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Abstract

The anisotropy of elastic media, in general, causes drift and uneven distribution of
waves in the azimuthal direction. :

Surface waves in weakly anisotropic media are discussed, focusing attention on the
implication of a wave orbit on a transverse plane with drift of waves and azimuthal
distribution of wave amplitude.

When waves drift rightward (leftward), the orbit tilts leftward (rightward), where
the term rightward (lefiward) is used in the advancing direction of waves. g

Under the assumption that uneven distribution of waves in the azimuthal direction is
caused only by the anisotropy of media, we find that a surface wave orbit on a transverse
plane at the surface tilts rightward (leftward) when the wave amplitude increases
(decreases) rightward.

It is noted that the above-mentioned drift and uneven distribution of surface waves in
the azimuthal direction in anisotropic media can be fundamentally explained by use of the
solution of the characteristic equation obtained from stress-free surface conditions.

Introduction

The theory of surface wave propagation in an anisotropic half-space has been
discussed by SYNGE (1957) and BuCHWALD (1961), among others.” Propagation in
a half-space with cubic symmetry has been investigated by STONELY (1955), and
BucHWALD and DAvis (1963), and with orthorhombic symmetry by STONELY
(1963).

In 1975, CRAMPIN (1975) calculated the particle motion of surface waves
propagating in particular symmetry directions in anisotropic media and showed that
propagation in some directions reveals particle motion anomalies diagnostic of the
symmetry.

In 1991, we have discussed the implication of an orbit inclination of surface
waves with the stability of waves (MoMo1, 1991). This paper will be referred to as
paper M in later discussion. In paper M, we assumed that wave behavior only
depends on the x- and z-axes (y-axis excluded) and, as a result, drift of surface
waves due to the anisotropy of elastic media is excluded in the theory.

In this paper, taking dependence on y into account, we will study the effects of
weak but general anisotropy of media on surface waves, focusing particular
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attention on the implication of a surface wave orbit, at the free surface, with the |
drift and azimuthal distribution of waves. The theory was developed by using |
computer algebra. i
|
1

1. Expression for Energy

A homogenous half-space model is used (see Fig. 1). The z-axis is positive
downward and the free surface is situated at z=0 and expressed by x-y plane.

The energy equation for conservative

(nondissipative)  thermoelastic = media

X (MasoN, 1964) gives the thermodynamic

potential, namely, the internal energy E in

(X"y f;‘ea?_‘ esuzfzanc)e terms of the conjugate variables S and T,

! and t; and Uylo as

O Y dE=TdS+ (1/0)t;dU;,  (1.1)

wave

where S is the entropy, T the temperature, o

the density of the medium, and #; are ther-
z modynamic tensions, and Uy the Lagrang-
ian strains (THURSTON, 1964) with

U= (uy+u;)/2, (1.2)

Fig. 1. Used model.

where u; = 06u;/0x; and {u,uy,u;} are displacement components in the directions of
the Cartesian coordinate axes {x,,x,,x;}. In later discussions, {u,u,,u;} and {x,,
X5, X5} will be alternatively expressed by {#,v,w} and {x,y,z}. The potential and all
extensive quantities are taken per unit mass. From the relation (1.1) the definition
of the elastic coefficients for any order follows naturally. Namely, for the adiabatic
and isothermal stiffnesses ¢ of the nth order, for n =2,

Since the strains and the thermodynamic tensions are symmetric, i.e., Uy =
0U,; and Ot =0ty only six of each set of nine variables are independent, and it is
customary to introduce the Vorr (1928) notation: {{ji~J}

{11~1, 22~2, 33~3, 23~4, 13~5, 12~6}

g =0(0"E/0U0U,...)s. (1.3) 1

and the convention

U;=12)(1+6pU; (1.4)

where J; is the Kronecker delta with suffixes i, j.
Considering the potentials now as functions of the single-subscript variables,
(1.3) become

CJP:anE,,/anaUp, (1.5)

where the subscript S is omitted and E,=pE.
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Expanding the internal energy about the state of zero strain one obtains for
E,(U)=E,(S,U)—E,(S,0)
the form up to second order in U, ;, ,
E.(U)=(12)c;pU,Up, ' (1.6)

where summations over repeated indices {/, P} are implied (this’conventibon will be
used, unless stated otherwise), and the ¢, are the elastic coefficients defined by K.
BRUGGER (1964).

In later discussion, the elastic coefficients ¢ p normalized by ow’ will be us‘ed,
ie., : :
Crr=cyl(ow?) ; o (L7

where w is the angular frequency of surface waves.
In a weakly anisotropic case, the above normalized elastic coefficients are

expressed as
Cu=Ly,+dy, Cyup=Ly,+dy, Cyuy=L,,+ds,
Cp=L,+dy,, Cy=L,+d;;, Cu=L,+dy,
Cu=m,+dy, Css=m,+ds;, Ce=m,tdg,
Cu=dy, Ci=d;s, Ci=dy, Cyu=dy, Cy=ds,
Cyx=dy, Cu=dyu, Cyi=dss, Cy=ds, Css =d45;
Cy=ds, Css=dss,
where L,=1/(ow?) and m, —u/ (0ow?) are the elastic coefficients normalized by pw®

in the case of an isotropic medium, L,,,=L,+2m,, and d; (i, j: integers) is the weak
deviation of the anisotropic elastic coefficients from the isotropic ones.

2. Equations

The stress tensor S; is related to the energy function (1.6)
S;=0E, |0u;, - @1

By use of the above relation, governing equations can be expressed (LANDAU
and LiFsHITZ, 1985) by

Ou;/0F =08S;/6x; (i=1,2, 3), 2.2)

where ¢ is time.

By use of (2.1) and the expressions for energy in the fbregoing section, the
above equations are reduced to the following.

PUp=4q1, PVn=¢q,, OW,=(q3, ’ (23)

where
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G1=UxC11 T VsyC12 T VynCa6 T V) Cos F Wy €13 T Wy, Ca6 T W, Cis +c16Po
+¢15Py3+CesPas T C56PastCssPas+C1aPor +CasPar +casPass |
qz=ux2C16+uxy6‘12+uxzc14+vyzczz+wxz036+wyz023 FW,2€301C26Pp6
+25Pys +CosPo2 T C56Pos T Cas Py tCasPog+C20Ppin tCasPrns
G5 =UsyC15 T Uy, CraT Uy Cr3 +nyC25+Uy2Cz4+UyzC23 Fw,sc33+c36Poo
+e35PerotCs6PeFCssPeatCasPesHCasPes +euPostcuPeas, |
with
Pu=22y+ 0y, Pp=2gtwa, Pu=uptv,,  Pue=2u,+0,+w,,
P,=v,tw,, P, Uyt W, Pi=0,tWwy,, Pu3s=v,1Tw,,
Py =ty Ty, Pyu=u,twy, Pu=uy,yt20,, Py =u,+20,,+wy,
Pyg=u,twy, Po=tustw,, Pya=20,, Wy, Pos=0,1W,, |
Po=u,+0,,, P =u,,tw,,, P=u,t+v,,, Pi=u,+v,+2w,, ‘
Po=u,+tv,, Puo=unt2wy,, Ppn=v,1Twy, P.y=v,1 2w,
and k ‘
Upy=00F, un,=0l0x®, u,=0uloxdy, u.,=0"ulOxoz, |
U, =0uly?, u,=Puldydz, un,=0ulor, |
V,=0[0f, v,=0%0x?,  v,,=0[0xdy, v,=0V|0x0z,
v,=0%/dy*, v, =0|oydz, v,=0"/0z",
Wo=0W[or, w,=0Ww[ox®, w,,=0'W[oxdy, w,=0w|0x0z,
Wy =0'w(0y*, w,,=0'w|dyoz, Wy, =0'w[0z*,

3. Surface Conditions

By use of relation (2.1), surface conditions are expressed as
Sy3: 41,Cis 1 CssHupnCos 1 ,CssHupCas T3 Css+13Css Fu5Cas +u3Cis =0,
Syt 411C 18 F 1 CastnCoytuCast 33Ca 131 Cas T 13C0s T 3Cos t13C3 =0,
Sa3: 41 Cry 1y CagtnCo 1 nCastnCastusCasT13Chs HunCay +u3Ci =0,
at z=0. @a.1n

4. Splitting of Lobe of the Surface Waves

In order to obtain expressions for surface waves, we assume the following for
the displacements:

u=AE,, v=AE,, w =A4,E,, (4.1
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where 4,, A, and 4, are amplitudes of displacements u, v and w, respectively, and
E,=exp(—ik.x —ik,y —ab-z)

with k,, k, and ab, in general complex, being the x-, y- and z-wave numbers. In the
above expression, the time factor exp(iwt) is omitted. This convention will be
followed in the subsequent discussion.

Assume that surface waves in the case of an isotropic medium are propagated
in the direction of the positive x-axis. Since a weakly anisotropic medium is
considered in this paper, wave numbers k,, k, and ab are expressed as

k.=k,+dk,, k,=dk,, ab=ab,+dab, (4.2)

where k, is the wave number of surface waves in an isotropic medium, ab,=a,(=a)
or by(=p) with

a)’=k’—1/(L,+2m,) and b=k>—1/m,, (4.3)

dk,, dk, and dab indicate the deviation of each wave number (x-, y- and z-

component, respectively) in a weakly anisotropic medium from an isotropic one.
Substituting (4.1) into Eqs. (2.3) and taking the first order of d;, we have the

deviations dab= {da, db, and db,} of ab from a, and b, in an isotropic case, i.e.,

da=ab—a,, db, or db,=ab—b,,

as follows.
da =k,4/(2a0)d11 +ao3/2d33 - 2(10k,2d55 *aokrzdxs
—i2k,’ds+i2as’k,dys+k,Jaodk, (4.4)
and
db;=—dM+dN, db,=—dM—dN, (4.5)
where

AM=bo|(2m,)d k| (2m,bo)dss+ ik, fm,d s —k,[bodk,— 1/(2mbo)dQ,
dN=(dP’lm,+dQ*)"®|(2bym,)
dP= —by’k,m,d s +bo’k,m,ds—Csk,dss—ibok,’m,d 16T ibok,’m,d3+iCrbod,s,
dQ=—k,;'m,b’(2d\,—k;m,bo*[2d 1, +b,2d s+ C2|(2m,)dss—k,}2dss + k,*m, bod 13
+iCpkbodys —iCrk,bod s + ik, bodss,
with
C,=2k’m,—1.

The deviation of b, splits even in the case of the theory including the effect of
surface wave drift (effect of the y-component). This splitting of b, has already been
discussed in paper M, where drift of waves is not taken into consideration.
Expressions (4.4) and (4.5) involve the imaginary terms, so that the lobes of surface
waves are moving with time.
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5. Expressions for Surface Waves

Since we have three components of ab as discussed in the forégoing section,
surface waves in an anisotropic medium are expressed as
o u=E, A, +EyBu+EnB,s,
szaLAv+Eb1Bvl+Eb2B02a
"w=E, A,+E, B, +Ey;,B,,, ;.1
where ' '
a=ayt+da, E,=exp(—ix,—za),
b;=bo+db;, E,=exp(—ix,—zb;) (j=1,2),
x,=kx+k,y,

andA,,A4,A4,, B, B,,B,, B.,,B,», B, are the amplitudes determined by the surface
conditions.

6. Characteristic Equation

In this section, the two deviations, dk, and dk,, of wave number in (4.2) will be
obtained. v

Substituting (5.1) into (3.1) and taking the terms up to first order in d;;, we
have the following characteristic equation.

‘ Jarr fary=0,
where
Jar=dk,—k,.6,—ik,0, 6.1)
and
fay=dk,—k.0,—ik,6,, (6.2)

where 6,, 6,, 6, and 6, are given by (6.1.2), (6.1.3), (6.2.2) and (6.2.3), respectively.

As shown above, the characteristic equation is expressed in a product form
with factors f, and fy,, so that we can obtain two solutions dk, and dk, from one
characteristic equation by putting f;,, =0 and Jfuy =0, respectively. It must be noted
here that the drift phenomenon (due to the existence of dk,) of surface waves can
be explained by a characteristic equation in anisotropic media as its fundamental
solution.

Solving the above characteristic equation, we have the following two solutions.

From f;,=0,

- dk,=k,0,+ik,0,, (6.1.1)
9,=d911+d933+d955+d913, (6.1.2)
0,=d6,s+d0ss, | (6.1.3)
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d6,,=d\60y, d;=dy0y;, dOs;s=d;sOs;s,

d0,;=ds0y;, dOis=ds0.5, dO:;=ds0;s, ‘

O = —(64b,, "+ 64b,,’ — 104b,,°— 164b,,* — 62b,,>— 3) (4b,,> + 3)b,, K, m/(4-Dk;) ,

6y3=—(512b,,'°+1152b,"* +128b,,* — 1712b,,'°— 1856b,,* — 784b,,°
—136b,,*—10b,.’— 1)C//(64b,, - Dk, *k,,2) ,

s == (8b,,* +12b,,>+5) (4, +3)b,C/|(4-Dk,),

613= —(96b,,°+232b,,° +192b,,°+5%,,* + 5b,+1)b,,C//(2- Dk,) ,

O15= —km">(32b,,° +64b,,* +40b,,> +7)b,,’C/k, Dk, ,

O35 = (64b,, °+ 160b,,’ + 144b,,° +54b,,,* + 8b,,.2 + 1)C /K, (2K, P DK ) ,

Dk, = (16b,,' +28b,,°+18b,,* +7b,,*+2) (8b,,* + 8b,>+ 1) (4b;,,2+ 3)b,m,.

From f,=0,

dky=k,64+ik,9y, 6.2.1)
04=d916+d635+d945, ) ) (622)
0y=d014+d034+d056, :(6.2.3)
with : ‘
d0,c=d 05, dO;s=d:Oz, dOss =d 565,
d0=d b, dOy=d;0y, dOss=ds¢Os,
016 - — 8k,m3bm2/(muuuu) 5
O36= 8K, by a,, | (muuu)
O45= 16k, b, (M uuu)
614=8k,,°"b,*((muun-a,),
O36= — 8k, b, a,, | (M uuu) ,
0ss=16k,,*b,,’a,,|(muuu) ,
where

km=k'm,, amw=aom, "™, b,=bym, ", (fora,and b,, refer to (4.3)).
C;=2b,’+1, uuu=8b,*+8b,>+1 |
and further a,, and k,,, are expressed by b,, as
Kom=bn’+1, an=(2b,>+1)/(4(b,>+1)b,,).

In the derivation of the above, the characteristic equation in the case of an
isotropic medium :

(k= 1)’ — 8k by =0 (6.3)

with
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@y =(kpm—1/(2+L,))"?

was used in order to eliminate the ratio L,,(=Aju).

In the expressions (6.1.1), (6.1.2), (6.1.3), (6.2.1), (6.2.2) and (6.2.3), d6,,,
d0Oss, dbss, dO;;, dOs and dOss indicate the rates of increase of wave number k,(=k,
+dk,) associated with the anisotropic elastic coefficients d;, ds3, dss, d13, d1s and d;s
and also d0,q, dOs, dOys, dOy,, dOs, and dOs are those of wave number k,(=dk,) ‘
associated with dg, ds6, dus, d1s, d34 and dsg, respectively.

As found from (6.1.1) and (6.2.1), the deviation terms dk, and dk, include the
imaginary terms, ik,6, and ik,6, This implies that the surface waves in an
anisotropic medium always face a stability problem (for dk,) and are subject to a
transversely uneven distribution of waves (for dk,) depending on the sign of the |
imaginary terms.

7. Surface Waves on the Absolute Coordinates ‘

In this section, surface waves at the free surface on the absolute coordinates
will be discussed.

7.1. Displacements at the free surface on the absolute coordinates
Substituting (5.1) into (3.1), we can obtain the following expressions for
surface waves at the free surface on the absolute coordinates.
u=A,E,, sin(6,,+P,),
w=A4,E,,,cos(6,+P,),
v=A,E,, cos(O,,+P), (7.1.1)

with

where 6,, 6,, 6, and 6, are given by (6.1.2), (6.1.3), (6.2.2) and (6.2.3), respectively.
Let O, be the drift angle of surface waves due to the anisotropy of the

|

|

E..=exp(6.k,x+6,ky), O,=wt—(1+6,)kx—0:k,y, (7.1.2) !
medium. From (7.1.2), it is expressed as i
Oain=04/(1+6,) (7.1.3) ‘

In the case of a weakly anisotropic medium, the above expression is reduced, by
use of (6.1.2) and (6.2.2), to

Ouriee =04,

=d016+d936+d945, (7.1.4)

since 6, and 6, are of the order of d;
For amplitudes and phases of u- and w-components in (7.1.1), we have

A, :amRLam/(2krm(l/2>) +a,11d0, +a,33d03;+a,55d0ss+a,13d01,
Aw=am2RLam/Cf+aw11d911 +a,33d053+a,s55d0ss+a,13d0:3, (7.1.5)
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pP,= 2krm(1/2)/(amRLam) (@u15d015+a,35d0ss5)

P,=C/[(anRLom) (@415d0:5+a,35d0s5) (7.1.6)
where {a,11, @uss, Guss, Guis, @11y Tuszy Guss, Gz} and (G415, Ayzs, @yis, @435} are given in
Appendix A, and

Rym=1+L,, Rppp=2+L,, C;=2b,2+1.
Assume a complex expression for the amplitude of v, i.e.,
U= Upmp eXp(iwt —ix,)
with
Vamp =R, +iI, (in complex expression). (7.1.7)
For amplitude and phase of v-component in (7.1.1), we have then

A,=tR}+IH" (+ for R,>0and — for R,<0),
P,=tan"'(I,/R,) (principal value assumed), (7.1.8)

where

R,=V,60,+V1,d0i+V3d0:,+ VsedOss,
Iv = Vdey+ V16d016+ V36d636 + V45d845 s (7. 1.9)

V,=k,,"®(4b,*+1)a,.R1on/(2b,.2)

Vie= =2k (25, "R 12+ 1) R Lam | (B’C/R 12) »

Vi=— 2krm(1/2) (mezRum +2R 1 pm T 1anRram! (CfRLzm) ’

Vss= — k™™ (2b,,"R L3m + R Lo )@R Lam | (B R 12m) (7.1.10)
Vie= 2krm(1m (@R ram +mefRL2m)amRLam/ (mefRLzm) ’

V36= 2k "™ (@b C/R 12 T KR Lam )R Lam | (DmC R 12) s
Vis=kum "™ (28,,0,R L2 — R 1 )am R am | (B Ri2m) » (7.1.11)

7.2.  Surface wave orbit at the free surface on the x—z plane

In this section, we will obtain the expressions for surface wave orbit at the free
surface projected onto the x—z plane (the absolute coordinates).

From the first two expressions in (7.1.1), the orbit equation projected onto the
x-z plane is obtained as follows.

—2wu(P,—P,)/(a,a,) +wa,’+u’ja’=1 (7.2.1)
with
au =AuEvan: aw:AwEvan-

In order to examine the inclination of the orbit, the coordinates of displace-
ments (u,w) are rotated into new ones (u,,,w,,) on the x—z plane by

u :uxzcxz _wszxz sy W :uszxz +wszxz »
C,=cosO,,, S.,=sin@,, (7.2.2)
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where 6, is a rotation angle.

U O 1,20, , w20 =1, (7.2.3)
where
6c1= —2C3(P,—P,)/(@.a,) —Sazla,’ +Srla,’,
0.2= —S2(P,—P,)/(@.a,) +Cy'la, +8"la,’?,
O3 =S (P,—P,)/(a,a,) + S a,’+C a},
with

C,,=c0s8(20,,), S,.=sin(26,;).

If the rotation angle is determined so as to make ©,,;=0 in (7.2.3), such an
angle indicates the inclination of the orbit axis of surface waves.

Solving ©,,; =0 associated with the coupled term u,.w,,0,,;, we have a dip angle
©,, of the orbit and the orbit equation on the x—z plane as follows.

6,=dP,,A4,4,/(4,’—4,%) (7.2.4)
with
ap,,=P,—P,,
and
U [(Af o Eran’) W2 [ (A fow B ) = 1, (7.2.5)
with

fu=1+dP,’A%|(24.—24,7),
fuw=1—dP,4,Y(24,.2—24,) .

In the above expression, ©,, is of the order of d;;, since P, and P, are of the
order of dj. On the other hand, the lengths of major and minor axes of the orbit
(7.2.5) are affected only by the terms of second order of d, i.e., dP,’. This
indicates that the sensitivity of the orbit dip angle due to anisotropy of the medium
is higher than that of the orbit axis.

8. Surface Waves on the Drift Coordinates

In general, surface waves in anisotropic media drift due to the existence of
anisotropy of the media. In this section, we will obtain the expressions for two
kinds of orbits at the free surface in the drift coordinates, i.e., the sagittal (x,~z,)
plane and the (y,—z,) plane perpendicular to it, respectively. Here (x4,¥4,2.)
indicate the drift coordinates. The latter (y,—z,) plane is named the transverse plane
for the sake of later discussion.

8.1. Displacements at the free surface in the drift coordinates
The absolute coordinates are converted to the drift ones (x;-, y,- and z,-axes)
by rotation around the z-axis:




S
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xX=x4Ca—yaSs, y=xa831y.Cq,
ud=qu+1)Sd, Udz—uSd-H)Cd, W;=w,
Cd:COSGd, Sd:Sined, (8.11)

where (14, Vg, wy) are the (x4, y,4,24)-components of displacement in the drift coordi-
nates, respectively, and 0, is the drift angle (azimuth) of the absolute coordinates to
the drift ones, where the sagittal plane coincides with the x,~z, plane.

By substituting (7.1.1) into (8.1.1) and taking the first order of d;, we have the
expressions for new displacements, i.e.,

wg=u,
0,=0—6,R @, | (2K, ")E . 8in O

wi=w, (8.1.2)
with
E w=exp(0:k,x;+6,k,y,) ,
O =wt—(1+6,)k,x,, (8.1.3)
where u, v and w are displacements on the absolute coordinates given by (7.1.1)
with substitution of x=x, and y=y,.
Since coordinates are rotated around the z-axis, the displacement w is of course
invariant. In a weakly anisotropic medium, the longitudinal component of displace-

ment u is also invariant to first order in d;;, as shown in (8.1.2).
After some reduction, we find

6,= (Buglomug (=1,2,3) (8.1.4)

where u,;=uy, uy=v4 u;=w; and n=k,y,. This expression indicates that 0, is
expressed by the normalized gradient of each wave component in the transverse
direction in the drift coordinates.

By use of (6.2.3) and (8.1.4), we have the expressions

d614,= (Ouailon)ug| aia,

d03,= (Ouqon) ug!asa,

dOss= (0q|ON) ki | ass » (8.1.5)
i.e., {d6,4,d0s,d0s¢} stand for the normalized gradients in the transverse direction
associated with the elastic coefficients {d\,,ds,,dse}, respectively.

As found above, g, in (8.1.3) is closely related to the distribution of waves in
the ydirection (transverse).

8.2.  Surface wave orbits at the free surface in the drift coordinates

Since (ug4, wy) = (u,w) to first order of d; as found from (8.1.2), the expression
for the orbit projected onto the x,~z, plane (drift coordinates) is also given by those
in subsection 7.2 (absolute coordinates). Let 6,,, be the dip angle of the surface
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wave orbit at the free surface on the sagittal plane (drift coordinates). 8, is given
by
eztxz = @xz ’

where 6,, is given by (7.2.4).
By using (v, w,) in (8.1.2) and taking the first order of d;;, the expression for
the orbit projected onto the transverse y,~z, plane becomes:

Wa0041+ W42@d2 + vd2@d3 =4 wzd sz van2 ’ (8.2.1)

where
d o =R 0w, "Pa,,dk g + 21k, ,
0= —4d kA, P,— 8k, AR,
O =4k,m'R, +d s’ s
0,=4k,, A, +4k,, AP} .
By using

Va= vdyzcdyz _wdyzdez y Wa— z)dyzdez + wdyzcdyz ’
Cdyz =Co0s 9,1,,, , dez =sin dez s (822)

the coordinates are transformed into new ones, where 8, is the rotation angle of the
new coordinates on the y,~z, plane and (¥, w,,) are the new variables after the
rotation.

In the same way as that in the foregoing subsection 7.2, eliminating the coupled
term of the rotated equation, we have the dip angle 6,,, and the rotated new orbit
equation on the y,~z,; plane.

04.= —R,/A, (8.2.3)

and
Vaye | Ta Evan’) FWay (A Eran’) =1 (8.24)

with
L,=I,46,a,R 0|2k m™) . (8.2.5)

9. Implications of the Inclination of Surface Wave Orbit on the Sagittal
Plane with the Stability of Waves

In this section, the orbit inclination of surface waves on the sagittal (x,~z,)
plane will be considered.

9.1. Expression for the dip angle of surface wave orbit on the sagittal plane

As discussed in subsection 8.2, the dip angle 0, of the surface wave orbit at the
free surface on the sagittal plane is expressed as 6,,,=0),,, where ©,, is given by
(7.2.4). By use of (7.1.5) and (7.1.6), this expression becomes

dez:Sg15d015+Sg35d035 (911)
with




Sg1s=(2048b,,'*+8192b,, 2+ 13568b,,°+ 12224b,,* + 6640b,,5+2232b,* + 416b, >
+25)R 13 0ttt} (128K, " (32b,,5+ 64b,, +40b,,2+ )b, °C k'R on?)

8435 = (4096b,,° +22528b,, "+ 54784b,,'°+ 77184b,,* +69536b,, +41872b,,"°
+17152b,,° +4734b,,°+ 820b,,* +70b,,2 -+ 1)R 1, 2urs?/ (128k,,,"®(64b,,'°
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i 8 6 4 2 327 4 2
+160b,,” + 144b,,°+54b,," +8b,," + 1)b,,’Cik 'R am’) (9.1.2)

‘ where a characteristic equation a,, =C//(4kb,,) in an isotropic medium is used in

| order to eliminate a,,.

} In the expression (9.1.1), the coefficients S5 and S5 are always positive (see

‘ (9-1.2)). Therefore, when df;; or d;, is positive (negative), the inclination 04, of

\ the wave orbit associated with (d6,s,d0;;) is also positive (negative). On the other
hand, 0, is expressed as 0, =d0,5-+d0;s (see (6.1.3)) and 6, is the factor indicating
the stability of surface waves at the free surface (see (7.1.1) and (7.1.2)). There-
fore, we obtain the following important result for surface waves at the free surface.
The illustration is given in Fig. 2.

Sagrttal Plane —=

=P Direction of wave propagati

—— =

Amplitude
increasing
Asp|itude o~ Backward
decreasing tilt
X4
rrg. 2 Zd

Fig. 2. Implication of the stability of waves with the inclination of surface wave orbit
at the free surface on the sagittal plane.

(i) When the advancing wave increases (then d0,s or d6;s positive) in the
direction of wave propagation, the orbit tilts forward.

(ii) When the advancing wave decreases (then dd,s or d8ss negative) in the
direction of wave propagation, the orbit tilts backward.

The same feature has been also found in paper M, where drift is not taken into
consideration. The results of the numerical computation in the present paper are
very similar to those in paper M, so that numerical results concerning the orbit on
the sagittal plane are omitted in order to avoid redundancy.

10. Implications of the Inclination of Surface Wave Orbit on the Transverse
Plane with the Drift Angle and Azimuthal Distribution of Waves

In this section, we will discuss the dependences of the inclination of surface
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wave orbit on the drift angle of waves and the distribution of waves in the azimuthal
(transverse) direction.

As for uneven distribution of waves in the azimuthal direction, three causes are
considered. The first cause is that due to the existence of anisotropy of an elastic
medium, the second is the directivity of the wave source and the third is the
refraction of waves due to the discontinuity of the medium. In this paper, we will
consider the effect of uneven distribution of waves on the inclination of wave orbit
due to anisotropy of the medium.

10.1.  Expression for surface wave orbit dip angle on the transverse plane

Substituting (7.1.5) and (7.1.9) into (8.2.3) and taking the terms up to first
order in dj, we have the expression for dip angle 6, of the wave orbit on the
transverse plane.

gdyz=0Eu+0Dra (1011)
HE,} =D14d914 +D34d934 +D56d956 , (10 1 2)
BOp =D (d016+dOs+dbss) , (10.1.3)

with
D, =C}(1+2b,’R150)[(2km“®b,’R15,)
D3,=8k,,,*b,,(3+2(L +5,"Rom)I(C/RL2m) s
Dy= 4k,,,,(3/2) Rpam+ 2'bm2RL2m )i (CfmeLZm) s
Dy, = —2k,,,*®(1+4b,2)/(Csby), (10.1.4)

where the characteristic equation a,, =Cf2/ (4k,,,b,,) in an isotropic medium is used
in order to eliminate a,. In the above expression, &, is a term associated with the
azimuthal distribution of waves through {d0,,,d0,,d0ss} (see (6.2.3), (7.1.1) and
(7.1.2)). On the other hand, 6, is a term associated with drift angle 8,5, through
{d6,6,dOs,d0ss} (see (7.1.4)).

It is noted here that the coefficients in the expressions (10.1.2) and (10.1.3)
have constant signs, i.e., {D,Ds,Ds} are always positive and Dp, is always
negative. This fact leads to the following very important results. The term
rightward or leftward in the following discussions will be used in the positive
direction of the advancing wave (x >0).

(i) When d6,s, dOs or dfs is positive (negative), the associated drift angle
Oauee (7.1.4) is positive (negative) and the dip angle of the orbit 65, (Dp,<0) is
negative (positive), so that, when the wave drifts rightward (leftward), the orbit
axis of the wave on the transverse plane tilts leftward (rightward). The illustration
is given in Fig. 3.

(ii) Whend®0,,, dO, or dfs is positive (negative), the associated increment of
Bg, is also positive (negative), so that, when the amplitude of the wave increases
(decreases) rightward from (8.1.5), the orbit axis of the wave on the transverse
plane tilts rightward (leftward). The illustration is given in Fig. 4.

Feature (i) is closely associated with the deviation of the wave propagation
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leftward
X tilt
X d —
rightward ¥d
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drift y d fig.3

Fig. 3. Implication of the drift of surface waves with the inclination of the wave orbit
at the free surface on the transverse plane. The terms of rightward and leftward
indicate the transverse direction in the direction of wave propagation.

[ransverse Plane —>
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rightward
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Fig. 4. Implication of the azimuthal distribution of waves with the inclination of
surface wave orbit at the free surface on the transverse plane.

from the great circle path in practical problems. Feature (ii) is produced by the
uneven distribution of waves in the azimuthal direction due to anisotropy of the
medium.

The factors {D,,, D;,, D5} in (10.1.2) and Dy, in (10.1.3) indicate the extent of
the response of the dip angle 6,,, of the orbit, on the transverse plane, versus the
drift angle 6y (7.1.4) and the wave gradients (8.1.5).

These response factors will be evaluated numerically for some specified values
of L,,(=A/x). In the computation of (10.1.4), the characteristic equation

@y =C7 /(4K b

in an isotropic medium and the following expressions are used.

RLam =1 +Lm s RLZm =2+Lm ’
C;=2b,"+1, k,,=b,’+1.
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For L,.(=1/t)=0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0 and 50.0, the computed values

of Dy, Dy, Dsg and D), are arranged here.

L,=05 D,=7.63382 Dy, =497841 Dy=829767 D, =—7.50053
L,=1 D, =7.66250 D,,=4.79698 Ds=9.09526 Dp,=—7.62737
L,=2 Du,=7.46135 D, =4.63438 Ds=10.28832 D, =—7.83848
L,=3 D,,=7.17333 D,=4.56124 Dy =11.09147 Dp=—7.98157
L,=4 D,=6.89985 D3 =452031 Ds=11.65893 D, =—8.08125
L,=5 D, =6.66135 D, =4.49435 Ds=12.07887 Dp=—8.15398
L,=10 D,,=5.89614 D,,=4.43968 Ds=13.17846 Dy =—8.33976
L,=50 D,;=4.78053 D3 =4.39430 Ds=14.43625 Dp,=—8.54366

over a wide range of L,, from 0.5 to 50. By taking the values D;,=7.0, D3, =4.5,
Ds,=11.0 and Dp,= —8.0 as the typical values for each D, we can affirm that the
response of the orbit inclination on the transverse plane to the anisotropy of the
medium is much higher than that of the drift angle and transverse gradient.

11. Conclusion

In weakly anisotropic media, the axis of the surface wave orbit at the free
surface tilts forward (backward) when the amplitude of waves increases (de-
creases) in the direction of wave propagation. This feature has also been found in
the previous paper where drift is not taken into account. Even in the theory
considering drift (present paper), the above-mentioned feature holds valid.

In anisotropic media, drift and uneven distribution of waves in the azimuthal
direction occur. These properties are derived from the characteristic equation for
surface waves as the solutions. Such a drift and uneven distribution yield the
inclination of surface wave orbit at the free surface in the transverse direction
(perpendicular to the advancing direction of waves). The obtained result is as
follows. The terms rightward and leftward used here indicate azimuthal directions
in the direction of wave propagation.

(i) When waves drift rightward (leftward), the orbit tilts leftward (right-
ward).

(ii) When the amplitude of waves increases (decreases) rightward, the orbit
tilts rightward (leftward).

Thus, drift of surface waves in anisotropic media can be explained by use of the
fundamental solutions to the characteristic equation of surface waves.

|
|
As found in the above values, each value of Dy, D4, Dss and Dy, is very flat
|
|
|
\
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Appendix A

The coeflicients in (7.1.5) and (7.1.6) are expressed as

a=—k,,""?(2048b,,'*+8192b,,' + 13568b,,'*+ 12672b,,'°+ 8416b,,* -+ 4896b,,°
+2296b,,* +636b,,>+69)C/R ., uun[(128(64b,,"°+ 64b,,* — 104b,,° — 164b,,*
—62b,>—3)b,.’k,.,"),

ay33=—k,,"?(131072b,,* +884736b,,** +2736128b,,* + 5165056b,,>+ 6717440b,,

+6474240b,," +4867584b,,'°+2942592b,,' + 1431040b,,'* + 542704b,,'°
+152208b,,° +29520b,,°+ 3600b,,* +224b,,>+ 3)R 15, uute| (128(512b,,'¢
+1152b,,'+128b,,"*— 1712b,,'°— 1856b,,* — 784b,,° — 136b,,*
—10b,2— 1)b,’Cikm’) '

a,ss=k,, " (2048b,,'*+7168b,,'* + 10496b,, >+ 8960b,,°+ 5600b,,° +- 2880b,,°
+1088b,," +248b,,” +27)R .y, uuus/(128(8b,* + 126, +5)b,°C ko) »

au13=k,» " (8192b,,°+34816b,, 'S+ 64512b,,'° + 71424b,,"* + 55936b,, > + 33632b,,°
+148800,,° +4384b,,°+ 888b,,* +167b,,2 +21)R ,,, uuu/(128(96b,,°+ 2325,
+192b,,°+ 59, +5b,> + 1)b,,’C k) '

a,1=—(1024b,," +3584b,," + 5504b,,'°+ 5376b,,° -+ 3920b,,5+2000b,,* + 576b,, 2
+65)C/R 2 uuu[(128(64b,, '+ 64b,,* — 104b,, — 164b,,* — 62b,,>— 3)b, k") ,

a,33=—(65536b,,”* +475136b,,°° +1605632b,,2* + 3352576b,,2 + 4840448b,,2°
+5133056b,," +4145408b,,'* +25968000,,* + 1260528b,, > + 4640325, °
+ 124880b,,* +23680b,,°+3112b,,* +273b,,>+ 11)R 5, uuu/(128(512b,,'9
+1152b,,'*4-128b,,'*—1712b,,"°— 1856b,,* — 784b,,5— 136b,,*
—10b,>— 1)b,,'Crk,n*),
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a,5s = (1024b,,'*+4096b,,' -+ 7296b,," +7872b,,'° + 5872b,,* + 3136b,,°
+1128b,,+233b,,2+ 19)R 2, utstt (128 (8b,,* +12b,,2+ 5)b,,*C k)

13 = (4096b,,°+ 19456b,,'* +41984b,,' + 55680, +51072b,,* +33392b,,"°
+15216b,,5+4736b,, + 1069b,,* + 188b,,> + 17)R 1, turius| (128(96b,,,"°
+232b,+192b,,5+ 59, + 5b,,2 + 1)b,,'Crk,n*)

and

@u1s=km " (8192b,,"° +32768b,, '+ 56320b,,"* + 57088b,, "> +41280b,, "
+24064b,,% + 11008b,,°+3504b,,* + 712b,,> + 81)R 15, uuu/(128(32b,,°
+64b,,*+40b,,2+7)b, Clkm’)

@uss =k (16384b,,2 +90112b,,22 +223232b,,°+ 333312b,,"* + 341888b,,,'°
+262016b,,*+ 157632b,,'>+74672b,,° +26816b,,* +6958b,,° + 1266b,,"
+154b,,2+9)R 13, utius| (128(64b,,"°+ 160b,,° + 144b,,° + 54b,,*
+8b,,°+1)b,°Clk.’)

@,15= (4096b,,"* +18432b,,'°+ 37376b,,' -+ 46208b,,* +39648b,,'° + 24784b,,’
+11056b,,°+3284b,,* +589b,,2 + 53)R 5, uuu[(128(32b,,° + 64b,,*

+40b,2+7)b,* Crkom’)

@,35=(8192b,,2+49152b,,2+ 136192b,,°+232704b,,* +-275520b,,' +239136b,,,"*
+155456b,, 2+ 75424b,,'°+26718b,, + 6666b,,°+ 1113b,,* +113b,,
+5)R 1om utirs(128(64b,,°+ 160b,,° + 144b,,°+54b,,* +8b,.” + 1)b, ' Crk ) -
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