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Abstract

Clay is a micro-inhomogeneous material. For bentonite clay we present here a unified numeri-
cal scheme to treat its molecular characteristics and micro/macro-continuum behavior. Note that
we commonly use a macro-phenomenological model for analyzing material behavior. However,
existing models are not sufficiently effective under extreme conditions such as deeply located clay.
We try to resolve this difficulty.

Properties of saturated bentonite are characterized by hydrated montmorillonite, the major
clay mineral of bentonite. Since the crystalline structure of clay minerals determines fundamental
properties, we analyze its molecular behavior by applying a molecular dynamics (MD) simulation
and inquire into physicochemical properties of the clay hydrate system such as diffusivity of
chemical species. To extend the microscopic characteristics of constituent materials to the macro-
scopic diffusion behavior of the micro-inhomogeneous material we develop a multiscale homogeni-
zation analysis (HA) to treat adsorption behavior at a micro-level.

Key words: clay, diffusion, multi-component fluid, adsorption, seepage, molecular dynamics, multi-

scale homogenization analysis

1. Introduction

Bentonite has an extremely low permeability.
The existing model is not sufficiently effective for
analyzing permeability and diffusion behavior, be-
cause it does not always reflect molecular-based true
physical and chemical behavior, which essentially
controls transport phenomena in bentonite. Classical
analysis requires experimental-based parameters to
be provided, but sometimes we cannot furnish such
data.
basically works for an interpolation-based predic-

We note that the phenomenological model

tion, and accurate experimental data is important for
this model. A new scheme is required for analyzing
the physical and chemical behavior of clay under
extreme conditions, since the behavior is beyond the
scope of the phenomenological concept of mechanics.

Bentonite clay is a micro-inhomogeneous mate-
rial. It consists of clay minerals, macro-grains, water,

air, and others. Major properties of saturated bento-
nite clay are characterized by clay minerals and wa-
ter.

Clay minerals of bentonite are mainly montmo-
rillonite. One clay mineral is of a lamellar shape with
the size of approximately 100X100X1nm, and sev-
eral lamellae are gathered in a group together with
interlamellar water. This hydrated clay mineral sys-
tem gives a micro-scale structure in our analysis.
Difficulties in clay-hydrate analysis lie in the poor
crystallinity of a clay mineral.

Since the crystalline structure of a clay mineral
determines the fundamental properties of the hy-
drate system, we analyze its molecular behavior by
applying a molecular dynamics simulation method
(MD; Kawamura & Ichikawa 2001), and we inquire
into the physicochemical properties of the clay hy-

drate such as diffusivity of chemical species. Note

* e-mail: Yichikawa@nucc.cc.nagoya-u.ac.jp, (Chikusa-ku, Nagoya 464-8603, Japan)
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that in our MD analysis we study a beidelite crystal,
which belongs to the same smectitic mineral group
as montmorillonite. The molecular formulation of
the hydrated beidellite is given by Naj 3 Al [Sij 3 Aly/s]
040 (OH);-nH, 0.

The macro-grains consist mainly of quartz, and
the average size is about 10-50gm. This forms a
meso-scale structure.

Since the size of a micro-scale structure (i.e., the
clay hydrate) is very different from the size of the
meso-scale structure (i.e., the macro-grains) and the
macro-scale structure such as a clay stratum, we
need to introduce a new theoretical scheme to com-
bine the multi-scale structures. In this work we
develop a multiscale homogenization analysis (HA)
method for extending the microscopic characteris-
tics of constituent materials to the macroscopic diff-
usion behavior of the micro-inhomogeneous mate-
rial. Many papers on HA have been published for the
behavior of porous media (Auriault & Lewandowska
1997, Hornung 1997), which are mostly based on the
mixture theory of solid and water. Our method is not
based on the mixture theory. We start with funda-
mental flow and diffusion equations, and derive
meso-scale and macro-scale equations. The proce-
dure developed gives sufficiently accurate results for
the seepage and diffusion problem.

HA involves difficulty in specifying the micro-
scale material properties. For this purpose we use
MD results. Furthermore the adsorption property on
the surface of clay minerals is essential for diffusion
phenomena, and to treat such microscale behavior
we need higher order terms of asymptotic expansion
in HA. Note that before applying HA we summarize
the existing diffusion models for soil. Then we pre-
sent our model, which:can treat micro-inhomogene-
ous properties with adsorption behavior on the sur-

face of clay minerals.

2. Classical diffusion theory of multicomponent
solution in saturated porous media
First we use classical diffusion theory of multi-
ple chemical species (i.e,, solutes) in a dilute solution
and the diffusion in a porous media saturated with
the solution, because it gives the fundamental reason
why we need to introduce the micro/macro analysis

based on the molecular simulation and the homog-
enization method.
2.1 Diffusion of chemical species in solution

Let us think a dilute solution with #*-compo-

nents, in which (1, 2, *--, n*—1)-components are sol-

utes (i.e, diffusing chemical species), and the »n*th

component is solvent (i.e., water in our case). We

introduce the following mass and molar fractions'

mass fraction: ¢,= e ]
. g
mole fraction: y,= P (2)

where m, [g] and n, [mol] are the mass and the
amount of substance of the a-th component, respec-
tively,vwith the total mass m and the total substance

n*.

2 me=m, 2 n,=n*. (3)
Note that the sum of the above fractions is unity:

n n

;1 ¢a=11 glxa:]n

Let V be the total volume, and let M,[g/mol] and M
[g/mol] be the molar mass of the a-th component and
the solution, respectively, given by

= (4)

m
M,=—, M=
Ne n

The mass density of the a-th component, p,[kg/dm?],
is given by

_ Ma
Pa= (5)

and the average mass density of solution, o [kg/dm?®],

is
—f =T _m
p=Z o= = 6)
We now define the following concentrations (a: not
summed):
mass-percent concentration: ¢,=¢,= 7:;1" (7

mass-volume concentration: C,= % =pa=pCy (8)

molar-mass concentration: ¢,= Zzﬂ (9)
. = o Ea

molar-volume concentration: C,= = (10)
%4 M,

where m, is the mass of solvent. The molar-volume
concentration ¢, is usually called the molar concen-

"In classical mixture theory (Truesdell & Toupin 1960, Bowen 1976) the mass density o, of the a-th constituent is defined
as mq (B)=J y mpodv where x (B) is the current configuration of the material body B. We here use an intuitive manner.
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tration. If the solution is dilute (m,=m), we have

M _Na V1%
"_m_Vm_pC"' (11)

Note that the average mass-volume concentration C
is related to the average molar-volume concentration
C and the average mass density p by

p=C=MC; C= ilca, Cc= ﬁl@ (12)
For the dilute solution given by Eqn(11) we have
-1 __
c=3p ¢ Elca.

Now applying Reynolds’ transport theorem
yields

ar dv+f§;7adv

= [ %+ 2 +7.Jav=0 (13)

where o7 is the velocity of the a-th component parti-
cles, d*¢/dt=08¢ /0t +08(pv¥)/0x;=¢ implies the mate-
rial time derivative of a function ¢ with respect to
the a-th component, and 7, gives the source term per
volume per unit time because of chemical reactions,
etc. Referring to Eqn(8) the local form in terms of the
mass-percent concentration is then written as

00« N
5 VE) + 74
_00ocs) | B N
- 6t + axi (pcavz) +Ta70~ (14)
Summing up all components with respect to a yields
o + = (ov) =0 (15)

ot

where the average veloc1ty vis deﬁned by
v——Zpa ":—ZC = an , (16)

and the average source term 7 vanishes because of
the mass conservation law:

7= Sfe=0.
Let us introduce a diffusing mass flux j* of the
a-th component by
J=0.(v"—v) =Co(v" —v) =pc. (" —v). (17
Then the mass conservation equation (14) together
with incompressibility of the whole solution, dv;/dx;
=0, gives
0loca) | 0loca) | OJF
ot U o, ox;

The mass flux j* is given as the sum of molecular

+7,=0. (18)

diffusion, pressure diffusion, and thermal diffusion,
in which molecular diffusion is important for the
dilute solution. Then we have the following Fick’s

first law of diffusion:

oc?
7= — 19
pZD ox; (19)
Substituting this into Eqn(18) yields
60 6c oc,
a a ag Y8 + * —
TR QZD,, )=o)

where we set 7% =7./p.
2.2 Diffusion problem of multicomponent solu-
tion in saturated porous media

Here we use classical diffusion theory for a mul-
ticomponent dilute solution in a saturated porous
media with porosity z.

Let I'ys be a fluid-solid interface in micro-level,
and ¢ the mass flux of the a-th component on Ty
adsorbed from solution. Referring to Eqns (13) and
(14), we have the following mass conservation equa-
tion for the a-th component of solution:

Z; anadv+fn7"adv—j;/fgnids
f[a(npca)

—f {inids=0 (21)
T

i) e
a—xi(npca vf) +n7a] dv

where p is the average mass density given by Eqn(6),
¢, the mass-percent concentration of the @-th compo-
nent, v* the particle velocity, 7, the source term due
to chemical reaction, etc. and n; the unit outward
normal on I'ys. Let us define the average velocity v by
Eqgn(16), then the mass flux j, of the a-th component
can be written as
Je=np.[v*— (v—1v) ] =noc,[v*— (v—v%)]
where v° is the particle velocity of a solid phase.
Usually, the solid velocity v*is very small (| v*| K1), so
we can write
Je=npc,(v*—). (22)

We now think of a mechanical dispersion of the
a-th component in porous media caused by a forced
local flow (Fig. 1). Let v and ¢, be average velocity
and concentration, respectively, and let v and ¢, be
deviations of velocity and concentration, respec-
tively. Setting ca=¢,+¢, and v=v+v vield

CaD=CaVHCo0
because C_O,EZECTC,IO. Then we can introduce disper-
sive flux j™ as
Jm=C,0. (23)

Average velocity v and average concentration ¢, can
now formally be written as v and c¢,, respectively.
And, with Eqns(22) and (23) we have
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Average velocity v

Fig. 1. Mechanical dispersion.

NOC, U= J*+ " +npe, v. (24)
Assuming the incompressibility of the solution dv
ax; =0, the mass conservation law (21) gives
[ 0(npc,) G} oo B J
- (npc,) +——+ny, |dv
I L ot ax; E ax, ?’
f Ernids =0 (25)

where we set j*=j*+ j».

In our case we define that the 1st to (n*—1)-th
components are solutes, and the n2*-th component is
water (that is, a solvent). We treat the case that the
a-th constituent species (i.e, a solute) migrates into
the solid-phase. However, we do not consider a diff-
usion phenomenon in the solid directly. We treat it
in relation to the time-change of the solid-phase con-
centration. Then we are able to represent adsorption
using the concentration of a distribution factor (see
below for further details). We assume the following:

1) The amount of migration of the a-th compo-

nent is small, so the mass density p. of the
solid is not changed significantly.

2) The velocity v* of the solid can be ignored in

practice (|v°|<1).

3)  Molar diffusion of the @-th component in the

solid may not be considered.
Then the conservation law of the a-th component in
the solid can be written as

[{ o(l—n)p.ck

= F(L—n)% |do+ [ Snds=0 (26)
L ol J J

where ¢; is the mass-percent concentration of the
a-th component in the solid, and 7 is the source term

of the a-th component in the solid.

Summing up Eqn (25) and (26) vields

alnpc,) | 0 , L 9f :
v (noc.) + N7

ot L Ox; ox,
all—nlp.ce . =) =0 27)
- nlya=0, 2
ot s

because the surface integral terms are canceled out.
Let n be effective porosity, which is directly re-
lated to diffusion. If we treat only the isotropic
diffusion case (D =D,:6;), the mass flux of the a-th
component can be represented by Fick's first law:

35, (28)

F‘"
it on 2 Dia
2=1 o,
where D is the effective diffusion coefficient, which
is related to the molecular diffusion coeflicient D,z by

Dis= = D (29)
T

Here 7 (>1) is called as tortuosity, which mayv be
given with relation to the shortest path [ and the

effective path [, by

r('l{) 1 (30)
d (=1)is the constrictivity of pores with the average
radius d,, and the effect must be considered in the
case that there are truly fine pores, which are com-
patible with the radius d,, of solute molecules. That
is, if we have

Al {{'; I (31)
the following experimental equations have been pro-
posed:

6={1—-2,)*(1—2.104 1,+2.094;—0.9513)
(Renkin 1954)

(Beck and Schltz 1970)

d=exp(—4,64,) (Satterfield and Colton 1973)

g=0—-a,)"
60=1.03exp(—4.54,) (Chantong and Massoth
1983)

In Eqns(28) and (29) the coefficient

is sometimes called as the formation factor, which is
related to the representative elementary volume (REV).
Let Dif be the diffusivity of the @¢-component in pure
water, then we may define

D=a*Did.s (a: not summed)
where a¢” gives the solute coefficient. Then Fick’s law

(28) can be written as
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Ji=—pD*(c)

9cq = — 0% %
o onD* (™) o, (32)
De(c®) =nD**(c®) =a*FD§

=a*n§D‘6‘ (@: not summed). (33)

We introduce a working hypothesis that the flux
caused by a mechanical dispersion, j™, can be written
in the same form as Fick’s first law:

oc. oc
e = —p DI () —-= —pnDpe* (¢*)— 34
Ji pu()axj 1Y ”()6xj (34)
Dpe(c®) =nDpe*(c®) (35)
where we consider the anisotropic characteristics.
From experiments the coefficients D}*(c*) are given

by

viv;
v

Dpe(c™) = {aTvéij+ (ar—ar) }f(Pe, S, ¢%)  (36)

where ar and a; are transversal and longitudinal
dispersivities, respectively, v=|v|, Pe Peclet number,
and & constrictivity. The function f (Pe,§,¢c%) may be
given as

Pe
(Pe+2+46%)°

but usually we can assume that (Bear & Verruijt
1987)

f(Pe, 6,c%) =

f(Pe, 6,c%) =1.
Mass flux f“ coupled with molecular diffusion
and mechanical dispersion can finally be written as

= ~ 0Cy ~ 0Cq
=4 = —pDf(c%)—=— Dy* =« (37
JEIEJ] pDi(e) 5 = —on Dt ()5 (37)

j
D5 (c®) =D26;(c®) +Dpe(c®) =nDi* (¢,
Dy (¢) =D* ()b +Dj* (c). (38)

Now let us consider adsorption in a porous me-
dia, which is classified into physisorption due to the
Coulomb and van der Waals forces and the chemi-
sorption followed by a surface reaction. The heat of
the physisorption ranges from 300 to 3,000J/mol,
while the heat of the chemisorption is from 40 to 400
KJ/mol. The rate of adsorption varies greatly under
the conditions of the hydrogen ion exponent pH and
the redox potential Eh.

An adsorption isotherm describes the chemical
reaction procedure of solutions at a constant tem-
perature. The thermodynamics theory only gives an
equilibrium procedure (i.e., an equilibrium adsorption
isotherm), and a nonequilibrium adsorption isotherm
may be described in a phenomenological form in
which an activity energy due to the reaction is gener-
ally ignored, and the rate of adsorption may be given

as a function of fluid velocity.

Let the current volume of an adsorbed layer be
V, and let the final volume of the layer after comple-
tion of the reaction be V.. Then the fractional cover-
age 6 is expressed as

|4
0= Vo (39)

We here treat a typical classical example, called the
Langmuir isotherm (Langmuir 1918, Atkins 1998).
We introduce the following assumptions:

1) Adsorption proceeds with monolayer cover-
age.

2) On the perfectly flat surface there are a total
of N-sites of adsorption, which are uniformly
distributed on the surface, and are mutually
equivalent.

3) A molecule adsorbed on a site does not affect
neighboring sites.

The rate of change of surface coverage is assumed to
be proportional to the partial pressure p, of the a-th
component and the number of vacant sites N(1—6):

do _ B
at =R, pN(1—6)

On the other hand, the rate of change of adsorption
may be proportional to the sites covered:

ag _
da =kaNG.

At equilibrium both must be same:
kopN(1—8) =k4NG,
so we have

g= —FRaba  _ _ bPa

= = 40
Rat+ koD 1+bpq (40)

where b=k, k, is called the adsorption factor:
In Eqn(40) for the case bp,<1 (that is, if the
partial pressure or the rate of adsorption is very
small), we have
6="bp.. (41)
This gives the well known linear adsorption isotherm.
For a dilute solution the mass-percent concentra-
tion ¢, is proportional to the partial pressure p., so for
the flow of a dilute fluid in a porous media from Eqn
(40) we have
beg
1+be,

where c¢; is the concentration of the a-th component

* —

Cq =

(42)

in the solid given in Eqn(27), and ¢, the concentration
in the fluid. Then the linear adsorption isotherm (41)
can be written as
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€z =KqCa (43)
where K,(=0b) is called the distribution coefficient or
paftitioning coefficient.

Let us assume that the solid matrix and the fluid
are incompressible (o=constant, ps=constant) and
that the solid skeleton is not deformable (n=con-
stant). Substituting Fick’s law (37) and the linear
adsorption isotherm equation (43) into the diffusion
equation (27) yields

0Ca 43 0ca 0
ot Yox;  Ox;

where v is the seepage velocity defined by

vi=nv,

R4 D (c“)%)ﬂa:o (44)
c?x,-

and

14 (A—n)psKqa
np

Ry >D (45)

is called the retardation factor. Eqn(44) is equivalent
to

0c, . 0c, 0

Rd oF +v,

! 8x,« 6x,~

Note that the source term 7.’ or 7,* is given by

(D5 ‘;f; Yiz=0. @6

. . n. 1—n.
TZ:nr?{:;[rﬁ—fn a:|.

3. Molecular dynamics simulations of clay hy-
drate for pure- and salt-water
Physical properties of clay minerals are difficult
to understand by means of experimental methods,
because of their fine structure and poor crystallinity.
We have applied molecular simulation methods for

Table 1. Calculated shearing viscosity of 1H,O clay

specifying physical and chemical properties of clay
hydrate. The key issue for the molecular simulation
is how to determine the interatomic or intermolecu-
lar interactions quantitatively. Here we use a new
empirical interatomic potential model (Kawamura et
al. 1997, Ichikawa et al. 1999). Since the details of MD
simulation applied for clay hydrate are found in
Kawamura & Ichikawa 2001, we do not repeat them.

We can calculate a wide variety of physical prop-
erties such as elastic moduli, viscosity, heat capacity,
and heat conductivity by applying the standard sta-
tistical thermodynamics procedure for the MD re-
sults. For example, shearing viscosity along layers is
calculated in Table 1.

For calculating diffusivity and viscosity of pure-
and salt-water in the neighborhood of a clay mineral
we use MD models which include one clay-mineral
layer and surrounding water molecules. The latter
case is equivalent to the composition of seawater. An
(NVE)-ensemble MD (V the volume and E the internal
energy) is carried out. To calculate the diffusivity of
water near the clay mineral surface we divide the
water part into slices with ca. 0.2nm thickness. Us-
ing MD results we first calculate the mean square
displacement (m.s.d.) for each slice, then the diffusi-
vity (i.e., the slope of m.s.d.) is obtained. Next, by
applying the Stokes-Einstein relationship with its
diffusing spare §=0.152[nm], which is obtained by
our MD model for pure water (without clay mineral),
the viscosity of water at each sliced region is deter-
mined. Figure 2(a) shows diffusion coefficient and
viscosity for pure water in each slice, and Fig. 2(b)

hydrate. shows them for saltwater.
Shear rate [1/ps 0.1 0.01 0.001 0.0001 We find the structurally ordered water layer in
Viscosity ><10“3[Pa s] | 0.42 1.40 2.40 8.00 contact with the clay-surface, which is called the ‘ice

(10930 T r ——— 01510930 T r ——F 015
sl o Difasion codicient ; T as > Difision codficint o
- 1 ~ = o

,E‘ o Viscosity &, “a . cosity & :

a0 , Eho gl 0 & bn

.8 ° 8 o ° o |

&:g L (<] o0 ° o 0° g § ° o® ° ° o o 0 3 ]

815' 00 o° o = 915-. ° o o oo 00 ° o » |

S [ ] o © o o ° S ° o ° o 0 ¢ |

§ 10 ° poos g 100 005

- v0, 0400 . o !

é Sk 0e2%g00e é st 9

A s00° 000 ,%00,0000,%00,4° A to 2000%00g0%000,%%0g,0% %00,

b ; 1 — ' 1 :

Distance fromm the mordmorillonite surface  fron]

() Diffusivity and viscosity of the external pure water.

2
Distance from the mordmorillonite surface  froam)

() Diffusivity and viscosity of the external saltwater.

Fig. 2. Distribution of diffusivity and viscosity in pure- and salt-water.
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x'=x"¢
Cymacro-domain

+
SXI;;

!

Xog

/ ['-f /

X1 ng
Macroscale problem Mesoscale problem Micfos? ale p;ohl ex;rx 2
(Porous media with periodic (meso-domain urit cell: £2;)
meso- and micro-structures) x21
Micro-problem

(micro-domain unit cell: £)

Fig. 3. Multiscale homogenization problem.

sheet’. The thickness of the ice sheet is ca. 0.5nm for
the pure water case, and is equivalent to approxi-
mately two layers of water molecules. In the 3-4nm
thick layer, the diffusion coefficient is changed rap-
idly. The viscosity is also changed in this layer. We
call such a water property the iceberg effect. In the
saltwater case the ice sheet becomes thinner with a

weaker iceberg effect, as shown in Fig, 2(b).

4. Multiscale homogenization analysis of flow
problem in porous media with distributed water
viscosity
For the diffusion problem we need to know the

local and global flow profiles in the porous media.

For this purpose we develop a multiscale homogeni-

zation analysis (HA), which is a perturbation theory

developed to study a micro-inhomogeneous material
with periodic mesoscale and microscale structures.

We apply the multiscale HA to the seepage problem

in bentonite for pure- and salt-water with distributed

water viscosity in the vicinity of clay minerals.

Starting with Stokes’ equation, one can obtain

Darcy’s law and a macroscopic seepage equation in-

cluding the effects of the spatial distribution of vis-

cosity.
4.1 Multiscale HA formulation of seepage prob-
lem with distributed viscosity

— 431 —

We consider a flow problem in porous media
whose mesoscale and microscale domains are peri-
odic (Fig. 3). Here the fluid phase is given as Q, the
solid phase as Qs the fluid-solid mixed phase (the
domain filled with lamellae of clay hydrate in the
mesoscale problem) as Qy;, the interface of fluid and
solid as I'y, and the periodic boundary of the fluid
phase as 'y

Let x° x', and x? be the macro-, meso-, and micro-
scale coordinate systems, respectively. If we perform
a laboratory seepage and consolidation test on typi-
cal Japanese bentonite, Kunigel V1, the macroscale
specimen is 107'm, the mesoscale quartz grains are
107*m, and the microscale clay minerals are 107¥m.
So, we estimate e=10"*, and introduce the following
relations for the coordinate systems:

x'=— x'=—. 47

A cell in the mesoscale is of the size | X!| =¢|X?|, and
a cell in the microscale is of the size | X?|.

Since the flow velocity is very slow in bentonite,
the flow field is given by the following incompressi-
ble Stokes equation:

_OP o ( oVs

+Fi=0 48
0x; 0x; n@JCj (“48)
ovs _
o, =0 (49)
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where V% is velocity vector with shearing viscosity 7
which varies from place to place, P pressure, F; body
force vector, and Q. water flow region in the global
coordinate system (I'. its boundary). The super-
script® implies field variables that rapidly fluctuate
because of the micro-inhomogeniety. Note V*=0 on
the fluid-solid interface.

Since we have multiscale coordinate systems x°,
x!,x?, the original x in Eqn (48) and (49) can be written
as

x=x’ x!, x9, (50)
and the partial differentiation changes to
0 0 1 06 1 4
ﬁ—xiz(’i—x?+ € Ox! + e? o}
We introduce an asymptotic expansion
VE(x) =e* VO (x0, x!, xB) +e2 V(xS0 x!, xP)

(51)

+e8 V2 (x, x!, x2) + -+, (52)
P(x) =P (x") +eP'(x", x!, x?)
+e2P (x% x!, xD)+ -, (53)

where V¥x°, x!, x% and P*(x°, x', x* (=0, 1, :**) are X'-/
X*periodic functions such as

Ve(xd, x x) =V4(x" x'+ X', x2),

ve(x?, x!, x) =v*(x", x!, x*+ X%

P(x0 x!, x)=P(x" x!+X1, x?),

PO xl x) =P x!, x2+ XD
Note that for the asymptotic expansion given by Eqn
(62) we start with the term &, since we intend to have
anormalized Stokes’ equation in microscale, which is
shown later. Furthermore, it is assumed that P’ is a
function of only the macroscale coordinates x°.

Substituting Eqn(51), (52) and (53) into Eqn (48)

yields

ovs
+F;
ax, *ox, (” o, )T
0P /0P oP
ox? ox}  ox?
oP 6P1 | OF*
( ax, ax, )+

o ( o E[G—x}
8 [ rove  av! }]
+ + + o+ F;
636,'2 177 6.’)6]'1 596,’2
=0’
and taking e—0 yields

e %term: gij =0 (54)
or®  oP!
: o o =0 (55)

0 é"V0 OP GPO I il 6P
ox? ax ox! o} ox!

Since P? is a function only of x° Eqn (54) is automati-

&term: —F; (56)

cally satisfied. Substituting this result into Eqn(55)
yields
P'=pP'(x" x") (57)
The right-hand-side term of Eqn (56) is independ-
ent of the microscale coordinate system x?, because F;
is a function of x°. Thus we can introduce normal-

ized characteristic functions v#(x?), p*(x? by

_roP 6P‘__ b r ot

vi= (Gt gy ~F)U e (58)
Pl

(2R, (59)

Here v¥(x?) and pz(xz) are the velocity characteristic
function and the pressure characteristic function, re-
spectively. Substituting these into Eqn (56) yields
the following microscale Stokes’ equation:
vt 61)2
<77 ox?

where 6 is the Kronecker’s 6.

+6k, in Q, (60)

The incompressible condition (49) under the
transformation laws (50) and (51) gives
GVE 6V° ov? 6V;>

_+_
o 6 ? & oxi = ox?

ovY oVl oV
et T ) =,
ox)  ox!  ox? 0

As e—0 this implies

V?
g-term: (;x? =0 (61)

ov? oVl
oxi  Ox?

5[/0 ovi  oV?
g'term o + } + 7 =0 (63)

Substituting the characteristic function (58) into Eqn

g*term: =0 (62)

(61) yields the following microscale incompressible
equation:
ovt
ox?

Under the X%periodic condition we solve the micro-

=0 in Qj. (64)

scale equations (60) and (64) to determine the charac-
teristic functions v¥(x? and p5(x?).

Next, we introduce a volume average in the mi-
croscale domain < ->; for v{ to get the mesoscale
homogenized permeability KF:

2 — A :# L dx?
gii=ui), =1 ) e (65)
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Let us consider a weak form of the microscale Stokes’

)=,

Yw € Ve (66)

equation (60):

a i i
Vi 6,,, 6w

where

Ve={ucs (H' (Qy))?%; 6u:/0x}=0; X%-periodic}
and (H'(Q,))® denotes the Sobolev subspace of the
Hilbert space (Ly(24/))®. Here, we use Ly-inner product

notation <., . > for simplicity:

<f, g> = fQ f(x? g(xdx*,

Then setting w;=v! together with the microscale
incompressible condition yields

(-7 6”;, z;"> (o vty =0, (67)

which shows the symmetry of v/ and eventually the

symmetry and the nonnegative definiteness of K:

vi=vj; Ki=Kj; KjEE=0, YE (68)
Taking the average of Eqn (58) in the microscale
domain, we have

oP'
— 2 _ P 7ve2
(7).= k(2 F) [QI gt
aPO
[— e} Y ~ 5 P A2
K o J> [0, ds
1 lavl 2
+ |QZ‘ P 63@ d

The second term of the rlght-hand-side vanishes be-
cause of the periodicity of P'v), and the last term also
vanishes because of the symmetry of v} and the mi-
croscale incompressible condition. Thus we have the
mesoscale Darcy’s law.

Averaging in the microscale domain for Eqn (63)

~ g (G (v o

since the third term of Eqn (63) vanishes due to

yields

periodicity in the microscale domain. Furthermore,
we introduce an average in the mesoscale domain Q;
by <->, for this equation, and get the macroscale
seepage equation:

8
-2 {KJ,

where the macroscale homogenized permeability Kj; is
defined by

i }: 0 in Q.. (70)

K=K :ﬁfgl Kidx', (1)

and the macroscale Darcy’s law is given by

=) ) =K, —Fj), (72)

where V? is the average of V?.
The first order approximations of true pressure
P* and velocity V% are given by
Vi) =t V(x5 x!, xB), PFPe)=P°(x% xY). (73)
The total procedure to solve the multiscale HA-
seepage problem is summarized as follows. We first
solve the microscale equations (60), (64) and get v¥ and
p*, then determine the mesoscale and macroscale
Darcy’s coefficients K% and K; using Egns (65) and
(71), respectively. Next, by solving the macroscale
seepage equation (70) we get the macro-pressure FP°.
Substituting these into Eqn (73) we can finally spec-
ify the true pressure and velocity fields.
In geotechnical engineering we usually use the
following empirical Darcy’s law
vi=—k; 28, g=L 4 (74)
ox;’ 0ug
where V#is average seepage velocity, H total head,
and { elevation head. Comparing this with Eqns (72)
and (73), we find the correspondence
Vi=(VHp 1=V, (75)
so we have the following interpretation between the
macroscale HA-permeability K,;; and the conventional
permeability (called the C-permeability) K} :
Ki=¢c"p. gKj. (76)
where p,, the mass density of water, which is as-
sumed to be constant because of incompressibility,
and g the gravitational acceleration. True velocity V¢
is crucially affected by the sizes of mesoscale and
microscale structures, while true pressure F* is not.
4.2 Three-dimensional two-scale homogeniza-
tion analysis of sand
To justify the homogenization procedure com-
pared to the conventional seepage theory here we
present a simple three-dimensional model of quartz
sand, because there is no need to consider any sig-
nificant effect of the interaction between minerals (i.
e. quartz) and pore water. A two-scale homogeniza-
tion method is employed; that is, the coordinate sys-
tems are x°, x! (x'=x’/e). Instead of the asymptotic
expansion (52) we use
Ve(x) =2V0(x% x) +e3VHx®, x!) +---
The microscale Stokes’ equation is the same as Eqn
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(60), together with the microscale incompressible

equation (64). The macroscale permeability is given

K= <i> [Jj

The macroscale Darcy’s law is the same as Eqn (72

by

{ vidx',

and the first order approximation of velocity is V7 (x)
P(x").

permeability (74) we have the correspondence

Vit x', X9, Plx) So compared to C-
Ki=¢e"p.,gKy.

The model is shown in Fig. 4. A unit cell is cubic

with the sides X, and sand grains are also assumed

The void ratio e, the

to be cubic with the sides d.

ratio of void part AV, to solid part AV, ie,e=AV

§:

Unit cell

Assurming periodicity

Sand

d.  grain size

X,: size of aunit cell
e.  voud ratio

Fig. 4. Assumed microstructure of sand,
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Permeability for sand at 1

AV, is calculated as
e d

Based on experiments several empirical equa-

tions giving the permeability & (K} =kdj) are pro-
posed. Some are as follows:

Hazen's formula: £=Cx (0. 7+0. 03 T) D5,

C, rn—0.13

( x

v]i—n

e, n
( 1

Terzaghi's formula: & )l)‘.,.

7

Zunker's formula: &

" ) D5,

Cx n
(q

where Cg, C,, Cy are constants depending on charac-

Kozeny-Donat's formula: & v )1’)1'.

n)

teristics of sand, T temperature, D, average grain
size, Dy, effective grain size, n porosity, and » viscos-
ity of water. It is noted in all equations that perme-
ability & is proportional to the squares of grain size
Dy or Dy, and is inversely proportional to viscosity 7.

The C-permeability calculated by HA is compa-
rable to the above empirical forms. We give the
compared results in Fig. 5 and 6 for the temperatures
T=10°C and 30°C, respectively. Note that we use the
following constants: Cx=150 for the for-

2.3 for

Hazen's

mula, C,=6 for the Terzaghi's formula and C,

10°
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Fig. 6. Permeability sand at for T=30C.

Table 2. Data for diffusion of plutonium (Pu) in bentonite (JNC 2000).

Diffusion coefficient | Distribution factor | Average dry density

D;; (cm?/year)

Ky (m3/kg)

(Mg/m?)

94.6

10.0 1.60

the Kozeny-Donat’s formula. We understand that
both HA and empirical-based results are quite com-
patible.

4.3 Two-dimensional three-scale homogeniza-
tion analysis of bentonite with distributed
water viscosity

As mentioned in the section discussing MD
simulation, water viscosity changes greatly in the
neighborhood of clay minerals. In this case we can
solve the microscale equations (60) and (64) using the
finite element method. Then we calculate mesoscale
permeability K%, macroscale HA-permeability Ky, and
C-permeability Kj.

The target bentonite, Kunigel V1, consists of
about 50% of montmorillonite in weight and the rest
of macro-grains, mainly quartz particles. The mass
density of a crystal is 2.7 g/cm? both for montmoril-
lonite and for quartz, so one third (1/3) of the bento-
nite with its dry density 1.8g/cm?® is void (i.e. the

void ratio e=0.5). Based on a measurement of the
sizes of macro-grains, we understand sizes vary
widely from 5 to 100#m in diameter. Considering the
peak value of this grain-size curve and taking into
account the fact that permeability is affected by
smaller particles, we set the size of macro-grains as 15
um and the size of a meso-domain as 45um (three
times of the grain size). On the other hand, the size of
one montmorillonite lamellar crystal is about 100X
100X 1nm, and several parallel lamellae together
form a group, which we call a lamellae group. Here
we assume a group of six lamellae with an interlayer
distance of 0.56 nm corresponding to two-layers of
hydrated water molecules, and this is set as one of
the micro-scale domains. Since the width is much
larger than the thickness, the domain in local x}
direction is set to be infinite. The inter-group dis-
tance X of Fig. 7 is determined by the given satu-
rated density. If this X becomes smaller than 0.56 nm,
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Extemal water
(pore water)

1.0nm

—

0.56 nm

Interlayer water

Fig. 7. Microscale unit cell for clay hydrate (corresponding to the microscale problem 1 of Fig. 3).
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Fig. 8. C-permeability of Kunigel V1 saturated with
pure- and salt-water.

the inter-lamellae distance is set to be the same as X.
The local value of viscosity for pure- and salt-water
is obtained by MD (Fig. 2). Note that after calculat-
ing K? of Eqn (65) using this pseudo-one dimensional
model, we set the homogeneous K? to be K*=K3%,/3,
because of the random distribution of lamellae
groups. Another micro-domain is of a quartz grain,
which is completely impermeable. Under these con-

ditions we calculate C-permeability, and the results
are shown in Fig. 8. We understand that permeabil-
ity varies greatly due to changes of the void ratio e.

5. Multiscale homogenization theoty for diffusion

problem in porous media

As mentioned in the procedure for deriving diff-
usion equation (44) or (46), the adsorption phenome-
non is evaluated as an alternative form of the con-
centration in the solid phase and the (linear) adsorp-
tion isotherm (43). This involves difficulties in inter-
preting the adsorption phenomenon in a physically
and chemically true manner. We present a new
procedure for solving the difficulties by extending
the micro-characteristics to macro-behavior through
the coupled molecular dynamics (MD) and homogeni-
zation analysis (HA) method. Here the microscopic
properties are calculated by MD, and HA is used to
analyze micro-/macro-behavior.

5.1 Governing equation of diffusion problem

We treat the diffusion problem of a multicompo-
nent solution in an undeformable solid skeleton. In
this HA we need to think only of the flow region, so
referring to Eqn(13) the starting mass conservation
law can be given as

S [2Ge24 Zoer i Jav- [ emas=o 1)

— 436 —



Micro/Macro-Behavior of Water Flow and Diffusion in Clay: Multiscale Homogenization Analysis

where ¢, is mass-percent concentration of the a-th
component, p average mass density of solution given
by Egn(6), v* particle velocity of the a-th component,
7o source term of the a-th component due to chemical
reaction, etc., Q; flow region, I' ;5 internal fluid-solid
interface, {§ mass flux of the a-th component on T
adsorbed from the solution, and #; unit outward nor-
mal.

The average velocity of solution, v, and the diffu-
sing mass flux of the a-th component, j%, are defined
in the same was as in Eqns(16) and (17):

=% leav —anv, J*=p. (" —v) =pc.(v*—v). (78)

We apply the divergence theorem to the last term of
LHS of Egn (77), in which we note that the flux
boundary T, consists of an outer one I',; and an
internal fluid-solid interface T'y, but on the outer
boundary I',; we have no adsorption:

f{"nds f@ f{“nds j;f(;f: v

And, we apply Fick’s first law (19) to the second term

of LHS of Eqn(77), then the following diffusion equa-
tion is obtained:

6(pca) 0Coca) 6% (52:: oDus acé

ot T 0%;
.o
+7, A
T o, =0 (79)

For simplicity we henceforth the micro-/macro-
diffusion problem of one chemical species (@=1), so
we set ¢*=c¢, and pff=7,—0¢%. Here the superscript®
implies field variables that rapidly fluctuate. Then
under the incompressible condition of the solution (o
=constant, 0vi/0x;=0) we have the following system
of partial differential equations:

Governing equation'

oc’

o1 +U, Ox,
Boundary conditions;

(Dirichlet condition); ¢*(x, t) =¢¢(t) on Q. (81)

- (D +£=0in Q,  (80)

oc* -
(Neumann condition); —ija—in,:q(t) on 0Q,
i

(82)
Initial condition;
ctx, D=c5(x) ati=t (83)

5.2 Miecro-, meso-, and macro-scale equations
We introduce a perturbation for the global con-
centration function c¢*(x; ¢) with respect to the macro-,
meso-, and micro-coordinate systems x° x! and x2

respectively, as follows:

cElx: ) =c(x% £) tec' (x9 x!, x% 1)+ (84)
=X X
e’ I3

where ¢*s (@=0,1,2,:++) are X'-/X%periodic functions:
(X0 x!, x?% 1) =c*(x’ x'+ X', x% 1),
c(x% xb, x? ) =c*(x%, x!, x?+X?% 0).
As given by Eqn (50) differentiation with respect to x
can be written by the terms of x° x!, and x?%:
0.0 1.0 139
Ox; ox) & oxi & ox?
Thus the differentiation for the global concentration

function ¢® becomes
dc _ _,ac" +6_1<ac° N 6c‘>

0x; —e 6x,2~ Gx} ox?
+( 5 ax, >+e( DE. (85)
The governing equatlon (80) is then perturbed as
s s 0N
+[&‘Zv§ ZCZ g; +%CC;—>

+

(o o))

—[w{ax, e (v

(o))

v (e (o ::;, 2-(on(Z5+25)
TatC G >>}

J

+£-1{6(jc- ( a_xj ))
i ax} 6x, Gx, >>

1 2
oc ac ax] ))}

Dy 6x° ax,
{ <D” 6x, ij gacc, )>

b ax, 6x, 6x, >>

6 ( v 6x, éx, 6x,>>}

+,s{ Sy | r=0,

and we get the following partial differential equa-
tions corresponding to each e-term.

O(e™Y-term:
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ox? <D” o} ) 0.

Since ¢’ is a function only of x°, this is automatically
satisfied.
0(6’3)-term: First characteristic function
ac!
D {Df -l- } 0.
ox} < Y Ox, 6x, \ox)  ox?
The terms 8c’/dx} and 0c¢°/dx} vanish, so ¢! is inde-

pendent from x? which suggests the existence of the

first characteristic function N%(x!) such as

0(+.0.
c'=c'(x’ x; )= —N’i’(x')%”"gl(xo? £ (86
k

where ¢° (x°; ¢) is an integration constant.
O(e " H-term: Second characteristic function and mi-

croscale equation [MiSE]

0
v gacc} ax,( v 6x1> Gx,{ \ ox! +g—acc,>}

0 oc®  oc'  oct }
2 Dy( et )
ox? {D’ ox)  ox) o} > 0

The first three terms vanish, so we have the follow-

ing local equation:
0 { oc® | act | act }
Dj +——+—)r=0. 87
o P ot T ont T o (87)
Since the term 8c’/6x!+dc'/ox} is a function only
of x° and x!, we have the second characteristic function
Nj(x?) such as

(X’ x!, x% 1) =—N5(x?) —+ 66)

ox}
Nl
42 (0, 15 ) =~ N (=2 0— gc 2. (89)
Here Eqn (86) is used. Then we have
oc®  dct  oct
Dl ortmatoa
Nox)  ox)  ox}
ON% ON¢
=Dy(on— G )05 ) 5 (89)

Substituting this into Eqn (87) yields the following

microscale equation [MiSE], together with X%periodic
boundary condition for the microscale domain Q,:

Ax 2{ U<6Jk 5Nz>}20 in Q.. (90)

O(e " ))-term: Mesoscale equation [MeSE]

oc® ac® | oct
49 2 Apy(S5+25 )
ax, Ox, 6x, / 6xj ox?
ot e
(96 0, o
 oxl Di ax, ox}  ox}

0 { oct  ac®  oc® }
- e (254 =0.
oz P f<ax;> o ax}-) 0

The first two terms vanish, so we have

0 { ac’ acl oct }
; +
ox} & o 6x} 6x,2>
dc' | 8¢t | ac’
Dy( oo N =
0 { ’<0x,- ox}  ox} } 0

We introduce the volume average < - >, of the mi-

9D

croscale domain €, then the last term vanishes be-
cause of X%periodicity. Substituting Eqn (89) into
this we finally get the mesoscale equation [MeSE]
together with X'-periodic boundary condition for the
mesoscale domain Q;:

D oM }* .
ax,{ 2<6k1 ) =0 in Q] (92)
D= ON% .
D= ‘Q I f ,,(5,k >d (93)
O(e”)-term: Macro-scale equatlon [MaSE]
oc’ oc®  dct  ac?
ot Gx, ox}  ox?

i} { oc®  dct | oct }
— O Ipg (4 &
oy U9\ ox? ~ ox)  oxf )

bl { oct  oct  oct )}
———D5 —+—+

oxt U\ ox?  ox)  ox?

0 { oct  oc®  oct
——— Dt gt

ox? U \ox)  ox}  ox?
We substitute Eqn (89) into this and make the aver-

}+f 0. (94)

age for the microscale domain Q,:

oc’ I ON} ON}
(oS (oS0
or U <6kl oxk > ox)  0x? <6kl 0x} ) ox)
_L{ (Ol oct | oct
ox} ox)  ox}  oxf

where

oo

w1 fﬁ- __ONEN L,
RGO

1
Hy_
I Ta]

We again make average for the mesoscale domain

szdx2' (95)

to get the macroscale equation [MaSE]:

LCO aL_i Hac 1
L e (D >+f 0 in Qo  (96)
where
g1 _0_Nll 1
T Jo ax,g)dx’
H— 1 Hy __a_M 1
D=+ Qll fQ D (cn, ax}a>dx, o7)

T A

The macroscale equatlon [MaSE] can be solved to-
gether with the boundary conditions (81) and (82) and
the initial condition (83).
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Table 3. Calculated and experimental effective diffusion coefficient of HTO
in saturated bentonite with its dry density 2.0 g/cm® (experiment, JNC 2000).

Effective diffusion coefficient of HTO (cm?/year)

Calculated (multiscale HA) | Experiment
8-layer model 28.384
6-layer model 20.892 16.083
4-layer model 16.068

The procedure to solve the multiscale diffusion
problem is summarized as follows:
1) Calculate the second characteristic function N}
by solving MiSE (90) under the X%periodic boundary
condition.
2) Determine mesoscale diffusivity D by Eqgn (93),
then calculate the first characteristic function N by
solving MeSE (92) under the X'-periodic boundary
condition.
3) Determine mesoscale velocity 1152 and mesoscale
source term f using Eqn (95).
4) Determine macroscale diffusivity DY, macroscale
velocity v’ and macroscale source term f7 using Eqn
(97), then calculate ¢® by solving MaSE (94) under the
boundary conditions (81) and (82) and the initial con-
dition (83).
5) The true concentration ¢® calculated as

clx; 1) =c"(x" 1) +ec'(x", x'; 1)
el (x’, x', x5 D) (98)
ONi\) oc°
=C —6{N1+8N2<5k1 )} 0951

5.3 Diffusion of tritium water HTO in bentonite
Tritium water *H;O, denoted simply as HTO, is
non-adsorptive, so it is appropriate to check the ap-
plicability of our analysis. The diffusion coefficient
of HTO in free water is reported as 2.44 X 10 °cm?/s=
769.48 cm/year (Klitzsche et al. 1976). Using the same
microscale lamellae model given by Fig. 7 and the
mesoscale model with quartz particles of the size 15
um, we calculate the effective diffusivity, which is
equivalent to the macroscale diffusivity D”. Note
that we here change the number of lamellae as 8, 6,
and 4 under fixed dry density 20g/cm®. As men-
tioned in the seepage calculation, the microscale
model is pseudo-one-dimensional, so we set the ho-
mogeneous D7 to be D"=D{/3. Furthermore, we
assume that in the neighborhood of the clay surface
the diffusion coefficient D¢ of HTO varies in the same
profile as the normal water shown in Fig. 2, since the
chemical properties of tritium water HTO are same

as the normal water.

Results corresponding to 8, 6, and 4 layers are
given in Table 3, together with an experimental one.
We can say that the 4-layer model gives a very
compatible result to the experimental one. However,
here we do not account for the geometrical tortuos-
ity effect, so the 6-layer model is not bad.

5.4 Higher order extension including micro-
scale adsorption

If we study the problem including microscale
adsorption, the local source term strictly affects the
local concentration distribution, in which we need to
consider higher terms.

Let us consider the weak form of Eqn (91) in the
microscale domain together with X2%periodicity

<D (6]!: 6N’Z 0Nt o w>

axl Ox}0x) ax
o . O°Ni 0c®  0c®\ dw
+ k. — ), —
<D < A 6x}’6xk 6x}6x}, ox) o 6x?>
=0 wE Ve (99)

where

Ve={w & H'(Q,); X*periodic}.
We assume Dj is a piece-wise constant in Qs (D(x?).
The above weak form suggests that ¢® has the follow-
ing form:
O°N7  oc°
Ox}ox] 0x5,

S, x!, x%h )= xD)——

NHHN; (xl)

+E3(x° xh 1) (100)

where N§(x?) and N%(x? ) are characteristic functions.
We substitute this into Eqn (99). The terms
0Nt o
2 Nl 1
Oxtox} 6x5, 1o 0x) 0x}

are constant and arbitrary in the domain Q, we get a

set of weak equations to specify the characteristic
functions:

(pifg 30— (o 585
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(o35

ON%  dw ow
<DU a 2 > <Dzk7 ax? . (101)
On the other hand we have the weak form of Eqn (94)
as follows:
ON% ON}
+U] (5,/; >< Orn— ax): w>

6Nz ON’ 62
- <D <6"‘ >( Ou— “ox} / oxdox)’ w>
e _ONt 6 . NI o
ox! oxPox) T C oxlox!oxk ox?
02 3
c?xl 6x,> >
ONYN 0% | act _I_@“_} ow
Ox}h / oxfox?  ox)  oxt) ox?

=0 we Ve (102)
This weak form suggests that ¢* has the following

+Df~j{ — N} <6k,—

form:

0, X, X% D)= klm(ﬂ)%?ﬁé
G SR G
NG (80— D) D ety S
+Ns(x? )+t (x0, x'; ) (103)

where N#(x?),--, Nikx? are characteristic functions.
We substitute this into Eqn (102). Since the terms
concerning x’ and x! are constant and arbitrary in
the domain 2, we get a set of weak equations to
specify the characteristic functions:

(o3 aim’ S == ot 3
+ {Day (s 5#%}?) w)
(it agf, o )
- <Dz,~<6l,~—%j§2>+mf (51"3_%_],?)’ w)
(o e = o 32
+{oi(on-5) w>
(25, 2 == (o= 00w

(o5 Gy =)

> <D:kN32+DzzN2,

—{Fw) (104)

<D" a(jv ;6’ ox? >

6. Conclusions

Here we presented a scheme combining molecu-
lar behavior and macro-continuum phenomenon for
bentonite clay, which is a micro-inhomogeneous ma-
terial on a nanometer scale.

In Section 2 we summarized the classical diff-
usion models for soil, and showed many empirical
parameters in the phenomenological theory.

In Section 3 we gave the results of a molecular
dynamics (MD) simulation for clay hydrate, and
showed that in the neighborhood of clay surface
water molecules are restricted in their movements.
The diffusivity and the viscosity distribution in the
neighborhood of clay surface are given in Fig. 2. Itis
almost impossible to specify these small-scale distri-
butions of material properties by an experimental
method. '

In Section 4 we introduced a multiscale homog-
enization analysis (HA) method to derive a seepage
flow equation in porous media with micro-meso-
macro-scale structures, starting with the fundamen-
tal Stokes equation. It is important that in our
analysis we can specify the actual velocity field, even
for a material with very irregularly shaped micro-
structures. In Fig. 4 we showed that our analysis is
consistent with the classical experiment-based seep-
age theory for a simple quartz sand, in which the
water viscosity is constant in the whole fluid region.
Next, we calculated the permeability of bentonite
clay by applying a three-scale HA model, in which
we used the MD results of water viscosity distribu-
tion (Fig. 2). It is shown that permeability is greatly
reduced as the void part is decreased.

In Section 5 we introduced a multiscale diffusion
analysis in porous media that involves a new type of
adsorption model. The diffusion properties calcu-
lated by MD are also introduced. A macroscopic
diffusion property (i.e., effective diffusion coefficient)
of tritium water in bentonite is calculated by the
proposed method, which gives a result that is rea-
sonably compatible with experimental data (Table
3).

It is well-known that the behavior of water mole-
cules shows singularity near the surfaces of clay
minerals. This causes extremely low permeability
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and cation diffusivity in bentonite. Here, we showed
that local properties can be directly combined with
macro-scale behavior using HA procedures. We will
continue to evaluate the adsorption-diffusin charac-
teristics of bentonite.
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