2003年九州日奈久断層域構造探査グループ

Seismic Expedition in the Hinagu Fault Area, Kyushu Island, Japan

The Research Group for the 2003 Hinagu Fault Seismic Expedition

Abstract

The Hinagu fault system, Kyushu, Japan, is located in the westernmost part of the Beppu-Shimabara graben. This fault system is characterized by a quite high seismic activity and estimated to have a higher seismic risk among active faults in Kyushu Island. In 2003, we conducted an extensive seismic expedition in and around the Hinagu fault area. This expedition involves seismic refraction/wide-angle reflection experiment using dynamite shots and seismic array observation both for the active and passive seismic sources. For the refraction/wide-angle reflection study, two profile lines of 56.4 and 32.1 km lengths were set in EW and NNE-SSW directions, respectively, on which 7 dynamite shots of 100–200 kg charge and 359 recorders were deployed. The array observations, which were designed for high-resolution imaging of crustal scatterors and reflectors, were undertaken at 5 sites in the fault region. This paper presents the outline of this seismic expedition and fundamental data obtained.

Key words: crust, structure, Hinagu, fault, Kyushu, Beppu-Shimabara graben

1. はじめに

1999 年より始まった"地震予知のための新たな観測研 究計画"では、島弧地殻の変形過程の解明を目的とした 多面的な探査・観測が実施された. この観測研究は, 屈 折法・反射法地震探査・稠密自然地震観測を密接な連携 のもとに実施することによって数 km-数10 km までの 波長の島弧地殻不均質構造を解明し、更にその不均質構 造と地殻活動との関連性を追求しようとするものであっ た. 1999-2000年には、北海道日高突帯を中心とする領 域において大規模な観測が実施され、中新世から進行し ている千島前弧の東北日本弧への衝突構造が明らかと なった.(爆破地震動研究グループ, 2002a, b; Iwasaki et al., 2004). 2002年には,西南日本弧の大規模構造を解明 する目的で,四国室戸半島から中国地方日本海沿岸に至 る南北測線において大規模な探査が行われた. この実験 の一部は海洋科学技術センター(現海洋研究開発機構) との共同研究として実施され、日本海側にも海底地震計 を用いた海域測線が設けられた (Sato et al., 2004; 佐 藤・他 2006). これらのデータは, 1999年に四国沖から 四国・中国地方で実施された海陸共同探査のデータと合 わせて解析され,南海トラフから西南日本弧を経て日本 海に至る構造断面が得られつつある (Kodaira *et al.*, 2002;蔵下・他, 2002; Kurashimo *et al.*, 2003; Sato *et al.*, 2004; 佐藤・他 2006).

この予知研究計画最終年度の 2003 年には,次の予知 計画(地震予知のための新たな観測研究計画(第 2 次)) における内陸地震域の歪・応力蓄積過程解明の研究に先 行する形で,九州日奈久断層系において地殻の不均質構 造解明のための高精度制御震源地震観測を実施した (Fig. 1,2003 年九州日奈久断層域構造探査グループ, 2004; 松本・他,2004).日奈久断層系は中央構造線の西 部延長に位置し,同構造線上の他の場所では見られない ほど地震活動が活発な地域である.1999-2000 年には, この日奈久断層周辺で M 4.3,4.5,5.3 の地震が発生し, 断層周辺域でも近年,地震活動が活発である.また, 2002 年に出された地震調査研究推進本部地震調査委員

*e-mail: iwasaki@eri.u-tokyo.ac.jp(〒113-0032 東京都文京区弥生 1-1-1 東京大学地震研究所)

Fig. 1. Location map of the 2003 seismic expedition. The refraction/wide-angle reflection experiment was carried out for NNE-SSW line and EW line on which 359 receivers (small solid circles) were deployed. Seven shots (S1-S7) of 100~200-kg charges are shown by stars. Locations of array observations (A1-A5) are shown by open circle.

会による評価でも、本断層帯の中部区間は我が国の主な 活断層の中で今後 30 年間に地震の発生する可能性が高 いグループに属するとされている.九州大学によるこれ までの観測では、この地域の地震活動はほぼ南北に主張 力軸を持つ横ずれ断層が卓越し、ストレステンソルイン バージョンでもこの地域は南北張力が卓越する地域であ ることが確認されている(清水・他, 2002; 植平・他, 2005; 九州大学地震火山観測研究センター, 2005).

本報告は、この 2003 年の観測探査の概要を示すとと もに、得られた地震波形記録や初動走時などの基本的な データを提出する。尚、これらのデータの解析結果につ いては、岩崎・他(2004, 2005)、松本・他(2004) 及び 是永・他(2004) 等によって報告されている。

2. 探査の概要

本探査は、東京大学地震研究所・九州大学をはじめと する全国の大学・関係機関によって2003年(平成15 年)12月に行われた.この探査では、熊本県下益城郡豊 野町(現宇城市豊野町)を中心として東西56.4 km,南北 32.1 kmの2本の測線における屈折・広角反射法地震探 査(2003年九州日奈久断層域構造探査グループ,2004) と、測線の周辺の5箇所に展開したアレー観測(松本・ 他,2004)が実施された(Fig.1).前者は、断層を横断 する方向と平行な方向における大局的な地設構造(特に その上部の地震発生層までの構造)を屈折波・広角反射 波を用いて明らかにするものであり、後者は、断層およ び周辺域での反射面・散乱体の分布とその性質を明らか にするものである.

この観測の制御震源として,Fig.1に示されるS1からS7までの7箇所(熊本県天草郡大矢野町(現上天草市大矢野町),同宇土郡不知火町,同下益城郡豊野町(現 宇城市豊野町),同上益城郡甲佐町,同上益城郡矢部町 (現益城郡山都町),同上益城郡益城町,同八代郡東陽村 (現八代市東陽町))に、ダイナマイト震源が設けられた. 爆破点の用地交渉,ボーリングおよび爆破作業は,株式 会社地球科学総合研究所の請負で行われた.各爆破点の 位置,爆破時刻,薬量をTable1に示す.爆破孔の深度 は35.5-51.1 mで,鋼鉄性パイプで底までケーシング処 理を行い,海底発破用ダイナマイト(海底発破用爆薬1 号)をその底部まで充填して12月18及び19日の未明 に爆破した.

各爆破点の近傍では,地表直下の地震波速度を測定す る目的で,孔の中心からほぼ 50 m 間隔で 4 台 (S3 のみ 8 台)の地震計を展開し,爆破による地震動を観測した. この観測で得られた爆破点近傍の走時図を Fig. 2 に示 す.これらの走時図から求められた S-1~S-7 近傍の表 層地震波速度は,それぞれ 2.7, 2.2, 3.0, 3.4, 2.1, 3.1 及 び 4.0 km/s である.

一方,観測点は,上記南北測線に 129 点,東西測線に 230 点設置された.その平均間隔は両測線とも約 250 m である(Table 2).観測によって得られるデータの特性 を統一する目的で,全観測点で米国 Mark Products 社 製の L-22D 型地震計(上下動,固有周波数 2.2 Hz, コイ ル抵抗約 2.2 kΩ)を用い,そのダンピング定数は約 0.7

Shot	Location	(Tokyo97)	Height (m)	Date	Shot time	Charge (kg)
	Latitude	Longitude				
S1	32-36-44.69	130-25-35.04	60	Dec.18	00h40m00.232s	150
S2	32-38-15.96	130-37-04.44	48	Dec.18	02h10m01.048s	100
S3	32 - 39 - 17.64	130-44-30.42	84	Dec.18	00h20m00.910s	200
S4	32-39-14.52	130-50-59.42	131	Dec.19	01h10m00.343s	100
S5	32-38-48.44	131-01-34.33	436	Dec.19	00h20m00.718s	150
S6	32-46-20.49	130-50-59.72	154	Dec.19	00h40m00.227s	200
S7	32-30-53.89	130-41-32.44	157	Dec.18	01h10m00.720s	200

Table 1. Shot time, location and charge size of 2003 seismic expedition.

Fig. 2. Travel-time diagrams near shot points. These observations were performed to determine seismic velocities at the shallowest part of the crust. (a) S1-S3. (b) S4-S7.

とした. レコーダも全てデジタル型(白山工業社製 LS 8000,森田・浜口(1996))であり,サンプリング間隔は 5 ms である.

アレー観測は Fig. 1 に示した A1-A5 の 5 箇所で行っ た. Fig. 3 は, 各アレーの詳細図で, 観測の仕様は Table 3 にまとめてある. これらのアレー観測点では, 12 月 18 及び 19 日のダイナマイト発振だけでなく, 自然地 震も収録し, 散乱法やトモグラフィによる探査地域の 3 次元的な構造の精度向上を目指した(松本・他, 2004; 是永・他, 2004).

3. 観測結果

屈折・広角反射法測線上の観測点の記録は,東京大学 地震研究所において一括処理された.今回の探査では, 下部地殻や上部マントルからの反射波やS波まで解析 対象とするため,各ショットに対して初動の約5秒前か ら45秒間の波形記録を切り出した.また,各波形記録に は,使用した地震計の特性を補正した絶対振幅の情報も

2003 年九州日奈久断層域構造探査グループ

Table 2.	Receivers	of 2003	seismic	expedition.
----------	-----------	---------	---------	-------------

	Receiver	Location	ı (Tokyo97)	Height (m)	Re	ceiver	Location	(Tokyo97)	Height (m)
No.	Cod	e Latitute	Longitude		No.	Code	Latitute	Longitude	
	1 thk(01 32-46-18.99	130-51-01.20	174	56	ibr21	32-40-09.92	130-46-12.51	41
	2 thk0	32-46-14.13	130-51-00.73	166	57	ibr22	32-40-01.24	130 - 46 - 08.45	27
	3 thk0	3 32-46-21.04	130-50-50.79	134	58	ibr23	32-39-53.88	130 - 46 - 08.64	30
	4 thk0	32-46-25.18	130-50-40.96	70	59	ibr24	32-39-46.84	130 - 46 - 09.85	30
	5 thk0	32-46-27.63	130-50-28.33	53	60	ibr25	32-39-36.33	130 - 46 - 07.29	35
	6 thk0	6 32-46-32.21	130-50-17.96	49	61	ibr26	32-39-29.05	130-46-01.86	30
	7 thk0	32-46-25.65	130-50-07.88	25	62	ibr27	32-39-21.24	130 - 46 - 01.71	35
	8 thk0	32-46-21.40	130-49-58.41	28	63	ibr28	32-39-12.67	130 - 45 - 57.75	45
	9 thk0	9 32-46-15.61	130-49-48.76	28	64	ibr29	32-39-11.34	130-45-48.03	41
]	l0 thk1	0 32-46-09.74	130-49-40.87	14	65	ibr30	32-39-06.55	130-45-36.94	40
]	ll thkl	1 32-46-03.51	130-49-31.87	9	66	ibr31	32-38-59.24	130-45-33.23	50
1	l2 thk1	32 - 45 - 56.67	130-49-22.87	11	67	ibr32	32-38-49.34	130-45-29.09	42
]	l3 thk1	.3 32-45-50.91	130-49-13.84	19	68	ibr33	32-38-46.61	130-45-24.09	37
]	l4 thk1	4 32-45-41.69	130-49-08.04	19	69	ibr34	32-38-38.15	130-45-22.07	42
1	l5 thk1	5 32-45-30.75	130-49-02.42	20	70	jma01	32-38-29.72	130-45-17.79	41
]	l6 thk1	32 - 45 - 25.35	130 - 48 - 56.48	14	71	jma02	32-38-21.22	130 - 45 - 17.79	46
]	l7 thk1	7 32-45-16.27	130 - 48 - 47.52	17	72	jma03	32-38-11.83	130 - 45 - 16.35	47
]	l8 thk1	8 32-45-09.04	130-48-40.89	25	73	jma04	32-38-09.59	130-44-53.30	54
]	l9 thk]	9 32-45-00.36	130-48-35.42	37	74	jma05	32-38-00.56	130-44-53.30	53
2	20 thk2	20 32-44-50.64	130-48-31.21	34	75	jma06	32-37-50.26	130-44-55.18	51
2	21 thk2	21 32-44-42.40	130-48-24.26	38	76	jma07	32-37-40.54	130-44-59.60	58
4	22 thk2	22 32-44-37.43	130-48-17.06	28	77	jma08	32-37-32.04	130-45-03.92	58
2	23 thk2	3 32-44-26.16	130-48-11.76	25	78	jma09	32-37-20.88	130-45-07.20	66
2	24 thk2	24 32-44-15.90	130-48-09.60	36	79	jma10	32-37-13.14	130-45-12.35	73
2	25 thk2	25 32-44-07.47	130-48-05.82	42	80	jmall	32-37-05.40	130-45-14.44	74
2	26 thk2	26 32-43-55.41	130-48-00.31	39	81	jma12	32-36-57.44	130-45-16.20	76
2	27 thk2	32-43-45.33	130-48-02.33	51	82	jma13	32-36-48.91	130-45-11.77	85
2	$28 ext{ thk}^2$	28 32-43-34.06	130-48-04.45	27	83	jma14	32-36-40.95	130-45-14.15	85
2	$29 thk_2$	32 - 43 - 21.42	130-48-09.24	20	84	jma15	32-36-30.15	130-45-10.91	88
i c	30 thư:	32-43-14.08	130-47-57.90	15	85	jma16	32-36-22.66	130-45-08.35	94
i c	51 UNKC 50 +1.1.0	32-43-08.33	130-47-48.29	18	80	jma17	32-30-15.04	130 - 45 - 10.33	18
	02 UIIKC	52 52 - 42 - 30.42	130-47-44.44	17	01	jma18	32-30-00.00 39 35 56 94	130-45-11.19	60
c c	24 + hls	$33 32^{-42^{-49.00}}$	130-47-36.93	61	00	jina19	32-33-30.24	120-45-06.12	55
c c	04 UIK3 25 +bb5	34 32 - 43 - 42.03	130-40-12.55	41	09	jina20	32-30-49.21 22-25-27 77	130-43-00.12	55 55
	$\frac{1}{26}$	1 32 43 30.04	$130 \ 49 \ 13.33$ $130-47-40 \ 01$	41	90	jina21	32-35-31.11	130 - 44 - 57.34 130 - 44 - 57.33	55 47
	$\frac{1010}{27}$	1 32 - 42 - 40.07 2 32 - 42 - 24.11	130-47-40.01	19	91	jinazz	32-35-30.07	130 - 44 - 57.53 120 - 44 - 58.63	47
	$\frac{1010}{28}$ ibr0	2 32 42 34.11 2 29 = 49 = 97 40	$130 \ 47 \ 29.33$ $130-47-13 \ 62$	52 97	92	jma20	32-35-12.06	$130 \ 44 \ 50.03$ $130-44-40\ 38$	50
с С	$\frac{1000}{20}$	$3 \qquad 32 \ 42 \ 21.43$	130-47-09-51	18	93 94	jina24 ima25	32-35-07.95	130 - 44 - 52 72	45
	10 ibr0	5 32 42 15.17	130 - 47 - 08 11	10	94	jina20 ima26	32-34-59-82	130-44-54-24	40
-	10 101011 $ibr0$	$6 32 42 11.11 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 42 03 94 \\ 6 32 43 03 03 03 03 03 \\ 6 32 03 03 03 03 03 03 03$	130 - 47 - 06.74	17	96	ima20	32-34-54.88	130-44-49.81	42
· 2	11 1010 12 1010	$7 \qquad 32 - 41 - 59 \ 15$	130 - 47 - 03.39	22	97	ima28	32-34-46.75	130-44-41.96	37
-	12 ibro	8 32-41-55.16	130 - 46 - 53.42	25	98	ima20	32-34-37 17	130-44-31.99	32
-	10 1510 14 ibr0	9 32-41-48.03	130 - 46 - 48.12	24	99	ima30	32-34-37.35	130-44-18.27	30
	45 ibr1	0 32 - 41 - 42 12	130 - 46 - 43.84	20	100	ima31	32-34-25.15	130-44-08.62	29
2	16 ibr1 16 ibr1	1 32-41-35.14	130 - 46 - 37.32	20	101	ima32	32-34-15.89	130 - 43 - 57.96	24
	10 ibr1 17 ibr1	2 32-41-28 37	130 - 46 - 40.71	20	102	ima33	32-34-06 42	130 - 43 - 58 79	38
Z	48 ibr1	$3 \qquad 32-41-10.55$	130 - 46 - 39.12	44	103	ima34	32-34-06.28	130-43-41.44	30
2	19 ibr1	4 32-41-05.22	130 - 46 - 40.20	43	104	ima35	32-33-57.57	130-43-41.22	41
F	50 ibr1	5 32-40-58.06	130-46-39.12	44	105	kgs01	32-33-43.60	130-43-44.96	71
5	51 ibr1	6 32-40-49.02	130-46-35.59	32	106	kgs02	32-33-39.82	130-43-33.01	52
5	52 ibr1	7 32-40-42.14	130-46-33.83	47	107	kgs03	32-33-32.51	130-43-24.26	89
5	53 ibr1	8 32-40-32.89	130-46-28.18	29	108	kgs04	32-33-28.22	130-43-17.64	65
5	54 ibr1	9 32-40-24.18	130-46-24.18	30	109	kgs05	32-33-23.87	130-43-04.68	65
Ę	55 ibr2	0 32-40-18.34	130-46-19.72	34	110	kgs06	32-33-18.14	130-42-53.33	86

Table	2 (Continued)
rable	4. 1	Commuteu)

Red	ceiver	Location	(Tokyo97)	Height (m)	Re	ceiver	Location	(Tokyo97)	Height (m)
No.	Code	Latitute	Longitude		No.	Code	Latitute	Longitude	
111	kgs07	32-33-08.24	130-42-56.39	118	166	ksh37	32-37-06.93	130-31-25.71	34
112	kgs08	32-32-51.14	130-43-14.29	44	167	ksh38	32-37-09.88	130 - 31 - 31.94	37
113	kgs09	32-32-35.01	130-43-27.25	95	168	ksh39	32-37-13.55	130 - 31 - 40.87	36
114	kgs10	32-32-23.02	130-43-20.70	101	169	ksh40	32-37-14.85	130 - 31 - 51.82	35
115	kgs11	32-32-14.38	130-43-18.07	103	170	ksh41	32-37-20.86	130 - 32 - 00.64	18
116	kgs12	32-32-16.54	130 - 42 - 59.81	42	171	ksh42	32-37-17.40	130 - 32 - 07.62	44
117	kgs13	32-32-04.52	130-43-00.42	42	172	ksh43	32-37-25.76	130 - 32 - 18.28	53
118	kgs14	32-32-06.28	130 - 42 - 49.44	54	173	ksh44	32-37-27.45	130-32-28.83	56
119	kgs15	32-32-00.88	130-42-44.40	55	174	ksh45	32-37-38.07	130 - 32 - 39.34	67
120	kgs16	32-31-50.62	130-42-43.61	56	175	ksh46	32-37-38.57	130-32-48.13	13
121	kgs17	32-31-42.70	130-42-35.22	62	176	ksh47	32-37-43.04	130-32-59.86	27
122	kgs18	32-31-35.86	130-42-27.84	68	177	ksh48	32 - 37 - 46.57	130-33-07.86	33
123	kgs19	32-31-28.15	130-42-25.25	70	178	ksh49	32 - 37 - 48.58	130-33-19.95	37
124	kgs20	32-31-18.43	130-42-26.22	94	179	ksh50	32-37-49.30	130-33-27.69	57
125	kgs21	32-31-16.09	130-42-11.82	81	180	ksh51	32-37-47.14	130-33-37.85	80
126	kgs22	32-31-12.20	130-42-00.48	102	181	ksh52	32-37-41.02	130-33-47.21	20
127	kgs23	32-31-10.84	130-41-51.91	106	182	ksh53	32-37-36.02	130-33-54.59	96
128	kgs24	32-31-05.54	130-41-42.30	132	183	npr01	32-37-24.24	130-34-02.29	25
129	kgs25	32-30-57.87	130-41-35.17	151	184	npr02	32-37-30.69	130-34-11.11	13
130	ksh01	32-36-40.72	130-25-30.87	21	185	npr03	32-37-33.03	130-34-17.95	26
131	ksh02	32-36-34.64	130-25-43.83	19	186	npr04	32-37-35.29	130-34-34.34	30
132	ksh03	32-36-28.62	130-25-56.82	25	187	npr05	32-37-30.11	130-34-48.74	15
133	ksh04	32-36-21.53	130-26-03.05	54	188	npr06	32-37-18.16	130-35-00.83	23
134	ksh05	32-36-22.14	130-26-14.43	51	189	npr07	32-37-18.16	130-35-13.47	22
135	ksh06	32-36-18.36	130-26-21.56	24	190	npr08	32-37-23.56	130-35-22.94	23
136	ksh07	32-36-12.49	130-26-29.08	53	191	npr09	32-37-33.42	130-35-28.16	14
137	ksh08	32-36-08.57	130-26-42.91	13	192	npr10	32-37-24.53	130 - 35 - 45.37	59
138	ksh09	32-36-09.69	130-26-54.83	7	193	npr11	32-37-27.26	130-35-54.84	6
139	ksh10	32-36-11.13	130-27-03.61	6	194	npr12	32-37-34.57	130-36-01.82	20
140	ksh11	32-36-12.24	130-27-13.37	9	195	npr13	32-37-36.41	130-36-13.56	71
141	ksh12	32-36-15.27	130-27-19.78	7	196	npr14	32-37-46.89	130-36-19.43	33
142	ksh13	32-36-25.09	130-27-29.96	8	197	npr15	32-37-43.03	130-36-31.74	24
143	ksh14	32-36-19.19	130-27-44.55	7	198	npr16	32-37-43.79	130-36-42.26	32
144	ksh15	32-36-13.32	130-27-48.97	14	199	npr17	32-37-56.25	130-36-47.33	62
145	ksh16	32-36-12.17	130-28-03.16	8	200	npr18	32-37-54.37	130-36-59.72	15
146	ksh17	32-36-20.02	130-28-11.30	26	201	npr19	32-38-03.19	130-37-05.69	32
147	ksh18	32-36-27.83	130-28-17.02	31	202	npr20	32-38-00.10	130-37-18.01	100
148	ksh19	32-36-44.18	130-28-28.04	25	203	npr21	32-38-14.36	130-37-27.19	151
149	ksh20	32-36-39.24	130-28-40.50	30	204	npr22	32-38-12.99	130-37-32.70	166
150	ksh21	32-36-37.77	130-28-51.51	41	205	npr23	32-38-22.74	130-37-42.56	168
151	ksh22	32-36-40.97	130-28-58.35	9	206	npr24	32-38-25.23	130-37-47.13	163
152	ksh23	32-36-39.28	130-29-06.17	29	207	npr25	32-38-36.53	130-37-56.86	82
153	ksh24	32-36-45.00	130-29-15.74	5	208	npr26	32-38-31.64	130-38-08.09	92
154	ksh25	32-36-45.79	130-29-31.33	8	209	npr27	32-38-42.62	130-38-15.47	61
155	ksh26	32-36-48.64	130-29-35.44	4	210	npr28	32-38-50.29	130-38-23.89	34
156	ksh27	32-36-49.50	130-29-45.09	6	211	npr29	32-38-48.70	130-38-33.76	28
157	ksh28	32-36-48.53	130-29-55.81	16	212	npr30	32-38-42.91	130-38-43.84	17
158	ksh29	32-36-47.92	130-30-05.54	48	213	npr31	32-38-41.03	130-38-59.93	11
159	ksh30	32-36-49.14	130-30-13.49	20	214	npr32	32-38-36.89	130-39-07.24	10
160	ksh31	32-36-48.64	130-30-25.34	5	215	npr33	32-38-40.38	130-39-17.90	5
161	KSh32	32-36-48.89	130-30-30.77	20	216	npr34	32-38-42.04	130-39-25.14	27
162	ksh33	32-36-46.48	130-30-40.28	4	217	npr35	32-38-40.85	130-39-38.35	53
163	KSN34	32-30-53.53	130-30-55.11	4	218	npr36	32-38-39.99	130-39-50.45	28
164	KSN35	32-36-51.84	130-31-03.03	5	219	npr31	32-38-40.10	130-39-57.75	13
165	ksh3b	32-30-55.26	130-31-12.36	21	220	npr38	32-38-45.86	130-40-03.55	7

2003 年九州日奈久断層域構造探査グループ

Table 2. (Continued)

Rec	ceiver	Location	(Tokyo97)	Height (m)	Re	ceiver	Location	(Tokyo97)	Height (m)
No.	Code	Latitute	Longitude		No.	Code	Latitute	Longitude	
221	npr39	32-38-52.77	130-40-13.49	9	276	tki52	32-38-30.44	130-48-36.27	37
222	npr40	32-39-03.93	130-40-19.43	10	277	ngy01	32-38-24.53	130-48-43.29	39
223	npr41	32-37-17.22	130-33-53.65	29	278	ngy02	32-38-22.30	130 - 48 - 54.67	52
224	npr42	32-38-42.18	130-39-48.93	40	279	ngy03	32-38-22.08	130 - 49 - 05.62	44
225	tki01	32-39-14.48	130-40-31.99	14	280	ngy04	32-38-21.98	130-49-13.36	42
226	tki02	32-39-16.17	130-40-38.22	18	281	ngy05	32-38-23.24	130-49-23.26	45
227	tki03	32 - 39 - 15.49	130 - 40 - 50.57	57	282	ngy06	32-38-20.17	130-49-33.30	42
228	tki04	32-39-15.31	130-40-58.46	39	283	ngy07	32-38-22.70	130-49-42.81	48
229	tki05	32-39-20.67	130-41-08.03	22	284	ngy08	32-38-21.79	130-49-53.90	51
230	tki06	32-39-28.05	130-41-17.76	17	285	ngy09	32-38-23.35	130-50-01.63	52
231	tki07	32-39-31.04	130-41-25.10	10	286	ngy10	32-38-26.80	130-50-08.91	69
232	tki08	32-39-38.60	130-41-35.22	20	287	ngy11	32-38-30.72	130-50-20.72	71
233	tki09	32-39-29.17	130-41-43.82	17	288	ngy12	32-38-40.05	130-50-30.87	93
234	tki10	32-39-24.99	130-41-54.30	27	289	ngy13	32 - 38 - 50.42	130-50-37.32	70
235	tki11	32-39-21.25	130-42-08.05	40	290	ngy14	32-38-57.29	130-50-43.76	74
236	tki12	32 - 39 - 15.27	130-42-17.48	45	291	ngy15	32 - 38 - 59.42	130-50-56.97	107
237	tki13	32-39-13.32	130-42-25.08	33	292	ngy16	32-39-06.65	130-51-09.18	110
238	tki14	32-39-09.44	130-42-34.69	39	293	ngy17	32-39-05.29	130-51-18.65	73
239	tki15	32-39-10.34	130-42-46.32	43	294	ngy18	32-38-58.05	130-51-25.16	66
240	tki16	32-39-09.51	130-42-53.52	35	295	ngy19	32 - 38 - 59.45	130-51-35.46	73
241	tki17	32-39-08.90	130-43-05.19	33	296	ngy20	32-38-59.38	130 - 51 - 44.35	67
242	tki18	32-39-08.90	130 - 43 - 15.02	32	297	ngy21	32-38-45.52	130 - 51 - 50.37	104
243	tki19	32-39-08.61	130-43-23.12	38	298	ngy22	32-38-39.72	130-52-01.78	83
244	tki20	32-39-08.28	130 - 43 - 36.15	37	299	ngy23	32-38-32.05	130-52-05.09	92
245	tki21	32-39-12.14	130-43-42.38	27	300	ngy24	32-38-19.20	130-52-10.53	93
246	tki22	32-39-28.74	130-43-51.29	40	301	ngy25	32-38-20.03	130-52-22.19	93
247	tki23	32-39-27.12	130-44-01.64	68	302	ngy26	32-38-17.33	130-52-32.89	81
248	tki24	32-39-26.06	130-44-09.66	65	303	ngy27	32-38-19.02	130-52-44.15	100
249	tki25	32-39-18.59	130-44-16.81	155	304	ngy28	32-38-19.46	130-52-54.33	95
250	tki26	32-39-18.36	130-44-30.73	89	305	ngy29	32-38-19.09	130-53-05.04	107
251	tk127	32-39-15.01	130-44-34.84	80	306	ngy30	32-38-19.56	130-53-16.92	102
252	tki28	32-39-10.23	130-44-44.74	86	307	kyt01	32-38-25.57	130-53-23.97	-27
253	tki29	32-39-06.66	130-44-51.94	73	308	kyt02	32-38-21.03	130-53-35.17	126
254	tki30	32-38-56.76	130-44-59.71	64	309	kyt03	32-38-24.45	130-53-43.38	120
255	tki31	32-38-39.62	130-45-10.51	44	310	kyt04	32-38-37.16	130-53-51.08	126
200	tK132	32-38-20.88	130-45-18.69	45	311	Kyt05	32-38-28.45	130-54-06.10	139
207	tK133	32-38-17.88	130-45-26.79	49	312	KYTU6	32-38-27.62	130-54-12.54	146
208 250	tK134	32-38-15.50	130-45-38.20	55 56	313	Kyt07	32-38-28.05	130-54-21.87	154
209	tKI30	32-38-15.50	130-45-48.40	90 65	314	kyt08	32-38-30.75	130-54-30.83	107
200	LKI30 +1-:27	32-38-21.08	130-45-55.88	60 50	315	kyt09	32-38-28.99	130-54-40.30	174
201	tKI37 +1-:20	32-30-19.40	130-40-00.30	50 50	310 217	KytIU	32 - 38 - 30.11	130-34-46.91	190
202	1KI30 +1-:20	32 - 38 - 18.03 32 - 28 - 17.41	130 - 40 - 13.28 120 - 46 - 97.45		317 910	KytII last19	32-38-29.24	130-34-30.00 120 55 05 70	203
203	tKI39	32 - 30 - 17.41	130 - 40 - 27.43	69	318	Kyt12	32-38-28.13	130-55-05.79	214
204 265	tK140	32-38-19.13	130 - 40 - 30.01	55 65	319	Kyt13	32-38-04.94	130-55-17.92	220
200	LK141	32-38-18.02	130 - 40 - 40.38	60	320	Kyt14	32-38-08.94	130-55-25.74	193
200	tK142 +1.:49	32 - 30 - 22.01	130-40-34.04	69 65	321	Kyt10	32-36-09.08	130-33-33.30	192
207	tK145	32-38-23.31 29_28_98 21	130 - 47 - 05.40 120 - 47 - 16.21	00 72	344 202	Kyt10	32-38-13.88	130-33-43.23	210
200	11144	32-30-20.31	130 - 47 - 10.31 120 - 47 - 94.97	75	-0∠0 204	Kyt17	32-30-23.00	130-30-30.73	220
209 970	15140 +15146	32 30-20.23 20-28-07 20	130 47-24.27	10 79	324 295	КУЦІО lav+10	32-30-20.00	130-55-19.07	∠0U ೧೯೨
270 971	15140 +15147	32 30-21.38 39-38-97 90	130 47-32.31	12 06	379 206	Kyl19 1/20+90	32-30-13.68	130-56-22.10	203 050
471 979	1/1/1/2	32 30-21.20	130 47 44.03	00 20	320 297	kyt∠U kw+91	$32 \ 30^{-1}3.94$ $32^{-3}2^{-17} \ 10$	130-56-20.07	202
414 972	121/10	32 30-21.03	130-41-04.01	00 00	321 290	kyt⊿1 kv+99	32 30-17.10	130-56-32.00	449 020
213 974	tki50	32 38 23.04	130-48-15 46	90 Q7	320 320	kvt99	32 30 12.39	130-56-51 14	202
214	tki51	32-38-94 06	130-48-94 46	51	229	kyt20	32 33 14.30	130-56-56-21	
210	TCINI	52 50 24.00	100 40 24.40	51	550	Kyl∠4	52 50 20.02	100 00 00.21	294

九州	日奈久	、断層域は	におけ	る地	也設構造	告探查

Rec	eiver	Location	(Tokyo97)	Height (m)
No.	Code	Latitute	Longitude	
331	kyt25	32-38-17.54	130-57-06.94	286
332	kyt26	32-38-20.74	130-57-16.27	283
333	kyt27	32-38-21.43	130-57-23.90	291
334	kyt28	32-38-22.43	130-57-34.09	292
335	kyt29	32-38-18.98	130 - 57 - 44.35	306
336	kyt30	32-38-20.06	130-57-52.56	322
337	kyt31	32-38-21.82	130-58-01.34	325
338	kyt32	32-38-22.51	130-58-13.87	334
339	kyt33	32-38-21.93	130-58-20.64	317
340	kyt34	32-38-20.13	130-58-30.40	323
341	kyt35	32-38-14.08	130-58-39.69	273
342	kyt36	32-38-19.59	130 - 58 - 47.82	374
343	kyt37	32-38-13.32	130 - 58 - 58.62	210
344	kyt38	32-38-04.75	130 - 59 - 08.42	207
345	kyt39	32-38-08.61	130-59-18.39	212
346	kyt40	32-38-17.86	130-59-25.30	221
347	kyt41	32-38-19.30	130-59-34.66	219
348	kyt42	32-38-27.58	130-59-42.19	218
349	kyt43	32-38-26.28	130-59-53.67	239
350	kyt44	32 - 38 - 15.77	131-00-04.55	269
351	kyt45	32-38-20.81	131-00-09.19	348
352	kyt46	32-38-27.15	131-00-19.74	374
353	kyt47	32-38-30.64	131-00-29.21	389
354	kyt48	32-38-33.74	131-00-38.50	404
355	kyt49	32-38-32.48	131-00-47.03	411
356	kyt50	32-38-30.82	131-00-57.25	427
357	kyt51	32-38-35.75	131-01-08.70	447
358	kyt52	32-38-37.84	131-01-17.20	450
359	kyt53	32-38-43.64	131-01-25.45	471

Table 2. (Continued)

Fig. 3. Configurations of array observations (A1-5). Locations of these arrays are shown in Fig. 1. Stars and circles respectively denote shot and receiver locations. Surface faults are indicated by broken lines.

Table 3. Specification of array observation.

Array	Recording System	Sensor	No. of components	No. of receivers	Total Profile Length (km)
A1	DAT (Clover tech Co.) ⁽¹⁾	Lenarz (1Hz)	3	60	1.8
A2	MS2000 (JGI Inc.)	SM-7 (10Hz)	1	200	10.0
A3	Strata Visor (Oyo Co.)	L22D (2.2Hz)	2-3	120	4.0
A4	LS8200 (Hakusan Co.) ⁽²⁾	GS-11D (4.5Hz)	1	70	2.1
A5	LS8200 (Hakusan Co.)	GS-11D (4.5Hz)	1	80	2.4

(1) Shinohara et al. (1997).

(2) Kurashimo et al. (2007).

つけ加えた.今回使用した観測システムは,GPSによっ て較正された水晶時計を刻時信号として用いており,切 り出された波形記録の時間精度はサンプリング間隔以内 (5 ms 以内)に確保されている.

各ショットのレコードセクションを Fig. 4-7 に示し た. Fig. 4 及び 5 は, それぞれ南北及び東西の各測線上 にショットがある場合(inline shot)の記録で, 横軸は ショットと各観測点の距離である.一方, Fig. 6 及び 7 は,ショットが各測線上にない場合(offline shot)の記 録で, 横軸は Table 2 に示した観測点番号である.ま た,縦軸は全て, reduction velocity を 6 km/s とした 走時である.東西及び南北測線ともその中央部の市街地 でノイズレベルが高いが,初動をほぼ測線全体で追うこ とができる.また,地殻内からの広角反射波と思われる 後続波は,特に東西測線の東部のショットで観測されて いる.尚, S2 のショットでは,自然地震が被り,後続波 の確認が困難となった.

Table 4 及び Table 5 に,南北測線及び東西測線上の 観測点の走時を示した. これらの走時データには,ノイ ズレベル,刻時精度,相の明瞭度などを考慮して,読み 取りの精度が±0.01 s 以内の時は "A",±0.03 s 以内の時 は "B",それ以上の誤差を含むと考えられるものは "C" としてランクづけを行なっている.また,S/N 比が悪い ために初動到達時刻が不明瞭な場合には,明らかに地震 波の到達している時刻を読み取り,ランク "L"をつけ た.ランク情報の後の+-記号は読み取った相の極性 で,+が地動の上向き,一が下向きを示す.Fig.8-9 は, それぞれ南北及び東西測線における inline shotの走時 をプロットしたものである.また Fig.10-11 は, offline shot の場合の走時である.

以下にデータの特徴を述べる. この特徴に対応する構 造等は,岩崎・他(2004, 2005)によって報告されてい る.

南北・東西測線とも、震央距離約5km以遠の見かけ速度が6km/s前後となる。そのintercept time(原点走時)は、0.4-0.8 sec程度である。従って、上部地殻の

6 km/s 層上面が浅い(深さ 2-3 km)ところまで達して いると考えられる.

(2) 東西測線では、その東部で 0.2-0.3 sec の走時の undulation が見られる.更に S3 の波形・走時は、ショッ ト点の両側で非対称である.このショット点は、日奈久 断層近傍に位置するため、同断層に起因する構造の差を 表している可能性が高い.一方、西部の走時は東部に較 べてなめらかに変化しており、構造が単純であることを 意味している.

(3) 幾つかの後続波が見られる. これらは,地殻内速度 不連続面からの広角反射と考えられる. 各反射波に対応 する面は,深さ 5-25 km の間に存在し,特に一番深い面 (深さ 20-25 km)からの反射波は顕著である.

アレー観測データについては、東京大学地震研究所・ 九州大学及び地球科学総合研究所で処理された.アレー 長の一番長い A2 で観測された記録例(S3 及び S5)を Fig. 12 に示した. どちらの場合にも、往復走時で 8-9 sec に明瞭な地殻内反射波が認められる.その他のア レー(A1, 3,4 及び 5)のショット S3 に対する記録を Fig. 13 に示す.これらにおいても 8 sec 以降に明瞭な反 射波が見られる.これらの記録例から、反射体はこの地 域全体にわたって広がっていることが明らかになった. 顕著な反射波については往復走時から、この地域で標準 的に用いられている構造によって深さに変換すると、20 数 km の深さに存在する反射体であることがわかった.

4. まとめ

2003年には、九州日奈久断層系において、地殻の不均 質構造解明のための高精度制御震源地震観測を実施し た.日奈久断層系は中央構造線の西部延長に位置し、同 構造線上の他の場所では見られないほど地震活動が活発 な地域である.この地域の地震活動はほぼ南北に主張力 軸を持つ横ずれ断層が卓越する.

得られた走時データは、0.2-0.3 sec の undulation を 示しており、その詳細な解析によって断層に起因した構 造等が抽出される可能性がある.また、地殻内部からの

Fig. 4. Record sections for inline shots on the NNE-SSW line. Horizontal axis is an offset in km from the individual shot point. Travel time is reduced for a velocity of 6 km/s. (a) S6. (b) S3. (c) S7.

Fig. 5. Record sections for inline shots on the EW line. Horizontal axis is an offset in km from the individual shot point. Travel time is reduced for a velocity of 6 km/s. (a) S1. (b) S2. (c) S3. (d) S4. (e) S5.

Fig. 5. (Continued)

反射波と思われる幾つかの明瞭な後続波が観測された. またアレー観測によっても明瞭な地殻内反射が観測され ており、これらを統合することによって、断層構造と地 殻中部・深部の反射面の関係や自然地震分布との関連性 が明らかになるものと期待される.

謝辞および実験参加者

この実験の実施に際し、下記の機関のご協力を頂きま した.ここに記し、深く感謝します.

熊本県,熊本県天草郡大矢野町(現上天草市大矢野町), 同宇土郡不知火町,同下益城郡豊野町(現宇城市豊野 町),同上益城郡甲佐町,同上益城郡矢部町(現益城郡山 都町),同上益城郡益城町,同八代郡東陽村(現八代市東 陽町)

本実験は、地震予知のための新しい観測研究計画によ る経費(島弧地殻変形過程)の一環として実施された. 尚、今回の実験の参加者及びその分担は、次の通りであ る.尚、所属機関は観測当時とした.

実験総責任者: 岩崎貴哉 (東京大学).

データ編集:岩崎貴哉・蔵下英司・羽田敏夫・田上貴代 子 (東京大学),松本 聡・松島 健・渡邉篤志 (九州大 学)

屈折・広角反射法解析: 岩崎貴哉・飯高 隆, 蔵下英司 (以上東京大学), 伊藤 潔(京都大学), 宮町宏樹(鹿児

Fig. 6. Record sections for offline shots on the NNE-SSW line. Horizontal axis is a trace number (see Table 2). Travel time is reduced for a velocity of 6 km/s. (a) S1. (b) S2. (c) S4. (d) S5.

Trace Number

Fig. 7. Record sections for offline shots on the EW line. Horizontal axis is a trace number (see Table 2). Travel time is reduced for a velocity of 6 km/s. (a) S6. (b) S7.

島大学).

散乱法解析: 松本 聡・渡邉篤志(以上九州大学). トモグラフィ解析: 是永将宏・松本 聡・清水 洋(以 上九州大学).

本報告執筆: 岩崎貴哉 (東京大学)・松本 聡 (九州大学).

観測:

長田絹江, Subesh Ghimire (スペシュ・ギミレ)(以上 北海道大学)中島淳一・堀修一郎・中山貴史・菅ノ又淳 ー・清水淳平・Nambukara Gamage Sunil Shanta(ナ ムブカラ・ゲマゲ・スニル・シャンタ)(以上東北大学), 宮下 芳・河原 純・鈴木佑治・吉田智昭・仲田季寧・ 後藤暢哉・Ismail Husain Fathi(イスマエル・フセイ ン・ファトヒ)・杉本善教・鈴木 剛・横山正士・蛯谷 留美子・小砂ひかり・野澤絵美里(以上茨城大学), 岩崎 貴哉・飯高 隆・蔵下英司・坂 守・小林 勝・橋本 信一・羽田敏夫・井上義弘・田上貴代子・辻 浩・武 田哲也・Yannis Panayotopoulos(ヤニス・パナヨト プロス)(以上東京大学地震研究所),棚田俊收(神奈川 県温泉地学研究所),青木 元・岩切一宏・平松秀行・ 生駒良友(以上気象庁),金尾政紀(国立極地研究所),

馬場久紀・細川絵里・楊 宜升・飯塚 進(以上東海大 学),岩下 篤・福間 恵・右田恵美子・樋口温子・嶋 田啓乃・古川 卓・向井 碧・牛島大介(以上九州東海 大学),戸田茂・西川健二郎・山本章吾(以上愛知教育大 学),山崎文人・山田 守・Glenda Monroyo Besana (グレンダ・モンロヨ・ベサナ)(以上名古屋大学),伊藤 潔・松村一男・片尾 浩・中尾節郎・三浦 勉・上野友 岳・富阪和秀・吉井弘治・森下可奈子(以上京都大学防 災研究所),清水 洋・鈴木貞臣・松本 聡・松島 健・竹中博士・植平賢司・松尾のり道・杉本 健・内田 和也・渡邉篤志・松本 薫・是永将宏・河野裕希・堀 美緒・中村武史・大島光貴・安藤利彦・内田浩二・大財 綾子・豊国源知・山本容維・Arash Jafer Gandomi(ア ラシュ・ジャファー・ガンドミ)(以上九州大学),宮町 宏樹・平野舟一郎(以上鹿児島大学).

		12		T	able 4. 1	Travel times	of first a	rrival on the S4	NS line.	ις.	0.	92	0.	L.
No. Code	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(KM)	t(ms) R
1 thk01	43.509	8023 C+	26.386	5262 C+	16.492	3480 A+	13.075	2671 A+	21.551	4008 A+	0.060	18 A+	32.119	5829 B+
2 thk02	43.437	7998 C+	26.292	5260 C+	16.367	3465 A+	12.925		21.464		0.198		31.981	
3 thk03	43.287	8040 C+	26.198	5322 C+	16.376	3485 A+	13.140	2697 A+	21.799	4063 B+	0.233	78 A+	32.051	5871 B+
4 thk04	43.106	8198 C+	26.062		16.326	3475 A+	13.274	2697 A+	22.077	4137 B+	0.509	153 A+	32.050	5878 C+
5 thk05	42.838	8103 C+	25.838		16.195	3471 A+	13.365	2767 A+	22.379	4228 A+	0.846	297 A+	31.972	5886 B+
6 thk06	42.653	7953 C+	25.704		16.158	3471 A+	13.525	2803 A+	22.678	4302 A+	1.145	387 A+	31.982	5904 B+
7 thk07	42.330		25.373		15.844	3401 A+	13.347	2772 A+	22.757	4278 B+	1.358	423 A+	31.688	5921 B+
8 thk08	42.051	7786 C+	25.097		15.599	3387 A+	13.244	2780 A+	22.871	4327 B+	1.596	492 A+	31.465	5855 C+
9 thk09	41.748		24.789		15.312	3399 A+	13.100	2747 B+	22.963	4392 B+	1.853	553 A+	31.198	5802 C+
10 thk10	41.486		24.516		15.049	3395 B+	12.952	2708 A+	23.021	4313 B+	2.078	598 A+	30.949	
11 thk11	41.193		24.214		14.762	3299 A+	12.802	2672 A+	23.099	4337 B+	2.345	678 A+	30.678	5759 C+
12 thk12	40.892		23.900		14.459	3165 B+	12.640	2627 A+	23.170	4322 B+	2.625	708 A+	30.390	
13 thk13	40.605		23.606		14.185	3151 A+	12.515	2613 A+	23.264	4336 C+	2.902	754 A+	30.133	
14 thk14	40.351		23.316		13.864	3101 A+	12.273	2587 A+	23.233		3.143	823 A+	29.812	
15 thk15	40.081	7683 C+	23.000		13.500	3009 A+	11.983	2537 A+	23.174	4348 C+	3.416	872 A+	29.445	
16 thk16	39.872	7768 C+	22.778		13.277	2980 B+	11.863	2539 A+	23.216	4367 C+	3.629	930 A+	29.231	
17 thk17	39.547	7478 L+	22.426		12.917	2925 A+	11.660	2523 C+	23.271	4363 C+	3.969	+A 999 A+	28.882	
18 thk18	39.300	7489 C+	22.157		12.637	2899 A+	11.500	2411 B+	23.306	4383 C+	4.231	1084 A+	28.609	
19 thk19	39.065	7299 C+	21.887		12.335		11.293	2461 A+	23.297	4422 B+	4.494	1148 A+	28.308	
20 thk20	38.848	7294 C+	21.628		12.022	2762 A+	11.049	2396 A+	23.248	4363 C+	4.754	1170 A+	27.989	5246 B+
21 thk21	38.584	7362 C+	21.336	4569 L+	11.711	2706 A+	10.878	2371 A+	23.287	4378 B+	5.050	1219 A+	27.685	5045 C+
22 thk22	38.352	7220 C+	21.095	4562 L+	11.483	2660 A+	10.808	2352 A+	23.382	4383 B+	5.292	1303 A+	27.471	4974 C+
23 thk23	38.094	7206 C+	20.788		11.115	2546 B+	10.546	2287 A+	23.349	4407 C+	5.614	1358 A+	27.098	4887 C+
24 thk24	37.926	7190 C+	20.569		10.816	2526 B+	10.283	2243 A+	23.261	4397 C+	5.859	1419 A+	26.785	
25 thk25	37.740		20.347		10.544		10.093		23.239		6.105		26.507	
26 thk26	37.474	7145 B+	20.030		10.153	2395 A+	9.830	2171 A+	23.215	4373 B+	6.464	1553 B+	26.109	4865 C+
27 thk27	37.415	7210 C+	19.915		9.922	2345 A+	9.532	2113 A+	23.043		6.645	1618 A+	25.844	
28 thk28	37.348	7448 C+	19.789		9.667	2236 A+	9.202	2017 A+	22.856	4282 B+	6.862	1618 A+	25.547	4779 C+
29 thk29	37.337	7155 C+	19.709		9.427	2170 A^+	8.803	1932 A+	22.594	4297 C+	7.079	1674 A+	25.242	4740 C+
30 thk30	36.985	7238 C+	19.341		9.069	2141 A+	8.764	1932 A+	22.786	4258 C+	7.441	1744 A+	24.915	4686 C+
31 thk31	36.693	7093 C+	19.040		8.783	2090 A+	8.760	1919 A+	22.960	4303 C+	7.732	1799 A+	24.658	4655 C+
32 thk32	36.499	7050 C+	18.806		8.473	2010 A+	8.565	1883 A+	22.948	4317 C+	8.036	1847 A+	24.333	4521 C+
33 thk33	36.281	6948 C+	18.558		8.176	1965 A+	8.443	1878 B+	22.997		8.331	1925 A+	24.034	4506 C+
34 thk34	37.730	7193 B+	20.186	4152 C+	10.052	2320 A+	9.267	2024 A+	22.661	4232 B+	6.468	1534 A+	25.900	4855 B+
35 thk35	40.411	7662 C+	23.331		13.792	3015 A+	12.071	2552 A+	23.017	4292 B+	3.084	803 A+	29.711	5582 C+
36 ibr01	36.272		18.530		8.100	1581 B+	8.333	1813 A+	22.933	4223 C+	8.405	1899 A+	23.938	
37 ibr02	35.896		18.118		7.639	1895 A+	8.230	1873 A+	23.083		8.866	2023 B+	23.489	
38 ibr03	35.444		17.660		7.230	1799 A+	8.362	1867 A+	23.415	4412 B+	9.282	2108 A+	23.142	4390 C+

2003年九州日奈久断層域構造探査グループ

-116-

S6 S7) T(ms) R r(KM) t(ms) R	18 2143 A+ 22.864	78 2158 A+ 22.723	32 2209 A+ 22.403 4249 B+	32 2243 A+ 22.233 4221 B+	38 2309 A+ 22.020 4214 C+	16 2349 A+ 21.765	58 2413 A+ 21.554 4054 C+	32 2453 A+ 21.291	14 2453 A+ 21.131 4045 A+	12 2588 B+ 20.609 3964 B+	30 2610 A+ 20.468 3964 A+	28 2663 A+ 20.255 3815 B+	10 2679 A+ 19.962 3825 B+	12 2754 A+ 19.750 3790 B+	30 2763 A+ 19.430 3730 A+	12 2813 B+ 19.142 3644 A+	26 2853 A+ 18.931 3615 A+	t6 2923 B+ 18.619 3565 B+	28 2973 A+ 18.331 3519 B+	16 3005 A+ 18.125 3565 C+	33 3018 A+ 17.939 3535 C+) 3 3083 A+ 17.616 3331 C+	58 3095 A+ 17.353 3265 B+	36 3138 A+ 17.132 3355 B+	46 3173 A+ 16.849 3221 A+	(2 16.709 3191 B+	39 3230 A+ 16.460 3145 A+	32 3308 A+ 16.215 3120 B+	t7 3302 B+ 15.892 3035 A+	38 3342 B+ 15.764 3015 B+	37 3403 A+ 15.503 2965 B+	16 3434 A+ 15.221 2885 A+	10 3453 A+ 14.979 2865 B+)8 3518 A+ 14.699 2849 A+	30 3643 A+ 14.406 2806 B+	16 3712 B+ 14.148 2744 C+	
S5	ı) T(ms) R r(kn	45 4396 C+ 9.5	43 4412 C+ 9.6	90 4392 B+ 9.9	37 4423 B+ 10.1	59 10.3	41 4475 C+ 10.6	08 4462 B+ 10.8	27 4477 C+ 11.1	97 4452 C+ 11.2	30 4437 C+ 11.7	73 11.8	53 4399 B+ 12.0	09 4368 C+ 12.3	22 4322 C+ 12.5	28 4392 C+ 12.8	97 4352 C+ 13.1	91 4387 B+ 13.3	50 4387 C+ 13.6	29 13.9	04 4522 C+ 14.1	56 4387 C+ 14.2	01 4383 C+ 14.5	30 4458 B+ 14.8	23 4422 C+ 15.0	17 4422 B+ 15.3	69 15.5	54 4471 B+ 15.7	47 4486 C+ 16.0	53 4507 C+ 16.3	84 4573 C+ 16.4	39 4573 C+ 16.7	55 4606 C+ 17.0	53 4623 C+ 17.2	12 4652 C+ 17.5	15 4793 B+ 17.8	29 4796 C+ 18.1	
(tinued) S4	T(ms) R r(km	9 1818 A+ 23.44	2 1787 A+ 23.44	8 1748 A+ 23.35	0 1746 A+ 23.45	5 1778 A+ 23.65	5 1786 A+ 23.74	2 1782 A+ 23.80	5 1760 A+ 23.92	1 1719 A+ 23.75	5 1677 A+ 23.75	5 1668 B+ 23.67	4 1637 A+ 23.66	5 1586 A+ 23.7(7 1592 A+ 23.75	8 1561 A+ 23.82	5 1527 A+ 23.89	8 1527 A+ 23.99	8 1562 A+ 24.15	7 1547 A+ 24.25	3 1528 A+ 24.20	0 1512 A+ 24.15	1 1522 A+ 24.20	5 1502 A+ 24.35	0 1512 B+ 24.35	1 1521 A+ 24.41	5 24.66	7 1608 A+ 24.95	3 1648 A+ 25.04	3 1641 A+ 25.15	0 1678 A+ 25.28	2 1677 A+ 25.35	9 1698 A+ 25.45	3 1731 A+ 25.46	5 1778 A+ 25.51	8 1896 A+ 26.11	9 1923 A+ 26.12	
Table 4. (Con S3	T(ms) R r(km)) 1720 A+ 8.259	3 1685 A+ 8.192	1 1619 A+ 7.998	1 1595 A+ 7.970	7 8.096) 1502 A+ 8.076	7 1470 A+ 8.062	8.086	5 1373 A+ 7.90	l 1296 A+ 7.666	1 1270 A+ 7.568	2 1208 A+ 7.494	3 1121 A+ 7.46	7 1103 A+ 7.427	5 1015 A+ 7.468	1 945 A+ 7.48	7 894 A+ 7.548	9 845 A+ 7.668	5 790 A+ 7.717	2 780 A+ 7.673	2 745 A+ 7.610	690 A+ 7.64	8 631 A+ 7.766	l 650 A+ 7.760	l 620 A+ 7.86	2 570 A+ 8.115	7 495 A+ 8.407	2 515 A+ 8.513) 530 A+ 8.643	4 530 A+ 8.780	1 560 A+ 8.862	1 581 A+ 9.009	2 650 A+ 9.053	1 731 A+ 9.146	9 705 A+ 9.748	3 780 A+ 9.809	
S2	T(ms) R r(km)	6.960	6.828	. 3867 C+ 6.544	2 3852 C+ 6.374	6.117	5.855	5.647	5.373	3444 C+ 5.266) 3417 C+ 4.831	3177 C+ 4.734	L 3332 C+ 4.562	3247 C+ 4.308	L 3242 C+ 4.137	2 3213 C+ 3.845) 3148 C+ 3.604	2 3132 C+ 3.407	3.109	2.886	2.792	2.742	2.589	L 2817 C+ 2.408	L 2.381	7 2807 C+ 2.281	2.032	3 2721 C+ 1.767	3 2707 C+ 1.732	2688 C+ 1.760	5 2682 C+ 1.694	7 2652 C+ 1.814	L 2618 B+ 1.924	3 2602 B+ 2.132	2621 C+ 2.354	2567 C+ 2.179) 2527 C+ 2.448	
SI	T(ms) R r(km)	6791 C+ 17.453	17.361	6753 B+ 17.191	6751 B+ 17.052	16.764	6771 C+ 16.550	16.377	16.137	6663 C+ 16.141	15.910	6396 C+ 15.881	6363 C+ 15.784	6376 C+ 15.611	15.504	6433 B+ 15.282	6378 B+ 15.110	6365 B+ 14.952	6332 C+ 14.706	6168 B+ 14.542	6149 C+ 14.498	14.485	6166 C+ 14.361	6153 C+ 14.184	14.144	6132 C+ 14.007	6044 C+ 13.751	6052 C+ 13.446	5853 C+ 13.326	5888 C+ 13.191	5848 C+ 13.055	5848 C+ 12.987	5803 C+ 12.864	5832 C+ 12.858	5827 C+ 12.821	5793 C+ 12.221	5728 C+ 12.229	
	Vo. Code r(km)	39 ibr04 35.267	40 ibr05 35.192	41 ibr06 35.064	42 ibr07 34.939	43 ibr08 34.656	44 ibr09 34.463	45 ibr10 34.307	46 ibr11 34.087	47 ibr12 34.118	48 ibr13 33.942	49 ibr14 33.931	50 ibr15 33.852	51 ibr16 33.700	52 ibr17 33.609	53 ibr18 33.405	54 ibr19 33.247	55 ibr20 33.098	56 ibr21 32.863	57 ibr22 32.709	58 ibr23 32.673	59 ibr24 32.667	60 ibr25 32.547	61 ibr26 32.372	62 ibr27 32.332	63 ibr28 32.192	64 ibr29 31.935	65 ibr30 31.629	66 ibr31 31.503	67 ibr32 31.358	68 ibr33 31.218	69 ibr34 31.136	70 jma01 30.997	71 jma02 30.972	72 jma03 30.908	73 jma04 30.304	74 jma05 30.281	

	2	t(ms) R	2531 B+	2460 B+	2450 A+	2424 A+	2381 A+	2330 A+	2296 A+	2220 A+	2180 A+	2155 A+	2104 A+	2025 A+	1995 A+	1922 A+	1889 B+	1875 A+	1775 A+	1769 A+	1720 A+	1694 A+	1620 A+	1545 A+	1510 A+	1431 A+	1360 B+	1324 A+	1260 A+	1235 A+	1202 A+	1120 A+	1084 A+	1039 A+		930 A+	885 A+	835 A+	872 A+	805 A+
	S	r(KM)	13.447	13.170	13.014	12.825	12.628	12.341	12.154	11.821	11.587	11.424	11.195	10.849	10.668	10.262	10.062	9.927	9.491	9.409	9.225	9.034	8.711	8.321	8.130	7.678	7.289	7.053	6.815	6.580	6.267	6.001	5.690	5.489	5.209	4.919	4.682	4.484	4.322	3.939
	;	T(ms) R	3697 B+	3703 B+	3738 A+	3759 A+	3809 A+	3854 A+	3874 A+	3958 A+	3993 A+	4033 A+	4058 A+	4104 A^{+}	4118 A+	4218 A+	4247 A+	4283 A+	4323 A+	4309 A+	4378 A+	4433 A+	4477 C+	4609 B+	4588 B+	4646 B+	4686 C+	4751 A+	4767 A+	4789 B+	4867 A+	4879 B+	4974 A+	4983 B+	5028 B+	5058 A+	5098 A+	5107 A+	5158 B+	5318 B+
	S	r(km)	18.730	18.988	19.134	19.319	19.515	19.801	19.992	20.327	20.563	20.735	20.975	21.324	21.516	21.921	22.130	22.280	22.712	22.815	23.026	23.213	23.526	23.903	24.051	24.499	24.877	25.130	25.334	25.577	25.920	26.161	26.465	26.660	26.934	27.227	27.461	27.723	28.027	28.434
	-	T(ms) R	4752 C+	4742 C+	4722 C+	4732 B+	4712 C+	4738 B+	4738 C+	4757 B+	4791 B+	4807 B+	4772 B+	4808 C+	4818 C+		4881 C+	4882 C+	4927 C+	4927 B+	4993 C+	5021 C+	5027 C+		5152 C+	5173 C+		5241 B+		5306 C+	5382 C+	5442 C+	5446 C+	5467 C+	5452 C+	5556 C+	5552 C+	5543 C+	5581 C+	5707 B+
	S	r(km)	25.919	25.868	25.761	25.736	25.722	25.873	25.848	25.984	26.089	26.076	26.106	26.308	26.344	26.618	26.693	26.703	27.024	26.979	27.005	27.157	27.421	27.753	28.095	28.442	28.791	28.857	29.290	29.376	29.419	29.751	30.040	30.246	30.610	30.947	30.974	30.721	30.590	30.888
ied)	1	T(ms) R	1842 A+	1872 A+	1867 A+	1873 A+	1873 A+	1961 C+	1933 B+	1997 A+	2064 A+	2071 A+	2103 A+	2147 A+	2191 A+	2258 A+	2283 A+	2307 A+	2397 A+	2418 A+	2447 A+	2497 A+	2533 A+	2617 A+	2639 A+	2727 A+	2797 B+	2798 A+	2847 A+	2906 A+	2921 A+	2942 A+	3037 A+	3022 A+	3091 A+	3132 A+	3136 A+	3133 A+	3224 A+	3309 A+
L. (Continu	S	r(km)	9.788	9.824	9.788	9.831	9.892	10.110	10.166	10.399	10.571	10.637	10.765	11.058	11.171	11.539	11.688	11.770	12.182	12.209	12.335	12.521	12.839	13.228	13.500	13.933	14.329	14.502	14.850	15.027	15.238	15.548	15.868	16.085	16.427	16.766	16.908	16.927	17.042	17.427
Table 4	3	T(ms) R	944 A+	1014 A+	1060 A+	1114 A+	1166 A+	1216 A+	1284 A+	1345 A+	1380 A+	1430 A+	1470 A+	1504 A+	1565 A+	1593 A+	1649 A+	1690 A+	1745 A+	1765 A+	1830 A+	1860 A+	1900 A+	1921 A+	1912 A+	2000 A+	2105 B+	2090 A+	2059 A+	2150 A+	2220 A+	2210 A+	2311 A+	2305 A+		2379 A+	2425 A+	2484 A+	2618 A+	2705 A+
	S	r(km)	3.368	3.722	3.987	4.232	4.480	4.706	4.959	5.266	5.480	5.702	5.980	6.271	6.487	6.811	7.026	7.210	7.553	7.713	7.966	8.109	8.349	8.639	8.639	9.027	9.333	9.621	9.675	9.942	10.357	10.513	10.770	10.929	11.124	11.359	11.639	12.069	12.511	12.900
	2	T(ms) R	2512 C+	2562 C+	2548 C+	2553 C+	2592 B+	2567 B+	2597 B+	2587 B+	2597 B+		2593 C+	2598 B+	2622 B+	2629 B+	2647 B+	2647 C+	2637 C+	2737 C+	2737 C+	2687 C+	2712 C+	2652 C+	2642 C+			2619 C+	2572 C+	2637 C+	2669 B+	2655 C+	2701 C+	2712 C+		2637 C+	2633 C+	2812 B+	2877 B+	2966 C+
	S	r(km)	12.570	12.696	12.863	12.955	13.044	12.982	13.096	13.092	13.088	13.197	13.299	13.264	13.345	13.280	13.337	13.439	13.367	13.512	13.656	13.622	13.557	13.474	13.163	13.147	13.073	13.258	12.895	13.052	13.395	13.228	13.202	13.162	13.006	12.919	13.193	13.896	14.489	14.644
	1	T(ms) R	5697 C+	5693 C+	5698 C+	5632 C+	5618 B+	5583 B+	5574 C+	5569 C+	5623 C+	5652 C+	5638 C+	5709 B+	5728 C+	5694 B+	5684 B+	5695 B+	5622 C+	5557 C+	5538 C+	5643 C+	5653 B+	5618 C+	5544 C+	5419 C+	5468 C+	5338 B+	5233 C+	5233 C+	5289 C+	5289 C+	5273 C+	5224 C+	5263 C+	5144 C+	5172 B+	5199 B+	5363 C+	5323 C+
	S	r(km)	30.504	30.576	30.702	30.751	30.794	30.676	30.739	30.658	30.596	30.653	30.685	30.558	30.579	30.399	30.389	30.437	30.229	30.331	30.396	30.298	30.124	29.904	29.549	29.353	29.122	29.191	28.745	28.787	28.963	28.681	28.503	28.362	28.062	27.813	27.962	28.545	29.001	28.937
		No. Code	77 jma08	78 jma09	79 jma10	80 jma11	81 jma12	82 jma13	83 jma14	84 jma15	85 jma16	86 jma17	87 jma18	88 jma19	89 jma20	90 jma21	91 jma22	92 jma23	93 jma24	94 jma25	95 jma26	96 jma27	97 jma28	98 jma29	99 jma30	100 jma31	101 jma32	102 jma33	103 jma34	104 jma35	105 kgs01	106 kgs02	107 kgs03	108 kgs04	109 kgs05	110 kgs06	111 kgs07	112 kgs08	113 kgs09	114 kgs10

-118 -

	t(ms) R	785 A+	670 A+	675 A+	616 A+	575 A+	571 A+	521 A+	450 A+	396 A+	371 A+	280 A+	205 A+	160 A+	95 A+	25 A+
S	r(KM)	3.707	3.417	3.163	3.001	2.790	2.550	2.224	1.939	1.736	1.594	1.234	0.924	0.729	0.442	0.142
9	T(ms) R	5358 B+	5291 C+	5448 C+	5428 B+	5413 B+	5488 C+	5528 B+	5623 B+	5689 C+	5723 A+	5686 C+	5703 B+	5735 A+	5778 A+	5827 B+
S	r(km)	28.704	28.847	29.174	29.249	29.456	29.749	30.064	30.338	30.581	30.839	31.069	31.308	31.446	31.706	32.001
	T(ms) R	5706 C+	5728 C+	5792 C+	5740 C+	5747 C+	5788 C+	5846 C+	5827 C+	5917 C+	5893 C+	5943 C+	6033 C+	6068 C+	6107 C+	6132 C+
SE	r(km)	31.055	31.468	31.598	31.840	32.026	32.171	32.470	32.731	32.890	32.992	33.364	33.683	33.903	34.199	34.467
1	T(ms) R	3377 A+	3327 A+	3402 B+	3397 A+	3422 A+	3492 A+	3536 B+	3547 B+	3672 B+	3742 B+	3748 B+	3792 B+	3808 B+	3842 B+	3878 B+
Š	r(km)	17.668	17.948	18.205	18.363	18.574	18.817	19.145	19.430	19.650	19.853	20.160	20.450	20.635	20.926	21.225
3	T(ms) R	2745 A+	2690 A+	2755 A+	2737 A+	2760 A+	2835 A+	2888 A+	2940 A+	2985 A+	3080 A+	3060 B+	3081 A+	3076 A+	3120 A+	3159 A+
S	r(km)	13.173	13.184	13.546	13.545	13.734	14.048	14.331	14.578	14.825	15.112	15.266	15.455	15.553	15.779	16.058
2	T(ms) R	2934 C+	2827 B+	2862 C+	2858 B+	2847 B+	2878 B+	2886 B+	2856 B+	2941 C+	3027 C+	2956 C+	2952 C+	2952 C+	2958 C+	2981 B+
	r(km)	14.797	14.437	14.733	14.512	14.562	14.802	14.870	14.933	15.092	15.356	15.215	15.165	15.089	15.109	15.229
1	T(ms) R	5353 C+	5192 B+	5193 C+	5166 C+	5189 C+	5207 B+	5214 B+	5184 B+	5169 C+	5268 B+	5164 C+	5147 B+	5134 B+	5108 A^+	5108 A+
	r(km)	28.947	28.472	28.597	28.308	28.234	28.314	28.187	28.076	28.094	28.223	27.899	27.668	27.476	27.306	27.226
	No. Code	115 kgs11	116 kgs12	117 kgs13	118 kgs14	119 kgs15	120 kgs16	121 kgs17	122 kgs18	123 kgs19	124 kgs20	125 kgs21	126 kgs22	127 kgs23	128 kgs24	129 kgs25

Table 4. (Continued)

r(km):Offset distance. T(ms):Travel time. R: Rank (data quality) and polarity of onset.

— 119 —

		51		S2		53		24		25		99		
No. Code	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R
130 ksh01	0.164	57 A+	18.315		30.091	5559 A+	40.119		56.526		43.641	8203 C+	27.261	5125 A+
131 ksh02	0.385	148 A+	18.013	3542 C+	29.789	5500 B+	39.807		56.203		43.411	8268 C+	26.877	5037 A+
132 ksh03	0.753	278 A+	17.713		29.488	5427 B+	39.495	7137 C+	55.880		43.182		26.493	4963 A+
133 ksh04	1.021	363 A+	17.597	3354 C+	29.368	5477 B+	39.364	7002 C+	55.736	9787 C+	43.129	8220 C+	26.259	4989 B+
134 ksh05	1.240	418 A^{+}	17.302		29.073	5410 A+	39.067	6983 C+	55.438	9657 C+	42.853	8298 C+	25.992	4932 A+
135 ksh06	1.459	474 A+	17.145	3353 C+	28.912	5403 A+	38.899	6948 C+	55.263	9612 C+	42.736	8192 C+	25.776	4895 A+
136 ksh07	1.723		16.993		28.755		38.731	6927 C+	55.084		42.639	8178 C+	25.525	
137 ksh08	2.090	653 A+	16.670		28.427	5273 A+	38.393	6977 C+	54.736	9547 C+	42.369		25.146	4771 A+
138 ksh09	2.343	713 A+	16.360		28.116	5205 A+	38.080		54.423		42.076		24.873	4709 C+
139 ksh10	2.530	764 A+	16.127		27.883	5155 A+	37.847		54.191	9537 C+	41.851		24.680	4671 A+
140 ksh11	2.751	832 A+	15.872		27.627	5137 A+	37.591		53.935	9477 C+	41.609		24.460	4654 A+
141 ksh12	2.877	853 A+	15.687	3176 C+	27.444	5100 B+	37.411		53.760	9342 C+	41.418		24.344	4620 A+
142 ksh13	3.056	878 A+	15.359		27.123	5068 B+	37.105		53.469		41.045		24.228	4562 C+
143 ksh14	3.466	950 A+	15.031		26.787	4992 B+	36.755		53.106		40.787	7538 C+	23.806	4571 B+
144 ksh15	3.623	978 A+	14.964	3113 C+	26.712	4992 B+	36.668	6552 C+	53.007	9297 C+	40.768	7673 C+	23.626	4551 A+
145 ksh16	3.989	1049 A+	14.615	3027 C+	26.359	4940 B+	36.308		52.642		40.456	7646 C+	23.275	4490 A+
146 ksh17	4.144	1093 A+	14.349		26.100	4927 A+	36.061	6532 C+	52.409		40.156	7663 C+	23.186	4500 A+
147 ksh18	4.255	1124 A+	14.145	2887 C+	25.904	4903 A+	35.878		52.239		39.913		23.157	4579 B+
148 ksh19	4.510	1138 A+	13.754	2893 C+	25.524	4805 A+	35.524	6528 B+	51.912	9102 C+	39.428		23.130	4470 B+
149 ksh20	4.838	1224 A+	13.469		25.234	4770 B+	35.223		51.600		39.208		22.772	4420 B+
150 ksh21	5.126	1273 A+	13.200		24.961	4735 B+	34.945		51.318	9072 C+	38.974		22.497	4390 B+
151 ksh22	5.301	1284 A+	13.004	2748 C+	24.767	4668 B+	34.755	6330 C+	51.132	9007 C+	38.770		22.387	4359 C+
152 ksh23	5.507	1338 C+	12.817		24.578		34.560		50.933		38.614		22.183	4245 C+
153 ksh24	5.753	1343 A+	12.534	2642 C+	24.298	4622 B+	34.288		50.670		38.311		22.050	4320 B+
154 ksh25	6.160	1428 A+	12.133	2623 C+	23.895	4588 C+	33.883	6194 C+	50.263		37.940		21.708	4290 C+
155 ksh26	6.268	1434 B+	12.008		23.773	4550 C+	33.764		50.150		37.804		21.660	4279 C+
156 ksh27	6.520	1492 A+	11.757	2604 C+	23.521	4537 C+	33.512		49.897		37.570		21.456	4251 B+
157 ksh28	6.799	1523 C+	11.492	2522 C+	23.253	4490 C+	33.239		49.620		37.337	7333 C+	21.201	
158 ksh29	7.052	1618 A+	11.250		23.008	4510 B+	32.990	6043 C+	49.369	8835 B+	37.123	7210 C+	20.974	4165 C+
159 ksh30	7.260	1629 A+	11.040	2473 A+	22.797	4475 A+	32.780	5984 B+	49.159	8757 C+	36.923	7182 B+	20.817	4120 B+
160 ksh31	7.569	1669 B+	10.745	2418 B+	22.498	4420 A+	32.476	5917 C+	48.853	8702 C+	36.659	7152 B+	20.546	4085 C+
161 ksh32	7.710	1738 A+	10.606	2402 B+	22.358	4420 A+	32.335	5995 C+	48.711	8702 C+	36.531	7153 B+	20.431	4085 B+
162 ksh33	7.957		10.386	2335 C+	22.131	4347 B+	32.100		48.470		36.351		20.182	
163 ksh34	8.348	1859 A+	9.956	2243 A+	21.708	4280 A+	31.686	5797 B+	48.067	8472 C+	35.907	7042 B+	19.976	3971 B+
164 ksh35	8.553	1899 A+	9.770	2196 A+	21.517	4227 A+	31.489	5851 C+	47.865		35.753	6974 B+	19.775	3924 B+
165 ksh36	8.799	1968 A+	9.508	2162 C+	21.257	4180 A+	31.234	5794 C+	47.615		35.489	6958 C+	19.633	3910 C+
166 ksh37	9.167	2048 A+	9.081	2117 C+	20.844	4155 A+	30.841	5794 C+	47.242	8396 C+	35.010	6911 B+	19.556	
167 ksh38	9.336	2058 B+	8.902	2067 C+	20.667	4115 A+	30.668		47.074	8346 C+	34.824	6888 B+	19.479	
168 ksh39	9.578	2097 C+	8.650	2028 B+	20.417	4077 A+	30.423		46.834	8298 C+	34.565	6751 C+	19.360	3875 C+
169 ksh40	9.866	2163 C+	8.363	1977 B+	20.129	4025 B+	30.135		46.547	8267 C+	34.297	6715 C+	19.158	3846 C+

		10		32	S.	33		34		5		90		<u> </u>
No. Code	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R
170 ksh41	10.113	2189 C+	8.098	1892 B+	19.869	3950 B+	29.884	5462 C+	46.306		34.006	6715 C+	19.091	3821 C+
171 ksh42	10.283	2228 A+	7.944	1887 B+	19.710	3940 A+	29.716	5527 C+	46.131		33.900	6623 B+	18.883	3780 B+
172 ksh43	10.587	2279 A+	7.617	1778 A+	19.389	3882 A+	29.410	5447 C+	45.838		33.531	6595 B+	18.830	3772 B+
173 ksh44	10.867	2357 A+	7.337	1747 A+	19.109	3825 A+	29.131	5317 B+	45.560	8099 C+	33.266	6513 C+	18.654	3762 B+
174 ksh45	11.182		7.007		18.783		28.823		45.269		32.867		18.663	
175 ksh46	11.411	2395 B+	6.779	1593 A+	18.555	3680 A+	28.593	5248 C+	45.039	8012 C+	32.660	6374 B+	18.503	3655 B+
176 ksh47	11.733	2459 B+	6.455	1530 A+	18.231	3622 A+	28.275	5242 B+	44.727		32.326	6327 A+	18.372	3627 A+
177 ksh48	11.956	2512 A+	6.232	1496 A+	18.008	3572 A+	28.056	5201 B+	44.514		32.091	6297 A+	18.296	3609 A+
178 ksh49	12.277	2553 B+	5.911	1428 A+	17.687	3517 A+	27.737	5102 C+	44.196	7883 B+	31.786	6251 B+	18.114	3560 A+
179 ksh50	12.480		5.708		17.484		27.534		43.994		31.600		17.988	
180 ksh51	12.731	2578 C+	5.457		17.233		27.277		43.732		31.405		17.755	
181 ksh52	12.946	2762 B+	5.252	1263 B+	17.025	3368 A+	27.054	4991 B+	43.498	7713 C+	31.291	6103 A+	17.449	3420 C+
182 ksh53	13.117	2839 B+	5.099	1285 A+	16.863	3345 A+	26.880	4907 C+	43.314		31.205	6133 C+	17.205	
183 npr01	13.279	2819 B+	5.008	1222 B+	16.738	3332 A+	26.725	4887 C+	43.134	7652 C+	31.225	6061 A+	16.805	3320 A+
184 npr02	13.527	2928 B+	4.728	1122 B+	16.473	3270 A+	26.472	4848 B+	42.893		30.925	6028 B+	16.789	3316 A+
185 npr03	13.712	2968 C+	4.536	1127 A+	16.284	3222 A+	26.286	4812 C+	42.711		30.735	6054 C+	16.720	3310 B+
186 npr04	14.144	2989 B+	4.108	1047 A+	15.851	3170 A+	25.853	4712 C+	42.280	7537 C+	30.336	5914 B+	16.485	3225 C+
187 npr05	14.501	3074 A+	3.808	962 A+	15.517	3102 C+	25.501	4617 C+	41.915	7444 C+	30.106	5843 B+	16.118	3177 A+
188 npr06	14.785	3024 B+	3.681	897 A+	15.294	3000 A+	25.238	4569 B+	41.624	7362 B+	30.046	5812 B+	15.634	3076 A+
189 npr07	15.114	3090 C+	3.396	837 A+	14.974	2957 A+	24.912	4519 B+	41.295	7332 C+	29.773	5768 B+	15.420	3045 A+
190 npr08	15.372	3208 B+	3.099	778 A+	14.694	2945 C+	24.644	4492 C+	41.038	7294 B+	29.475	5726 B+	15.393	3045 A+
191 npr09	15.534	3164 C+	2.831	742 B+	14.492	2867 A+	24.469	4402 C+	40.883	7280 C+	29.192	5708 B+	15.547	3074 A+
192 npr10	15.957	3239 A+	2.599	707 A+	14.120	2817 A+	24.061	4379 C+	40.452	7180 C+	28.976	5688 A+	15.057	3012 A+
193 npr11	16.210	3313 B+	2.354	615 B+	13.860	2702 B+	23.805	4274 C+	40.201		28.726	5569 B+	14.978	2954 B+
194 npr12	16.410	3248 A+	2.071	553 A+	13.629	2682 A+	23.594	4242 B+	40.005	7072 C+	28.448	5550 B+	15.056	2959 B+
195 npr13	16.720	3299 B+	1.801	546 A+	13.319	2665 A+	23.283	4228 B+	39.696	6959 A+	28.164	5557 B+	14.929	2959 A+
196 npr14	16.906		1.476	447 B+	13.097	2628 C+	23.091		39.526		27.854		15.115	
197 npr15	17.212	3357 C+	1.325	451 B+	12.811	2553 B+	22.787		39.212		27.659	5489 A+	14.843	2955 B+
198 npr16	17.487	3408 C+	1.147	417 A+	12.538	2530 A+	22.512	4158 C+	38.937	6890 C+	27.422	5453 A+	14.720	2915 A+
199 npr17	17.662	3459 C+	0.753	328 A+	12.326	2490 A+	22.336	4087 B+	38.786	6881 B+	27.093	5364 B+	14.984	2962 A+
200 npr18	17.976	3568 C+	0.676	308 A+	12.022	2414 A+	22.022	4007 B+	38.466	6811 B+	26.863	5251 B+	14.776	2904 A+
201 npr19	18.164	3608 C+	0.395	192 A+	11.814	2400 A+	21.838	3997 B+	38.299	6811 B+	26.578	5251 B+	14.941	2946 A+
202 npr20	18.470	3624 C+	0.603	342 A+	11.519	2406 A+	21.528	3997 B+	37.982	6805 B+	26.372	5246 B+	14.710	2951 A+
203 npr21	18.767	3699 A+	0.595	317 A+	11.200	2356 A+	21.247	3927 C+	37.728	6839 B+	25.922	5252 C+	14.999	3000 L+
204 npr22	18.903	3732 B+	0.742	392 A+	11.066	2338 A+	21.108		37.585	6843 B+	25.830	5223 B+	14.900	2981 B+
205 npr23	19.202	3793 B+	1.015	458 A+	10.762	2310 A+	20.827	3928 B+	37.320	6760 B+	25.446	5217 B+	15.069	2989 B+
206 npr24	19.332	3793 B+	1.149	486 A+	10.633	2315 A+	20.702	3931 B+	37.200	6728 C+	25.305	5093 B+	15.093	2961 B+
207 npr25	19.640	3848 B+	1.506	548 A+	10.333	2265 A+	20.426	3863 B+	36.940	6702 C+	24.897	4993 B+	15.319	3036 A+
208 npr26	19.903	3903 C+	1.728	588 A+	10.063	2220 A+	20.143	3826 A+	36.650	6611 C+	24.746	4973 B+	15.073	3015 B+
209 npr27	20.150	3958 B+	2.025	656 A+	9.830	2170 A+	19.931	3781 A+	36.454	6596 B+	24.392	4883 B+	15.324	3042 B+

Table 5. (Continued)

) T(ms) R r(km) T(n
5 692 A+ 9.588 20
7 698 A+ 9.336 20
0 737 A+ 9.094 20
7 792 A+ 8.685
6 806 A+ 8.515 184 8 879 B+ 8.994 181
4 907 C+ 8.030 178
14 1072 B+ 7.695 177
9 1037 C+ 7.387 171
7 1056 C+ 7.199 1650
8 1172 C+ 7.023 1646
5 1247 C+ 6.739 1580
2 6.554 1536
2 1282 A+ 17.005 3368
i2 1027 B+ 7.416 1727
II 1343 L+ 6.213 1429
2 1288 C+ 6.051 1383
'I 1373 C+ 5.729 1330
7 1383 C+ 5.523 1286
3 1452 B+ 5.274 1240
5 1516 C+ 5.030 1180
5 4.846 1146
1 1651 C+ 4.610 1085
2 1722 L+ 4.355 1040
7 4.074 1010
3 1802 C+ 3.711 940
0 1837 C+ 3.465 865
0 1818 C+ 3.269 831
2 1842 C+ 3.026 790
5 1857 C+ 2.722 704
5 1912 C+ 2.537 675
.1 1958 C+ 2.237 590
4 1.983 526
1 2057 C+ 1.776 475
14 2092 C+ 1.443 390
3 2140 C+ 1.263 349
6 2257 B+ 1.075 346
0 2290 B+ 0.805 291
9 2342 C+ 0.600 255
il 2382 B+ 0.356 165

Table 5. (Continued)

						Table 5.	(Contin	ued)						
		SI		52		33	S	4		S5		56	S	2
No. Code	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R
250 tki26	29.975	5473 C+	11.788	2417 A+	0.024	15 A+	10.129	2033 A+	26.689	4872 B+	16.482	3479 A+	16.219	3209 A+
251 tki27	30.065	5548 C+	11.877	2427 C+	0.141	60 A+	10.021	1997 A+	26.578	4872 B+	16.499	3489 A+	16.152	3190 A+
252 tki28	30.298	5570 C+	12.111	2467 C+	0.437	150 A+	9.764	1928 A+	26.317	4806 B+	16.462	3474 A+	16.089	3219 A+
253 tki29	30.468	5618 C+	12.283	2466 C+	0.655	225 A+	9.579	1912 A+	26.127	4787 B+	16.440	3483 B+	16.045	3214 B+
254 tki30	30.627	5678 C+	12.449	2562 C+	0.998	325 A+	9.389	1823 A+	25.920		16.574	3459 A+	15.825	3125 A+
255 tki31	30.842	5708 C+	12.688	2592 C+	1.569	515 A+	9.155	1765 A+	25.639	4666 C+	16.859	3473 A+	15.431	2987 B+
256 tki32	31.012		12.885		2.007	610 A+	8.999	1712 A+	25.434	4593 C+	17.079	3468 B+	15.149	
257 tki33	31.196		13.092	2637 C+	2.355	44 069	8.842	1667 A+	25.232	4567 C+	17.209	3454 A+	14.979	2866 A+
258 tki34	31.485	5878 C+	13.389		2.604	715 A+	8.566	1617 A+	24.938	4512 B+	17.125	3429 A+	15.037	2857 A+
259 tki35	31.752	5909 C+	13.657	2697 C+	2.793	741 A+	8.305	1581 A+	24.671	4447 B+	16.996	3402 A+	15.153	2890 A+
260 tki36	31.960	5953 C+	13.851	2742 C+	2.827	769 A+	8.079	1538 A+	24.471	4412 B+	16.753	3374 A+	15.392	2925 A+
261 tki37	32.231	5954 C+	14.127		3.079	826 A+	7.819	1512 A+	24.196	4412 B+	16.669	3358 A+	15.474	2920 B+
262 tki38	32.455	5938 C+	14.356	2837 C+	3.292	865 A+	7.606	1453 A+	23.969		16.604	3321 A+	15.543	2920 B+
263 tki39	32.769	5958 C+	14.673	2963 C+	3.570	901 A+	7.302	1382 A+	23.653	4291 B+	16.483	3278 A+	15.679	2909 B+
264 tki40	32.970	5968 C+	14.870	2952 C+	3.713	911 A+	7.098	1333 A+	23.454	4248 B+	16.351	3241 A+	15.822	2949 A+
265 tki41	33.236	6040 C+	15.140	2977 C+	3.968	955 A+	6.845	1272 A+	23.185	4213 C+	16.270	3213 A+	15.929	2942 B+
266 tki42	33.487	6073 C+	15.383		4.130	44 066	6.581	1243 B+	22.939		16.061	3178 A+	16.159	2990 B+
267 tki43	33.726	6088 C+	15.614	3180 C+	4.299	1005 A+	6.331	1168 A+	22.706	4147 B+	15.871	3140 A+	16.372	3006 B+
268 tki44	34.067		15.951		4.582	1101 A+	5.986	1127 A+	22.368	4157 B+	15.665	3158 C+	16.623	3169 C+
269 tki45	34.268	6172 C+	16.157		4.799	1120 A+	5.801	1138 A+	22.163	4061 B+	15.649	3258 B+	16.683	3100 C+
270 tki46	34.485		16.372	3316 C+	4.991	1205 A+	5.584	1112 A+	21.947	4047 B+	15.540	3240 C+	16.831	3110 C+
271 tki47	34.784		16.672	3273 C+	5.279	1285 A+	5.296	1073 A+	21.647	4021 C+	15.443		16.996	3336 B+
272 tki48	35.065		16.954		5.551	1345 A+	5.027	1033 A+	21.365	3987 B+	15.357	3173 B+	17.155	3379 B+
273 tki49	35.287	6313 C+	17.182	3401 C+	5.788	1396 A+	4.827	993 A+	21.139	3902 C+	15.346	3118 B+	17.239	3351 C+
274 tki50	35.603	6344 C+	17.492		6.056	1440 A+	4.501	942 A+	20.827	3902 B+	15.152	3095 A+	17.510	3351 C+
275 tki51	35.825	6382 C+	17.724	3411 C+	6.318	1420 A+	4.327	843 A+	20.598	3797 A+	15.222	3048 A+	17.542	3291 B+
276 tki52	36.148	6463 C+	18.035	3403 C+	6.569	1464 A+	3.970	773 A+	20.284	3727 A+	14.953	3000 A+	17.886	3356 B+
277 ngy01	36.315		18.215	3487 C+	6.790	1500 A+	3.867	777 A+	20.107	3718 A+	15.085	3033 B+	17.858	3326 B+
278 ngy02	36.605		18.511	3513 C+	7.094	1579 A+	3.627	772 A+	19.813	3702 A+	15.085	3045 C+	17.994	3326 B+
279 ngy03	36.889		18.796	3547 C+	7.373	1625 A+	3.377	692 A+	19.528	3632 B+	15.033	3045 A+	18.173	3411 C+
280 ngy04	37.090		18.998		7.570	1660 A+	3.203	643 A+	19.327	3595 C+	14.997	3013 C+	18.303	3445 C+
281 ngy05	37.350		19.256		7.813	1675 A+	2.962	587 A+	19.068	3547 B+	14.913	2998 A+	18.502	3441 C+
282 ngy06	37.604		19.517		8.089	1749 C+	2.800	567 A+	18.810	3500 C+	14.965	2998 B+	18.607	
283 ngy07	37.857	6743 C+	19.765		8.315	1755 A+	2.556	518 A+	18.559	3453 B+	14.853	2985 A+	18.832	3480 B+
284 ngy08	38.143		20.054	3761 C+	8.603	1800 A+	2.357	482 A+	18.272	3407 B+	14.844	2975 A+	19.009	3486 B+
285 ngy09	37.347		20.256		8.791	1834 A+	2.180	453 A+	18.068	3377 A+	14.864	2958 A+	18.830	3506 C+
286 ngy10	38.545		20.447		8.959	1851 A+	1.973	402 A+	17.874	3327 B+	14.651	2928 A+	19.391	3590 B+
287 ngy11	38.861	6940 C+	20.757		9.242	1921 A+	1.684	382 A+	17.563	3297 B+	14.506	2928 A+	19.693	3655 B+
288 ngy12	39.149		21.029		9.464	1975 A+	1.296		17.291	3270 C+	14.202	2885 A+	20.083	3812 C+
289 ngy13	39.346		21.210		9.597	1970 A+	0.940	202 A+	17.121	3212 C+	13.875	2778 A+	20.429	3829 C+

(Continued)	
5.	
Table	

S1 S2 S3 S4 S5 r(km) T(ms) R r(km) T(ms) R r(km) T(r	S2 S3 S4 S5 r(km) T(ms) R r(km) T(ms) R r(km) T(r	S2 S3 S4 S5 T(ms) R r(km) T(ms) R r(km) T(ms) R r(km) T(r	S3 S4 S5 r(km) T(ms) R r(km) T(ms) R r(km) T(r	3.3 S.4 S.5 T(ms) R r(km) T(ms) R r(km) T(r	S4 S5 r(km) T(ms) R r(km) T(r	(4 S5 T(ms) R r(km) T(r	S5 r(km) T(r	55 T(r	ns) R	r(km)	36 T(ms) R	S r(km)	7 T(ms) R
39.534 21.389 9.748 1970 A+ 0.669 157 A+ 16.95 0.000 91.797 10.000 9050 D+ 0.460 129 A+ 16.41	21.389 9.748 1970 A+ 0.669 157 A+ 16.95 91.727 10.000 9050 D1 0.460 139 A+ 16.61	9.748 1970 A+ 0.669 157 A+ 16.95	9.748 1970 A+ 0.669 157 A+ 16.95 10.000 2050 D+ 0.460 132 A+ 16.61	1970 A+ 0.669 157 A+ 16.95	0.669 157 A+ 16.95	157 A+ 16.95	16.95	5.01	3128 C+	13.658 12.596	2760 A+ 9775 A+	20.698 20.095	3871 2051
0.223 7107 C+ 22.069 4142 C+ 10.396 2070 A+ 0.351 92 A+ 16.01	21.131 10.000 2000 DF 0.409 152 AF 10.01 22.069 4142 CF 10.396 2070 A+ 0.351 92 A+ 16.30	10.000 Z020 DT 0.409 1.32 AT 10.01 4142 C+ 10.396 2070 A+ 0.351 92 A+ 16.30	10.000 2030 D+ 0.409 1.32 A+ 10.01 10.396 2070 A+ 0.351 92 A+ 16.30	2020 D+ 0.409 132 A+ 10.01 2070 A+ 0.351 92 A+ 16.30	0.351 92 A+ 16.30	92 A+ 16.30	16.01	10	2092 C+ 2982 A+	13.365	2713 A+ 2713 A+	20.965 21.367	3874 B
10.464 7213 C+ 22.312 10.644 2125 A+ 0.576 142 A+ 16	· 22.312 10.644 2125 A+ 0.576 142 A+ 16	10.644 2125 A+ 0.576 142 A+ 16	10.644 2125 A+ 0.576 142 A+ 16	2125 A+ 0.576 142 A+ 16	0.576 142 A+ 16	142 A+ 16	16	.052	2982 B+	13.414	2720 A+	21.512	3914 C
0.610 22.468 4193 C+ 10.824 2181 A+ 0.841 197 A+	22.468 4193 C+ 10.824 2181 A+ 0.841 197 A+	4193 C+ 10.824 2181 A+ 0.841 197 A+	10.824 2181 A+ 0.841 197 A+	2181 A+ 0.841 197 A+	0.841 197 A+	197 A+		15.877	2962 B+	13.644	2740 A+	21.478	3921 (
10.881 7193 C+ 22.738 4338 C+ 11.090 2221 A+ 1.048 247 A+	· 22.738 4338 C+ 11.090 2221 A+ 1.048 247 A+	4338 C+ 11.090 2221 A+ 1.048 247 A+	11.090 2221 A+ 1.048 247 A+	2221 A+ 1.048 247 A+	1.048 247 A+	247 A+		15.609	2877 A+	13.617	2740 A+	21.702	3921 C
H.I.I.Z / 233 C+ 22.969 429/ C+ 11.321 2285 A+ 1.260 312 A+ 1.928 7973 C+ 93 106 4999 B+ 11 507 9310 A+ 1 600 369 A+	· 22.969 429/ C+ 11.321 2285 A+ 1.260 312 A+ · 93 106 4999 B+ 11 507 9310 A+ 1 600 369 A+	4297 C+ 11.321 2285 A+ 1.260 312 A+ 4999 B+ 11 507 9310 A+ 1 600 369 A+	11.321 2285 A+ 1.260 312 A+ 11.507 2310 A+ 1.600 362 A+	2285 A+ 1.260 312 A+ 2310 A+ 1.600 362 A+	1.260 312 A+ 1.600 362 A+	312 A+ 362 A+		15.378 15.218	2842 A+ 2812 A+	13.637 14 076	2765 A+	21.809 21.696	3911 C 3940 F
11.509 7353 C+ 23.397 4397 C+ 11.820 2355 A+ 1.947 427 A+	- 23.397 4397 C+ 11.820 2355 A+ 1.947 427 A+	4397 C+ 11.820 2355 A+ 1.947 427 A+	11.820 2355 A+ 1.947 427 A+	2355 A+ 1.947 427 A+	1.947 427 A+	427 A+		14.923	2762 A+	14.284	2845 A+	21.800	3950 C
11.576 7394 C+ 23.477 4457 B+ 11.931 2390 A+ 2.154 471 A+	· 23.477 4457 B+ 11.931 2390 A+ 2.154 471 A+	4457 B+ 11.931 2390 A+ 2.154 471 A+	11.931 2390 A+ 2.154 471 A+	2390 A+ 2.154 471 A+	2.154 471 A+	471 A+		14.843	2772 A+	14.529	2888 A+	21.711	3926 C
11.689 7424 C+ 23.614 4481 B+ 12.124 2450 A+ 2.517 568 A+	- 23.614 4481 B+ 12.124 2450 A+ 2.517 568 A+	4481 B+ 12.124 2450 A+ 2.517 568 A+	12.124 2450 A+ 2.517 568 A+	2450 A+ 2.517 568 A+	2.517 568 A+	568 A+		14.720	2757 A+	14.939	2978 A+	21.565	3941 E
t1.993 7483 B+ 23.918 4527 B+ 12.421 2490 A+ 2.733 632 C+	23.918 4527 B+ 12.421 2490 A+ 2.733 632 C+	4527 B+ 12.421 2490 A+ 2.733 632 C+	12.421 2490 A+ 2.733 632 C+	2490 A+ 2.733 632 C+	2.733 632 C+	632 C+		14.415		14.954		21.817	4012 B
12.266 7523 C+ 24.197 4546 C+ 12.709 2542 A+ 3.006 652 A+	- 24.197 4546 C+ 12.709 2542 A+ 3.006 652 A+	4546 C+ 12.709 2542 A+ 3.006 652 A+	12.709 2542 A+ 3.006 652 A+	2542 A+ 3.006 652 A+	3.006 652 A+	652 A+		14.143	2648 A+	15.079	2980 A+	21.982	4051 B
12.562 7543 B+ 24.490 4567 B+ 12.992 2595 A+ 3.220 677 A+	24.490 4567 B+ 12.992 2595 A+ 3.220 677 A+	4567 B+ 12.992 2595 A+ 3.220 677 A+	12.992 2595 A+ 3.220 677 A+	2595 A+ 3.220 677 A+	3.220 677 A+	-555 ·		13.846	2593 A+	15.078		22.245	4101 A
12.828 7633 C+ 24.756 4582 C+ 13.253 2642 A+ 3.441 722 A+	24.756 4582 C+ 13.253 2642 A+ 3.441 722 A+	4582 C+ 13.253 2642 A+ 3.441 722 A+	13.253 2642 A+ 3.441 722 A+	2642 A+ 3.441 722 A+	3.441 722 A+	722 A+		13.581	2533 A+	15.114	2993 A+	22.463	4129 B
[3.106 7712 C+ 25.035 13.531 2695 B+ 3.692 772 A	· 25.035 13.531 2695 B+ 3.692 772 A	13.531 2695 B+ 3.692 772 A	13.531 2695 B+ 3.692 772 A	2695 B+ 3.692 772 A	3.692 772 A	772 A	+	13.303	2522 B+	15.183	2975 B+	22.678	4280 C
[3.416 7668 C+ 25.345 4691 B+ 13.836 2742 A+ 3.963 816 A	· 25.345 4691 B+ 13.836 2742 A+ 3.963 816 A	4691 B+ 13.836 2742 A+ 3.963 816 A	13.836 2742 A+ 3.963 816 A	2742 A+ 3.963 816 A	3.963 816 A	816	+	12.993	2463 A+	15.238	3020 A+	22.934	4231 B-
t3.611 7698 B+ 25.530 4692 C+ 13.996 2737 A+ 4.057 827	25.530 4692 C+ 13.996 2737 A+ 4.057 827	4692 C+ 13.996 2737 A+ 4.057 827	13.996 2737 A+ 4.057 827	2737 A+ 4.057 827	4.057 827	827	Η+	12.798	2388 A+	15.103	2990 A+	23.192	4259 B ⁺
t3.893 7778 C+ 25.820 4780 C+ 14.302 2817 A+ 4.380 892	· 25.820 4780 C+ 14.302 2817 A+ 4.380 892	4780 C+ 14.302 2817 A+ 4.380 892	14.302 2817 A+ 4.380 892	2817 A+ 4.380 892	4.380 892	892	A+	12.516	2332 A+	15.313	3058 A+	23.344	4466 B ⁺
14.114 7814 C+ 26.035 4814 C+ 14.502 2862 A+ 4.542 937	· 26.035 4814 C+ 14.502 2862 A+ 4.542 937	4814 C+ 14.502 2862 A+ 4.542 937	14.502 2862 A+ 4.542 937	2862 A+ 4.542 937	4.542 937	937	+Y	12.295	2322 A+	15.270	3058 A+	23.579	4391 C ⁺
14.342 7829 C+ 26.242 4799 L+ 14.663 2847 A+ 4.619 912	· 26.242 4799 L+ 14.663 2847 A+ 4.619 912	4799 L+ 14.663 2847 A+ 4.619 912	14.663 2847 A+ 4.619 912	2847 A+ 4.619 912	4.619 912	912	+A	12.077	2262 B+	14.953	2980 A+	23.972	4419 C ⁺
14.713 7898 C+ 26.628 4898 B+ 15.078 2935 A+ 5.067 1027	· 26.628 4898 B+ 15.078 2935 A+ 5.067 1027	4898 B+ 15.078 2935 A+ 5.067 1027	15.078 2935 A+ 5.067 1027	2935 A+ 5.067 1027	5.067 1027	1027	+Y	11.697	2192 A+	15.329	3060 A+	24.132	4452 C-
14.879 7943 C+ 26.796 4923 C+ 15.247 2990 A+ 5.236 1058	· 26.796 4923 C+ 15.247 2990 A+ 5.236 1058	4923 C+ 15.247 2990 A+ 5.236 1058	15.247 2990 A+ 5.236 1058	2990 A+ 5.236 1058	5.236 1058	1058	+Y+	11.531	2163 A+	15.407	3075 A+	24.254	4492 B+
15.122 7983 C+ 27.039 4996 C+ 15.488 3032 A+ 5.466 111	· 27.039 4996 C+ 15.488 3032 A+ 5.466 111	4996 C+ 15.488 3032 A+ 5.466 111	15.488 3032 A+ 5.466 111	3032 A+ 5.466 111	5.466 111	111	2 A+	11.287	2137 A+	15.475	3085 A+	24.461	4509 C ⁺
I5.361 7961 C+ 27.274 5037 C+ 15.712 3080 A+ 5.672 115	· 27.274 5037 C+ 15.712 3080 A+ 5.672 115	5037 C+ 15.712 3080 A+ 5.672 1157	15.712 3080 A+ 5.672 1157	3080 A+ 5.672 1157	5.672 1157	1157	4+ Z	11.050	2058 A+	15.478	3085 A+	24.700	4550 C
E.603 8052 C+ 27.520 5042 C+ 15.963 3105 A+ 5.924 1197	· 27.520 5042 C+ 15.963 3105 A+ 5.924 1197	5042 C+ 15.963 3105 A+ 5.924 1197	15.963 3105 A+ 5.924 1197	3105 A+ 5.924 1197	5.924 1197	1197	4+ Z	10.806	2037 A+	15.618	3098 A+	24.873	4559 B ⁻
E.829 8173 C+ 27.745 5024 C+ 16.183 3107 A+ 6.135 123	· 27.745 5024 C+ 16.183 3107 A+ 6.135 123	5024 C+ 16.183 3107 A+ 6.135 123:	16.183 3107 A+ 6.135 123:	3107 A+ 6.135 123:	6.135 123:	123;	3 A+	10.580	1997 A+	15.670	3103 A+	25.078	4612 C
(6.012 8142 C+ 27.929 5107 C+ 16.370 6.321 126	· 27.929 5107 C+ 16.370 6.321 126	5107 C+ 16.370 6.321 126	16.370 6.321 126	6.321 126	6.321 126	126	3 A+	10.397	1967 A+	15.766	3115 A+	25.216	4621 C
(6.264 8156 C+ 28.184 5152 C+ 16.627 3212 A+ 6.577 1297	· 28.184 5152 C+ 16.627 3212 A+ 6.577 1297	5152 C+ 16.627 3212 A+ 6.577 1297	16.627 3212 A+ 6.577 1297	3212 A+ 6.577 1297	6.577 1293	1297	7 A+	10.145	1907 A+	15.898	3133 A+	25.410	4681 C
(6.538 8213 C+ 28.500 5222 C+ 17.022 3310 A+ 7.069 1408	· 28.500 5222 C+ 17.022 3310 A+ 7.069 1408	5222 C+ 17.022 3310 A+ 7.069 1408	17.022 3310 A+ 7.069 1408	3310 A+ 7.069 1408	7.069 1408	1408	+Y	9.901	1917 A+	16.679	3303 A+	25.293	4706 C
i6.747 8213 C+ 28.703 5222 C+ 17.209 3327 A+ 7.232 1422	· 28.703 5222 C+ 17.209 3327 A+ 7.232 1422	5222 C+ 17.209 3327 A+ 7.232 1422	17.209 3327 A+ 7.232 1422	3327 A+ 7.232 1422	7.232 1422	1422	+A	9.684	1862 A+	16.662	3286 A+	25.525	4696 C
(6.945 8284 C+ 28.900 5302 C+ 17.403 3390 A+ 7.416 1478	· 28.900 5302 C+ 17.403 3390 A+ 7.416 1478	5302 C+ 17.403 3390 A+ 7.416 1478	17.403 3390 A+ 7.416 1478	3390 A+ 7.416 1478	7.416 1478	1478	+A	9.486	1822 A+	16.729	3308 A+	25.702	4753 C
17.215 8392 C+ 29.158 17.636 3362 A+ 7.613 1522 A	· 29.158 17.636 3362 A+ 7.613 1522 A	17.636 3362 A+ 7.613 1522 A	17.636 3362 A+ 7.613 1522 A	3362 A+ 7.613 1522 A	7.613 1522 A	$1522 \ A$	+	9.205	1796 A+	16.653	3308 A+	26.032	4806 C
I.7.554 8458 C+ 29.484 17.936 3457 A+ 7.879 1542 A-	· 29.484 17.936 3457 A+ 7.879 1542 A	17.936 3457 A+ 7.879 1542 A-	17.936 3457 A+ 7.879 1542 A-	3457 A+ 7.879 1542 A-	7.879 1542 A	1542 A-	+	8.857	1701 A+	16.587	3283 A+	26.435	4941 C-
t7.666 8444 C+ 29.592 5423 C+ 18.037 3482 A+ 7.971 1567 A+	· 29.592 5423 C+ 18.037 3482 A+ 7.971 1567 A+	5423 C+ 18.037 3482 A+ 7.971 1567 A+	18.037 3482 A+ 7.971 1567 A+	3482 A+ 7.971 1567 A+	7.971 1567 A+	1567 A+		8.743	1677 A+	16.574	3295 A+	26.564	4860 C-
17.971 29.915 18.389 3497 B+ 8.351 1673 A+	29.915 18.389 3497 B+ 8.351 1673 A+	18.389 3497 B+ 8.351 1673 A+	18.389 3497 B+ 8.351 1673 A+	3497 B+ 8.351 1673 A+	8.351 1673 A+	1673 A+		8.452	1682 A+	17.002	3383 A+	26.681	4911 C-
(8.225 8529 C+ 30.173 18.652 3625 A+ 8.616 1716 A+	· 30.173 18.652 3625 A+ 8.616 1716 A+	18.652 3625 A+ 8.616 1716 A+	18.652 3625 A+ 8.616 1716 A+	3625 A+ 8.616 1716 A+	8.616 1716 A+	1716 A+		8.204	1627 A+	17.179	3401 A+	26.873	4954 C-
8.459 30.402 18.869 3615 A+ 8.819 1713 A+	30.402 18.869 3615 A+ 8.819 1713 A+	18.869 3615 A+ 8.819 1713 A+	18.869 3615 A+ 8.819 1713 A+	3615 A+ 8.819 1713 A+	8.819 1713 A+	1713 A+		7.964	1542 A+	17.206	3375 A+	27.121	4986 C+
8.634 30.585 19.066 3658 A+ 9.028	30.585 19.066 3658 A+ 9.028	19.066 3658 A+ 9.028	19.066 3658 A+ 9.028	3658 A+ 9.028	9.028			7.802	1522 A+	17.425	3390 A+	27.206	5024 B-
(8.980 8703 C+ 30.927 19.399 3737 B+ 9.347 1870 B+	· 30.927 19.399 3737 B+ 9.347 1870 B+	19.399 3737 B+ 9.347 1870 B+	19.399 3737 B+ 9.347 1870 B+	3737 B+ 9.347 1870 B+	9.347 1870 B+	1870 B+		7.452	1527 A+	17.533	3485 A+	27.543	

		51		S2	20	3		54		55		S6		L
No. Code	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R	r(km)	T(ms) R						
330 kyt24	49.122		31.060		19.513	3722 A+	9.444	1786 A+	7.298	1423 A+	17.449	3395 A+	27.747	5122 C+
331 kyt25	49.396		31.339		19.801	3780 A+	9.737	1876 A+	7.033	1387 A+	17.685	3448 A+	27.941	5186 C+
332 kyt26	49.644	8752 C+	31.582		20.034	3797 A+	9.959	1887 A+	6.779	1312 A+	17.735	3428 A+	28.201	5171 B+
333 kyt27	49.844	8784 C+	31.781	5817 C+	20.230	3817 A+	10.152	1912 A+	6.579	1263 A+	17.828	3443 A+	28.385	5213 B+
334 kyt28	50.111	8797 B+	32.047	5845 B+	20.492	3848 A+	10.409	1942 A+	6.312	1217 A+	17.953	3443 A+	28.633	5255 B+
335 kyt29	50.372	8834 C+	32.314	5894 C+	20.768	3918 A+	10.690	2032 A+	6.062	1192 A+	18.194	3510 A+	28.817	5286 C+
336 kyt30	50.587	8843 C+	32.528	5921 C+	20.978	3938 A+	10.896	2043 A+	5.845	1152 A+	18.291	3510 A+	29.021	5374 C+
337 kyt31	50.819	8903 C+	32.757	5927 C+	21.202	3960 A+	11.114	2072 A+	5.611	1102 A+	18.383	3520 A+	29.248	5396 C+
338 kyt32	51.146	8913 C+	33.084	6012 C+	21.525	4002 A+	11.434	2116 A+	5.285	1032 A+	18.563	3538 A+	29.547	5447 B+
339 kyt33	51.321	8993 C+	33.260	5997 C+	21.703	4025 A+	11.611	2142 A+	5.113	1002 A+	18.685	3558 A+	29.695	5375 C+
340 kyt34	51.572	9009 C+	33.514	5997 C+	21.961	4085 A+	11.871	2208 A+	4.872	957 A+	18.886	3600 A+	29.895	5432 C+
341 kyt35	51.804	9009 C+	33.757	6071 C+	22.218	4160 A+	12.138	2282 A+	4.673	947 A+	19.182	3668 A+	30.026	5490 B+
342 kyt36	52.024	9113 C+	33.968	6117 C+	22.414	4180 A+	12.323	2293 A+	4.429	907 A+	19.184	3668 A+	30.291	5550 C+
343 kyt37	52.295		34.250		22.711	4220 A+	12.629	2333 B+	4.200	852 A+	19.512	3698 B+	30.457	5556 B+
344 kyt38	52.538		34.507		22.990	4314 B+	12.923	2423 A+	4.034	847 A+	19.878	3770 C+	30.571	5584 C+
345 kyt39	52.803		34.766		23.238	4395 A+	13.160	2456 C+	3.749	787 A+	19.955		30.856	5562 C+
346 kyt40	52.997		34.945		23.392		13.298	2472 B+	3.492	712 A+	19.858	3735 B+	31.143	5680 C+
347 kyt41	53.243		35.189		23.632	4363 B+	13.534	2462 B+	3.245	667 A+	19.988	3748 B+	31.381	5761 C+
348 kyt42	53.453		35.386		23.810	4376 A+	13.699	2483 A+	2.992	606 A+	19.933	3723 A+	31.669	5775 C+
349 kyt43	53.749		35.685		24.111	4426 B+	14.001	2551 B+	2.711	567 A+	20.167	3760 C+	31.921	5829 C+
350 kyt44	54.015		35.968		24.417	4550 B+	14.321	2652 A+	2.547	577 A+	20.597	3860 C+	32.038	5900 C+
351 kyt45	54.144	9493 C+	36.089		24.526	4560 B+	14.422	2697 A+	2.376	557 A+	20.568	3908 A+	32.213	5900 C+
352 kyt46	54.429	9483 C+	36.365		24.787	4595 A+	14.674	2703 B+	2.051	462 A+	20.622	3883 A+	32.545	5869 C+
353 kyt47	54.681	9523 C+	36.613	6572 C+	25.027	4626 A+	14.909	2763 A+	1.783	432 A+	20.722	3915 A+	32.814	5916 C+
354 kyt48	54.929	9603 C+	36.856	6662 C+	25.263	4674 A+	15.142		1.524	379 A+	20.829	3915 A+	33.074	5994 C+
355 kyt49	55.148	9635 C+	37.078	6669 C+	25.487	4690 A+	15.367	2818 A+	1.327	332 A+	21.017	3945 A+	33.259	5874 C+
356 kyt50	55.411	9633 C+	37.343	6677 C+	25.756	4775 A+	15.637	2912 A+	1.108	307 A+	21.247	3988 A+	33.479	6046 C+
357 kyt51	55.718	9789 C+	37.644	6742 L+	26.046	4875 A+	15.922	2903 A+	0.774	196 A+	21.364	3988 B+	33.813	6089 C+
358 kyt52	55.943	9766 C+	37.866	6797 L+	26.264	4822 A+	16.138	2952 A+	0.553	167 A+	21.486	4010 A+	34.042	6074 C+
359 kyt53	56.168		38.084	6793 L+	26.470	4890 A+	16.341	3037 A+	0.275	133 A+	21.530	4061 B+	34.312	6194 C+

Table 5. (Continued)

r(km):Offset distance. T(ms):Travel time. R: Rank (data quality) and polarity of onset.

2003年九州日奈久断層域構造探査グループ

Fig. 8. Travel-time plot for inline shots on the NNE-SSW line. The reduction velocity is taken to be 6.0 km/s. The horizontal axis is an offset in km. The quality of travel time data is shown with different symbols (see text for explanation). (a) S6. (b) S3. (c) S7.

Fig. 9. Travel-time plot for inline shots on the EW line. The reduction velocity is taken to be 6.0 km/s. The horizontal axis is an offset in km. The quality of travel time data is shown with different symbols (see text for explanation). (a) S1. (b) S2. (c) S3. (d) S4. (e) S5.

Fig. 10. Travel-time plot for offline shots on the NNE-SSW line. The reduction velocity is taken to be 6.0 km/s. The horizontal axis is a trace number (Table 2). The quality of travel time data is shown with different symbols (see text for explanation). (a) S1. (b) S2. (c) S4. (d) S5.

Fig. 11. Travel-time plot for offline shots on the EW line. The reduction velocity is taken to be 6.0 km/s. The horizontal axis is a trace number (Table 2). The quality of travel time data is shown with different symbols (see text for explanation). (a) S6. (b) S7.

Fig. 12. Examples of record section observed at array A2 (see Fig. 1). (a) S3. (b) S5.

Fig. 13. Examples of record section for S3 observed at arrays A1, 3, 4, and 5. (a) A1. (b) A3. (c) A4. (d) A5.

参考文献

- 爆破地震動研究グループ(執筆者 岩崎貴哉),2002a,北海道日 高衝突帯横断屈折・広角反射法地震探査(大滝-浦幌測 線),地震研究所彙報,**77**,139-172.
- 爆破地震動研究グループ(執筆者 岩崎貴哉),2002b,北海道日 高衝突帯前縁部における屈折・広角反射法地震探査(大滝 -平取測線),地震研究所彙報,77,173-198.
- 岩崎貴哉・2003 年九州日奈久断層域構造探査グループ,2004, 屈折・広角反射法による九州,日奈久断層域の地殻構造, 日本地震学会講演予稿集 2004 年度秋季大会,B053.
- 岩崎貴哉・2003 年九州日奈久断層域構造探査グループ,2005, 九州,日奈久断層域における上部・中部地殻構造,日本地 震学会講演予稿集 2005 年度秋季大会,P087.
- Iwasaki, T., K. Adachi, T. Moriya, H. Miyamachi, T. Matsushima, K. Miyashita, T. Takeda, T., Taira, T., Yamada, and K. Ohtake, K., 2004, Upper and middle crustal deformation of an arc-arc collision across Hokkaido, Japan, inferred from seismic refraction/wide-angle reflection experiments, *Tectonophysics*, 388, 59–73.
- Kodaira S., E. Kurashimo, J.-O. Park, N. Takahashi, A.

Nakanishi, S. Miura, T. Iwasaki, N. Hirata, K. Ito and Y. Kaneda, 2002, Structural factors controlling the rupture process of as megathrust earthquake at the Nankai trough seismogenic zone, *Geophys. J. Int.*, **149**, 815–835.

- 是永将宏・松本 聡・清水 洋・2003 年九州日奈久断層域構 造探査グループ,2004,Double-Difference Tomography 法による布田川-日奈久断層系周辺の3次元地震波速度構 造,日本地震学会講演予稿集2004 年度秋季大会,P122.
- 蔵下英司・徳永雅子・平田 直・岩崎貴哉・小平秀一・金田義 行・伊藤 潔・西田良平・木村昌三・井川 猛,2002,四 国東部地域における地殻上部及び最上部マントルの地震波 速度と沈み込むフィリピン海プレートの形状,地震,54, 489-505.
- Kurashimo, E., N., Hirata and T. Iwasaki, 2003, Physical properties of the top of the subducting Philippine Sea plate beneath the SW Japan arc by AVO analysis, Abstr. 10th Int. Symp. "Deep Seismic Profiling of the Continents and Their Margins", p83.
- 蔵下英司・平田 直・森田裕一・結城 昇,2007,高機能小型 オフラインデータロガーを用いた高密度地震観測システ ム,地震,59,107-116.
- 九州大学地震火山観測研究センター,2005,熊本県日奈久断層 域における応力場の推定,第162回地震予知連絡会.
- 松本 聡・渡邉篤志・2003 年九州日奈久断層域構造探査グ ループ,2004,アレイ観測に基づく布田川-日奈久断層系周 辺の P 波散乱体分布イメージング,日本地震学会講演予稿 集2004 年度秋季大会,B078
- 森田裕一・浜口博之, 1996, 火山体構造探査のための高精度小型データロガーの開発, 火山, **41**, 127-139.
- Sato, T., S. Miura, G. Fujie., K. Obana, A. Ito, D.H. Kang, S. Kodaira, K. Suyehiro, Y. Kaneda and T. Iwasaki, 2004. Deep seismic structure in the margin of the southwestern Yamato Basin, Japan Sea by ocean bottom seismographic experiment, Abstr. 11th Int. Symp. "Deep Seismic Profiling of the Continents and Their Margins", p 97.
- 佐藤比呂志・児島悠司・村田明広・伊藤谷生・金田義行・大西 正純・岩崎貴哉・於保幸正・荻野スミ子・狩野謙一・河村 知徳・蔵下英司・越谷 信・高須 晃・竹下 徹・津村紀 子・寺林 優・豊原富士夫・中島 隆・野田 賢・橋本善 孝・長谷川修一・平田 直・宮内崇裕・宮田隆夫・山北 聡・吉田武義・Steven Harder・Kate Miller・Galen Kaip・小澤岳史・井川 猛, 2006,西南日本外帯の地殻構 造: 2002 年四国一瀬戸内海横断地殻構造探査の成果, 地震 研究所彙報, 80, 53-71.
- 篠原雅尚・平田 直・松田滋夫, 1997, GPS 時計付き地震観測 用大容量デジタルレコーダ, 地震, 50, 119-124.
- 清水 洋・植平賢司・松本 聡・松島 健・松尾のり道,
 2002,布田川-日奈久断層系における地震活動,月刊地球,
 38,128-133.
- 植平賢司・是永将宏・松本 聡・内田和也・松尾のり道・松島 健・清水 洋,2005,熊本県日奈久断層周辺域の応力場の 推定,地球惑星科学関連学会2005年合同大会,S052-P011.
- 2003 年九州日奈久断層域構造探査グループ,2004,2003 年日奈 久断層域における総合地殻構造探査,地球惑星科学関連学 会2004 年合同大会,S053-003.

(Received December 7, 2007) (Accepted March 18, 2008)