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1. After the tunami of March 38, 1933, on the Sanriku Coast,
Nippon, two papers dealing with the problem of long wave in a bay have
been published in connection with the study of the tunamis. Ara-
kawa” generalized Green’s law on wave motion in a canal, while
Homma® solved the wave equation, taking into account water friction,
and gave several numerical examples.

We have also made a theoretical study of the long wave in a bay
of variable section, the method and the results of which differ from
those of the above two papers, and which we shall describe in this paper.

Using Stokes’ method, which has recently been adopted® for the
study of elastic waves, we solved the long wave equation and obtained
a general expression for the surface elevation of water due to changes
in the clevation at the mouth of a bay expressed by f(¢), where ¢
is the time, during which the water is still in the initial state t=0, and
of which the breadth 0(z) and the depth h(x) are any functions of the
distance « from its close end, where there is friction between the water
and the wall enclosing it. Using the general expression of the water
clevation thus obtained, we studied the case of the bay of rectangular
section with horizontal bed.”

In the present study we ignore the decay of wave motion in the
bay that occurs from the fact that a part of the energy of the reflected
waves in the bay is propagated in the open sea as circular wave of
diverging type. As in the case of sound wave in a tube, one end of
which is open, what has just been said must be taken into con-
sideration when studying wave motion in a bay. The theory of wave
motion as thus corrected will give us such a result as may be suf-
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ficient to remove the position of the mouth of the bay from the position
which is assumed in the uncorrected theory of the bay of the present
study as in the case of the corrccted theory of sound wave in an open
pipe.”

In this paper therefore we disregard the decay of energy from the
mouth of the bay. We intend to deal with the corrected theory above
mentioned on an other occasion.

S /

Fig. 2.

2. Let the axis of » be parallel to the length of the bay, that
of y vertical and upwards, and let us suppose that the motion takes place
in these two dimensions z, 3. Let the ordinate for the free surface,
corresponding to the abscissa z, at time ¢, be denoted by 7%, where
1), is the ordinate in the undisturbed state. We shall assume that the
vertical acceleration is the same for all particles in a plane perpen-
dicular to 2, and that all the particles which lic in such a plane do so
always; in other worde, that the horizontal velocity w is & function

of x and ¢ only. Now let &= f udt; neglecting u%—b, which is. of the
o X ’

second order in the case of infinitely small motions, the equation of
horizontal motion may then be written

FE__ 00 )

ot ox
where ¢ is the acceleration of gravity. When the section (S, say) of
the bay is not uniform, but varies gradually from point to point, the

equation of continuity of flow is

5) The corrected theory is treated in Lamb’s Sound Dynamics.
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Neglecting the higher order of infinitesimals, we obtain
% (0@ LE)EFT+UR)=0,................(2

where () denotes the breadth at the surface, and 7(x) denotes the mean
depth over the width b().
Eliminating & between (1) and (2), the equation in % is
8'?7} g 0 { an
=L 2 h(x) (2 —}
otr  blx)ox ()R )9x '
In the present study the conditions arc as follows. The initial and the

boundary conditions which we have already discussed in section 1 are
expressed by the following mathematical expressions.

..(3)

‘When =0, 7=0,........c.oi i (9)
o

< d —=0,............“....--......5

an y (%)

in the bay. And at the open end x=7» which communicates with the
open sca,

and at the closed end x=h. of the bay
a
—=kn, o (T
Pl (7)

where 4 is a constant related to the friction between the water and the
wall of the bay at x=1l,.

The boundary condition at xz=h. expressed by (7) is accordant with
the assumption that when the water particle along the plane x=17, moves
there is a resistance proportional to the shear strain of water, and it
is found by means of the ordinary form of the equation of continuity.

Now the cquation of continuity is

ou , ov
8.c+<9y ®)
‘Whenee - v:-—y?—“. PR )|
ox

If the origin (for the time being) is taken to be in the bottom of the
bay, : :
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[vit= g R (10)
ox

Using expression (2), and differentiating (10) with respect to ¢ we
obtain
gl ydSk

VY S TS de ot

................ .1y

Now generally in two dimemsional problems the shear strain is
expressed by

ov |, ou
e e A 12
dx Yy (12

but, as already discussed in this section, Zi”=0. Therefore, if there is
Y

friction at x=h,, it may be expressed by an expression such that

ov
L=, e 13
ox ( 3)

where I is a certain constant when there is slidable friction at x=h..
From the two expressions (11) and (13) we obtain

i{éf”‘_’?}w {161835} z{“’u‘ds% ..(14)

xS at S dx ot Sat " Sde ot

Moreover, if we assume that at @=h,, the space derivatives of b and
I are very small;- so that by neglecting the higher order of the deriva-
tives of these quantities, we obtain expression (7).

Applying now Stokes’ method, we shall solve equation (3) by the
initial and the boundary conditions (4), (5), (6), (7) as follows.

We assume that the function of x, such as y(2), is the solution of
the differential equation of

sz(’o) A
l a (@) =0, .......... 15)
b(b)d {)m () LX) } ,hx(@) (
with the conditions such that
s(h)=0, ... e (16)
and G0t gy g (17)
Wity

Then we can prove that x,(z), which is the solution of (15) and
which satisfies conditions (16) and (17), is a normal function as follows.
Generally we assume s#p, so that from equation (15) we have
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and
1 dx(z)) | A%
_— ] z LV 0 ....
b(x)d%g (@) 1(a) X }+}1x1()

Then

ﬁlr (a3 *Ki)fhzb(;v)xs(m) X,,(.:) dzx

. dxn(hs) dxs(hs)
b(ho)h(hw){xs hp) A2 dhe Xp(h2) =222 ke }

—b(h)h (hs) {Xs(’ll) dX”(h’ e (hy) DXeli) dys(lr) }

. d]l1
From condtions (16) and (17) and

X,;(ILI) = 0 .......................

dx,,(h,) =
Yolha),
dhs Xl 2)
we obtain

—(xs AZ) f b (2) xe(2) yle) dw=0.

If then we can obtain

131

we can easily expand # into series of y(z), thus:

7 (x, 1) =§Asxs(a~), ... ,- ........ e

where

f hzb(x)n(a:, txs(x)d

-As= It

fhzb (2) xi(z) d

(3

If we can normalize

Asy= fhzb @)z, ) xs(@da. . ...

“hy

1
we can then also expand — 2
P b(zx) oz

follows.

....................

f hzb (@@ de, o e

...(22)

..(25)

[12

J {b(x)h(:c) ?} into series of y;(x) as
; 2z
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bENE 2 x()ak
T QOUOEUES me“ "’E{,,g ) L ....(28)
i JRIGEEOL:
Now

f:"%[b@)h(f)"’”]xs(a at

=[ s ) 007 (h)d’“(’”)} o (h.)b(bl)h(in)d’“(’”)}]
- [ {77 (he) b(Ii2) I (hg)d—ﬁ—gﬁ%} — {Xs (1) b (ha) B (hs) é’%}]

RGP LIGIIGE -] L @0

By using boundary conditions (6), (7) and %lso relations (15), (16),
(17), we can reduce (27) to the following :

[ "2 [oone 2

=5 (7o) b (1) 1o (ha) Tomp(Dazy ) — Doz, €)1 (Rie) B 2) %2
+00 R B (032 4, 000 0o

=0 () R (i )d%”“) dxelhn) £ gy M -4 f bE)(EVAE, ... .. 28)
go that (26) reduces to

7y dxs(Tn) A, 2 \

< 1) h () =22 == — 240 D 2E)d

1 {b(z)h(@ _,7} X(m)b(h)h( ) il 7 (t) T l (E)x:(8) 5.
b(x) oz P) Z_ s

f%@ﬁ@@

I
Now % is also expanded in series of y,(z), thus:

8?97 < A, ‘
— R 11
ot ~ dt ( )

Whence (38), (29), and (80) give
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b () () S0

2 2
Loy gXi=— M f@). i (31)
N RIGPEGL:
hiy

To solve this equation by the conditions that
t=0:— As=0, oo (32)
and ‘-if_lszo, .................... (83)

dt

which correspond to (4) and (5), we obtain
_A_S: ]L 1/2 1/21)(11;1) ) (hl)Xs,(hl) f(ig')sin {g”',;/)%(t-f)}df ..... (34)
xsf bENE E ), h

Then the final solution that satisfies (8), (4), (5), (6), 7) is easily
written by means of (23) and (84), such that

w= e gy (o) 1 () >, — X n)sa) / 7 @sin{g™ S -6 dz,
BRI RGRGL

ha

.............. (85)
where A; is the sth root of
Axelhs) _ Exs(he) =0, ... ... L. (86)
dh,
and y,(z) is the normal function satisfies (15).
In the following study we take for simplicity,
k=0, that is
o/ U ...(37)
ox
and M:O(SS)
dh,

Using this general expression (35), we shall study the surface eleva-
tion of water in bays of special forms.

2a. A Straight Bay, with Horizontal Bed, and Vertical Sides.

Let us suppose that the breadth of a bay is constantly B, and that
the depth is equal to D, then

be)=B, hx)=D. ............cc......(39)

Equation (15) in this case then reduces to
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dzys (.Tr) 7\3
+
da? D

of which the solution is

i e ) (S ) -

where Ji(e) and Ti(e) are Bessel functions.
Expression (39) naturally satisfies the condition y;(x) at x=~n; such
that s(h:)=0 expressed by (16), and A, is the sth root of

A () . - o

which is obtained from the condition expressed in (38).
Now (41) reduces to

wo== 2 o () ()= (i) (i)
..(48)

XY =0, e (40)

where 2 is equal to the expression

)\s:<s——;—>l@, 49

a

where s is any positive integer such that 1, 2, 8, and « is equal to the
distance from x=h, to x=Hh, that is the length of the canal. Therefore
from expression (35)

L asinf M=) .
Ry A 8111{ ViuD } f}(g)bm{t;_)“(t_‘g)}df ..... (45)

ol 4o {QM_sin <2M>}"°
YiuD VhD
To obtain this expression we use the integral formula
", BYD® (2 . (2\a
Y(E)dE =" ‘[ ;—sm( _>} ........ (46
-[,Y 4 NVl WIuD YD )

The surface elevation at the closed end of the bay is given by

)
W Agsin
47b1vg 1’&]
whs/? <= {2xsa - <2)\3a>
—— — SIn
th.l) Vh1D

Ne=hy =

[7@sin PP (1—) e

...(47)
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2b. When the clevation f(f) at the open end of the rectangular g
bay is given by
f (t) :’y?]oigaﬁ te . (48)

where v and 8 are merely numerical parameters by which the form of

S () varies, the surface elevation at the closed end z=h. using the inte-
gral formula

rt e )
J fc—zzssinl/ixs({,_g) dE
0 Iy
= V;q—hﬂ\s otC_m-{- QPY(—ﬂ/EXf _,G—M
s+ up’ (gAZ+ Ty
— 2PV-&VE‘ cos 1@_7\“' t_hl(ghi—hl]}?) “in Vﬁl\st
(gri+lap®) Vb (GN+Rap® VR
is given by the expression

1
(—1)g+l<8—*> — Vb,
~ 2/ VgD, -s52
Noere=2770 > L2 4o

=L ¢
+2<*">“‘(S*%>B s
)

oro- L)

( _;)?Wewe}'-’cos K’g—%)”@t}

"2
(I e
_w((s ~>7T Bjshl{s_%")"r@t} ... (49)

{o-5)=+e}

From this expression we can sce that the water surface at z=h,
in the bay rises after time

L), the time necessary for the wave to
g .

propagate from the open end to the head of the bay, and that after
a certain interval of time, of which the magnitude is a function of ygD,

« and B, the free oscillations of the water or seiches of the bay are



12] The Long Wave in « Bay of Variable Section. 191
cxcited in the bay, and the periods of the free oscillations are as
2a 1
usual equal to _< ———).
d VgD "o

Since the respective terms of the series expressed by (49) become
very small and equal to zero (from the stand point of physics) when
the value of s becomes more or less large, say for example, 7 or 8, it
is possible to make numerical calculations of expression (49).

We shall give examples of two calculations, one numerical and the
other graphical for the cases 8=1 and B=3.

‘When B=1,

)
o ¢

msm=f(t)='yvol/_%—2tc— e (50)

and

7?:0:@‘—“'}’7702(— 1)s+1
§=1

(o 1Y o
+2(<9 2)077 1 sin{vr(s—‘l’>@t} . (51)

a

of which the results of the numerical calculations are shown in Iigs.
3 and 4. In Fig. 4, the thin lines correspond to the respective terms
of the series when s=1, 2, 8, 4, 5, 6, 7 and 8, while the thick line show
the final result which corresponds to (51) when the all terms from s=1
to s=8 are summed. These figures show that when the time interval
of the clevation at the open end is longer than the fundamental pe-

riod of the bay V4£1L)’ the seich of the fundamental period predominates
g ‘
in the bay. Upon lapse of time 1/aD after the initial time, the
g
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Flg 3. Nx=h1, ﬁ=]

-3

F]g 4. Yx=ha, ﬂ=l

water surface at the closed end of course begins to rise.
When 8=3,

vab
b,

7}Z=h)=f(t)=’y7]0@ te" ¢
a

2

1 _
had 2<8__) - —3‘%”1
and '7Jv=hz="/77¢vZ(—1)“’ .\ 2 V_gll .

S = e
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12<S——1> YD,
2 0—.) a
{(s——l >-772+9;~

2 )

12<8—%> cos jW(S_L>Vg—D t}

s

The results of the nurnerical calculations 7
are shown in Figs. 5 and 6. In TFig. 6 the 7%
thin lines have also the same meaning as gz~
in Fig. 4, while the thick line shows the
final result corresponding to (53) when the
summation of the respective terms in (53)
are made from s=1 to s=8. IFrom these ¢4
figures we can understand that when the
time interval of the elevation at the open

end is nearly equal to the fundamental

period of the bay %, the seich of the
V

0-05

fundamental period is naturally excited, and

the seich of the third harmonics of which o b——3 ——
4a

the period is ——— is also excited. When the
3YgD

&

S
6

Fig. 5. 7x=n1, B=3.
interval of time during which the excitation at the open end takes place

is nearly equal to the fundamental peried %, the ratio of amplitude

of the free oscillation of the fundamental period to the maximum height

at the open end is larger than that in such cases as when the excita-
da

tion time interval at the open end is longer than

g
2c. When f (1) at the open end of the rectangular bay is given by
f(#)=1n,sin (a@_ t>, .................... (54)
a

where 7 and o are dimensionless numbers which respectively change the
amplitude of the elevation and the period of the oscillation.
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0-05

" wA’m.’& .

=005

3

—-10-
Fig. 6. 7zr=ny, B=3.

. _
Now f sin xE sinl/l?xs(t -£)dE
0 ]L1

:—“—M sin ot — — % _gin l/_(i Ast. . ... (55)
(9N —hare?) (A3 =han?)
Using the above integral formula, the surface elevation at the closed
end x=h, due to (64) is formulated as follows:

S (=10 (. I\ VgD
Neeng=2TMo 2 5 [(s—-——)smoc 9L ¢
=1 {(s_%> 772—052} 2 a

—% sin{(s——;-)w@ z’,}] ...................... (56)

This expression shews that, as in the general theory of the forced
harmonic oscillation of an elastic pendulum, when ot=<8—%>7r, that is,
when the period’ of elevation f(f) at the open end is equal to the period
of the free oscillation of water in the bay, the wave height in the

estuary becomes infinite. That is to say, a resonance phenomenon takes
place in the bay, to which case the theory of the present study is in-

applicable. Free oscillations of periods ____4“_1_’ when s=1, 2, 3,..
o (-5)
.., are also excited to satisfy the initial condition in the bay.
When a=2mr,
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f(t)=7n,sin (271'1/.-(12 t>,
a

and Ne=hy= 27‘7702' %
Se=1 {(8—%—) _4}71_‘2

X {(s— %) sin (2# @ t) —2sin ((s — %)71-1/-‘7@1 t)} ..... (58)

a
Since the exciting period at the open end is V%’ the free oscilla-
9
tion of the third harmonics whose period is ?—343—5 predominates in the
9

bay. The periods and the amplitudes of the free oscillations are asfollows :

period amplitude period amplitude
7)o T
4a 4a
oD o108 iysD 0015
4a 4a
— - 232 bl "
5yoD 023 13y5D 00705
4a 4a
D 0180 ByiD 0008
da 4da
oD 0049 YD 0006
4a 4a
AL 02 L 005
53D 0025 175D 0005
7
The numerical results of (57) and 7%
{68) are shown in Figs. 7 and 8 respec- 2y
tively. In Fig. 8, the fine lines corres-
pond to the elementary harmonic oscilla- Uﬁp p

tions that correspond to the respective
terms in (58) from s=1 to s=10. The ®
thick line indicates the final oscillation of
water at x=h,, and shews that the oscilla- ¢ Y,
tion whose period is equal to that of the

forced oscillation Y92 , and which con- -e¢f || |} |} ; X
a
tinues for the interval 3-5 Vg_D, are re-
. . o 4a @ o8-
peated with period =
g

2d. When the clevation f(¢) at the Ll

-open end of the bay is given by Fig. 7. yz=m, c«=2m
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Fig. 8. #z=pn, x=2m,
YD, _
f(t):'ymwtc “ +7nosmocV9D by ooeeieee e (59)
a a
the water height at x=h, is given by
Npeny="Nz=n, CXpressed by (49)
+m-n, €xpressed by (58). .............. (60)

For ==, 8=1, and «=3, the numerical results of (59) and (60)

are shown in Figs. 9 and 10 respectively. These curves are obtained by
superposing the two curves in Figs. 8 and 7.
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Fig. 9.
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Fig. 10.
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