2008年岩手・宮城内陸地震震源域北部における稠密余震観測

蔵下英司¹⁾*・佐藤比呂志¹⁾・阿部 進²⁾・岩崎貴哉¹⁾・飯高 隆¹⁾・加藤直子¹⁾・坂 守¹⁾・越 谷 信³⁾・野田 賢³⁾・芹澤正人¹⁾・佐藤史祥³⁾・綿引芙美子³⁾・茂木太郎³⁾・花田 類³⁾・川中 卓²⁾・酒井慎一¹⁾・加藤愛太郎¹⁾・金澤敏彦¹⁾・平田 直¹⁾

1) 東京大学地震研究所

2)(株)地球科学総合研究所

High-density Seismic Array Observations Across the Northern Focal Area of the 2008 Iwate-Miyagi Nairiku Earthquake

Eiji Kurashimo¹⁾*, Hiroshi Sato¹⁾, Susumu Abe²⁾, Takaya Iwasaki¹⁾, Takashi Iidaka¹⁾, Naoko Kato¹⁾, Mamoru Saka¹⁾, Shin Koshiya³⁾, Masaru Noda³⁾, Masato Serizawa¹⁾, Fumiaki Sato³⁾, Fumiko Watahiki³⁾, Taro Mogi³⁾, Rui Hanada³⁾, Taku Kawanaka²⁾, Shinichi Sakai¹⁾, Aitaro Kato¹⁾, Toshihiko Kanazawa¹⁾ and Naoshi Hirata¹⁾

¹⁾ Earthquake Research Institute, the University of Tokyo²⁾ JGI, Inc.

³⁾ Faculty of Engineering, Iwate University

Abstract

On June 14, 2008, the 2008 Iwate-Miyagi Nairiku Earthquake (M_{JMA} 7.2) occurred in the central part of northern Honshu, Japan. The northern part of the focal area is near the Dedana fault, which is south of the western marginal faults of the Kitakami lowlands. Seismic reflection/refraction experiments were conducted across the Dedana fault in 2006 and 2007. Deeper extensions of the west-dipping listric faults were well demonstrated on the seismic reflection section. Revealing the relationship between an active fault system and aftershock distribution is important to constrain the process of earthquake occurrence. We conducted high-density seismic array observations across the northern focal area to investigate the relationships between aftershock distribution and crustal structure. We obtained high signal-to-noise ratio data. Prominent late arrivals, probably reflected waves from the deeper part of the crust, can be recognized on the record sections. The aftershock distribution and seismic velocity structure in and around the northern focal area of the 2008 Iwate Miyagi Nairiku earthquake will be published in a separate paper.

Key words: the Iwate-Miyagi Nairiku Earthquake in 2008, active fault system, aftershock observations

1. はじめに

2008 年 6 月 14 日午前 8 時 43 分に,岩手県内陸南部の 深さ 8 km を震源とする平成 20 年 (2008 年) 岩手・宮城 内陸地震 (M_{JMA} 7.2) が発生した (気象庁, 2008). この 地震により,岩手県と宮城県で最大震度 6 強を観測し, 家屋の倒壊や土砂災害,道路の崩壊などの被害が発生した.発震機構は西北西-東南東方向に圧力軸を持つ逆断 層型で,余震は,奥羽脊梁山地東縁部の北北東から南南 西方向に長さ約45km,幅約15kmの広がりで分布して いる(岡田・他,2008).余震が発生している奥羽脊梁山

*e-mail: ekura@eri.u-tokyo.ac.jp(〒113-0032 東京都文京区弥生 1-1-1)

³⁾ 岩手大学工学部

地と北上山地の間は、日本海形成に伴う背弧リフトの東 縁に相当し(Sato, 1994),かつて日本海が拡大した際に 活動した正断層群が存在する(Kato *et al.*, 2006;阿部・ 他,2008).余震域の北部は,北上低地西縁断層帯の一部 である出店断層(活断層研究会,1991)に隣接している. 活断層として知られる出店断層は、日本海が拡大した際 に活動した正断層の反転運動と、反転運動に伴って正断 層の高角度部分が逆断層によってショートカットされて 形成された断層であると考えられている(Kato *et al.*, 2006).2006年と2007年に、制御震源として火薬とバイ ブレータ震源を用いた地殻構造探査が出店断層を横断す る測線で実施され(阿部・他,2008;斉藤・他,2008)、

岩手・宮城内陸地震の余震域北部における上部地殻全体 の反射法断面図が得られていた.得られた断面図から は、出店断層の地下深部における形状が、深さ 10 km 程 度まで確認できる.また、出店断層の西側に1条、東側 にも数状の西傾斜の古い正断層群が、数キロメートルの 間隔でイメージングされている. 地表で確認されている 活断層と地下の震源断層との関係を明らかにすること は、活断層の活動評価を行うにあたって重要である. 日 本列島は、岩手・宮城内陸地震の余震域も含め、高密度 な地震観測網が整備されている.しかしながら、観測点 間隔は平均20kmであり、それらのデータを用いた解析 から得られる震源(気象庁一元化震源)には、数キロ メートル間隔で存在する断層群と対応可能な精度が無 く,気象庁一元化震源の分布からは反射法断面図から示 された断層群の、どの断層が震源断層かを特定すること はできない. そこで, 地殻構造探査が実施された測線と 同じ測線で,数キロメートル間隔で存在する断層群と対 応可能な高精度の余震分布を得るための稠密余震アレイ 観測を実施した.

本報告では,岩手・宮城内陸地震の余震域北部におけ る稠密余震アレイ観測の概要と得られた観測波形例を示 す.データの解析により得られた余震分布と地殻構造に ついては,別途に報告する予定である.

2. 観測

稠密余震アレイ観測は、2006年と2007年に奥州市胆 沢川沿いで実施された地殻構造探査(阿部・他,2008; 斉藤・他,2008)の測線に沿った、奥羽山脈の東縁部か ら北上低地帯を経て北上山地に至る約40kmの測線で実 施した(Fig.1).観測期間は、2008年7月4日18時00 分から7月12日18時00までの8日間で、データ収録に は、オフラインレコーダであるLS8200SD(蔵下・他, 2006)を234台、地球科学総合研究所社製のMS2000を

115 台, それぞれ使用した. MS2000 は, リチュームイオ ンバッテリーを2個接続することで8日間の連続観測が 可能となるが、LS8200SDは、サンプリング周波数を 125Hzとして設定した場合,連続観測が可能な日数は4 日間である. そこで, LS8200SD を設置する観測点では, サンプリング周波数を125Hzとし、1つの観測点に、前 半4日間の観測スケジュールを設定した LS8200SD と 後半4日間の観測スケジュールを設定したLS8200SD を設置することで8日間の連続記録を得た.尚,MS2000 のサンプリング周波数は 250 Hz として連続観測を行なっ た. 観測点は, 測線上に約 150 m 間隔で 277 箇所を設定 した. 測線上に設置した観測点のうち, 測線中央から西 側には、約1km間隔で20点のMS2000を用いた3成 分観測点とし、それ以外の観測点は、LS8200SDもしく は MS2000 を用いた上下動成分のみの観測点とした.ま た,震源決定の精度を向上させる為に,測線周辺の5箇 所にも MS2000 を用いた 3 成分観測点を設置した.設置 した観測点の総数は282点である.使用した受振器は, 上下動観測点では、固有周波数 4.5 Hz の速度型地震計 (GS-11D), 10 Hz の速度型地震計(SM-7)を使用した. MS2000 は1台で6chのデータ収録ができるため, MS 2000 にジャンパーケーブルを接続することで、2~3 観測 点分の上下動観測点のデータを1台の MS2000 で収録 した箇所がある.ジャンパーケーブルを使用した観測点 の上下動地震計は GS-11D を使用し, MS2000 を設置し た観測点では上下動地震計として GS-11D と SM-7 を使 用した.3成分観測点では,GS-11D,2Hzの速度型地震 計(L-22D),もしくはアナログ出力型の MEMS 加速度 計を使用した. 各観測点の位置と使用したレコーダ, 地 震計の種類を Table 1 に示す.

3. データ処理と観測結果

各オフラインレコーダで得られた記録は連続記録であ るため、解析に使用する震源リストに基づき、地震毎の データに編集する必要がある.そこで、観測期間中の気 象庁一元化震源カタログから、Fig.2で示す範囲で発生 した地震(590個)からなるイベントリストを作成し、作 成したイベントリストに従って、連続記録からイベント毎 のデータに編集する作業を行った.編集後のデータフォー マットは、SEG-Yフォーマット(Barry *et al.*, 1975)と し、データの先頭時刻は、気象庁で決定された震源時か ら10秒前とした.本観測では、2種類のオフラインレ コーダと4種類の地震計を使用したが、編集後の波形 データの単位は、速度型地震計がmkine、加速度型地震 計がmGになるように感度補正を施した.作成したイベ

Fig. 1. Location map of the 2008 Iwate Miyagi Nairiku earthquake. The study area is indicated by a solid square (inset map). The red and blue lines indicate the seismic array using vertical-component seismometers. Blue circles indicate seismic stations with three component seismometers. Aftershock hypocenters located by the JMA (2008/6/14-7/14) are shown as open circles scaled to the earthquake magnitude.

ント毎の距離時間軸断面(共通震源記録)の例として, Fig. 3に、測線直下の深さ11.8km で発生した地震(M_{JMA}= 2.1)の観測波形を, Fig. 4 に, 測線直下の深さ 8.8 km で 発生した地震(M_{JMA}=4.0)の観測波形を示す.それぞれ の記録は、測線上で得られた上下動成分のデータを用い て作成した.時間軸は原点が震源時に対応し,6km/sで リデュースしてある. 振幅はトーレスごとに最大振幅値 で規格化して示してある.波形記録にはフィルター処理 を施していない.得られた記録の信号対雑音比は良好 で、P波初動やS波初動が明瞭に観測されている. Fig. 3では、P波初動到達後に、地殻深部からの反射波と考 えられる反射波を確認することができる.また,S-P時 間に着目すると、Fig. 4 で示す地震は、気象庁一元化震 源要素によると深さ 8.8 km で発生したとされているが, 震源の直上付近で観測された波形から読み取れる S-P 時刻は1秒より小さい. このことより, 実際の震源の深 さは、気象庁一元化震源要素で示されている深さよりも 浅いことが予想される.

Fig. 2. Distribution of hypocenters located by the JMA during the period of seismic array observation (from 18:00 h on July 4 to 18:00 h on July 12, Japan standard time). During the period of seismic array observation, JMA located 590 events. The circles are scaled to the earthquake magnitude. Focal depths of the earthquakes are indicated with a color scale. Crosses indicate the location of temporary seismic stations.

Table 1. Specification of observation sites.

Number	station name	Latitude (deg.)	Longitude (deg.)	Height (m)	Recording system	No. of components	Sensor
1	1	39.06398	141.21722	262	LS8200SD	1	GS-11 (4.5Hz)
2	2	39.06163	141.21595	288	LS8200SD	1	GS-11 (4.5Hz)
3	3	39.05888	141.21517	292	LS8200SD	1	GS-11 (4.5Hz)
4	4	39.05445	141.21261	282	LS8200SD	1	GS-11 (4.5Hz)
5	5	39.05464	141.21123	277	LS8200SD	1	GS-11 (4.5Hz)
6	7	39.05507	141,20794	218	LS8200SD	1	GS-11 (4.5Hz)
7	8	39.05534	141,20597	190	LS8200SD	1	GS-11 (4.5Hz)
8	9	39 05536	141,20449	166	LS8200SD	1	GS-11 (4.5Hz)
9	10	39,05586	141,20316	151	LS8200SD	1	GS-11 (4.5Hz)
10	11	39.05534	141,20116	149	LS8200SD	1	GS-11 (4.5Hz)
11	12	39 05483	141 20014	142	LS8200SD	1	GS-11 (45Hz)
12	13	39 05486	141 19831	126	L \$8200SD	1	GS = 11 (4.5Hz)
13	14	39 05453	141,19633	126	LS8200SD	1	GS-11 (4.5Hz)
14	15	39,05500	141,19493	110	LS8200SD	1	GS-11 (4.5Hz)
15	16	39 05282	141 19286	108	L \$8200SD	1	GS-11 (4.5Hz)
16	17	39.05305	141 19063	102	L \$82005D	1	GS = 11 (4.5Hz)
17	18	39.05255	141 18918	100	L \$82005D	1	GS = 11 (4.5Hz)
18	19	39.05297	141 18763	93	1 5820050	1	GS = 11 (4.5Hz)
10	20	39.05237	141 18600	78	1 582005D	1	GS = 11 (4.5Hz)
20	20	30.05319	141 19470	70	1 582005D	1	GS = 11 (4.5Hz)
20	21	20.05201	141.10470	73	1 502003D	1	$G_{2} = 11 (4.5H_{2})$
21	22	20.05295	141.10331	64	L302003D	1	$G_{3}=11$ (4.5Hz)
22	23	39.05565	141.10105	50	L382003D	1	GS-11 (4.5Hz)
23	24	39.05517	141.17904	59	L362003D	1	GS-11 (4.5Hz)
24	25	39.05510	141.17610	45	L582005D	1	GS-11 (4.5HZ)
25	20	39.05455	141.17030	52	LS8200SD	1	GS-11 (4.5Hz)
26	27	39.05523	141.17473	40	LS8200SD	1	GS-11 (4.5Hz)
27	28	39.05840	141.17204	28	LS8200SD	1	GS-11 (4.5Hz)
28	29	39.05939	141.17075	28	LS8200SD	1	GS-11 (4.5Hz)
29	30	39.06020	141.16939	27	LS8200SD		GS-11 (4.5Hz)
30	31	39.06127	141.16799	27	LS8200SD	1	GS-11 (4.5Hz)
31	32	39.06232	141.16632	25	LS8200SD	1	GS-11 (4.5Hz)
32	33	39.06395	141.16536	24	LS8200SD	1	GS-11 (4.5Hz)
33	34	39.06594	141.16297	24	LS8200SD	1	GS-11 (4.5Hz)
34	35	39.06545	141.16132	25	LS8200SD	1	GS-11 (4.5Hz)
35	36	39.06500	141.16013	25	LS8200SD	1	GS-11 (4.5Hz)
36	37	39.06407	141.15898	26	LS8200SD	1	GS-11 (4.5Hz)
37	38	39.06477	141.15706	27	LS8200SD	1	GS-11 (4.5Hz)
38	39	39.06423	141.15563	27	LS8200SD	1	GS-11 (4.5Hz)
39	40	39.06385	141.15400	26	LS8200SD	1	GS-11 (4.5Hz)
40	41	39.06362	141.15182	26	LS8200SD	1	GS-11 (4.5Hz)
41	42	39.06351	141.15044	27	LS8200SD	1	GS-11 (4.5Hz)
42	43	39.06333	141.14831	28	LS8200SD	1	GS-11 (4.5Hz)
43	44	39.06363	141.14697	29	LS8200SD	1	GS-11 (4.5Hz)
44	45	39.06401	141.14513	30	LS8200SD	1	GS-11 (4.5Hz)
45	46	39.06442	141.14397	31	LS8200SD	1	GS-11 (4.5Hz)
46	47	39.06485	141.14201	31	LS8200SD	1	GS-11 (4.5Hz)
47	48	39.06517	141.14046	32	LS8200SD	1	GS-11 (4.5Hz)
48	49	39.06581	141.13812	33	LS8200SD	1	GS-11 (4.5Hz)
49	50	39.06612	141.13662	34	LS8200SD	1	GS-11 (4.5Hz)
50	51	39.06700	141.13511	35	LS8200SD	1	GS-11 (4.5Hz)
51	52	39.06841	141.13365	37	LS8200SD	1	GS-11 (4.5Hz)
52	53	39.06832	141.13186	37	LS8200SD	1	GS-11 (4.5Hz)
53	54	39.06878	141.13001	37	LS8200SD	1	GS-11 (4.5Hz)
54	55	39.06888	141.12779	45	LS8200SD	1	GS-11 (4.5Hz)
55	56	39.06972	141.12638	68	LS8200SD	1	GS-11 (4.5Hz)
56	57	39.06999	141.12514	73	LS8200SD	1	GS-11 (4.5Hz)
57	58	39.07084	141.12380	81	LS8200SD	1	GS-11 (4.5Hz)
58	59	39.07195	141.12167	82	LS8200SD	1	GS-11 (4.5Hz)
59	60	39.07261	141.11979	83	LS8200SD	1	GS-11 (4.5Hz)
60	61	39.07324	141.11819	83	LS8200SD	1	GS-11 (4.5Hz)

2008 年岩手・宮城内陸地震震源域北部における稠密余震観測

Number	station name	Latitude (deg.)	Longitude (deg.)	Height (m)	Recording system	No. of components	Sensor
61	62	39.07366	141.11708	83	LS8200SD	1	GS-11 (4.5Hz)
62	63	39.07432	141.11526	83	LS8200SD	1	GS-11 (4.5Hz)
63	64	39.07497	141.11359	84	LS8200SD	1	GS-11 (4.5Hz)
64	65	39.07559	141.11199	84	LS8200SD	1	GS-11 (4.5Hz)
65	66	39.07643	141,10985	87	LS8200SD	1	GS-11 (4.5Hz)
66	67	39.07717	141,10798	88	LS8200SD	1	GS-11 (4.5Hz)
67	68	39 07794	141 10642	88	L \$8200SD	1	GS = 11 (4.5Hz)
68	69	39 07934	141 10478	85	L \$8200SD	i	GS = 11 (4.5Hz)
69	70	39 08033	141 10359	87	1 \$820050	1	$GS=11(45H_{2})$
70	71	39 08098	141 10155	89	1 \$820050	1	GS=11(4.5Hz)
71	72	39.08104	1/1 00081	91	1 5820050	1	GS = 11 (4.5Hz)
70	72	30.00104	141.00921	02	1 5820050	4	GS = 11 (4.5Hz)
72	70	30.00100	141.00622	02	1 5820050	4	GS = 11 (4.5Hz)
73	74	20.00200	141.09023	92	1 5020030	4	GS-11 (4.5Hz)
74	75	39.06207	141.09403	95		1	GS-11 (4.5Hz)
75	70	39.06239	141.09323	95	L302003D	1	GS-11 (4.5Hz)
70	77	39.08299	141.09210	90	LS8200SD	1	GS-11 (4.5Hz)
77	78	39.08327	141.08984	96	LS8200SD		GS-11 (4.5Hz)
78	/9	39.08378	141.08845	97	LS8200SD	1	GS-11 (4.5Hz)
/9	80	39.08453	141.08668	99	LS8200SD	1	GS-11 (4.5Hz)
80	81	39.08537	141.08463	100	LS8200SD	1	GS-11 (4.5Hz)
81	82	39.08597	141.08283	101	LS8200SD	1	GS-11 (4.5Hz)
82	83	39.08591	141.08133	101	LS8200SD	1	GS-11 (4.5Hz)
83	84	39.08599	141.07983	103	LS8200SD	1	GS-11 (4.5Hz)
84	85	39.08610	141.07841	104	LS8200SD	1	GS-11 (4.5Hz)
85	86	39.08636	141.07700	105	LS8200SD	1	GS-11 (4.5Hz)
86	87	39.08654	141.07521	105	LS8200SD	1	GS-11 (4.5Hz)
87	88	39.08619	141.07344	106	LS8200SD	1	GS-11 (4.5Hz)
88	89	39.08619	141.07141	106	LS8200SD	1	GS-11 (4.5Hz)
89	90	39.08669	141.06960	108	LS8200SD	1	GS-11 (4.5Hz)
90	91	39.08718	141.06814	109	LS8200SD	1	GS-11 (4.5Hz)
91	92	39.08743	141.06717	110	LS8200SD	1	GS-11 (4.5Hz)
92	93	39.08761	141.06539	111	LS8200SD	1	GS-11 (4.5Hz)
93	94	39.08800	141.06354	113	LS8200SD	1	GS-11 (4.5Hz)
94	95	39.08877	141.06207	114	LS8200SD	1	GS-11 (4.5Hz)
95	96	39.08897	141.06042	115	LS8200SD	1	GS-11 (4.5Hz)
96	97	39.08987	141.05842	117	LS8200SD	1	GS-11 (4.5Hz)
97	98	39.09008	141.05673	119	LS8200SD	1	GS-11 (4.5Hz)
98	99	39.09096	141.05480	120	LS8200SD	1	GS-11 (4.5Hz)
99	100	39.09225	141.05356	122	LS8200SD	1	GS-11 (4.5Hz)
100	101	39.09299	141.05187	120	LS8200SD	1	GS-11 (4.5Hz)
101	102	39.09345	141.05024	125	LS8200SD	1	GS-11 (4.5Hz)
102	103	39.09378	141.04921	128	LS8200SD	1	GS-11 (4.5Hz)
103	104	39.09371	141.04769	133	LS8200SD	1	GS-11 (4.5Hz)
104	105	39.09358	141.04567	136	LS8200SD	i	GS-11 (4.5Hz)
105	106	39 09353	141 04395	140	L \$8200SD	1	GS-11 (4 5Hz)
106	107	39 09369	141 04193	145	L \$8200SD	1	GS = 11 (4.5Hz)
107	108	39 09393	141 04013	147	L \$8200SD	1	GS-11 (4 5Hz)
108	100	39 09408	141 03857	150	1 \$820050	1	GS = 11 (4.5Hz)
100	110	39 09473	141.03707	151	1 5820050	1	GS-11 (4.5Hz)
110	112	30 00705	141.03446	151	1 5820050	1	GS = 11 (4.5Hz)
110	112	20.00749	141.03440	156		1	GS-11 (4.5Hz)
110	113	39.09/48	141.03221	100	1 6020050	1	GS-11 (4.5HZ)
112	114	39.09617	141.03038	100	1 5020050		GS-11 (4.5HZ)
113	115	39.09934	141.02882	103	L202002D	1	GS-11 (4.5HZ)
114	110	39.10054	141.02/0/	104	L582005D	1	GS-11 (4.5HZ)
115	117	39.10160	141.02561	165	L58200SD	1	GS-11 (4.5Hz)
116	118	39.10294	141.02317	170	LS8200SD	1	GS-11 (4.5Hz)
11/	119	39.10365	141.02143	1/1	LS8200SD	1	GS-11 (4.5Hz)
118	L20	39.09555	141.03568	160	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
119	120	39.10402	141.02012	183	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
120	121	39.10469	141.01850	167	MS2000	1	GS-11 (4.5Hz)
121	122	39.10526	141.01668	192	MS2000	1	GS-11 (4.5Hz)

Table 1. (Continued)

蔵下英司 他

Table 1. (Continued)

Number	station name	Latitude (deg.)	Longitude (deg.)	Height (m)	Recording system	No. of components	Sensor
122	123	39.10551	141.01508	200	MS2000	1	GS-11 (4.5Hz). SM-7(10Hz)
123	L19	39.10541	141.01429	194	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
124	125	39.10548	141.01283	199	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
125	126	39.10795	141.01113	192	MS2000	1	GS-11 (4.5Hz)
126	127	39.10824	141.00944	199	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
127	128	39.10853	141.00772	202	MS2000	1	GS-11 (4.5Hz)
128	129	39,10891	141.00545	208	MS2000	1	GS-11 (4.5Hz)
129	130	39,10921	141.00389	204	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
130	L18	39,10943	141.00275	208	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
131	132	39 10983	141,00047	204	MS2000	1	GS-11 (4.5Hz)
132	133	39 11014	140 99884	215	MS2000	i	GS-11 (4 5Hz) SM-7(10Hz)
133	134	39 11036	140 99723	212	MS2000	1	GS-11 (4.5Hz)
134	135	39 11064	140 99540	218	MS2000	i	GS-11 (4 5Hz) SM-7(10Hz)
135	136	39 11094	140 99391	223	MS2000	1	GS-11 (4 5Hz)
136	1 17	39 11117	140 99233	228	MS2000	3	GS-11 (4 5Hz) 22-D (2Hz)
137	138	39 11129	140 99054	226	MS2000	1	GS-11 (4 5Hz)
138	139	39 11137	140 98873	223	MS2000	1	GS-11 (4 5Hz) SM-7(10Hz)
139	140	39 11116	140 98678	238	MS2000	្ម	GS-11 (4 5Hz)
140	141	39 11113	140 98526	235	MS2000	1	GS-11 (4 5Hz) SM-7(10Hz)
141	142	39 11108	140.98393	240	MS2000	1	GS-11 (4 5Hz)
141	142	39 11110	140.98393	240	MS2000	1	GS = 11 (4.5Hz)
1/12	143	39 11105	140.98205	241	MS2000	1	$GS = 11 (4.5H_{7}) SM = 7(10H_{7})$
143	144	39.11109	140.98035	242	MS2000	2	$G_{2}=11$ (4.5Hz), $SM=7(10Hz)$
144	146	20 11009	140.97880	234	MS2000	1	QS-11 (4.5HZ), LZZ-D (ZHZ)
140	140	39.11098	140.97772	240	MS2000	1	G_{3}^{-11} (4.5Hz) SM_7(10Hz)
140	147	39.11091	140.97613	249	MS2000	4	GS-11 (4.5Hz), SM-7(10Hz)
147	148	39.11084	140.97439	249	M52000		GS-11 (4.5Hz)
148	149	39.11056	140.97198	244	MS2000	1	GS-11 (4.5Hz)
149	150	39.11020	140.97038	251	MS2000		GS-11 (4.5Hz), SM-7(10Hz)
150	151	39.10976	140.96885	257	MS2000	1	GS-11 (4.5Hz)
151	L15	39.10965	140.96745	266	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
152	153	39.11008	140.96596	264	MS2000	1	GS-11 (4.5Hz)
153	154	39.11061	140.96435	263	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
154	155	39.11113	140.96286	265	MS2000	1	GS-11 (4.5Hz)
155	156	39.11256	140.95959	261	MS2000	1	GS-11 (4.5Hz)
156	157	39.11311	140.95861	265	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
157	158	39.11368	140.95712	258	MS2000	1	GS-11 (4.5Hz)
158	159	39.11394	140.95559	263	MS2000	1	GS-11 (4.5Hz)
159	160	39.11387	140.95392	268	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
160	161	39.11361	140.95219	269	MS2000	1	GS-11 (4.5Hz)
161	162	39.11365	140.95031	262	MS2000	1	GS-11 (4.5Hz)
162	163	39.11397	140.94843	251	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
163	164	39.11417	140.94730	252	MS2000	1	GS-11 (4.5Hz)
164	165	39.11491	140.94586	255	MS2000	1	GS-11 (4.5Hz)
165	166	39.11619	140.94589	247	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
166	167	39.11683	140.94308	253	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
167	168	39.11723	140.94153	256	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
168	169	39.11777	140.93994	257	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
169	170	39.11804	140.93841	259	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
170	L14	39.11836	140.93684	258	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
171	172	39.11933	140.93485	262	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
172	173	39.12479	140.93481	312	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
173	174	39.12558	140.93378	328	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
174	L13	39.12550	140.92732	455	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
175	176	39.12468	140.92435	355	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
176	177	39.12483	140.92157	369	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
177	178	39.12502	140.92046	378	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
178	179	39.12478	140.91386	382	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
179	L12	39.12377	140.91320	366	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
180	181	39.11748	140.91000	305	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
181	182	39.11720	140.90762	312	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
182	183	39.11708	140.90626	314	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)

Number	station name	Latitude (deg.)	Longitude (deg.)	Height (m)	Recording system	No. of components	Sensor
183	184	39.11624	140.90452	336	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
184	L11	39.11510	140.90350	329	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
185	186	39.11474	140.90234	341	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
186	L10	39.11908	140.89605	364	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
187	188	39.12021	140.89321	455	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
188	189	39.11678	140.89171	412	MS2000	1	GS-11 (4.5Hz)
189	190	39.11577	140.89120	401	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
190	191	39.11676	140.89054	422	MS2000	1	GS-11 (4.5Hz)
191	192	39.11310	140.88877	455	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
192	193	39.11644	140.88705	455	MS2000	1	GS-11 (4.5Hz)
193	194	39.11641	140.88553	446	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
194	195	39.11611	140.88447	508	MS2000	1	GS-11 (4.5Hz)
195	196	39.11519	140.88308	466	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
190	197	39.114/7	140.88068	470	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
197	198	39.11340	140.87999	409	MS2000	1	GS=11 (4.5Hz), SM=7(10Hz)
100	199	39.11229	140.07930	472	MS2000	2	
200	201	39 11125	140.87620	404	MS2000	1	GS-11 (4 5Hz) SM-7(10Hz)
200	201	39 11031	140.87503	470	MS2000	4	GS=11 (4.5Hz), SM=7(10Hz)
202	202	39 10891	140.87386	486	MS2000	1	GS=11 (4.5Hz), $SM=7(10Hz)$
203	204	39 10804	140.87384	462	MS2000	i	GS-11 (4.5Hz) $SM-7(10Hz)$
204	205	39,10706	140.87289	454	MS2000	i	GS-11 (4.5Hz), SM-7(10Hz)
205	206	39,10514	140.87024	450	MS2000	i	GS-11 (4.5Hz), SM-7(10Hz)
206	207	39,10466	140.86867	449	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
207	208	39.10452	140.86749	466	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
208	L08	39.10454	140.86608	466	MS2000	3	Analogue MEMS
209	210	39.10437	140.86419	457	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
210	211	39.10518	140.86284	455	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
211	212	39.10604	140.86218	463	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
212	213	39.10742	140.86038	474	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
213	214	39.10831	140.85895	471	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
214	215	39.10946	140.85755	488	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
215	216	39.11002	140.85600	473	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
216	L07	39.11187	140.85584	484	MS2000	3	Analogue MEMS
217	218	39.11172	140.85448	508	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
218	219	39.11017	140.85275	474	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
219	220	39.11021	140.85090	495	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
220	221	39.11201	140.84776	493	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
221	222	39.11271	140.84627	501	MS2000]	GS-11 (4.5Hz), SM-7(10Hz)
222	223	39.11361	140.84478	502	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
223	225	39.11020	140.64336	537	MS2000	3	Analogue MEMS C_{2} (10U-) C_{2}
224	225	39.11702	140.84200	544	MS2000	4	$G_{2}=11$ (4.5Hz), SM=7(10Hz)
226	220	39 11621	140.83945	540	MS2000	1	GS=11 (4.5Hz), SM=7(10Hz)
220	228	39 11484	140.83761	538	MS2000	1	GS=11 (4.5Hz), SM=7(10Hz)
228	229	39 11493	140.83688	537	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
229	230	39 11542	140 83610	547	MS2000	1	GS-11 (4.5Hz) SM-7(10Hz)
230	231	39,11730	140.83371	560	MS2000	i	GS-11 (4.5Hz), SM-7(10Hz)
231	232	39.11817	140.83312	609	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
232	L05	39.12137	140.83087	619	MS2000	3	Analogue MEMS
233	234	39.12236	140.82925	631	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
234	235	39.12616	140.82824	663	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
235	236	39.12584	140.82694	664	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
236	237	39.12711	140.82467	660	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
237	238	39.12651	140.82348	674	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
238	239	39.12869	140.82214	687	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
239	240	39.12764	140.82022	669	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
240	241	39.12862	140.81768	659	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
241	L04	39.12947	140.81778	662	MS2000	3	Analogue MEMS
242	243	39.12960	140.81606	661	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
243	244	39.13046	140.81536	651	MS2000	1	GS-11 (4.5Hz)

Table 1. (Continued)

蔵下英司 他

Table 1. (Continued)

Number	station name	Latitude (deg.)	Longitude (deg.)	Height (m)	Recording system	No. of components	Sensor
244	245	39.13038	140.81331	663	MS2000	1	GS-11 (4.5Hz)
245	246	39.13050	140.81192	660	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
246	247	39.13159	140.81119	653	MS2000	1	GS-11 (4.5Hz)
247	248	39.13194	140.80910	658	MS2000	1	GS-11 (4.5Hz)
248	249	39.13292	140.80770	659	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
249	250	39.13324	140.80643	664	MS2000	1	GS-11 (4.5Hz)
250	251	39.13486	140.80407	682	MS2000	1	GS-11 (4.5Hz)
251	252	39.13541	140.80280	673	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
252	253	39.13635	140.80194	666	MS2000	1	GS-11 (4.5Hz)
253	L03	39.13727	140.80016	669	MS2000	3	Analogue MEMS
254	255	39.13803	140.79782	682	MS2000	1	GS-11 (4.5Hz)
255	256	39.13783	140.79677	678	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
256	257	39.13776	140.79506	678	MS2000	1	GS-11 (4.5Hz)
257	258	39.13683	140.79202	682	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
258	259	39.13628	140.79056	663	MS2000	1	GS-11 (4.5Hz)
259	260	39.13588	140.78951	698	MS2000	1	GS-11 (4.5Hz)
260	261	39.13517	140.78847	702	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
261	262	39.13435	140.78733	702	MS2000	1	GS-11 (4.5Hz)
262	263	39.13384	140.78568	710	MS2000	1	GS-11 (4.5Hz)
263	264	39.13358	140.78413	719	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
264	265	39.13351	140.78270	721	MS2000	1	GS-11 (4.5Hz)
265	L02	39.13522	140.78105	740	MS2000	3	Analogue MEMS
266	267	39.13645	140.77896	737	MS2000	1	GS-11 (4.5Hz)
267	268	39.13613	140.77747	782	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
268	269	39.13644	140.77548	750	MS2000	1	GS-11 (4.5Hz)
269	270	39.13698	140.77399	750	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
270	271	39.13805	140.77340	752	MS2000	1	GS-11 (4.5Hz)
271	272	39.13930	140.77289	771	MS2000	1	GS-11 (4.5Hz)
272	273	39.14041	140.77183	779	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
273	274	39.14124	140.77060	780	MS2000	1	GS-11 (4.5Hz)
274	275	39.14230	140.76913	778	MS2000	1	GS-11 (4.5Hz)
275	276	39.14331	140.76847	801	MS2000	1	GS-11 (4.5Hz), SM-7(10Hz)
276	277	39.14468	140.76753	856	MS2000	1	GS-11 (4.5Hz)
277	L01	39.14957	140.76620	800	MS2000	3	Analogue MEMS
278	L21	39.07368	140.99720	191	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
279	L22	39.06164	140.98283	383	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
280	L23	39.04939	140.96766	634	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
281	L24	39.16857	140.97918	290	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)
282	L25	39.17424	140.98123	319	MS2000	3	GS-11 (4.5Hz), L22-D (2Hz)

Fig. 3. An example of observed seismograms (Origin time: 2008/7/5 21: 08: 18.860, Latitude: 39.11983° N Longitude: 140.83533° E, Depth: 11.8 km, $M_{JMA}=2.1$) recorded on the EW-line (vertical component). The horizontal axis is the source-receiver offset. Reduction velocity is 6 km/s. Remarkable later phase are indicated by an arrow.

Fig. 4. An example of observed seismograms (Origin time: 2008/7/5 13: 14: 36.640 Latitude: 39.10900° N Longitude: 140.94884° E, Depth: 8.8 km, M_{JMA}=4.0) recorded on the EW-line (vertical component). The horizontal axis is the source-receiver offset. Reduction velocity is 6 km/s.

4. おわりに

2008年6月14日午前8時43分に発生した平成20年 (2008年)岩手・宮城内陸地震震源域の北部は、活断層 である北上低地西縁断層帯の出店断層に隣接している. 震源域北部から出店断層にかけての地域では,2006年と 2007年に深部地殻反射法地震探査が実施され、上部地殻 全体の反射法断面図が得られていた. 地表で確認されて いる活断層と地下の震源断層との関係を明らかにするこ とは、活断層の活動評価を行うにあたって重要である. そのためには、地殻構造探査で得られている数条の断層 の形状と対応可能な精度を持つ余震分布を得る必要があ る. そこで, 我々は非常に高密度な稠密余震観測を, 地 設構造探査が実施された測線に沿って実施した.得られ た記録は良好で、震源決定に必要な P 波・S 波の初動が 明瞭に観測された.また、地殻深部からの反射波と思わ れる後続波も確認でき,地殻深部に関する地震学的情報 もデータに含んでいると考えられる. 今後, 観測された P波・S波の初動走時を用いたトモグラフィー解析を行 なうことで、高精度な震源分布や速度構造が明らかにな り、得られた波形データに対して反射法解析を適応する ことで、地殻全体の反射法断面図が得られることが期待 できる. これらの結果と、制御震源地殻構造探査で得ら れている反射法断面図との対応を行うことで、岩手・宮 城内陸地震の地震発生様式を考える為の重要な知見が得 られるものと期待できる.

謝 辞

本研究は、文部科学省の科学研究費補助金(特別研究 促進費)「2008 年岩手・宮城内陸地震に関する総合調査 (研究代表者:海野徳仁)」の一環として行われた. 稠密 余震観測を実施するにあたって、岩手県奥州市役所の 方々には各種の便宜を図って頂きました.データ編集を 行う際には、気象庁と文部科学省が協力してデータ処理 をした結果(一元化震源カタログ)を使用させて頂きま した.また、査読者の青木陽介博士からのコメントは、 本原稿を改善する上で大変参考になりました.ここに記 して深く感謝の意を表します.

文 献

- 阿部 進・齊藤秀雄・佐藤比呂志・越谷 信・白石和也・村上 文俊・加藤直子・川中 卓・黒田 徹,2008,制御震源及 び自然地震データを用いた統合地設構造探査―北上低地帯 横断地設構造調査を例として―,物理探査学会学術講演会 講演論文集,124-126.
- Barry, K. M., D. A. Cavers and C.W. Kneale, 1975, Recommended standards for digital tape formats, *geophysics*, 40, 344–352.
- Kato N., H. Sato and N. Umino, Fault reactivation and active tectonics on the fore-arc side of the back-arc rift system, NE Japan, 2006, *Journal of Structural Geology*, 28, 2011–2022.
- 活断層研究会,1991,「新編日本の活断層一分布図と資料一」. 東京大学出版会,437 p.
- 気象庁,2008,平成20年(2008年)岩手・宮城内陸地震の概 要,第7回アジア国際地震学連合総会・2008年日本地震学 会秋季大会合同大会講演予稿集,A11-01.
- 蔵下英司・平田 直・森田裕一・結城 昇,2006,高機能小型 オフラインデータロガーを用いた高密度地震観測システ ム,地震2,59,107-116.
- 岡田知己・海野徳仁・長谷川 昭・2008 年岩手・宮城内陸緊 急観測グループ, 2008, 2008 年岩手・宮城内陸地震, 科学, 78, 978-984.
- Sato, H., 1994, The relationship between late Cenozoic tectonic events and stress field and basin development in northeast Japan. *Journal of Geophysical Research* 99, 2226–22274.
- 斉藤秀雄・阿部 進・白石和也・佐藤比呂志・越谷 信・加藤 直子・川中 卓,2008,北上低地帯横断地殻構造探査につ いて,物理探査学会学術講演会講演論文集,127-130.

(Received November 8, 2010)

(Accepted November 17, 2010)