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Abstract

There exist two kinds of simple waves, i.e., non-coupled simple waves (only long-
itudinal component) and coupled simple waves (both longitudinal and transverse compo-
nents included) in a nonlinear elastic medium. When these two simple waves impinge
vertically on a free surface, the behavior of the reflected waves is elucidated.

In a nonlinear elastic medium, the stress condition is also nonlinear, so that the
stress-free surface condition yields usually a variety of the reflected waves for the incidence
of the wave. These solutions of the reflected simple waves are obtained for the incidence
of the simple waves.

Whether the incident simple waves are non-coupled or coupled, the excited reflected
wave is a non-coupled simple wave. This excited wave has slow velocity as compared with
that of the incident simple waves.

The obtained result is very significant in order to interpret the wave behavior at the
free surface on the occasion of a direct-hit earthquake.

Introduction

When a wave source is located right below the free surface, i.e., in the case of
a direct-hit earthquake (this term will be used in the following discussion), the
theory of waves in a linear elastic medium does not be applied, so that the theory in
a nonlinear elastic medium will be used in this paper, focusing attention on the
response of the incident waves at the free surface.

In previous papers (Momor, 1990 and 1992; these papers will be referred to as
paper M1 and M2, respectively), we have found two kinds of simple waves, i.e., a
non-coupled simple wave (only longitudinal component) and coupled simple waves
(longitudinal and transverse components coupled) in a nonlinear elastic medium.
In this paper, when these two simple waves impinge vertically on the free surface,
the reflected waves are evaluated at the free surface.

The theory was developed using computer algebra installed on an NEC 9800
computer.

1. Expression of Energy

In conservative (nondissipative) thermoelastic isotropic media, the strain
energy function E, can be expressed by use of three strain tensor invariants (for
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details, the reader should refer to BLAND (1969)) in the generalized Taylor
expansion

E,=I>A\2+L-u+A-Lj3+B-1,-1,+C-I}[3, : (1.1)

where A, 1, A, B, C are elastic coefficients, and I, I, I; (U; as strain tensor
component) are strain tensor invariants expressed as

I,=U,+U,+Us;,
L=U}+Upr+ U+ U2+ UR+US2,
L=U>+U}+U}+3/4-U,- U +3/4-U,- Ul +3/4- Uy Ul +3/4- U, U
+3/4-U;- U2+ 3/4-Us- U +3/4- U,y Us- U . (1.2)
In this paper, nonlinearity of the medium is taken into account up to third
order in U;. In the equations of motion, this order is, therefore, reduced to second

order in Uj.
In the above, Voigt Notation {ijj~J}

{11~1, 22~2, 33~3, 23~4, 13~5, 12~6}
and the convention
U;=(1/2)-(1+6,) U, (1.3)
with
Uy = (uy+ -t i) 2 (1.4)

are used, where u;=0u,;/0x; and {u,,u, us} are displacement components in the
directions of the Cartesian coordinate axes {x,,x,,x;}. Then the x- and z-axes are
positive rightward and downward, respectively, and the y-axis positive forward. In
later discussions, {u,,u,,u;} and {x;,x,,x,} will be alternatively expressed by {u, v,
w} and {x,y,z}. §; is the Kronecker delta with suffixes i,j. '

In the later discussion, the elastic coefficients {1,4,B,C} normalized by u
(rigidity in an isotropic medium) will be used, i.e.,

L,=Aly, An=Alt, B,=Blu, C,=Clu. (15)

2. Model, Equations and Surface Conditions

The stress tensor S; (i-component on j-plane) is related to the energy function
S;=0E,[0u; , .10

By use of the above relation, the governing equations can be expressed
(LANDAU and LIFSHITZ, 1985) by

00%u;/62=08S,l0x; (i=1,2,3), (2.2)
U] 7

where o and ¢t are the density of the medium and the time factor, respectively.
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Let the problem be assumed to be two-dimensional. Since the study is focused
on the problem of a direct-hit earthquake, the displacements are u and w, varying
only in the z-direction, independent of x and y. Only moving waves in the direction
of the z-axis are considered. By use of (2.1) and the expressions for energy in the
foregoing section, the above two equations are reduced to the following.

P Un=4q:, O Wp=4q; (2.3)
where
G =M Upntfro un W, fiowa u,,
q3=Ly, W+ fro thy tl,+frw, Wy, (2.3.1)
with
u, =00, u,=0uldz, u,=0%0z",
Wo=0W[ot*, w,=0w/0z, w,=0W/0z*, (2.3.2)
and
Ly, =2+2-u,
J19=(A+2-B+2-A+4-u)/2,
f57=2:A+6:B+2:C+3:A+6-1. (2.3.3)

By use of (1.1) and (2.1), the nonlinear stress-free conditions at the free
surface (z=0) become ‘

Su=u,tu, fiw,=0,

S1 =W, Lo 1" fif24+w.’- 9,/2=0, (2.4)
with

Lypm=Lonjt=2+L,, ,

fi=2+A4,.2+B,,+L,,,

91=6+2:4,+6'B,+2-C,,+3-L,,, (2.4.1)
where the stress conditions are assumed to depend on only z (independent of x and

¥), since the simple waves are assumed normally incident on the free surface.
Solving equations (2.4), we have two kinds of solutions.

Case-1

u,=0 (from eq. S}3) ,
w;=—2:Ly,,/g9, (from eq. Sy),
or w,=0 © (from eq. S33) . 2.5)




= = gilfi+2-Lomnlfi® (from eq. S3) . (2.6)

3. Simple Waves

As discussed in the previous papers M1 and M2, equations (2.3) are trans-
cribed as follows by use of the moving axes

t,=v,t, k=vt+s,z (5==), @D

where ¢, and k, are variables with respect to time and coordinates moving at a
velocity v, in the z-direction. The symbol s, refers to the moving axis associated with
the waves moving upward (for +) and downward (for —), respectively. After the
above reduction, terms with respect to the derivative of time ¢, are put equal to zero
in order to obtain stationary waves, and, further, the equations are integrated over
k,. The following equations, which are obtained, govern the characteristic behavior
of waves in a conservative nonlinear-elastic medium.

S fi iy Wi F g (1—0,07) =0,

S, fi et 5,0 91wt T2 (v, =) w, =0, (3.2)
where

U, =0ulok,, wi,=0w/ok,. (3.2.1)

and {v,,v,} are the velocities of {P,S} waves in the linear theory, respectively.
Solving the above equations, we have two kinds of solutions.

w,=—1[fi (from eq. Sy3) ,
|
|
J
|
i
J
\
l

(i) Non-coupled simple wave

u=0,

w=—2:5V,ml9:°k. or w=const, 3.3)
with

Vo = (0,2 =0, 057, (3.3.1)

where v,;(=v,) is the velocity of the non-coupled simple wave.

(ii) Coupled simple wave

u=s,s,-U?(v;f) 'k, (s,=s,=%),
w= =5 Vomlfi"k, (3.4)

U:Vsmz’(2°Up2+vs2'(_2+Vsm2’(2‘91[f1))) >



The Waves Excited near the Free Surface 5

I/sm2: l_erZ/vs2 ’ (341)

where v,,(=v,) is the velocity of the coupled simple wave.

4. Expressions for Incident and Reflected Simple Waves

4.1. Incident simple waves
For a non-coupled simple wave, from (3.3),

un=0,

Wiy= =2V (Z+t-v.;)/g, or  wy=const, “.0n
with

Vomii= (U,"—0n )02, (4.1.1)

where {uy,wx} and v, are displacement components {u,w} and the velocity
associated with the non-coupled incident simple wave. '
For the coupled simple wave, from (3.4),

uc=s;Ugc"™ Wt +2)[(vef1) (,=7T),

Wic™ —Vomu* @+t 02)[f1, (4.2)
with

Uic=Vonx* (2'7’p2+7}s2' (=24 Vmau R—9:l1)))

Vsti: 1 _1);-21'2/1)52 ) (4.2. 1)

where {u;c,w,c} and v, are displacement components {u,w} and the velocity
associated with the coupled incident simple wave.

4.2.  Reflected simple waves

For simple waves incident on a free surface, we have two kinds of reflected
simple waves.
For a non-coupled simple wave, from (3.3),

uy=0,

Wy =2Vomp,' (—Z+10,1,)[9: (4.3)
with

Vomir= (0" =01, )07, (4.3.1)

where {u,y,w,y} and v,, are displacement components {u,w} and the velocity
associated with the non-coupled reflected simple wave.
For a coupled simple wave, from (3.4),

Ue=sg U (=00, )05 1) (5= +),
W,c— V’smlr’ ( 7Z+t ¢ vr2r)[fl s (4.4)




6 T. MomMmol

with
Uc= Vstr'(z'vpz‘I'Usz'(—2+Vsm2r‘(2_91[f1))) ,
Vsm2r: 1 —vﬂ.rz/us2 ’ (44.1)

where {u,c,w,c} and v,, are displacement components {u,w} and the velocity
associated with the coupled reflected simple wave.

5. Waves at the Free Surface for the Incidence
of Non-coupled Simple Waves

In this section, behavior of the waves at the free surface will be discussed for
the incidence of the non-coupled simple waves described in (4.1). In this case, the
total waves are expressed as

u=uytuytuc,

W:W,'N+W,N+W,C, (5.1)

where {uy, Wi}, {tw,ww) and {u,c,w,} are given in (4.1), (4.3) and (4.4),
respectively.

It is noted here that the total waves are expressed by linear combination of
three terms as in linear theory. In nonlinear problem, such a formulation of the
expressions is, in general, impossible, since coupling of two terms will be expected.
In the case of simple waves, this formulation of the expressions is possible. In
derivation of the expressions for simple waves, the equation is integrated one time
with respect to k,, so that the expression for simple waves becomes linear with
respect to ¢ and x. On the other hand, each term of the original equations (2.3) and
(2.3.1) involves second derivative of  or z.  As a result, the above expressions (5.1)
always satisfy equations (2.3). This feature is similar to that in the case of the
nonlinear multi-soliton problem. In this case, the solutions behave like linear waves
in spite of nonlinear waves. '

It must be noted here that, in the usual case in linear theory, expression (5.1)
might be described in the form:

u=uytAn untAuc e,

w =WIN+AWN.wrN+AwC°WrC ’

with Ay, A, A,x and A, as unknown coefficients to be determined from boundary
conditions. In the case of a nonlinear elastic medium, the total displacements do not
include such unknown coefficients as shown in (5.1). In this case, the unknown
coefficients are replaced by undetermined velocities v,;, (for the reflected non-
coupled simple wave) and v,,, (for the reflected coupled simple wave). Substituting
(5.1) into the stress conditions (2.5) and (2.6), the velocities v, and v, are
determined as follows.
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3.1, Case-I: Surface condition for non-coupled simple wave incidence

By use of (2.5), i.e., Case-I, and (5.1), we have the following solutions, the
derivation of which is detailed in Appendix A.

For a reflected coupled simple wave,

u,c=w,c=0. (from (A.3) of Appendix A)

The above indicates that the coupled reflected simple wave disappears when the
incident wave is a non-coupled simple wave.
For a reflected non-coupled simple wave,

Up,=0s* Voii” . (from (A.4) of Appendix A) (5.2.1)

In the usual case, V,ny; (= (v,°—0,,7)/0%) is small, since the velocity of the
incident non-coupled simple wave is near the velocity of the P wave in the linear
theory. The above expression indicates that the reflected non-coupled simple wave
has very slow velocity, and is nearly trapped near the surface.

The ratio of reflected to incident simple waves at the surface (z=0) becomes

WlWin= =0,/ (Vym1;"*0;-v,1;) ,  (from (A.6) of Appendix A) (5.2.2)

where v,); is nearly equal to v, in usual case.

The above ratio is very large, since the denominator on the right-hand side of
the equation includes the small factor ¥,,,;;. This result shows that, on the occasion
of incidence of a non-coupled simple wave into the free surface, the velocity of the
reflected non-coupled simple wave becomes very small and, as a result, the ampli-
tude of the reflected non-coupled simple wave becomes very large, causing a
quasi-trapping of the waves near the surface.

There exists another reflected non-coupled simple wave with velocity v,,, which
is the solution of the equation

U 0=Vt 0,202 . (from (A.7) of Appendix A) (5.3.1)

As found from the above, the velocity v,,, is nearly equal to the velocity of the P
wave in linear theory, since V,,,;; is usually small. By use of the above, the ratio of
reflected to incident simple waves at the surface (z=0) is, when V,,,; is small,

Wnlwin=1+V,;-0v,>. (from (A.9) of Appendix A) (5.3.2)

Since V,.y; is small, the reflected simple wave in this case occurs nearly with the
amplitude of the incident wave.

3.2. Case-1I: Surface condition for non-coupled simple wave incidence

By use of (2.6) and (5.1), we have the following solutions, the reduction of
which is detailed in Appendix B.

For a reflected coupled simple wave, the velocity becomes zero, so that this
kind of simple wave does not exist, since the velocity is required to be positive (see
the Appendix B).

For a reflected non-coupled simple wave, we have




T. Momor1

The ratio of reflected to incident simple waves at the surface is then

Wolwiy =14V vv,> . (from (B.5) of Appendix B) (5.4.2)

P

The above two expressions (5.4.1) and (5.4.2) are completely the same as those
in (5.3.1) and (5.3.2). In this case (section 5.2), no amplification of the reflected

V208 = Vo +0,2 v . (from (B.4) of the Appendix B) (5.4.1)
waves occurs. '

6. Waves at the Free Surface for the Incidence of Coupled Simple Waves

In this section, behavior of the waves at the free surface will be discussed for
the incidence of the coupled simple waves described in (4.2). In this case, the total
waves are expressed as

u :Uic+urN+urc ,

W:Wic+wrN+Wrc, (6.1)
where {uc,wic}, {un,ww} and {u,c,wcl are given in (4.2), (4.3) and (4.4),
respectively.

Substituting (6.1) into thé stress conditions (2.5) and (2.6), the velocities v,,,
and v,,, will be determined as follows.

6.1. Case-I: Surface condition for coupled simple wave incidence

By use of (2.5) and (6.1), we have the following solutions, the reduction of
which is detailed in Appendix C.

For the reflected coupled simple waves, the velocity is

U =Up;. (from (C.3.1) of Appendix C) (6.2.1)
The ratios of reflected to incident simple waves at the surface are then
Uefue=1 and wewe=—1. (from (C.3.2) of Appendix C) (6.2.2)

As shown above, the coupled waves are reflected directly without any amplific-
ation.

For reflected non-coupled simple waves, there exists a noticeable solution, the
velocity of which satisfies the equation

Uy =05 Vo *+ (91f1)"* . (from (C.4) of Appendix C) (6.3.1)
The ratio of the reflected to incident simple waves at the surface becomes
W= 2, UV, 02) (632)
(from (C.6) of Appendix C)

Since the value of V,,, is usually small, the velocity of the reflected non-
coupled simple wave is small from (6.3.1). In (6.3.2), the denominator on the
right-hand sideAis also small because of the factor V,,, (then v, is of the order of
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v,), so that the incident coupled simple wave is reflected at the free surface as a
non-coupled simple wave which is significantly amplified.

In this case, there exists another solution for the reflected non-coupled simple
wave

V202 =V Gilfi 40,202 . (from (C.7.1) of Appendix C)  (6.4.1)
The ratio of reflected to incident simple waves at the surface then becomes
Wvwic=2-0,/v;.  (from (C.7.2) of Appendix C) (6.4.2)

From (6.4.1), the reflected non-coupled wave has a velocity nearly equal to
that of the P wave in linear theory, since V,; is small. Then the amplitude of the
reflected wave is slightly amplified (see (6.4.2)).

6.2. Case-II: Surface condition for coupled simple wave incidence

By use of (2.6) and (6.1), we have the following solutions, the reduction of
which is detailed in Appendix D.

For the reflected coupled simple waves,

V=0 Vo, (from (D.1) of Appendix D) (6.5.1)

with

£=Q@ A Qofirvt— 9000 @ v IS0 ol (- g)
The ratio of the reflected to incident simple waves at the surface then becomes
Urcltic=—sg"F 2-f1- 0,2 =02 9) "I (F™ Vomas™)

Wocftic =0, F, iV (from (D3) of Appendix D) (6.5.2)

with

Fc:‘vs' (—vs2+vp2)1/4' (2°f1'Upz—vs2°gl)1/4/(21/4'vr2i‘ (fl 'Up2+vsz' (fl_gl))llz) .

In the usual case, V,,,; is small, so that the reflected coupled simple waves
stagnate near the surface. The denomonators on the right-hand sides of (6.5.2)
include the factor V,,;. As the result, the ratio of the reflected to incident simple

waves becomes large, as found from (6.5.2).
In the usual case, V,,,;; and V,,, are smaller than 1, so that the inequality

12 1/4
meli ! < Vsti /
seems to be valid, for instance,
when  Vppii~Vepa~0.1, Vppi'?~0.3 and V,,,'"*~0.6.

From this result, the significance of the reflected waves (6.3.2) is considered to be
larger than that of (6.5.2).

For a reflected non-coupled smiple wave, there exists a solution. The velocity
¥,,, and wave w,y are given by

1),1,2/1}522(—Cc'g1' UU’US2+2..f1 .vpz)/(2 ’fl 'vsz) ’
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wy=Cc Uy (—z+t-v)lfi. (from (D.4.1) of Appendix D) (6.6.1)
The ratio of the reflected to incident simple waves at the surface then becomes
Wnftic=Cc* V1,V (s;°V,) . (from (D.4.2) of Appendix D) (6.6.2)

No amplification occurs for this wave.

7. Summary of the Most Significant Reflected Waves

Among the reflected simple waves described in the foregoing sections, the
excited modes of the waves are very significant on the occasion of a direct-hit
earthquake, so that the obtained results are summarized here.

|
|
|
|
|
|
|
|
|
|
|
Case-i In the case of non-coupled simple wave incidence, the excited reflected ‘
waves are non-coupled simple waves given by (5.2.1) and (5.2.2). ‘

Case-ii In the case of coupled simple wave incidence, the excited reflected
waves are non-coupled simple waves given by (6.3.1) and (6.3.2).

We have now arrived at the conclusion that the most significant reflected waves
are non-coupled simple waves, irrespective of the kind of the incident simple waves,
i.e., non-coupled or coupled ones.

8. Numerical Experiments

In the theory developed in the foregoing sections, the total waves are expressed
by (5.1) and (6.1). These expressions can be written:

u :uiN+urN+urC+uother ’

W=Wy Wy +Wet Woner

and so on. In the above expressions, the terms u ., and woy,, involve the effects of
reflections other than the type of simple waves and also diffraction near the surface.

In order to confirm the effectiveness of the expressions of the total waves (5.1)
and (6.1), which do not have the terms u ., and w ., and the results obtained from
these simplified expressions (in the foregoing sections), numerical experiments will
be carried out by use of the extended finite difference equations. The results based
on the finite difference method involve the effects of the terms u oy, and wger.

8.1.  Finite difference equation by Taylor Method

In this section, finite difference equations will be introduced by use of equations
(2.3). The variables ¢, x, u, and w are here normalized by the wave number 4 of the
P wave in linear theory, i.e.,

t=h-v,'t, x=hz, £=hu, {=hw, (8.1.1)
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where v, and v; (the latter will be used later) are the velocities of P and S waves in
linear theory.
Equations (2.3) are reduced to

0kloT=U, Oolot=W,

oUlot=Ey, OW/[0t=Ey, (8.1.2)
where

Ey=1u> Entfi-GrEatfioEGa)

Ep=8nt 10l (firEn &1 908 80) (8.1.3)
with

Vps =l

& =0y, L =0dllox,

E =0ElOY, Cp=0%Cox". (8.1.4)

In order to evaluate displacements {£,{} and velocities {U, W} at a time 7-+d7
(d7: increment of time 7), we will use a Taylor expansion in terms of 7 to second
order in d7 such that:

E=E+Dy-dt+Dy- (d7)’[2,

{={+Dydt+Dy- (d7)[2, (8.1.5)

U=Uy+Dy,-dv+Dyy- (d0)2,

W=W,+Dy, dt+Dy," (d7)*2, (8.1.6)
where

D, =(0£/07)y, Dp=(8L107),,

Dy, =(F£l07)y, Dp=(6°107")o,

Dy, =(0UJ0T)y, Dy1=(8W/07),, (8.1.7)
and

Dy =(0°Ul67)s, Dyr=(0"W|0T), . (8.1.8)

with suffix 0 indicating the evaluation at time 7.
The above coefficients in (8.1.7) are expressed, by use of (8.1.2), as

Dy=U, Dyu=Dy=Ey,
Dg—l:W, DQZDW]zEw.

In order to obtain expressions (8.1.8), these expressions will be transcribed, by
use of (8.1.2), as follows.

Du=0Eyfdt, Dy,=0Eyot. (8.1.82)

The expressions (8.1.8a) can be obtained by differentiation of (8.1.3) with
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respect to 7, i.e.,
Dy =10, (Ut i Wy Eptfi- W E,H1 Uy Lot fir UGy
DW2:W12+ l/vpsz‘ (f]'gxz'Ux—i"fl'Ex'sz"l_ Wx'{ﬂ’gl'l—sz‘Cx‘gl) N (81.8b)
with
U,=0Ujox , W,=0W|[0x ,
U,=0"Ulox*, W,=0"W/oy*. (8.1.9)
In numerical computation, the derivatives of & are replaced by difference
expressions, say:
E=En—E)I2h),

and
Ep=(Eqt+E-—28)n}, (8.1.10)

|

|

l

|

l

|

I

|

|

|

\

|

|

|

|

|

|

where {£_,£,,} are the displacements at points just above and under a reference ‘

point with displacement &, and A, is a mesh interval. The above description also
applies for {, U, and W. It must be noted here that the above expressions (8.1.10)

can be applied only for the mesh points inside the medium. A different difference ‘

method will be used in the region next to the surface boundary where uneven l

intervals are used (see Appendix E).

|

8.2. Combinations of surface conditions
The surface conditions (2.5) and (2.6) are transcribed as follows by use of the
finite difference method in normalized form.

Case 1
Eszgs-H ’
{s:(sﬂ-l"_z.vpsz/gl'hsy
or =1, (8.2.1a)

Case IT
&=6athdfh,
Es:ﬁ+1+hs’Hhmlfxsl2 s
or £=E1—h,-H,""[f?, (8.2.1b)

__gl+2fl ps ’

where the suffixes s and s+ 1 refer to the values at the free surface and the mesh
point neighboring the surface, respectively, and A, is the interval between the above
two points (the interval inside the medium is 4,, as shown in (8.1.10)).
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From the above conditions, we also have the conditions for the velocities U and
W in finite difference form.
U: = Us+1 ’
W,=W,,,. (8.2.1¢)

From (8.2.1a) and (8.2.1b), we have the following combinations of the surface
conditions.

Case [1]
gs:Es+l ’
é’s:§$+l )
Case [2]
gs:gﬂ-l ’
Cv:é’s+1+2'vpsz/gl.hsa
Case [3]
Es=Es+l+hS 'th/zlflyz ’
&= thify,
Case [4]

ES:E.H-I _hs.thﬂ[fl-"/Z ’
L=Cathf . (8.2.2)

In the application of the above four conditions, a priority cannot be found
among them. As one of the possible procedures, we selected one of the four surface
conditions (8.2.2) and applied the random function installed on the computer. The
computation of velocity was carried out by use of (8.2.1c). In the computation, the
mesh interval A, near the surface was calculated by

he=h,2, (8.2.3)

i.e., half of the mesh interval inside the medium. The reason is described in
Appendix E.

8.3. Initial condition and accuracy

In the following experiments, numerical computations will be carried out by
use of the above-mentioned procedure. The wave source is then given by the
expression

Q=A(Q)2- {1 +cos(x-7/4)} (—16<x<24). (8.3.1)




Fig. 1 (left). Incidence of the non-coupled simple waves (soliton-like) onto the sur-
face. The specifications of the elastic coefficients are L,,=4,,=B,,=C,,=1.0. These
elastic coefficients will be also used in the following Figs. 2, 3 and 4.

Initial displacement (longitudinal),

w=0.1/2- {1 +cos(hz*7/4)} (—16<hz<24)
=0 (otherwise).
and u=U=W=0. )

Thick broken, thin broken and solid lines indicate the initial conditions,
displacements at the successive transient stages and the displacements at the final
stage of the computation near the surface. These conventions will be used in Figs.

"2, 3 and 4.
Fig. 2 (right). Incidence of the non-coupled simple waves (step-shaped) onto the sur-
face.
Initial velocity (longitudinal),
W=0.12- {1+cos(hz z/4)} (—16<hz<24)
=0 (otherwise).
and u=U=w=0.
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where Q=u,w,U or W and A(Q) indicates the magnitude of displacement or
velocity. In the numerical experiment, 4(Q) =0.1 was assumed. The wave source
was situated at the depth x(=hz) =20. This value is irrespective of actual events of
the earthquake. The value is determined only from the fact that the generated
waves traveling through such a distance become nearly stable simple waves accord-
ing to numerical experiments.

Before going to the next section, we will mention the accuracy of numerical
computation. Since our theory is developed to second order in the derivatives of
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Fig. 3 (left). Incidence of the coupled simple waves (soliton-like) onto the surface.
Initial displacement (transverse),
u=0.1/2-{1+cos(hz-m/d)} (—16<hz<24)
=0 (otherwise).
and U=w=W=0.
Fig. 4 (right). Incidence of the non-coupled simple waves (step-shaped) onto the sur-
face.
Initial velocity (transverse),
U=0.1/2- {1+cos(hz-m/4)} (—16<hz<24)
=0 (otherwise).
and u=w=W=0.

displacements, numerical error due to the truncation of terms can be evaluated
approximately by third order terms, i.e.,

(0Klox)’,  (0EI0x)*(OL10Y) »  (OIOx)(8¢I0X)”,  ete.

Among the above terms, the first term (8£/8y)’ for the y-component is the most
significant as compared with other coupled terms, since the £ and { components are
generally propagated at different velocities and hence the order of the coupled terms
is smaller than that of the non-coupled terms.

In the present computation, the half width of the wave source and the height
of the wave are 4 and 0.1, respectively. Derivatives 0£/0y and (8£/0x)’ are of the
order of 0.025 (=0.1/4) and 0.156-10™*, respectively. Quantitative discussion can,
therefore, explain the physical behavior of waves.
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8.4. Computation procedure

In this section, the computation procedure will be outlined.

First, by use of the finite difference equations described in section 8.1, the
displacements and velocities at the mesh points inside the medium (points at the
surface excluded) at a time 7+dt were computed by those at the mesh points
(including the surface boundary) at a time 7 under the initial conditions given in
section 8.3.

Second, the displacements and velocities at the surface at time T-+d7 were
computed by use of the set of surface conditions (8.2.2), (8.2.1¢c) with the
displacements and velocities (the values at time 7+d7) inside the medium obtained
as in the foregoing paragraph. In this computation, before the head of the waves
arrives at the surface, the conditions involving the nonlinear effect were not applied,
but only the condition indicating direct reflection, i.e., Case [1] in (8.2.2) was used.
After the nonlinearity of the surface conditions is effective (after the head arrives),
one condition among the four conditions (8.2.2) was selected and applied by use of
the random function on the computer.

As for the time of application of the nonlinearity surface conditions, Cases [2],
[3] and [4] in (8.2.2), some mention will be made here. Since the non-coupled and
coupled simple waves are propagated nearly at velocities of P and S waves in the
linear theory, respectively, the nonlinearity conditions are assumed to become
effective after the travel of P (non-coupled case) and S (coupled case) waves over
the distance from the wave source to the free surface.

In the numerical experiments, the elastic coefficients are specified as L,,=A4,, =
B,=C,=1.0. The mesh size &, and time step dt are taken as 0.5 and 0.05,
respectively. Since the non-linear problem is treated, we cannot obtain the analyt-
ical expression of stability condition such as Neumann condition in the linear case.
Therefore, the stability of the computation was confirmed by doing a number of

_numerical experiments, varying the values of h, and dz

8.5. Case of non-coupled simple wave incidence
In order to generate a non-coupled simple wave, the following initial conditions
are considered for the longitudinal component.

Case of initial displacement,
Aw)=0.1, ;
A(Q)=0 for Q=u, Uand W.
Case of initial velocity,

A(W)=0.1,
A(Q@)=0 forQ=u, Uandw. (8.5.2)

The numerical examples are given in Figs. 1 and 2. These figures are examples
of the excited wave in Case-i in section 7 and indicate the generation of the quasi-
trapped non-coupled simple waves near the surface.




The Waves Excited near the Free Surface 17

8.6. Case of coupled simple wave incidence
In order to generate a coupled simple wave, the following initial conditions are
considered for the transverse component.

Initial displacement,

A()=0.1,

A(Q)=0 for Q=U,w and W. (8.6.1)
Initial velocity,

AU)=0.1,

A(Q)=0 for Q=u,w and W. (8.6.2)

Figs. 3 and 4 are numerical examples for the above two initial conditions, and
also examples of the excited waves in Case-ii in section 7. As expected from the
theory, the non-coupled simple wave is excited near the surface in these figures, even
though the incident wave is of coupled type.
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Appendix A

Detailed Reduction in the Case-I surface condition for the incidence of the non-
coupled simple wave
By use of the first equation u,=0 in (2.5) and (5.1), we have
Vo =07, (A1)
Ul =01y, (A.2)

where

fi=— QL+ 1)+f,,
fo=(An+6B,+4-C,)(Ln+1)/(An+4B,+2:Co+L,+2) . (A.2.1)

When A4,,, B,, and C,, are small (case of weak nonlinearity), f, is small compared
with the first term — (2-L,,+ 1) inf; so that f; is negative. As seen in (A.2), the left-
and right-hand sides become positive and negative, respectively, so (A.2) is an
invalid solution.

By use of (A.1) and (4.4.1), V,,,,,=0, so thgt the coupled reflected simile waves
(4.4) disappear, i.e.,




Substitution of (A.1) into the second equation w,= —2‘L2;,,,,;/g, in (2.5), after

|

|

|

U c=W,c=0. (A.3) ‘

the substitution of (5.1), yields l
Urr =5 Vo™ (A4)

Then the expression of the reflected non-coupled simple wave at the surface (z=0)
becomes
wy=2"t meli1/2° (— meli°vsz+vpz)/(vs'g1) :

In the usual case, Vi (=(v,"—v,7)fv,") is small, since the velocity of the
incident non-coupled simple wave is near the velocity of the p wave in linear theory.
The above expression is reduced to

Won =271 Vil 0,21 (0,°81) - (A.5)
The ratio of reflected to incident simple waves at the surface becomes
Won/Win = '—vpz/(meul/Z’Us'Uni) . (A.6)

Substitution of (A.1) into the third equation w,=0 in (2.5), after the substitution of
(5.1), gives

The expression of the reflected non-coupled simple wave then becomes
wrN=2.I/pmli‘(Z_t.vr1r)/gl . (A'S)

The ratio of reflected to incident simple waves at the surface (z=0) is, when

Vi 18 small,

b

|
|
|
|
|
vrlrz/vsz = V;:m 1 + 'UPZ/USZ . (A7)
wrN/WiN= 1+ meli 'U:Z/vp2 . (A‘9) I

Appendix B

Detailed Reduction in the Case-11 surface condition for the incidence of a non-coupled
simple wave
By use of the second equation

"= —glf’ -+ 2 Lommlfi’
in (2.6) and (5.1), we have two solutions
Vi = (81— 20,02 f)I(—g:1+2°11) , (B.1)
Vir=1. (B.2)
In the case of (B.1), the equation for the velocity becomes

vrlrz/vszz —2-L, +fél ’
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where f; is given in (A.2.1) of the foregoing Appendix A. As already mentioned

in Appendix A, f,; is small in case of weak nonlinearity. Then the left- and

right-hand sides of the above equation become positive and negative, respectively,

so that the above equation does not hold valid in the case of weak nonlinearity.
In the case of (B.2), the velocity becomes

Uy = 0 ’

so that the reflected coupled simple wave does not exist, since v,,, >0 is required.
By use of (B.2) and the first expression w,= — 1/f; of (2.6), after the substitu-
tion of (5.1), we have

V1 02 = Vs +0, 07 . (B.4)

This expression is the same as that in (A.7). Therefore, the ratio of reflected to
incident simple waves at the surface is the same as that in (A.9), i.e.,

wrN/wiN= 1+ meli' ,USZ/,UPZ . (B.S)

Appendix C

Detailed Reduction in the Case-I surface condition for the incidence of the coupled
simple wave

By use of the first equation #,=0 in (2.5) and (6.1), we have two solutions for
I/sm?z

Vomzr=00—Vomz (C.1)
with
0= =2 (v, —v) [il((2:fi—g1) v
and
Venzr=Vemai - (C2)
Transcribing (C.1), this expression is reduced to
U 0= — (2L + )+ Vo tfa

where f,, is given in (A.2.1). As discussed in Appendix A, when the nonlinearity of
the medium is weak, both sides of the above equation have different signs, so that
the above equation does not hold.

By use of (C.2), the velocity of the reflected coupled simple wave becomes

Vi =V, - (C.3.1)

Then the expressions of the wave are

uc=s; Ugc" (—z+tva2) /(v 1)
WVC:V?mﬁ'(_Z_*_t'err)[fl .
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The ratios of reflected to incident simple waves at the surface (z=0) are
Uclue=1 and w,wec=—1. (C3.2)

By use of (C.3.1) and the second equation w,= —2+L,,./g; in (2.5), after the
substitution of (6.1), yields

vrlr:vs' Vsm2i1/2. (gllfl)uz . (C4)

Then the expression of the reflected non-coupled simple wave at the surface
(z=0) becomes

Wy =2t Vs 05 (— Vi *81 +Up2/1)52 ’fl)/(flm 8% .
When V,,,,; is small (usual case), the aone is simplified into
Wy =210, Vo 1 (0581 £ . (C5)
The ratio of reflected to incident simple waves at the surface becomes
WatWic= =20, [i"" | (Vomz' ™ + 05°81" Uy (C.6)

By use of (C.3.1) and the third equation w,=0 in (2.5), after the substitution
of (6.1), we have another solution for the reflected non-coupled simple wave

U, 102 = Vs g1l 0,705 (C.1.1)
Then the expression of the reflected non-coupled simple wave is
Wy =2 Vo 2= 0)fy -
The ratio of reflected to incident simple waves at the surface becomes

wrN/wiCZZ'Up/Us . (C72)

Appendix D

Detailed Reduction in the Case-II surface condition for the incidence of the coupled
simple wave
- By use of the second equation

u22= _g1[f13+2°L2mm1f12
in (2.6) and (6.1), we have two solutions
vr2r2/Us2:CC' UU 1) (D 1)
CC:fll/z' (2 .fl .Upz—gl .vsz)l/zl(fl 'vp2+vs2. (fl _gl)) ’
UU=21/2° Vsm2¢'1/2. (vpz_vsz)uz ,
errz/vszz _2'Lm +fél_CC'UU) (D2)

where f;, given in (A.2.1).
In the above equation, the term C¢- Uy is small, since Uy is small owing to the
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existence of V,,,, and in the case of weak nonlinearity of the medium (fer is then
small), the above equation (D.2) does not hold, since the left- and right-hand sides
are positive and negative, respectively. _

By use of (D.1), the reflected coupled simple waves at the surface become

U= _SR‘t'fc’ (2'f1‘Upz_'vsz'&)m[flm ,
W= 1)5 °t '_fc N
where
[ =25 Vo (2 fi0 0 =07 80) "™ (0 ) A (feu ol (f—g))')
The ratio of the reflected to incident simple waves at the surface then becomes
Ucluic=—sgF.* (2-f; 'Upz_Usz'gl)llz/(ﬂI/4' Vsmzim) s
wrC/uiC = vs 'Fc :fl 1/4/Vsm2i1/4 (D3)
where
F.=v, (=045, 210, —0.7g) "2 v (fi-0," + 02 (fi—g))')

For the reflected non-coupled simple wave, there exits a solution by use of the
first condition w,= —1/f, in (2.6) after the substitution of (6.1). The velocity v
and wave w,y are given by

vrlrz/vszz(—CC'gl' UU'vs2+2.fl'vpz)/(z'fl‘vsz) ’

rir

W,N=CC'UU'("‘Z+t'U,1,)[f1 . (D.4.1)
The ratio of the reflected to incident simple waves at the surface then becomes
Wonlttic=Co* Vpyy* U5/ (51°Vp21) - (D.4.2)

Appendix E

In the region adjacent to the surface boundary, the mesh intervals are unevenly
divided. In the following discussions, the values with suffix s, s+ 1 and s +2 indicate
the values at the surface, the first and second points from the surface, respectively.
The first and second derivatives in difference form are then approximated by,

at the free surface,

(010X ) surt= (1= E) s ' (E.1)
at the mesh point next to the free surface,
(aglax)ncxt’:(Es+2—gs)/(hs+hx) ) (E21)

(azg/axz)nextz ((Eﬁ-z_fs-{—l)/hx_ (Es+1 “Es)/hs)/((hs_*_hx)/z) s (E22)

where the discussion also can be applied for the cases of ¢, U and W, though the
following developments are done only for the case of £.
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In order to evaluate the accuracy due to the approximation based on the above
finite difference, the differences DV, (for (E.1)), D",y (for (E.2.1)) and D?,,
(for (E.2.2)) of both sides of the above equations will be evaluated. When the
right-hand sides of the equations are evaluated, the following Taylor expansions are
used.

At the free surface,

Ecr1=Eant (10X )out b+ (O°EIOXYoureB'12 - (Bun=E))
and, at the point next to the free surface,
E,=Enene— (OFIOX Y nexs*hsF (OPEIOX Ynexe* By’ 12— (O°EIOX Yot 1131,
Ev+2=Enext T (OEIOX Ynest* By + (OPEIOX Ynext "1 2+ (G°EION ot "1y 13 s (et =Ei41)

where it must be noted here that £ and £, are expanded in terms of &, and &,,
respectively.
The evaluated results are as follows.

D(l)surfz - (aZE/axz)surf.hslz > (E.3. 1)
and

D(l)next = (azg/axz)next “(hy—hy/2,
D(Z)next: (635/6X3)next. (hs_hx)/3 . (E.3.2)

The above results indicate that, if (0°€/0% ) st (0710 )nexs and (8°E/0X’ ) pexs aTe
assumed to be of the same order, the accuracies of the three derivatives based on the
finite difference become appropriately small when

h=h,[2 . (E.3.3)

FREEUHVE S EE O HREREICES W 32T

B+ E x
A HIER AT

ERIERMES A HEE B T B BME 3 /b bIE & B (noncoupled simple
wave: IR D& D) & EESHMIEE (coupled simple wave: MERRSY & MRS DA BRET 3
CEEREERVBIORX TH U, ARX T, BRREO S 3 FERFFPEEG BV TEHHE
AE T SE i BROBENEA L E ECHRERTRAIMREI 202 HL. COBRD
RIE TEMESEFET 20 IBD TEERL EELON B,

IHERE CIIERERRROIGIE o (stress free) DEMVIFFE L b, HERmD > DRG
BREHEOME S, 22 VF - DOZENOEAL S KEEORIES—FREVEN b - L b1
Be~EFEELONS, COREBETREFICOVTROT EAHERL /2.

WENEY» > HHRERRICEBICEA LB, hodEdalig ch S TtHd
h, #hicBbnEL, REVIREOKE L CIEHEARIOBME SR SN 5, ZoREHEMEEO
FERIEEICE NS, ZOBRELTETEMED L SMBRTIRKESTHREN S,




