、金属積層型複合材料、粒子強化 複合材料、繊維強化複合材料、機能面から分類して、制振材料、遮蔽材料、耐熱 材料、耐摩耗材料、表面硬化材料、傾斜機能材料、金属間化合物型機能材料、超 電導材料、超塑性材料、形状記憶合金、水素貯蔵材料、部品面から分類して、ブ レーキ材、電気接点材料、摩擦部材、ベアリング材、自動車エンジン材、航空機 外板、航空機翼材、ガスタービン翼材などが考えられる(図1-10参照)。半 溶融加工法による上記製品は、温度計測技術、加熱制御技術、型・装置設計技術、 被加工材移送挿入技術、製品取り出し技術、製造・加工技術、金属材料学的基礎、 冶金学的基礎、が集合しはじめて実現される。半溶融加工法により製造される上 記製品ならびに半溶融加工法に深くかかわる上記技術の向上は、単に金属工業分 野にとどまらず、産業機械工業分野、電気電子工業分野、輸送機械工業分野、宇 宙航空工業分野、土木建築工業分野の発展に対して大きな意義を持つ。

また、半溶融加工法は、適当な温度場・圧力場・速度場のもとでの、金属の固 相成分と液相成分の溶融・凝固・析出・拡散・反応現象を伴った、接合・変形・ 流動による製品の加工方法であるといえる。したがって、このような観点から半 溶融加工法を捉えるならば、上述の物理現象は金属加工学、金属組織学、金属材 料学、粉末冶金学、複合材料学、無機化学、流体力学、金属拡散・反応学、分子 量子力学、計測制御工学などと学問的に深く関係している。 1. 4 関連分野の研究・技術開発・応用動向

半溶 融加工法に関連する分野の最近の研究・技術開発・応用動向について、以 下の4項目に分け概説する。

(a)半溶融・半凝固金属の基本的特性に関する動向、
 (b)半溶融・半凝固処理金属材料の製造技術に関する動向、
 (c)溶融凝固現象を伴う製造法に関する動向、
 (d)理論解析・数値シミュレーションに関する動向

1. 4. 1 半溶融・半凝固金属の基本的特性に関する動向

近年、鋳造技術の面からあるいはダイキャスト法や溶湯鍛造法など半凝固製造 技術の面から、溶融または半溶融・半凝固金属の基本的特性の研究が盛んに進め られている。その基本的特性の一つに粘度またはせん断抵抗値がある。粘度は溶 融状態から半溶融・半凝固金属が粘性挙動を示す低固相率(固相率が約50%以下) 状態の範囲に限られるが、これまで多くの研究者によりその測定法が提案され研 究されてきた。また、半溶融・半凝固金属の状態の程度を表現するために固相率 (材料全体の固相成分の占める割合)または液相率でもって数値的に表わす場合 がある。本項では、最近の半溶融・半凝固金属の基本特性として、粘度(せん断 抵抗)に関する研究と固相率の測定・推定に関する研究をとりあげ概説する。

(1)粘度・せん断抵抗

6

半凝固金属の粘度あるいは粘性挙動に関する本格的な研究は、D.B. Spencer, R. Mehrabian. M.C. Flemingsらによって1970年代初期から始まった^{2;11)}。Sn-15%Pb 合金を測定材料とし、容器・円錐台形状の回転子(ボブ)・トルク検出器からな る測定装置により、固相率・せん断速度・固相粒の大きさなどが見かけ粘度にお よぼす影響について明らかにした。その後同様な測定手法により、Sn-Zn合金^{7;1} ・A1-Cu合金^{7;13;14)}・Fe-C合金^{18;1}・Fe-Cr-Ni-C合金^{18;1}・A1-Mn合金^{20;1}・A1-Si 合金^{2;1)}・鋳鉄^{17;1}など、高融点材料ならびに実用合金材料にまで粘度測定の条件 範囲が広げられた。また、ねじり振動法による粘度測定^{9;1}、あるいは、回転子の 形状や容器と回転子の間隙がみかけ粘度におよぼす影響^{17;1}などの研究も進めら れた。最近の半凝固金属の粘度に関する研究を以下に記す。

(a)平居らは³⁷⁾³¹⁾⁴²⁾⁷⁰⁾、固相率が0~0.4の範囲(みかけ粘度が指数関数増大 する前)の見かけ粘度は、液相の見かけ粘度・合金の液相線温度における密度・ 凝固速度・せん断速度・合金中の主溶質濃度の関数として表わされるとし、定式 化を行った(図1-11参照)。

(b)M.C. Flemingsらは⁴⁸)、Al-Si合金などの共晶合金が凝固時に晶出する場合の 粘性挙動について、また粒子強化複合材料など強化粒子が半凝固スラリーの中に 含有されている場合の粘性挙動について研究を行い、その結果、強化粒子の含有 率の増加とともにみかけ粘度が減少するといった興味ある事実を明らかにした (図1-12参照)。

(c)W. R. Loue⁴⁴¹ らは、後方押出し法および圧縮試験法による粘度測定法を提案し、A1-6%Si-0.3%Mg合金・A1-7%Si-0.3%Mg合金を用い、みかけ粘度ヵは、せん断ひず み速度が10⁻³S⁻¹< γ <10³S⁻¹の広い範囲にわたって、 $\eta = k\gamma^{n-1}$ により統一的に表 されることを示した(図1-13参照)。

(d)S. B. Brown^{47) 48) 64) ⁽⁶⁴⁾ ⁽⁶⁴⁾}

(d)T.G. Nguyen^{4,9} らは被測定材の体積ひずみの影響などを考慮した側圧付加圧縮 (Drainned Compression with Lateral Pressure) 法を提案し、輪圧縮応力一圧 縮ひずみの実験結果から、半溶融・半凝固状態における加工の熱力学モデルを提 案し、その定式化を試みた(図1-15参照)。

以上、最近の半疑固金属の粘度あるいは粘性挙動等に関しては、多くの研究者 によって、(a)圧縮法・押出し法など様々な測定方法により、(b)せん断ひずみ速 度の広い範囲にわたり、(c)体積ひずみや密度差などより細かな要因の影響をも 考慮した、また、(d)粒子強化複合材料や過共晶合金のような特殊な材料に対し て研究が進められている。

(2)固相率の測定

固相率に関しては、従来から、(a)状態図を用い槓杆関係から推定する方法、 (b)急冷凝固組織から推定する方法などあるが、いずれも制限・制約があり最良 な方法であるとはいえない。以下に最近の研究動向について記す。

(a)半凝固金属の粘度は固相率に依存することが図1-11からも明らかである。

したがって、粘度と固相率との検定曲線をあらかじめ作成しておくことにより、 粘度の測定値から固相率を推定することができる。ただし、半溶融金属が粘性挙 動を示すのは固相率が約50%以下の範囲であるので、固相率の推定もその範囲と なること、また粘度は時間の推移とともに変化し、同一の固相率においても結晶 粒径の分布や結晶粒形状に影響されることなど、依然多くの検討課題がある。

(b)吉田^{**3}らは凝固時の潜熱の放出度合いから固相率を推定する方法について検 討した。A1-Si合金およびA1-Cu合金を用い、示差熱分析および断熱型熱容量測定 装置による比熱測定を行い、それぞれの凝固潜熱の放出割合をピーク面積比から 求め、半凝固金属の温度と固相率の関係に換算した。晶出時の晶出物の潜熱の影 響ならびに高固相率(70%以上)での潜熱ピークなどの読み取り誤差の影響によ り固相率の推定精度が悪くなるが、これらの点を除けば温度と固相率(潜熱放出 割合)の関係は良い一致を示し、熱分析法による固相率推定の可能性について示 した。

(c)固相と液相の密度差のために発生する超音波速度の相違を利用し、凝固シェ ル厚みをオンライン測定する試みがすでに鋼の連続鋳造において実施されている ^{2 *) 2 *)} (図1-16参照)。この測定システムを応用し、固相率の推定を行うこ とが提案されている。ただし、固相と液相がそれぞれ分散状態にある系に対して も凝固シェルの場合と同様な関係が成り立つか検討の余地が残されている。

固相率測定法は、半溶融・半凝固加工工程におけるインライン測定法として整 備されることが目的とされるが、そのためには、固相成分と液相成分の持つ特性 値の違い(例えば、密度差・超音波速度差・電気伝導度差・比熱差など)を瞬時 に捉える測定システムの構築が必要不可欠となる。今後、こうした方向に固相率 測定法の研究が展開していくと思われる。

1.4.2 半溶融・半凝固処理金属材料の製造技術に関する動向

種々の半溶融・半凝固処理金属材料の製造法が現在研究ならびに開発されてい るが³³⁾、いずれの処理法も目指すところは、均一・微細・等軸結晶組織となる 金属材料の製造にある。以下、それぞれの処理法の最近の動向について概説する。

(1) 半溶融処理法

8

半溶融処理法としては、均一加熱法²⁶⁾(図1-17参照)・SIMA(Strain In duced Melt Activated)法⁶⁰⁾などがある。均一加熱法は、母材を均一に加熱し

て、その内部に平衡な半溶融状態を作り出そうとするものであるが、金属学的特 性からの制約もあるため、この方法を適用できる材質は限られている。また、均 ーな加熱あるいは温度分布を実現するためには、加熱炉の形状・寸法、温度制御、 母材の挿入ならびに保持などについて検討する必要があり、適切な条件を選択し なくてはならない。SIMA法も基本的には均一加熱法を指向しているが、加熱前の 母材の処理法に特徴がある。

(2) 半凝固処理法

半凝固処理法としては、電磁搅拌法・機械搅拌法・超音波法²¹¹・Flow-Cast法 ⁴³¹などがある。いずれの処理法も一長一短があり、最近では、それぞれの処理 法の処理範囲(処理対象材料、条件)の拡張を目指した研究が進められている。 また、これらの中には、パイロットプラントの段階にまで進んでいるものもある。 半凝固処理法として現在最も進んでいる電磁搅拌法と機械搅拌法についてその研 究動向を概説する。

(a)電磁搅拌法³³⁾⁴¹⁾⁴²⁾⁶³⁾⁷³⁾

電磁攪拌法は、攪拌工具が直接溶湯に接していないなどの理由により、特に鉄 系合金など高融点材料の半凝固処理材製造において有力な方法と考えられている。 また、電磁攪拌装置は鋼の連続鋳造機に既に設置されているなどの実績がある。 反面、十分な攪拌効果を得るためには、(a)大がかりな装置となり、(b)電力消費 量も大きく、(c)付帯設備も大規模になり、したがって、(d)全体的に高価な設備 となることなどが指摘されている。またさらに、(e)固相率0.2以上の半凝固処理 材料の製造の問題、(f)溶融金属の中心部と周辺部では攪拌速度が異なる問題、 などがあり、現在これらの問題点に対し研究が展開されている(図1-18参照)。

(b)機械搅拌法²⁾⁽¹⁾³⁵⁾³⁶⁾⁶²⁾⁶³⁾⁷²⁾⁷³⁾

M.C.Flemingsらによって開発された機械搅拌法の一種であるレオキャスト法は、 凝固中の金属材料を機械的に強搅拌することにより樹枝状晶組織を分断し、微細 な球状晶組織とし、これを鋳造し微細な内部組織を有する製品を製造しようとす る方法である。レオキャスト法は、(a)溶湯と直接接する回転羽根などの工具の 材質の問題(溶損の問題)、(b)生産性の問題、(c)溶湯→半凝固処理→成形とい った溶湯から直接製品化する場合の工程設計の問題、(d)半凝固処理材移送中の 酸化の問題、(e)固相率が0.3以上の半凝固処理材の製造の問題、などに対し現在 研究が進められている(図1-19参照)。

また、機械撹拌法(レオキャスト法)において、冷却速度は結晶粒の大きさを

を支配し、初晶粒径は冷却速度の1/3乗に反比例すること、攪拌速度は結晶粒の形 状を支配し、撹拌速度が大きくなるほど初晶粒の形状は丸みを帯びてくることな どが多くの研究者により明らかにされている。こうした結果を利用し、市川らは レオキャスト法をさらに発展させた撹拌合成法を提案している。

電磁攪拌法と機械攪拌法とはそれぞれ上述に示すような長所・短所があり、半 凝固処理法を実際に適用する場合には、それぞれ使い分けて使用する必要がある ことを岡野⁷³⁾らは指摘している。

1. 4. 3 溶融凝固現象を伴う製造法に関する動向

溶湯鍛造法・ダイキャスト法・レオキャスト法(コンボキャスト法)・チクソ モールディング法・スプレイフォーミング法・溶融焼結法などは従前の鋳造法の 枠組みを越えた製造法である。これらの最近の研究動向について概説する。また、 これらの研究と本研究との対応をまとめて表1-2に示す。

(1) 溶湯鍛造法2)26)27)67)

10

溶湯鍛造法あるいはスクイズキャスティング (Squeeze Casting) 法とも呼ばれ、 鋳型内の溶湯に機械的な圧力を加えて溶融状態から完全凝固にいたるまで高圧力 下で成形凝固させると同時に、部分的に半凝固状態での塑性流動を伴う鋳造法で ある(図1-20参照)。溶湯鍛造法は、加圧下で凝固が完了すると同時に若干 の塑性変形が行われることから、鋳造欠陥の除去、品質特性の向上ならびに適合 合金の拡大などが期待されいる。

溶湯鍛造法はいまだ確立された技術ではなく、現在も試行錯誤を重ねながら、 基礎・応用の両面から研究が進められている。とくに、擬固過程に対する外部か らの制御と加圧効果の解明および半凝固状態下での金属材料の特性の解明が、溶 湯鍛造法の今後の発展、さらには、新しいプロセスへの拡張にとって重要な課題 である。また、(a)積層複合材料の製造、(b)粒子強化積層複合材料の製造などの 研究も行われており、溶湯鍛造法の応用面での拡張も試みられていることは、こ の技術の将来性を伺わせるものであり、さらにまた、他の鋳造法で製造し難い製 品への適用もその動向が注目されるところである。

(2)ダイキャスト法23)27)34)

ダイキャスト法はプランジャーにより溶湯に機械的な圧力を加え、強制流動を 生じさせて高速で金型中に鋳込み、鋳造のサイクルを早くするとともに、従来、 困難とされた薄物・細物製品の鋳造を実現し、あわせて製品の精度を著しく向上 させる製造法であり、アルミニウム(合金)・亜鉛などの鋳造に広く適用され、 自動車・電気機器用部品などの製造に使用されている(図1-21参照)。ダイ

キャスト法が他の鋳造法に比較して優れている特徴としては、寸法精度・薄肉化 ・鋳肌の平滑性・仕上げ加工の省略などの利点を有することにあるが、最近のユ ーザの要求は一層の品質向上と経済性を求めており、かつまたダイカスト法本来 の特徴を生かしつつ、他の鋳造法の利点をも備えた鋳物の製造技術の開発につい ての要請も一段と高まりつつある。将来のダイキャスト法の技術開発の課題とし ては、

(a) 鋳巣の発生しない素材密度の均一なダイキャストの開発

(b) 寸法精度の高いダイキャストの開発

(c)強度と靭性の高いダイキャストの開発

(d)表面状態のよいダイキャストの開発

(e)安価な金型製作法の研究

(f)極薄肉ダイキャストの開発

(g)切削性のよいダイキャストの開発

(h)中子形状の複雑なダイキャストの開発

(i)加工行程省略のための研究

などが示されており、鋳巣の発生を防止した、密度の均一なかつ複雑形状な製品 の製造が望まれている。

ダイキャスト法は、従来、溶湯の自然流動に頼っていた鋳造に機械的な強制流 動を与える手法を導入したという点で、初歩的な複合加工プロセスと考えること もできるが、金型キャビティ内で素材の凝固が進行していく過程、あるいは、凝 固を完了した後に圧力を加え変形を起こさせることを意図していないという点か ら、現状では鋳造加工の一方式であると考えられる。

(3)レオキャスト法23)27)29)35)36)62)

半疑固金属の粘度や組成は、攪拌速度(せん断速度)、冷却速度および固相率 に影響され、通常、せん断速度を増加させると粘性が減少する。すなわち、半凝 固金属は、流動速度の増大に伴って粘性が低下するいわゆるチクソトロピー(Thi xotropy)を有し、攪拌が容易に行われる。半凝固合金を攪拌することにより、 球状の固相が液相中に分散した流動性の高い半凝固処理金属が製造され、これが アルミニウム合金・鋳鉄・ステンレス鋼など各種合金に適用されている(図1-22参照)。このレオキャスト法による製造行程としては (a)連続式レオキャスターにより半凝固処理金属を製造し、 (b)この半凝固処理金属をショットチャンパーへ供給し、 (c)ダイキャスト法により成形し、 (d)凝固を完了させ製品を得る、 方法が提案されている。このように半凝固処理金属を素材とするダイキャスト機 の開発についても広範囲な研究が行われている。このレオキャスト法の実際的な 利点としては、(a)溶湯に比較して半凝固金属の温度を低く抑えることができる ため、ダイスおよびショットチャンバーの寿命の延長を図ることができ、これに より従来、経済的に困難であった高融点金属の金型鋳造が可能となること、(b) 攪拌により均一かつ微細な内部組織を得ることができるため、健全かつ信頼性の 高い鋳物の製造が可能となること、(c)ダイキャスト機への材料の供給を正確か つ自動的にできること、などが挙げられる。レオキャスト法を発展させた研究と して、チクソキャスティング(Thixocasting Process)・レオリファイニング法 (Rheorefining Process)・チクソフォージング法(Thixoforging Process)・ コンポキャスティング法(Compocasting Process)などがある。

(4) チクソモールディング法201031741

12

チクソモールディング法は、プラスチックの射出成形と原理的には同じプロセ スである。すなわち、チップ状の原料をシリンダー後方のホッパーから供給し、 回転するスクリューによって前方に搬送すると同時に加熱して、所定の固相率を 持つ流動性のあるスラリー状とし、この金属スラリーをスクリューの高速前進運 動によってシリンダー先端のノズルを通じて金型のキャビティー内に射出し、所 望の形状の成形体を得る方法である(図1-23参照)。

チクソモールディング法の特徴としては、(a)溶解・鋳込み・凝固の全過程が シリンダーおよび金型内で終了するために、溶融金属を直接扱うことがなく安全 である。また、(b)溶解炉を必要としないので、一台の成形機で複数の合金の成 形が可能である。ただし、(c)材料の加熱制御、(d)装置材料とくにスクリュー材 の選択、(e)成形できる材料としては、低融点合金(アルミニウム合金程度)が 対象となる、(f)射出時の固相率は約30%以下が適当であり、50%以上になると完 全充満が困難となる、などの点に注意する必要がある。現在マグネシウム合金を 使い、自動車部品・電動工具部品などが実際に製造されている。

(5) スプレーフォーミング法22)27)56)56)58)68)

金属溶湯を噴霧し、いまだ半艇固状態のまま型に入れて鋳塊を作る技術である (図1-24参照)。英国のオスプレイ社で最初に開発されたことで、オスプレ イ法といわれている。この技術の特徴は、(a)急冷の効果により微細な結晶構造 となること、(b)大型成形プレスを必要とせずに、粉末から鋳塊が製造できるこ と、(c)半艇固状で型に集積するので、個々の粉末は溶着した形で結合されてい るため、99%の高密度材が得られこと、などである。ただしオスプレイ法におい ては急冷凝固とポロシティーとは二律背反の関係になっており、ポロシティーを 生じない程度の急冷凝固を得ることがオスプレイ法において肝要な条件となる。 真密度材が必要な場合にはさらに熱問加工を行う必要がある。オスプレイ材は溶 裂材とほぼ同等の機械特性を有することが報告されている。

(6)溶融焼結法⁽¹⁾

粉末を用いた成形法に溶融焼結法がある。この成形法は、ガス噴霧法などによ り製造した急冷凝固粉末を一旦圧粉成形し、粉末が一部溶融する温度にまで焼結 温度を高め焼結固化する方法である。結晶粒の成長粗大化や偏析など、解決すべ き問題も多いが、溶融焼結法に適した材料を選択することで真密度に近い成形品 を製造することができる。

1. 4. 4 理論解析・数値シミュレーションに関する動向

近年、半溶融状態にある金属材料を数学的にあるいは物理的モデルに置き換え、 理論解析また数値シミュレーションを行い、半溶磁状態の変形挙動を予測する研 究が行われている^{30343) 53)}。これには、大きく2つの流れに分けることができ る。一つは、半溶融状態をミクロ的(個別的)に捉え、液相部分が結晶粒(固相) の外周を取り巻くように存在するとした不連続体力学モデルであり、もう一つは 半溶融状態の材料をマクロ的(全体的)にとらえ、固相部分を多孔質体とし、液 相部分がその孔に充満しているとする連続体力学モデルである。それぞれのモデ ルについて、モデルの特徴、適用限界、問題点などについて概説する。

(1) ミクロ的モデルによる理論解析 40) 43)

半溶融状態にある金属材料をミクロ的に捉えモデル化し、微視的な変形のメカ ニズムから巨視的な変形を予測しようとする解析法である。すなわち、変形は固 相粒子間の相対すべりによって引き起こされると考え以下に示すようにモデル化 する(図1-25参照)。(a)固相粒界においては、固相粒は薄い膜状の液相成 分を介して接触しており、互いにすべることができる。(b)固相粒間のすべりの 発生などの変形にともなう隣接領域との干渉は無視する。(c)領域中央部の液相 成分が、固相粒界に流入したり、さらに領域外に流出することはない。(d)固相 ・液相間の相移転は発生しない。数値解析手法としてはラグランジェ乗数法によ るFEM法を採用し、固相成分と液相成分の構成式としては次式を用い、材料定数 を変化させることによって固液両相を区別した。 第1章 序論

図1-26は、一軸圧縮試験において圧下率が48時における解析領域の形状お よび接点速度分布の計算例を示す。ここで節点速度は工具との相対速度を用いて 表されている。変形にともなって固相粒間に相対すべりが発生し、またすべりの 発生により固相成分の応力が緩和されるために、かなり広い範囲にわたり剛体域 が存在する結果となっていることがわかる。この解析結果では固相率が80~90% の範囲においては解析値は実測値に近いが、固相率が80%以下では解析値は実測 値よりも大きくなってしまう。これは、固相率が低くなると、実際では液相成分 が固相粒界を通って自由に流動することができるのに対し、解析では液相成分が 移動することはないと仮定したためであると考えられる。

(2) マクロ的モデルによる理論解析 33) 53) 60) 66) 71)

14

半溶融状態にある金属材料をマクロ的に捉えモデル化(図1-27参照)し、 加工時における製品内部の液相成分の流動、加工後の固相率の分布、あるいは加 工荷重を予測しようとする解析法である。すなわち、固相部分の骨格に対しては 多孔質体の構成則を用い、液相部分に関してはD'Arcy則を用いて流体の流動を表 し、つり合い式と質量保存式を同時に満たす解をFEM法により求める方法である。 図1-28は半溶融金属の一軸圧縮試験における固相率と無次元化変形抵抗の関 係を実測値と比較して示す。解析による結果はA1-0.93%Si合金の実測値の結果と 一致しているが、この合金は結晶粒が他の合金に比べ著しく大きいことが判明し ている。また図1-29は半溶融押出しにおける固相率の軸方向分布の予測結果 を示す。ラム速度が速くなるに従い、液相成分の流出が抑制されて内部に保持さ れたまま加工が進む結果となっているが、このことは実験的にも確認されている。 以上、これまでの理論解析・数値シミュレーションでは、変形流動特性が全く 異なる固相と液相の2相を解析対象とする複雑さから、いずれの解析方法におい ても実測値を十分にシミュレートするまでには至っていない。すなわち、解析結 果は実測値に対し定性的一致は示すものの定量的一致にはいまだ問題が残る。定 性的・定量的に満足した結果を得るためには、固相粒子の回転やすべり、半溶融 状態の正確な特性値の把握、熱連成などを考慮したモデル化が今後の課題となる。

1.5 本論文の構成

本論文は、半溶融加工の基礎的研究と題し、序論と結論を含む9章からなる。 第2章から第8章までの構成は、第2章と第3章が半溶融・半凝固金属の基本的 特性に関する研究であり、第4章が半凝固処理金属の製造法に関する研究であり、 第5章・第6章・第7章・第8章が半溶融加工法に関する基本的特性の研究であ る。各章間の関係を図1-30に示す。また、各章の概要を以下に示す。

第1章は序論であり、研究の目的、言葉の定義、本研究の概要、関連分野の研 究・技術開発・応用動向ならびに本論文の構成について示す。

第2章は、半溶融(半凝固)金属の基本的特性の調査を目的とし、(a)高温顕 微鏡による半溶融状態の直接観察結果、ならびに、(b)半溶融金属の一輪圧縮変 形抵抗におよぼす材質・温度・ひずみ速度・試験片形状の影響について示す。

第3章は半溶融(半凝固)金属の固相率の測定法の開発を目的とし、(a)変形 抵抗から固相率を推定する方法、ならびに、(b)電気的特性(比抵抗または電位 差)から固相率を推定する方法を提案し、それら固相率推定法の特徴ならびに推 定結果の検証について示す。

第4章は、半凝固処理金属材料の製造法の開発を目的とし、新たにせん断冷却 ロール法を提案し、同法の特徴について示すとともに、同法によって製造された 半凝固処理金属材料の特性について示す。

第5章は、半溶驗押出し法の基本的特性の検討を目的とし、半溶驗押出し法に よる(a)棒線管材の加工、(b)積層型複合棒材の加工、(c)粒子強化型複合棒材の 製造と加工、(d)チタン短繊維強化型複合棒材の製造と加工、(e)炭化珪素短繊維 強化型複合棒材の製造と加工、について示す。

第6章は半溶融鍛造法の基本的特性の検討を目的とし、半溶融鍛造法による(a) 鋳鉄の加工、(b)粒子強化複合材料の製造と加工、(c)積層型粒子強化複合材料の 製造と加工、について示す。

第7章は、半溶融圧延法の基本的特性の検討を目的とし、半溶融圧延法による (a)板材の加工、(b)積層型複合板材の製造と加工、(c)積層型アルミニウム基粒 子強化複合板材の製造と加工、(d)積層型鉄基粒子強化複合板材の製造と加工、 (e)サンドイッチ型粒子強化複合板材の製造と加工、について示す。

第8章は、半溶融複合加工法の基本的特性の検討を目的とし、半溶融複合加工 法による(a)アルミニウム合金粉末の板加工、(b)粒子強化複合板材の製造と加工、 (c)めっき鋼板を利用した各種複合鋼板の製造と加工、(d)部分接合型複合鋼板の 製造と加工、について示す。

第9章は、結論として研究の成果と今後の検討課題について示す。

参考文献

 (1)萩原 厳・高橋忠義:鋳塊の結晶粒微細化と偏析防止のための新凝固法,日本金属 学会誌、29-6(1965). P637-642.

- 2)D. B. Spencer, R. Mehrabian and M. C. Flemings: Rheological Behavior of Sn-15 Pct Pb in the Crystallization Range. Metallurgical Transactions, 3(19 72-6), P1925-1932.
- 3)福岡新五郎・鈴木 弘・木内 学:固液共存状態における金属の変形抵抗,第23回塑 性加工連合講演会講演論文集,(1972-11),P435-438.
- 4)福岡新五郎・木内学:固液共存状態の金属の押出し加工に関する研究・第1報,昭 和48年度塑性加工春季講演会講演論文集,(1973-5), P249-252.
- 5)福岡新五郎: 固液共存状態の金属の押出し加工に関する研究: 第2報, 第24回塑性 加工連合講演会講演論文集, (1973-11), P433-436.
- 6)福岡新五郎・新井榑男:固液共存状態の金属の圧縮変形抵抗・第2報,第25回塑性 加工連合講演会講演論文集,(1974-11),P419-422.
- 7)安江和夫・小坂岑雄・磯谷三男:半溶融Sn-ZnおよびA1-Cu合金のみかけ粘度測定 について,鋳物,46-1(1974),P36-43.
- 8)木内学・福岡新五郎:半溶融金属(合金)の変形挙動,日本金属学会会報,14-6 (1975), P441-448.
- 9)加山延太郎・村井香一・佐藤万金夫・木口昭二:ねじり振動法による凝固進行中の 溶融金属の粘度測定,鋳物,47-7(1975),P485-491.
- 10)木内 学・福岡新五郎・新井榑男:固液共存状態における金属(合金)の変形抵抗, 塑性と加工,17-186(1976-7), P595-602.
- 11)P. A. Joly, R. Mehrabian: The Rheology of a Partially Solid Alloy, Journal of Materials Science, 11(1976), P1393-1418.
- 12)浅枝敏夫・吉川昌範・津田英明:7ルミニウム合金の半溶融加圧成形の研究(第1報加 圧成形体の機械的性質),日本機会学会論文集第3部,42-360(1976-8),P2632-2 642.
- 13)浅枝敏夫・吉川昌範・大藤俊洋:7ルミニウム合金の半溶融加圧成形の研究(第2報 押出し成形体の機械的性質)、日本機会学会論文集第3部、42-363(1976-11)、P366 2-3668.
- 14)木内 学・福岡新五郎・新井榑男:固波共存状態における金属(合金)の押出し 加工,塑性と加工,18-199(1977-8),P633-640.
- 15)吉川昌範・大藤俊洋・浅枝敏夫:7ルミニウム合金の半溶融加圧成形の研究(第3報高けい素7ルミニウム合金の機械的性質).日本機会学会論文集第3部,44-381(1978-5),

P1763-1769.

- 16)市川理衛・三輪謙治:半溶融状態におけるA1-Cu合金のみかけ粘性挙動と組織、 日本金属学会誌,42-11(1978), P1023-1029.
- 17)木口昭二・加山延太郎:凝固初期のみかけ粘度測定による各種鋳鉄の初晶成長 過程の検討、日本金属学会誌,43-2(1979),P140-145.
- 18) 渋谷明彦・有原和彦・中村泰:固相・液相共存下における鉄および非鉄合金のみかけの粘性の測定結果(Fe-C. Sn-Pb. A1-Cu. Fe-Cr-Ni-C合金),鉄と鋼,66-10(19 80). P1550-1556.
- 19)浅沼 裕・吉川昌範・西本 廉:鉄合金の高温における変形抵抗,昭和56年度塑性 加工春季講演会講演論文集,(1981-5), P583-586.
- 20)市川理衛・三輪謙治:搅拌による半溶融過共晶A1-Mn合金のみかけの粘性挙動と 組織、日本金属学会誌,45-2(1981),P189-193.
- 21)三輪 謙治・市川理衛: 搅拌による半溶融過共品A1-Si合金のみかけの粘性挙動と 組織,日本金属学会誌,45-2(1981),P853-859.
- 22)(財)綜合鋳物センター・先端金属材料調査委員会(調査部会):先端金属材料開発調 査報告書(II)粉末冶金,(1982).P1-149.
- 23)(財)綜合鋳物センター・先端金属材料調査委員会(調査部会):先端金属材料開発調 査報告書(IV)半溶融加工,(1982).P1-122.
- 24)森信幸・大城桂作・松田公扶:半溶融状態で搅拌したAl-Cu合金の組織とみかけ 粘度,日本金属学会誌,48-9(1984),P936-944.
- 25)Sherif D. El Wakil: A Model Study of Metal Forming in the Wushy State, Advanced Technology of Plasticity, (1984), P45-49.
- 26) 木内 学: 溶湯 鍛造の現状と将来, 鉄と鋼, 71-1(1985), P12-18.
- 27)(財)素形材センター・素形材技術調査委員会・凝固制御凝固加工技術調査部会:素形 材技術調査報告書(IV)凝固制御・凝固加工技術部会報告,(1985-9),P1-276.
- 28)鈴木賢次郎:高温高圧下における超音波計測技術の開発と材料の機械的性質, 昭和59-61年度文部省科学研究費補助金特定研究成果報告書,(1987-9),P120-1 27.
- 29)(社)日本機械工業連合会・(財)金属系材料研究開発センター:金属の半凝固加工7^{*}ロ セスに関する調査研究報告書(1988).
- 30)木内 学・前崎雄彦:GMDHの塑性加工への応用,昭和63年度塑性加工春季講演会 講演論文集、(1988-5), P699-702.
- 31) 伊丹 哲・井川良雄・安藤 剛・熊谷 憲: オス7° レイ法の開発,住友重機械技報,36-107 (1988-8), P10-16.
- 32) 難波明彦·市川 洌:半凝固加工技術の現状と課題,熱処理,28-4(1988-8),P254-

- 261.
- 33)豊島史郎・高橋洋一:半溶融状態における加工の数値シミュレーション、第40回塑性加工 連合講演会講演論文集、(1989-10)、P635-638.
- 34)木内 学:半溶融・半凝固加工技術の現状と将来、生産研究、42-6(1990-6), P319-326.
- 35)Antoine Tissier, Diran Apelian, Gilles Regazzoni: Magnesium Rheocastinga Study of Processing-Microstructure Interactions, Joural of Materials Science, 25(1990), P1184-1196.
- 36)Merton C. Flemings: Behavior of Metal Alloys in the Semisolid State, Metallurgical Transactions A, 22A(1991-5), P957-981.
- 37)吉川雄司・平居正純・竹林克浩・難波明彦:半凝固金属の粘性挙動,第42回塑性加 工連合講演会講演論文集,(1991-9),P651-654.
- 38)古川雅三・平居正純・佐伯幸弘・西村論:熱的手法による半凝固金属粘度測定法の開発,CAMP-ISIJ,4(1991),P690.
- 39)吉川雄司・竹林克浩・森谷尚玄・藤川安生・岩田至弘・難波明彦:電磁搅拌方式による高融点半凝固金属の製造(半凝固金属製造に関する研究-2), CAMP-ISIJ, 4 (1991), P687.
- 40)木内 学・柳本 潤・森本庸介:半溶融金属の変形解析モデルの検討(1),第42回塑性 加工連合講演会講演論文集,(1991-9),P643-646.
- 41)難波明彦・平居正純:半凝固金属 スラリー製造技術の研究動向,第105回塑性加工懇 該会資料(1991-12).
- 42)Charles Vives:Elaboration of Semisolid Alloy by Means of New Electro magnetic Rheocasting Processes, Metallurgical Transactions B, 23B(1992-4), P189-206.
- 43)木内 学・柳本 潤・森本庸介:半溶融金属の変形解析モデルの検討(2).平成4年塑 性加工春季講演会講演論文集,(1992-5), P299-302.
- 44)J.S.Gunasekera:Development of a Constitutive Wodel for Mushy(Semi-Solid) Materials.Proc. 2nd Int'1 Conf. on the Processing of Semi-Solid Alloys and Composites, (1992–6), P211–222.
- 45)M. C. Flemings, S. F. Chen, I. Diewwanit, J. A. Cornie: Rheology and Structure of Some Aluminum Base Composites. 2nd Int'l Conf. on the Processing of Semi-Solid Alloys and Composites. (1992-6), P202-210.
- 46)W. R. Loue, M. Sueru, J. L. Querbes: Microstructure and Rheology of Partially Remelted AlSi-Alloys, 2nd Int'l Conf. on the Processing of Semi-Solid Alloys and Composites. (1992-6), P266-275.

- 47)Stuart B. Brown. Pratyush Kumar. Christophe L. Martin:Exploiting and Characterrizing the Fundamental Rheology of Semi-Solid Materials, 2nd Int'l Conf. on the Processing of Semi-Solid Alloys and Composites, (19 92–6). P183–192.
- 48)Pratyush Kumar, Christophe L. Martin, Stuart Brown:Flow Behavior of Semi-Solid Alloy Slurries, 2nd Int'l Conf. on the Processing of Semi-Solid Alloys and Composites, (1992-6), P248-262.
- 49)T.G.Nguyen, M.Suery, D.Favier:Mechanical Behavior of Semi-Solid Alloys Under Drained Compression With Lateral Pressure, 2nd Int'l Conf. on the Processing of Semi-Solid Alloys and Composites. (1992-6), P296-3 05.
- 50)E. R. Cau, M. H. Robert:Obtention of Rheocast Structures of M-2 and 308-L Stainless Steel by S. I. M. A., 2nd Int'l Conf. on the Processing of Semi -Solid Alloys and Composites, (1992-6), P1-10.
- 51)Renzo Moschini: Manufacture of Automotive Components by Semi-Liquid Forming Process, 2nd Int'l Conf. on the Processing of Semi-Solid Alloys and Composites, (1992–6), Pl'49–158.
- 52)難波明彦・村田泰之:電磁搅拌方式による半凝固金属の製造実験結果,第11回半 溶融・半凝固加工分科会資料,(1992-10).
- 53) 豊島史郎:半溶融状態における加工の数値シミュレーション(圧縮変形における加工速 度と液相の偏析について),第43回塑性加工連合講演会講演論文集,(1992-10), P337-340.
- 54)Q. Z. DIAO and H. L. TSAI: Modeling of Solute Redistribution in the Mushy Zone during Solidification of Aluminum-Copper Alloys. METALLURGICAL TR ANSACTIONS A, 24A(1993-4), P963-973.
- 55)Alan G. Leatham and Alan Lawley: The Osprey Process(Principles and Applications), The International Journal of Powder Metallurgy, 29-4(199 3), P321-326.
- 56)Rochile D. Payne, M. Allen Matteson, Angela. L. Moran: Application of Neural Networks in Spray Forming Technology, The International Journal of Powder Metallurgy, 29-4(1993), P345-351.
- 57)CHARLES VIVES:Elaboration of Metal Matrix Composites Thixotropic Alloy Slurries Using a New Magnetohydrodynamic Caster, METALLURGICAL TRANSACTIONS B. 24B(1993-6), P493-510.
- 58)Alan G. Leatham, Alan lawley: The Osprey Process-Principles and

Applications. The International Journal of Powder Metallurgy, 29-4(1993), P322-326.

- 59)吉田直嗣・白井善久・森谷尚玄・吉田千里:熱分析法による固相率の推定,日本金 属学会春期大会講演概要,(1993),P156.
- 60)木内 学・柳本 潤・福島傑浩:半溶融金属の変形挙動の数値シミュレーション,平成6年度 塑性加工春季講演会講演論文集,(1994-5),P447-450.
- 61)高城重影:液相焼結-半溶融・半凝固系に関連させて、第14回半溶融・半凝固加 工分科会資料(1994).
- 62)Merton C. Flemings C. Vives: Semi-Solid Processing, Proc. 3rd Int'1 Conf. on the Processing of Semi-Solid Alloys and Composites, (1994-6), P3-6.
- 63)Shinobu Okano:Research Activities in Rheo-Technology Ltd., Proc. 3rd Int'l Conf. on the Processing of Semi-Solid Alloys and Composites, (19 94-6), P7-18.
- 64)Christophe L. Martin, Stuart B. Brown. Denis Favier, Michel Suery: Mechanical behavior of coarse dendrtic semi-solid Sn-Pb alloys under various stress states, Proc. 3rd Int'l Conf. on the Processing of Semi -Solid Alloys and Composites, (1994–6), P27-36.
- 65)Pratyush Kumar, Christophe L. Martin, Stuart Brown:Predicting the Constitutive Flow Behavior of Semi-Solid Metal Alloy Slurries, Proc. 3rd Int'l Conf. on the Processing of Semi-Solid Alloys and Composites . (1994-6), P37-46.
- 66)S. Toyoshima: A FEN Simulation of Densification in Forming Processes for Semi-Solid Materials, Proc. 3rd Int'l Conf. on the Processing of Semi-Solid Alloys and Composites, (1994-6), P47-62.
- 67)Tatsuo Sakamoto:Recent Development of Squeeze Casting, Proc. 3rd Int'1 Conf. on the Processing of Semi-Solid Alloys and Composites. (1994-6), P137-144.
- 68) 冨田省吾: スプ^{*} レ-7+-ミング 7^{*} ロセスの基礎特性,第11回半溶融・半凝固加工分科会資 料、(1994-10).
- 69) 木内 学:半溶融加工技術の現状と課題,第165回塑性加工ジンポジウム.(1995-9), P 1-14.
- 70) 江見俊彦・柳 正照:半溶融・半凝固合金製造加工技術の問題点と可能性,第165 回塑性加工ジンボ^{*}ジ^{*}ウム,(1995-9),P15-22.
- 71)豊島史郎:半溶融加工問題に関する数値解析手法,第165回塑性加工シンポジウム, (1995-9), P35-44.

- 72)市川 洌: レオキ+スト法と搅拌合成技術,第165回塑性加工シンポジウム, (1995-9), P45-5 5.
- 73) 岡野忍:半凝固金属の連続製造法と製品品質について,第165回塑性加工ジン**ジ りム、(1995-9), P57-65.
- 74)斉藤研・武谷健吾・附田之欣・沖本晋一: チ ク ン モールディ ン グ法による Mg合金成形 プロセ ス開発の現状,第165回塑性加工ジンポジウム、(1995-9), P103-112.

図1-2 金属製品製造法の温度による分類

冷間鍛造法		
冷間圧延法		
冷間押出し法		
熱間鍛造法		
熱間圧延法		
熱間押出し法		
HIP法	半溶融鍛造法 半溶融押出し法 半溶融圧延法	
	レオキャスト法	溶湯鍛造法 高圧鋳造法 り [*] (キャスト法 低圧鋳造法 重力鋳造法
固体	半溶融・半凝固	溶融

図1-3 金属製品製造法の温度と圧力による分類

25

水浴草叶水浴口小	混合性の向上
半 溶 献 半 疑 固 状 態	撹拌性の向上
1	分離性の向上
	接合性の向上
田住业能	変形能の向上
固 14	変形抵抗の低下

	固体状態	半溶融・ 半凝固状態
圧縮変形抵抗	高い	低い
引張強度	高い	低い
流動性·造形性	低い	高い
接合性	低い	高い
混合性	なし	高い
均質性	高い	やや低い

金属の半溶融半凝固状態の特性 図 1 - 4

	赒
	半落融温度
溶融温度範囲	今余及
金)の半	油田美
1 代表的な金属(合	人人人 长姿望出雨
1 -	

温度差 /℃	31 95	00	ne	44	44										
半溶融温度 範囲 / ℃	904 - 935 954 - 1049		6461-6621	1466-1510	1427-1411										
合金名	黄銅(35%Zn) 書紹(5%Zn)		E\$N(Ni70-Cu30)	鋪	ステンレス鋼										
温度差 /℃	22	56	70 62	62	55		01	37	38	16	35	11	162	152	35
半溶融温度 範囲 / C	632-654	593-649	568-638 579-641	579-641	585-640		582-652	615-652	616-654	552-649	615-650	646-657	476-638	477-629	615-650
合金名	A 5 0 0 5	A5052	A5056 A5083	A5182	A5086		A6061	A6N01	A6063	A 6 1 5 1	A7003	A7072	A7075	A7178	A7N01
溫展港 /℃		11	1 0,8	176	128	131	136	139	131	100	11	25	19		39
半溶融温度 範囲 / ℃	646-657	646-657 646-657	695-643	507-683	513-641	507-638	502-638	510-649	504-635	543-643	643-654	629-654	635-654		532-571
金名	0901	1200	1100	1102	2017	2018	2024	2117	2218	2219	3003	3004	3105	20040	4032

半溶融と半凝固の定義 図1-5

28

高固相率

低固相率

の製品例 N 半溶融加工行程と 00

図1-7 半溶融加工法の分類

図1-9 半溶融加工法と半凝固加工法の分類

特殊機能部品	放 射線 逓 敷 枝 書 満 枝 ・ 確
耐磨耗部品	<i>バ</i> て 一 キ デ オ メ ク <i>ブ</i> マ 一 キ パ メ ス み
耐熱部品	ポメナンポンゴング

31

Schematic diagram of the experimental apparatus for semi-solid state parallel plate compression: A, IR furnace; B, stainless steel upper (stationary) shaft connected to force transducer; C, stainless steel upper plate; D, stainless steel lower shaft (ram); E, stainless steel lower plate; F, semi-solid metal; G and H, thermocouples; I. insulation.

Apparent viscosity as a function of the average apparent shear rate for partially remelted AISi6Mg0.3 (\bullet fraction solid 0.55) and AISi7Mg0.3 (\bullet fraction solid 0.45) obtained by backward extrusion (high shear rates) and parallel plate compression (low shear rates) at 580 °C. Results on partially solidified AISi7Mg0.3 at 590 °C (\blacksquare fraction solid 0.3) obtained by Searle viscometry are also included.

図1-13 後方押出し法および圧縮法による粘度測定法の概要(46)

0.00

Lateral Pressure)法の概要⁽⁴⁹⁾

側圧付加圧縮(Drained Compression with

filter

Interstitial pressure p2

図1-15

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

AXIAL STRAIN

pulser detecting coil pulsed magnetic field static magetic SG R pulse current HV. in puised force G X symmetry axis ultrasonic TITT. 7777. WEYS solid liquid solid generating coil

D

図1-16 超音波法による凝固シェル厚み測定法の概要 29)

図1-17 均一加熱法による半溶融処理金属製造法の概要34)

1. Pouring molten me

N

 Plunger tip goes up to metal into the die cavi

図1-23 チクソモールディング用射出成形機の構造 74)

図1-25 半溶融状態の内部構造のモデル化 (ミクロ的)40)43)

図1-24 オスプレー法の概要 68)

 $\theta = 4.5^{\circ}$

 $\theta = 3.0^{\circ}$

 $\theta = 6.0^{\circ}$

図1-26 半溶融圧縮時における形状ならびに接点速度分布 43) (固相率75%)

図1-27 半溶融状態の内部構造のモデル化 (マクロ的)(60)

	半溶融/半凝固	成形/加工	対象材料	複合材製造 の可否	適用圧力 MPa
溶湯鍛造法	半凝固	成形 一部加工	低融点材料	可	50~200
9~1++2ト法	半溶融 半凝固	成形	低融点材料	否	50~100
レオキャスト法	半凝固	成形	低融点材料	ग	100程度
チクリモールディング 法	半溶融	成形	低融点材料	否	100程度
スプレイフォーミング法	半凝固	成形	低融点材料 高融点材料	否	0
溶融燒結法	半溶融	成形	低融点材料 高融点材料	可	0
半溶融加工法	半溶融	加工	低融点材料 高融点材料	ग	100~400

表1-2 従来研究と本研究の対応

*ここでいう成形とは、固相成分の塑性変形を伴わない場合の形状付与を意味し、 加工とは、固相成分の塑性変形を伴う場合の形状付与を意味する。

第2章 半溶融金属の特性調査

2.1 緒言

金属素材全体が完全固体状態にある冷間・熱間での組織観察や機械的特性に関 しては、これまで多くの研究がなされ、体系的にまとめられ、いくつかの構成式 が提案され、実際の冷間・熱間加工に大いに利用されている¹⁾²⁾⁴⁾。また、金属 素材が完全溶融状態あるいはその延長上の低固相率状態(固相率約50%以下)で の特性についても、前章の2.1項で述べたように、粘度あるいはせん断抵抗な どに関し様々な構成式が提案され、鋳造技術の向上に役だっている。

しかし、固体金属を加熱し固相内に一部液相が含まれた、いわゆる固体の延長 上にある高固相率状態での半溶融金属の機械的特性や組織観察に関しては、2, 3の先駆的な研究があるだけで十分解明されているとはいえない。高固相率状態 における金属材料の特性ならびに変形挙動を明らかにしておくことは、(a)半溶 融加工法における加工条件の選定、(b)被加工材の変形挙動の把握、(c)製品品質 の向上、(d)解析モデルの構築、(e)構成式の決定、(f)解析結果の検討 などにおいて重要な役割を果たす。^{16)13) 22)-27)}

本章では、半溶融加工に関する研究の出発点として、特に高固相率状態での半 溶融金属を対象とし、内部組織の直接観察ならびに各種実用合金の変形特性(変 形抵抗・変形能)について検討する。

2.2 半溶融状態の直接観察

完全溶融金属の凝固過程を対象とした高温顕微鏡による直接観察例は、例えば 凝固組織の粗大化の研究やデンドライトの成長の研究などに見られるように³⁾¹²⁾、 これまでいくつかある。しかし、固体金属の溶融過程を直接観察した例について は見当たらない。

本節では、高温顕微鏡を使用し、固体金属を加熱し半溶融状態にまで昇温させた際の、(a)溶融開始位置や溶融域の拡大化、(b)半溶融状態にある試験片に荷重 を付加した際の結晶粒の変形・移動・分離など、内部組織の変化について検討し た結果を示す¹⁴⁾²⁸⁾²⁹⁾。

2. 2. 1 観察方法

半溶融状態の観察には、ユニオン光学(株)製のHM-4型高温顕微鏡装置を用 いた。本装置は、反射型の光学顕微鏡と小型の加熱炉体(炉体寸法は直径50mm、 高さ50mm)とが一体となった構造であり、加熱過程・冷却過程における試験片の 内部組織の変化を直接観察し撮影することが可能である(図2-1参照)。試験 片には純アルミニウムに5.7重量パーセントの銅が含有されたアルミニウム合金 (JISの2000番系のアルミニウム合金に相当する)を用いた。このA1-5.7%Cu合金 は、アルミニウムに対して銅が最も多く固溶する合金であり、したがって半溶融 温度範囲が広く、また2元合金であるため状態図から温度と固相率の関係が算出 できる利点がある。

観察は、(a)通常観察と、(b)試験片に圧縮荷重を付加した場合の観察との2通 りある。(b)では、装置の構造上、バルジ変形する試料側面を観察することにな る。いずれの観察においても、観察面に酸化皮膜が形成されることを防ぐため、 炉内を10⁻⁴ torr程度の真空にした状態で行った。

2. 2. 2 観察結果および考察

A1-5.7%Cu合金試験片を熱間状態から半溶融状態に至るまで加熱した際の同一 箇所での観察結果を図2-2に示す。図から、主に粒界部から溶融が始まってい ることがわかる。これは、粒界部ほど溶質原子が濃厚となる試験片作製時の成分 偏析(ミクロ偏析)現象に関係があるものと思われる^{71, 4) 3 01}。

図2-3は、A1-5.7%Cu合金試験片に数MPa程度の圧縮荷重(一定荷重)を付加 したまま加熱した際の試験片側面の観察結果を示す。圧縮力加えているにもかか わらず、観察面である試験片側面には引張り力が作用しているためにバルジ変形 している点に注意されたい。温度の上昇とともに試験片側面ではパルジ変形が起 こり、次第に結晶粒界が開口し、結晶粒が分離している様子が観察できる。 図2-4は、同様にA1-5.7%Cu合金試験片に数MPa程度の圧縮荷重(一定荷重) を付加したまま加熱した際の、同一観察位置における固相線温度直下(固相率10 0%)での内部組織と、固相率が約91%での内部組織の相違を示す。固相率が91%に なると、表面に滲み出てきた液相成分が膜状となり、変形の進行とともに数とな り、かつ、粒界部分が亀裂となって連なってくる様子が観察できる。

図2-5は、図2-3・図2-4よりもさらに固相率が低い(固相率が84%) 場合で、試験片表面に液相成分が流出し、さらに結晶粒界の崩壊が一段と進行し ている様子となっている。

以上、高固相状態の半溶融金属の観察結果から、概略以下のことがわかる。 (a)主に粒界から溶融し始め、粒界から結晶内部に向かって溶融が進行する。 (b)固体状態から半溶融状態に達すると、結晶粒界の結合が非常に弱くなり、た

かだか数MPa程度の圧縮力でも、各結晶粒間にすべり・回転・変形が発生する。 (c)半溶融状態下にある金属材料に引張り力が作用した場合、その金属材料は結 晶粒子間を起点とし容易に分離する。

2.3 半溶融金属の変形特性

高固相率状態下における半溶融金属の変形抵抗・変形挙動に関しては、福岡ら 5) 4) 5) 10) 15) 、浅沼ら¹⁰⁾ 他2.3の研究^{11) 20) 21)}があるにすぎず、一部の金属 材料について、限られた試験条件のもとで調査されたものであり、未だ十分解明 されているとはいえない。

本節では、広範囲の実用合金を用い、半溶融状態下でのカムプラストメータ (定ひずみ速度圧縮試験機)を用いた一軸圧縮試験を行い、(a)応力とひずみの 関係、ならびに、(b)圧縮温度(固相率)・ひずみ速度・試験片寸法比・試験片 材質が変形抵抗・変形挙動におよぼす影響について検討した結果を示す¹⁴⁾¹⁷⁷¹⁴⁰。

2.3.1 変形抵抗の測定方法および測定条件

(1) 测定方法

変形抵抗はカムプラストメータを用い測定した。カムプラストメータは、対数 曲線形状のカムの回転を上下運動に変換し、試験片のある初期高さに対し、一定 のひずみ速度で圧縮を行うことができる試験機である。図2-6にカムプラスト メーターの概略図を示す。実際の圧縮は、炉から取り出し圧縮開始までの間の試 験片の温度降下を未然に防ぐため、図2-7に示す厚肉のサブプレスを用い行っ た。試験手順は、(a)試験片をサブプレスにセットし、(b)サブプレスを用い行っ た。試験手順は、(a)試験片をサブプレスにセットし、(b)サブプレスを高周波 誘導加熱炉で加熱し、(c)所定の温度に一定時間保持した後に、(d)サブプレスを カムプラストメーターに設置し、(e)圧縮する、である。試験片温度は、サブプ レスの外側からK熱電対を用い測定した。試験片の上下面に接触する工具は、試 験ごとに1000番の研摩紙でみがき、常に表面状態を一定の表面状態にして試験を 行った。なお、いずれの場合も、試験片の上下面と工具面の間に潤滑剤は用いず 無潤滑で行った。荷重と変位をロードセルと接触式変位計を用い測定した。それ ら計測に用いた機器名を表2-1に示す。

(2) 測定条件

試験片材質・試験片寸法・圧縮ひずみ速度・圧縮温度をまとめて表2-2に示 す。研究室で溶製し作製した5種類の二元合金と38種類の市販の実用合金(ア ルミニウム合金36種類と銅合金2種類)について圧縮試験を行った。試験片の 寸法は直径12mm、高さ18mm(アスペクト比1.5)を標準としたが、A5056・A6061 ・A7075の3材質については、試験片寸法の相違が圧縮変形抵抗におよぼす影響 を調査するために、高さの異なるφ12-12mm・φ12-6mm・φ12-3mmの試験片を作 製した。また、ひずみ速度は約0.2~0.5s⁻¹を標準としたが、A2014・A5056・A70 75の3材質については、ひずみ速度を0.2~8s⁻¹の範囲で変化させ、ひずみ速度 が変形抵抗におよぼす影響について調査した。圧縮温度に関しては、熱間から試 験片が自重で崩れ荷重の測定が不可能となる温度までを対象とした。

(3) 応力・ひずみの算出方法

48

圧縮開始から終了までの時間を均等に分割し、各分割の荷重に相当する出力値 (電位差)と、変位に相当する出力値(電位差)をもとに(図2-8参照)、以 下の方法により、真応力-対数ひずみ線図を求めた(図2-9参照)。 (a)圧縮後の試験片高さHe(nn)を測定する。

(b)変位計の最下点位置の出力Se(V)を読み取り、この値と(a)で計測した圧縮後の 試験片高さHeとが対応するとし、圧縮中の試験片高さHを次式で求める。

H=He+(S+Se)/Scal

ただし

S :変位の出力(V)

Scal:変位のこう正値(V/mm)

(c)ひずみeを次式から求める。

e=1n(H/H₀)

ただし

H。 : 試験片初期高さ(mm)

(d)真応力σ_i(kgf/mm²)を次式から求める。

 $\sigma_{t} = F / A$

ただし

F=P•Pcal

 $A = A_o H_o / H$

 $= (\pi D_0^2/4) \cdot H_0/H$

- P : 圧縮中の荷重出力(V)
- Pcal:荷重のこう正値(kgf/V)
- D。 : 試験片初期直径(mm)
- A。 : 試験片初期横断面の面積(mm⁻²)
- F : 圧縮中の荷重(kgf)
- A : 圧縮中の試験片横断面の面積(nm⁻²)(ただしバルジ変形は考慮しない)

2.3.2 測定結果および考察

(1)応力とひずみの関係

図2-10から図2-14にはアルミニウム合金 (A1-5.7%Cu合金・A1-0.93%S

i合金・A1-13.7%Mg合金・A7075)と銅合金(Cu-35%Zn合金・C3602)について、 真応力σf-対数ひずみe線図の測定結果を示す。これらの測定結果から、半溶 融状態下での応力-ひずみ線図の形(パターン)を模式的に示すと図2-15の ようになり、その変化過程を3段階に分けて考察する。

第1の過程は、圧縮の初期段階(ひずみeが0.05以下)で、変形量も少なくか つ変形が試料全体に渡ってほぼ均一であり、粒界に集中的に存在する液相成分の 流動もあまり大きくない範囲である。一般に液相成分の存在により、固相成分で ある結晶粒は相互の束縛が緩和され、粒界におけるすべり・粒自体の変形・粒の 回転、などが容易になることが2.2節の半溶融状態の直接観察から推論される が、巨視的にみた圧縮変形が開始されると、微視的にみた個々の結晶粒の粒界す ベリ・回転・変形が誘起される。巨視的な変形量に含まれるそれらの微視的な移 動量・回転量・変形量の割合は、液相成分の量によって異なるものと考えられ、 液相成分が多いほど、すなわち固相率が低いほど、結晶粒自体の微視的変形量の 占める割合が低くなり、そのことが圧縮初期の応力の立ち上がりが緩やかになっ てくる原因であると考えられる。これにより、後述する変形抵抗の低下の度合い の問題と同様に、試験片の巨視的な寸法に比して結晶粒の寸法が十分小さいかま たは結晶粒度がほぼ同程度の場合には、固相率の変化に対する応力σの立ち上が りの勾配の変化が同様な割合で起こることが推定される。そこで固相率の変化に 対する応力の立ち上がりの勾配d σ / d e の変化をみた結果が図2-16である。 図から明らかなように、dσ/de∞ φ =の関係が見られ、かつ、指数mは材質 によらずほぼ一定となることがわかる。ただしA1-0.93%Si合金は他の試験片に比 して結晶粒が非常に大きく、液相成分の効果が減殺されたものと考えることがで きる。

第 I の過程は、圧縮の変形量が次第に増加し、試験片内部の液相成分が側壁部 (自由表面)に向かって流動し、さらには流出し、あるいはまた結晶粒界に閉じ こめられた状態となり、液相成分の存在による結晶粒の微視的な変形を緩和する 効果が初期の液相成分の量によって定まる下限に近づく段階であり、そのために 応力の値は次第に飽和している範囲である。この飽和の過程が急速に進行する場 合と、ゆるやかに進行する場合があり、特に固相率が低く初期の液相成分の量が 多い場合に大きなひずみ範囲に渡って応力が緩やかに増加していく傾向が顕著と なる。換言するとこの過程における応力σの挙動は、変形過程における試料の液 相成分を内部に保持する能力と結びついており、液相成分の側壁部への流動が起 こりにくいかあるいは側壁部分からの流出が起こりにくい場合には応力の飽和が 緩やかになる。したがってこの問題は試験片の材質・試験片の寸法形状あるいは 圧縮ひずみ速度などの影響を受ける可能性があり、例えば、試験片の径に対して 高さを減少させるとこのような現象が現れる。

第 m の過程は、液相成分の試験片側壁部からの流出が顕著になり、あわせて側 壁部から内部に向かって崩壊が進行する範囲である。液相成分の集中とその流出 により、側壁部近傍の結晶粒間の結合力は弱まり、相互に容易に分離して移動し、 ある種の崩壊現象を起こす。圧縮変形量の増大とともにこの現象が内部に進行し ていくが、このような状態になるとこの部分の負荷能力が急速に低下してくるの で、結果的に応力の低下を招くことになる。これらのことは、後述する変形後の 顕微鏡組織観察結果と対比させてみると興味深い。

以上は、固相率が100%から70%前後までの範囲の応力ーひずみ線図に関して検 討した結果であるが、それ以下の固相率になると試験片の自重による流動が始ま り、通常の意味での圧縮試験はできなくなる。

(2)温度(固相率)と変形抵抗の関係

図2-17には、圧縮ひずみ0.04(4%)における変形抵抗(σ_i)。。4と温度との関係をまとめて示す。図から明らかなように、いずれの材質についても固相線温度を越えると(σ_i)。。4は急激に減少することがわかる。ただし、A1-0.93%Si合金だけはこの(σ_i)。。4の減少の度合いがゆるやかであり、他の材料のものと異なる特性を示している。この理由については、この合金が他に比較して結晶粒が非常に大きいことによるものと考えられる(図2-59参照)。固相線温度での(σ_i)。。4(換言すれば熱間域での限界変形抵抗)が材質によって大きく異なること、および銅系合金のそれがアルミニウム系合金のそれに比して著しく小さいことは興味深い結果である。また、アルミニウム系の合金については、いずれの場合も半溶融域の温度範囲が広く、変形抵抗の一般的挙動、特にこの場合で言えば(σ_i)。。4の挙動を把握し易いが、銅系合金ではこの温度範囲が狭く、温度すなわち固相率が(σ_i)。。4におよぼす影響を適確に把握することは難しい。

図において熱間域における(σ₁)。。4の曲線を半溶融域へ外挿した破線を示 してあるが、これは半溶融域での固相成分自体の変形抵抗を表すものとして理解 される。既に述べたように、半溶融状態下で変形抵抗が急激にに減少する理由と しては、液相成分が主として粒界に存在するために、(a)結晶粒界におけるすべ り、(b)結晶粒の回転、(c)個々の結晶粒自体の変形、などに対する拘束が緩和さ れるためと考えられる。一方、固相成分の変形抵抗と液相成分の流動抵抗の間に は大きな差があり、また、その差は材質の相違による液相成分の流動抵抗の差に 比較すれば相対的に非常に大きいものと考えられる。そこで、各材質について結 晶粒の形状や粒度がほぼ等しいかあるいはまた巨視的にみた試験片の寸法に比較

なお、この図2-18に示す結果を利用し、固相率 ¢ を簡単に求めることので きない実用(多元)合金に対しても便宜的に固相率を推定することができるが、 これについては第3章で述べる。

また、図2-60には、図1-11から読み取った各合金の見かけ粘度を常用 対数で表し固相率に対しプロットし、無次元化変形抵抗との比較を示す。図から、 各直線の傾きを表すB値は概略4~6の範囲にあることがわかる。この数値の意味 することはいまだ解明されておらず今後の検討課題である。

(3)ひずみ速度と変形抵抗の関係

図2-19から図2-21は、実用アルミニウム合金A2014・A5056・A7075に ついて、ひずみ速度を0.2s⁻¹から8s⁻¹まで変化させた際の各温度に対する変形抵 抗の推移を示す。いずれの合金においても変形抵抗はひずみ速度に依存し、ひず み速度が0.2s⁻¹から8s⁻¹まで変化した場合、変形抵抗は各温度に対して約2倍程 度高くなっていることがわかる。冷問・熱間での圧縮試験においても変形抵抗は ひずみ速度に依存することが一般に知られているが、その原因とし、(a)単位時 間あたりの転位移動にともなうエネルギの差によること、(b)回復・再結晶の量 の差によること、が指摘されている。半溶融状態における圧縮試験において変形 抵抗がひずみ速度に依存する理由としては、(a)ミクロ的にみた固相成分の上記 原因の他に、2.3.2項の(1)で考察したように、(b)試験片内部に液相成 分を保持する能力に関係していることが考えられる。 (4)試験片寸法(アスペクト比)と変形抵抗の関係

図2-22から図2-24は、実用アルミニウム合金A5056・A6061・A7075に ついて、試験片寸法比(アスペクト比)を0.25から1.5まで変化させた場合の各 温度に対する変形抵抗の推移を示す。A5056・A6061において、アスペクト比(日。 /D。)が1.5から1の範囲では、各温度に対して、アスペクト比が圧縮変形抵抗に およぼす影響はほとんどないといえる。アスペクト比が0.5まで小さくなると、 いずれの合金においても、アスペクト比が1.5の圧縮変形抵抗と比較し、約1.2倍 高い値を示し、アスペクト比がさらに0.25となると、約2倍高い値を示す。この ように、アスペクト比の減少にともない変形抵抗が増加する理由としては、2. 3.2項の(1)で考察したように、側壁の自由表面の面積と工具の接触面の面 積との比の減少にともない試験片内部に液相成分を保持する能力がアスペクト比 の小さい方が相対的に高くなり、側壁からの液相成分の流出量が出にくくなるた めである考えられる。

第2章 半溶融金属の特性調査

(5) 試験片材質と変形抵抗の関係

各種実用アルミニウム合金の半溶融状態下での変形抵抗の特性について、概略 以下のことがいえる。(上述に示した以外の実用アルミニウム合金の圧縮変形抵抗(σ₁)。。。4と温度との関係を図2-25から図2-56に示す。)

(a)アルミニウム合金展伸材の温度一圧縮変形抵抗(σ:)。。4の関係

図2-57に示すように、一般的に、半溶融温度範囲内のあるX点において圧 縮変形抵抗が急激に低下する。このX点は、試験片材質・ひずみ速度・試験片の アスペクト比の相違により、半溶融温度範囲内で種々変化する。試験片材質につ いてみると、2000系・4000系・5000系・7000系のアルミニウム合金においては、 X点は比較的固相線近いところにあり、1000系・3000系・6000系アルミニウム合 金においては、固相線より離れたところにある。このように1000系・3000系・60 00系アルミニウム合金において、半溶融状態での圧縮変形抵抗が急激に減少しな い理由としては、合金元素の含有率にその原因があると考えられる。すなわち、 合金元素の含有率が少ないいわゆる合金化度が小さい合金では、半溶融域に突入 しても粒界全周が溶融せず粒界の一部分が溶融するにとどまり、結晶粒どうしが 未だ部分的に連結した状態にあるためと推論されるが、これに対しては確認する に至っていない。

また、同一材質でも、ひずみ速度が大きくなるほうが、また試験片のアスペク ト比が小さくなるほうが、X点は固相線より離れた位置となる。これは、既述の ように試験片内部の液相成分の保持能力と関係し、ひずみ速度が速くなるにした がい液相成分の流動が東縛されやすく、またアスペクト比が小さいほど、液相成 分の試験片の側面(自由面)からの流出が拘束されるためである。

(b)アルミニウム合金鋳物材(AC8A, ADC12)の温度-圧縮変形抵抗の関係 半溶融温度の増加に対して圧縮変形抵抗は単調に減少している。この理由としては、これらの合金はアルミニウムに対し10重量パーセント前後のシリコンを含 有したいわゆる共晶点組成に相当し、半溶融温度範囲が狭く純金属のような溶融 挙動を呈するためである。

(6) 圧縮試験後の試験片の外観性状ならびに内部組織の検討

図2-58は圧縮変形後の試験片の外観および試験片中央部の内部組織の写真 を対応させて示す。既述のように圧縮変形の進行と共に、液相成分が試験片の側 壁(自由表面)から流出して凝固し、あわせて側壁部近傍の組織が崩壊する傾向 にあるが、各材質とも固相率が低下するとともにこの傾向が助長されることが確 認できる。またその崩壊の形態は材質によって異なり、たとえばA1-13.7%Mg合金 の場合には、側壁(自由表面)から流出して新たに凝固した部分は直径が1mm前 後の球状体が連結した構造となっているのに対して、Cu-35%Zn合金ではそのよう な崩壊でなく、もとの試験片の周囲に側壁から流出した液相成分が円筒状に密に 凝固した構造を呈している。また、A1-5.7%Cu合金などは両者の中間的構造を呈 している。この崩壊の形態は、素材内部における液相成分の保持能力と関係があ り、前述した応力-ひずみ線図の特性とも対応しているものと考えられる。

次に試験片内部の微視的観察の結果について述べる。結晶粒の大きさが固相率 に対する変形抵抗の依存性すなわち無次元化変形抵抗の挙動に影響を及ぼすこと は先に述べたとおりであるが、7種類の試験片の観察結果の中で、A1-0.93%Si合 金の粒子が非常に大きいことを除いて、他の材質については、多少のバラツキは あるが大体同程度の粒度を有していることがわかる(図2-59参照)。また変 形後の組織についてみても、固相率の変化が、結晶粒度にあまり影響を与えない こともわかる。ただし、固相率が50%程度まで低下してくると試験片中心部に鋳 造組織が残存している場合がある。

2. 4 まとめ

高温顕微鏡による半溶融状態の観察、ならびに半溶融金属の一軸圧縮試験により概略以下の結果を得た

- (a) M1-5.7%Cu合金の固体を半溶酸状態にまで加熱した場合、まず始めに内部組織の粒界部から溶融が始まり、昇温とともに溶融部は次第に粒界全体に広がり、 さらに結晶内部へと溶融域が進行していく。
- (b)半溶融状態にある金属材料の内部組織は、微小力によって大きく変化する。特に引張り力に対する結晶粒界部の結合は弱く、数MPa程度の微小力によって簡単に開口分離する。
- (c)変形抵抗の低下の度合いは、金属の材質・ひずみ速度・試験片寸法(アスペクト比)の相違によって異なる。
- (d)試験片の内部組織の結晶粒度が同程度の場合には、材質によらず、同量の液相 成分の存在による変形抵抗の低下の度合いはほぼ同じである。
- (f)固相率が高い圧縮試験の場合、圧縮変形後粒に若干の異方性が観察されるが、 固相率が低くなるにしたがい異方性は見られない。固相率が50%程度まで低下 してくると試験片中心部に鋳造組織が残存してくる。

(g)材質の相違により半溶融圧縮試験後の崩壊の様子が異なる。

2.5 結言

本章では、半溶融加工に関する研究の出発点として、特に高固相率状態での半 溶融金属を対象とし、内部組織の直接観察ならびに各種実用合金の変形特性につ いて検討を行った。本研究により概略以下に示す知見ならびに成果が得られた。

(a)高固相率領域での半溶融金属の直接観察例はこれまでなく、溶融がどこから始まり、どのように拡大していくか、また半溶融金属に荷重を付加した場合、結晶粒はどのように変形・分離するかなどに対し必ずしも明らかではなかった。本観察によって半溶融状態が視覚的にとらえられ、第5章以降に示す半溶融加工法の加工特性の解明、特に被加工材の固液両相の変形流動挙動の予測、あるいは今後の研究課題となる有限要素法など各種解析法による半溶融加工シミュレーションのモデルの構築などに対し、有用な情報が得られた。また、さらに半溶融金属の高温顕微鏡による直接観察手法についても示すことができた。

(b)数種類の実用アルミニウム合金ならびに実用銅合金を用い、高固相率状態にある半溶融金属の一軸圧縮変形抵抗におよぼす、温度(固相率)の影響、ひずみ速度の影響、応力とひずみの関係(構成方程式)を明らかにした。研究結果は、今後、有限要素法などの解析法に取り入れられ、半溶融加工法における加工荷重の予測、被加工材の変形挙動の予測、解析結果の検討などにおいて有用な情報源となる。

(c)J1S1000系から7000系まで実用アルミニウム合金36種類の半溶融状態の一軸圧 縮変形抵抗におよぼす温度の影響について明らかにした。本研究の結果は、第5 章以降に示す半溶融加工法の加工特性の解明、特に加工荷重の予測、積層型複合 材料の製造・加工などの問題における素板と積層材との変形抵抗差が製品性状に およぼす影響の把握に役立つ。また、データーベースとして、半溶融加工法のみ ならず溶湯鍛造法や溶融焼結法などに溶融凝固現象を伴う製造法全体に活用でき る。

参考文献

 1)橋爪伸:変形抵抗について,塑性と加工,1-5(1960)、P403-412.
 2)橋爪伸:金属材料の塑性変形抵抗に関する研究,学位論文,(1961).
 3)V. de L. Davies: Direct Microscopic Observation of Solidification of Metals, J. Inst. Metals. 93(1963-4), P127.

- 4)鈴木 弘·橋爪 伸·矢吹 豊·市原幸則·中島 聰·検持 治:東京大学生産技術研究 所報告,18-3(1968).
- 5)福岡新五郎・鈴木 弘・木内 学:固液共存状態における金属の変形抵抗,第23回塑 性加工連合講演会講演論文集,(1972-11),P435-438.
- 6)福岡新五郎・新井槫男:固液共存状態の金属の圧縮変形抵抗・第2報,第25回塑性加工連合講演会講演論文集、(1974-11), P419-422.
- 7) 椙山正孝・梅田高照・加藤 寛: A1-Cu合金の固液界面形態および界面前方の溶質 分布、日本金属学会誌、38-1(1974), P1-7.
- 8) 椙山正孝・梅田高照・加藤 寛: A1-Cu合金における急冷効果と固液界面での溶質 分布、日本金属学会誌、38-2(1974), P154-155.
- 9)S. Fukuoka and M. Kiuchi: A Study on Plastic Working of Alloys in Their Mashy State, Proceeding of the 15th International Machine Tool Design and Research Conference, (1975), P423-429.
- 10)木内 学・福岡新五郎:半溶融金属(合金)の変形挙動,日本金属学会会報,14-6(1 975), P441-448.
- 11) 西田:融点近傍での金属(99.99%A1, ADC-12)の強度に関する研究,学位論文,(19 75).
- 12) 拝田 治・江見俊彦: 固液共存域の直接観察によるFe-30%Cu合金のデンドライト組織 粗大化の研究, 日本金属学会誌, 42-6(1978), P612-617.
- 13)木内 学・福岡新五郎・新井樽男:固被共存状態における金属(合金)の変形抵抗, 塑性と加工,17-186(1976-7), P596-602.
- 14)木内 学・杉山澄雄・新井榑男:7秒合金および銅合金の半溶融変形抵抗・変形挙動に関する検討(半溶融加工に関する実験的研究 I),塑性と加工,20-223(1979-8), P762-769.
- 15)浅沼裕・吉川昌範・西本廉:鉄合金の高温における変形抵抗,昭和56年度塑性加工春季講演会講演論文集,(1981-5),P583-586.
- 16)Sherif D. El Wakil: A Model Study of Metal Forming in the Mushy State. Advanced Technology of Plasticity, (1984), P45-49.

17)(財)素形材セッター:縦固過程における半溶融金属の変形抵抗に関する調査報告書.

(1986-6), P1-176.

- 18)(財)素形材センター:凝固過程における半溶融金属の基本的変形特性に関する調査 報告書, (1987-7), P1-232.
- 19) 豊島史郎・高橋洋一:半溶融状態における加工の数値シミュレーション,第40回塑性加工 連合講演会講演論文集,(1989-10), P635-638.
- 20)鈴木俊夫・梅田高照・申 健:炭素鋼の固液共存域における強度,第8回半溶融・ 半凝固加工分科会資料,(1990-12).
- 21)森高 満・新谷定彦・八幡誠朗・吉田千里・難波明彦:固液共存域におけるレオキャスト 材の変形挙動,平成3年塑性加工春季講演会講演論文集,(1991-5), P9-12.
- 22)木内 学・柳本 潤・森本庸介:半溶融金属の変形解析モデルの検討(1),第42回塑加 工連合講演会講演論文集,(1991-9), P643-646.
- 23)木内 学・柳本 潤・森本庸介:半溶融金属の変形解析モデルの検討(2),平成4年塑 性加工春季講演会講演論文集,(1992-5), P299-302.
- 24)豊島史郎:半溶融状態における加工の数値シミュレーション(圧縮変形における加工速 度と液相の偏析について),第43回塑性加工連合講演会講演論文集,(1992-10), P337-340.
- 25)Paul Wisniewski:Wicrostructural Characterization of Interdendritic Liquid Channels, Marerials Science and Engineering, A165(1993), P45-49.
- 26)Q.Z.Diao and H.L.Tsai: Modeling of Solute Redistribution in the Mushy Zone during Solidification of Aluminum-Copper Alloys, Metallurgical Transactions A. 24A(1993-4), P963-973.
- 27)木内 学・柳本 潤・福島傑浩:半溶融金属の変形革動の数値シミュレーション,平成6年度 塑性加工春季講演会講演論文集,(1994-5), P447-450.
- 28)木内 学・杉山澄雄・田辺明三:高温顕微鏡による合金材料の半溶融状態の観察。 平成7年度塑性加工春季講演会講演論文集,(1995-5),P115-116.
- 29)木内 学・柳本潤・杉山澄雄・田辺明三:高温顕微鏡による合金素材の半溶融状態 の観察2,第46回塑性加工連合講演会講演論文集,(1995-9),P363-364.
- 30)佐藤 彰:半溶融・半凝固金属材料に関する金属学的考察,第165回塑性加工シンホ。 y* 94. (1995-9). P23-33.

高温顕微鏡による半溶融状態の観察 -N X

図2-3 半溶融状態にある金属試料に 圧縮荷重を付加した際の内部 組織の変化(1)

表2-1 半溶融圧縮試験に用いた機器

		名	称	型	式 メーカー
	変位検出部	セ ン	サ -	NP-250	
センサー		トランスデュー	ーサユニット	503-F2-	新日本測
		直流安定	化電源	PS-503	·(EMIC)
	荷重検出部	0 - K	セル	2 ton, 10 to	n 自家
		ストレイ	ンアンプ	3126	橫河北辰電 (YEW)
データの演算処理・格納		①アナライジ:	ノグレコーダ	3655	横河北辰電
		(2)パーソナル:	コンピュータ	PC-9801	vm 日本電 (NEC)
		(3)1 29-	フェイス	GP-1B	日本電
記録		①アナライジ:	ソグレコーダ	3655	_ 横河北辰電
		(2)ブリ :	19 -	PC-PR20)1 日本電
その他		()マイクロ	* - 9 -	NO. 102-2	30 三
		②デジタルマ	ルチメータ	T R 6824	Takeda Rike (TR)

64

タの概略図

1

×

表 2 - 2 半溶融圧縮試験条件一覧表

66

	and the second se		
合金名	試験片寸法 直径一高さ mm	ひずみ速度 S-1	温度 ℃
Pb-19.2%Sn	φ 26-23.5	0.2	185~230
A1-0.92%Si A1-5.7 %Cu A1-13.7%Mg	$ \begin{array}{c} \phi & 23 - 23 \\ \phi & 26 - 23 \\ \phi & 23 - 23 \end{array} . 5 \\ \phi & 23 - 23 \end{array} $	0.2 0.2 0.2	$\begin{array}{c} 535 \sim 643 \\ 545 \sim 619 \\ 457 \sim 537 \end{array}$
A 1 0 5 0 A 1 0 5 1 A 1 0 7 0 A 1 0 8 0	$ \phi \ 12 - 18 \phi \ 12 - 18 $	0.5 0.5 0.5 0.5 5	$\begin{array}{c} 514 \sim 655 \\ 540 \sim 650 \\ 551 \sim 663 \\ 419 \sim 662 \end{array}$
A 2 0 1 1 A 2 0 1 4 A 2 0 1 7 A 2 0 1 8 A 2 0 2 4 A 2 0 2 4 A 2 0 2 5 A 2 1 1 7 A 2 2 1 8 A 2 N 0 1		$\begin{array}{c} 0.5\\ 0.2 \\ -2 \\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.$	$\begin{array}{c} 483 \\ +755 \\ +755 \\ +470 \\ +765 \\ +765 \\ +765 \\ +765 \\ +755 \\ +753 \\ +75$
A 3 0 0 3 A 3 0 0 4 A 3 2 0 4 A 3 2 0 5 A 3 3 0 4	$ \phi \ 12 - 18 \\ \phi \ 12 - 18 $	0.5 0.55 0.55 0.5 0.5	$\begin{array}{c} 550 \sim 662 \\ 607 \sim 643 \\ 584 \sim 645 \\ 565 \sim 660 \\ 581 \sim 665 \end{array}$
A 4 0 0 4 A 4 0 4 3 A 4 3 4 3	$ \begin{array}{c} \phi & 12 - 18 \\ \phi & 12 - 18 \\ \phi & 12 - 18 \\ \phi & 12 - 18 \end{array} $	0.5 0.5 0.5	$\begin{array}{c} 505\sim570\\ 490\sim592\\ 530\sim586\end{array}$
A 5 0 0 5 A 5 0 5 2 A 5 0 5 6	φ 12-18 5-5-H10 φ 12-18 φ 12-12 φ 12-6 φ 12-3	$\begin{array}{c} 0.5\\ 0.3\\ 0.2 \\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5 \end{array}$	$540 \sim 658 \\ 494 \sim 6595 \\ 513 \sim 5956 \\ 521 \sim 617 \\ 531 \sim 617 $
A 5 0 8 3 A 5 0 8 6 A 5 1 8 2 A 5 2 8 2 A 5 9 5 2 A 5 N 0 2	φ 12-18 φ 12-18 φ 12-18 φ 12-18 φ 12-18 φ 12-18 φ 12-18	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$\begin{array}{c} 5500 \sim 605\\ 5622 \sim 599\\ 5522 \sim 599\\ 5376 \sim 620\\ 5322 \sim 620\\ \end{array}$
A 6 0 6 1 A 6 0 6 3	$ \phi 12 - 18 \phi 12 - 12 \phi 12 - 6 \phi 12 - 18 $	0.5 0.5 0.5 0.5	$\begin{array}{c} 516\sim621\\ 475\sim627\\ 535\sim647\\ 560\sim652\end{array}$
A7003 A7075	$ \phi \ 12^{-18} \\ \phi \ 26^{-23.5} \\ \phi \ 12^{-18} \\ \phi \ 12^{-12} \\ \phi \ 12^{-6} \\ $	$\begin{array}{c} 0.5 \\ 0.2 \\ 0.2 \\ 0.5 \\ 0.9 \end{array}$	$\begin{array}{c} 553 \sim 637 \\ 487 \sim 590 \\ 4366 \sim 563 \\ 464 \sim 545 \\ 465 \sim 564 \end{array}$
ADC12 AC8A	φ 12-18 φ 12-18	0.5 0.5	$469 \sim 578 \\ 500 \sim 560$
Cu-35%Zn C3602BD C3604BD	$ \phi 24 - 23.5 \phi 26 - 23.5 \phi 24 - 18 \phi 26 - 26 \phi 26 - 26 \phi 26 - 26 $	0.2 0.2 0.2 0.2 0.2 0.2	$\begin{array}{c} 800 \sim 903\\ 846 \sim 906\\ 886 \sim 905\\ 623 \sim 879\\ 646 \sim 874\end{array}$

図2-9 真応力-対数ひずみ線図

B q M \ D 代 汕 真

図2-11 真応力-対数ひずみ線図(A1-0.93%Si合金)

69

12.71

図2-18 無次元化変形抵抗と固相率の関係

図2-26 圧縮変形抵抗と温度の関係(A1051)

