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Abstract

Modeling of tectonomagnetic changes is formulated in a unified
way. First the linear relationship between magnetization and stress

is obtained for a general 3-dimensional stress state. It is deduced -

by applying the principle of superpesition to experimental results of
uniaxial compression tests. The isotropic piezomagnetic law thus
obtained has two independent parameters, which is equivalent to the
law proposed by ZLOTNICKI et al. (1981). The ordinary piezomagnetic
law (STACEY, 1964; NAGATA, 1970a) with a single parameter, i.e. the
stress sensitivity, is a particular case of this extended formula.
Because of its simplicity and validity as an average for aggregates
of various rocks, the single parameter formula is applied in the follow-
ing calculations. The basic equation is derived by connecting the
Gaussian law for the magnetic field and the Cauchy-Navier equation
for static elastic equilibrium through constitutive relationships, i.e.
the piezomagnetic law and the Hooke law for isotropic elasticity. It
is a Poisson’s equation with a source term expressed in terms of the
displacement. The representation theorem is obtained for the solution:
the tectonomagnetic field is given by surface integrals of the displace-
ment and its normal derivatives over the strained body. Applying
the theorem to a medium including a dislocation surface within it,
we find that the dislocation surface behaves as a magnetic sheet.
For Volterra dislocations, the magnetic sheet becomes simply a double
layer, of which the moment is given by the inner product of the
displacement discontinuity and the magnetization vector. The seismo-
magnetic moment thus defined is useful to intuitively realize coseis-
mic magnetic changes. In the following caleculations, the model earth
considered is the simplest one: a homogeneous and isotropic elastic
half-space having a uniformly magnetized top layer with a constant
stress sensitivity. '

The piezomagnetic field associated with the Mogi model is inves-
tigated in detail. Two mathematical techniques are introduced, which
are frequently used throughout this study: i.e. the double Fourier
(or Hankel) transforms and the Lipschitz-Hankel type integrals. The
piezomagnetic field associated with the inflation of a finite spherical
pressure source is solved with the aid of these two methods. The
point source solution is also obtained, and subsequently used as a
Green’s function for the multiple Mogi model in Chapter 5. The way
we obtained the point source solution becomes the prototype of con-
structing Green’s functions in the following chapters. In the case of
integrals containing a singular point of the stress field, we must take
a limit in a special way: i.e. to enclose the singular point with a
closed surface which satisfies the boundary conditions and then to
shrink the surface to that point.

A variety of tectonic models can be formed by superposing the
displacement field solutions of single forces acting at points in an
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elastic half-space. Piezomagnetic changes associated with the same
models are given as well by the linear combination of fundamental
piezomagnetic potentials, which arise from stress-induced magnetiza-
tion produced by unit single forces acting at points. The method is
adaptable to surface load and volume source problems. As an applica-
tion example, piezomagnetic change is calculated for a uniform circular
load. Comparing the calculations with some observations of the dam-
magnetic effect, we suggest that the in situ value of the stress

-—gengitivity-of-the upper -crust- is an-order-of magnitude greater-than T

that of stiff rocks which are usually tested in rock-magnetic experi-
ments.

Finally the dislocation problems are considered. The same integral
representation as the Volterra formula for the elastic field is derived
for the piezomagnetic field. The elementary piezomagnetic potentials
are defined as the potentials produced by a point dislocation. The
effect of divergent stresses around a point dislocation is evaluated as
follows: we enclose the point dislocation with a small thin disk parallel
to the infinitesimal dislocation surface, diminish the thickness of the
disk and then its radius. Elementary potentials consits of dipoles and
multipoles at the position of point dislocation and their mirror images
with respect to the Curie depth. However, some types of strain nuclei
lack magnetic source equivalents at the dislocation position. Hence
the seismomagnetic effect accompanying some kinds of fault motion
becomes much weaker than that anticipated from the seismomagnetic.
moment. An important application of the theory is the multiple
tension-crack model, which is a versatile model for crustal dilatancy
or crustal deformation of volcanic origin. Another application is the
piezomagnetic change associated with faulting. Formulas for a vertical
rectangular fault with shearing as well as tensile fault motion are
presented.

1. Introduction

Does the geomagnetic field change in association with or prior to an
earthquake?—The question was raised even in the cradle stage of seis-
mology. In 1891, just a hundred years ago, the Mino-Owari earthquake
of M 8.0 occurred in the central part of Japan, which was one of the
most severe and damaging earthquakes inland in Japan (7,232 people
were killed). TANAKADATE and NAGAOKA (1893) conducted resurveys of
geomagnetic measurement over a wide area, and found an enormous
change in the geomagnetic field, especially in the horizontal component,
at-a survey point in Nagoya city closest to the focal zone. The observed
change, almost 1,000nT in magnitude, was too large as compared with
our present day standard of observations (RIKITAKE, 1968). However,
their physical understanding of the possible cause of such a “seismo-
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magnetic effect” is common to ours. They stated: “Whether this dis-
turbance is due to the change of magnetic conditions of the earth’s crust
in the vicinity caused by strain, or to the change in conductivity for
earth currents, or, again, is the result of the dislocation of the magnetic
crust, is more than we can decide from the scanty data which we now
possess. These points will undoabtedly afford most interesting subjects
of research in the future.” (TANAKADATE and NAGAOKA, 1893, p. 176.)

In Japan many efforts have been made to observe magnetic changes
associated with earthquakes and volcanic eruptions (e.g. KATO, 1939;
TAzIMA, 1966). Magnetic cbservations in volcanos detected significant
changes. In the 1940 eruptions of Miyakejima Voleano, a few indepen-
dent magnetic observations detected mutually consistent and outstanding
changes in the geomagnetic field (KATO, 1940; TAKAHASI and HIRANO,
1941a, b; NAGATA, 1941; MINAKAMI, 1941). In the 1950 eruption of Izu-
Oshima Voleano, remarkable changes in the geomagnetic dip were detected
(RIKITAKE, 1951). During the decade after the 1950 eruption, continuous
observations of magnetic declination were made in Izu-Oshima Voleano.
Geothermal processes within the volecano were discussed on the basis of
magnetic data (YOKOYAMA, 1956, 1969). After 12 years’ repose, Izu-
Oshima Volcano erupted again in November 1986. A variety of magnetic
changes were observed: long-term (ca. 10 years), intermediate (ca. 8 years)
and short-term (ca. 1 month) precursory changes as well as coeruptive
and post-eruption magnetic changes (YUKUTAKE et al., 1990a, b; SASAI
et al., 1990; HAMANO et al., 1990). Hence, magnetic observation is
regarded as a useful means to menitor the activity of Izu-Oshima Voleano
(YUKUTAKE, 1990).

These magnetic changes associated with voleanic activity are pro-
bably caused by thermal demagnetization or remagnetization due to tem-
perature changes of rocks. NAGATA’s (1943) pioneer study on TRM was
strongly motivated by a wish to establish the physical basis for inter-
preting his own magnetic observations at the time of the Miyakejima
eruptions in 1940.

As compared with volcanomagnetic observations, earthquake-related
magnetic changes were less reliable. KATO and UTASHIRO (1949) reported
on a coseismic change in the geomagnetic declination amounting to 35nT
associated with the 1946 Nankaido earthquake of M8.0. The result was
obtained. at a magnetic observatory through absolute measurements made
every -5 days, which was a rare example of reliable observations in the
first half of this century. Development of highly sensitive, spin preces-
sion magnetometers made a breakthrough in seismomagnetic observations
(BREINER, 1964). In particular, reliable data are available since proton
precession magnetometers were widely introduced in the 1960’s (RIKITAKE,




Tectonomagnetic Modeling Based on Linear Piezomagnetism 589

1968).

The total intensity change during the Matsushiro earthquake swarm
is typical of such observations (RIKITAKE et al., 1968). The number of
observed seismomagnetic events has been increasing since then: the Izu-
Oshima-Kinkai earthquake of M 7.0 in 1978 (OHCHI et al., 1979: preseismic
change), the Higashi-Izu earthquake of M4.9 in 1978 (SASAI and ISHI-
KAWA, 1980a: pre- and coseismic), near the Yamasaki-fault earthquake of
M5.6 in 1984 (SumiToMO and NoOrITOMI, 1986: post-seismic). We failed,
however, to catch the coseismic change even within 10km from the
earthquake fault: the East-Off Izu Peninsula earthquake of M 6.7 in 1980
(SASAT and ISHIKAWA, 1980b). Remarkable changes are also found in
association with the anomalous crustal uplift in the eastern part of the
Izu Peninsula (SASAI, 1989; SASAI and ISHIKAWA, 1991).

In the United States a telemetered magnetometer array was esta-
blished along the San Andreas fault (JOHNSTON et al., 1976), which was
used to cbserve the 1974 Thanksgiving Day earthquake of M 5.4 (SMITH
and JOHNSTON, 1976: preseismic), aseismic magnetic event near San Juan
Bautista in 1975 (JOHNSTON, 1978) and the North Palm Springs earth-
quake of M5.9 in 1986 (JOHNSTON and MUELLER, 1987: coseismic). More-
over, enormous changes were detected by repeat surveys over the southern
California downwarp (JOHNSTON et al., 1979).

In the People’s Republic of China, magnetic measurement is an im-
portant tool for earthquake forecasting. Remarkable changes were ob-
served before the 1976 Tangshan earthquake of M 7.8 (ZHAN, 1989). Ob-
servations of local magnetic changes with special reference to the earth-
quake prediction study have been extensively carried out in Soviet central
Asia (SHAPIRO et al., 1978). No coseismic change was observed at the
time of the Gazly earthquake of M7.8 in 1976 (SHAPIRO and ABDULLA-
BEKOV, 1978). However, a remarkable magnetic precursor up to +23nT
was detected 3 days prior to the 1978 Alay earthquake of M7.0: the
earthquake warning was actually issued on the basis of this anomalous
magnetic change (SHAPIRO and ABDULLABEKOV, 1982). In Turkey, search
for magnetic precursors to earthquake has been made in the most active
fault zone, i.e. the north Anatolian fault system (ISPIR and UYAR, 1976).
Recently magnetic observations are being intensively carried out in this
region (ISIKARA and HONKURA, 1988; UHRENBACHER, 1988).

Variation of magnetization caused by applied stresses is called the
piezomagnetic effect. This is the inverse effect of magnetostriction, in
which the magnetic substance is strained under an applied magnetic field.
We should recall that TANAKADATE and NAGAOKA (1893) first proposed
“the change of magnetic conditions of the earth’s crust caused by strain”
as a possible cause of seismomagnetic change. Actually, Hantaro Naga-
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oka’s (1865-1950) first scientific work was some experiments on the mag-
netostriction of ferromagnetic materials (e.g. NAGAOKA, 1889). The pie-
zomagnetic effect of rocks was first experimentally confirmed on the
magnetic susceptibility by KALASHNIKOV and KAPITSA (1952). The same
phenomenon was ascertained for the hard remanent magnetization such
as TRM of rocks by OHNAKA and KINOSHITA (1968). These experimental
results were summarized by NAGATA (1970a).

Since earthquake faulting occurs almost isothermally, the cause of
magnetic changes associated with earthquakes is considered to be stress
rather than temperature. STACEY (1964) proposed the term ‘seismo-
magnetic effect” for such magnetic changes. Moreover, we have some
examples of magnetic changes related to volcanic activity as most prob-
ably due to stresses because of their rapid time variations: e.g. magnetic
changes at Mt. Ruapehu, New Zealand (JOHNSTON and STACEY, 1969),
coeruptive change at Kilauea Volcano, Hawaii (DAVIS et al., 1974, 1979),
the change accompanied by the catastrophic blast of Mt. St. Helens on
May 18, 1980 (JOHNSTON et al., 1981), and changes at the time of fissure
eruption in Izu-Oshima Volcano on Nov. 21, 1986 (SASAI et al., 1990).
Intrusion of magma or stress build-up in the reservoir could produce
magnetic changes owing to the piezomagnetic effect. Hence STACEY et
al. (1965) called such magnetic changes the ‘“volcanomagnetic effect”.

Another new idea was proposed for the origin of magnetic changes
associated with tectonic events: the electrokinetic effect due to under-
ground water flow (MIZUTANI et al., 1976). MIZUTANI and ISHIDO (1976)
claimed that the magnetic changes during the Matsushiro swarm earth-
quakes were well explained by this effect because a huge amount of
ground water gushed out in the final stage of the swarm activity. The
streaming potential due to ground water flow can be the most probable
cause of self potential changes related to tectonic activity (FITTERMAN,
1978; IsHIDO and MIZUTANI, 1981). The associatel earth currents could
produce the magnetic field (FITTERMAN, 1979). Recent theoretical studies
show that the electrokinetic effect is rather too weak to produce an ob-
servable magnetic field if ordinary values of earth resistivity and water
flow speed are assumed (FITTERMAN, 1981; MURAKAMI, 1989). However,
there still remains a possibility that this effect can contribute to magne-
tic changes, especially in hydrothermal voleanic regions (e.g. ZLOTNICKI
and LE MouEgL, 1988).

The study of magnetic changes associated with various kinds of
tectonic activity such as earthquakes, volcanic eruptions, gradual crustal
movement and so on was named “Tectonomagnetism” by NAGATA (1969).
The term “tectonomagnetism” is sometimes given the narrow meaning
of only the study of magnetic fields of piezomagnetic origin. We should,
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however, regard it as “the study of generating mechanisms of various
tectonic events through geomagmnetic observations”. The origin of magne-
tic changes may be either stress, temperature or ground water, or a
combination of them. One of the ultimate objectives of tectonomagne-
tism is to contribute to earthquake prediction and volecanic eruption
forecasting.

Tectonomagnetism is part of a wider field of study, i.e. “Tectono-
Electro-Magnetics (TEM)”. TEM is the study of all kinds of electro-
magnetic phenomena associated with tectonic activity. Apart from (a)
quasi-static magnetic changes (tectonomagnetism), we have a variety of
electromagnetic observations: ie. (b) changes in the earth’s resistivity
(e.g. YANAGIHARA, 1972; MAZZELLA and MORRISON, 1974; YAMAZAKI, 1977,
HoNkURA and TAIRA, 1983; YUKUTAKE et al., 1987), (¢) anomalous changes
in self potential (e.g. CORWIN and MORRISON, 1977, VAROTSOS and ALEXO-
POULOS, 1984a, b; MrvAkosHI, 1986), and (d) electromagnetic emissions
including ‘earthquake light’ (e.g. TERADA, 1931; GOKHBERG et al., 1982).
Tectono-Electro-Magnetics is based on cbservations of mechanical pheno-
mena in the crust with electromagnetic means and aims at clarifying
the generating mechanisms of tectonic events.

Now let us briefly review experimental and theoretical studies of the
piezomagnetic effect of rocks. There are two sorts of stress-induced
magnetization change: reversible and irreversible ones (NAGATA, 1970a).
One of the prominent irreversible changes is that the remanent magne-
tization decreases under applied stresses: this can be a cause of coseismic
magnetic change (e.g. Shock Remanent Magnetization (SRM): NAGATA,
1971). In the case of reversible piezomagnetic change, the induced pie-
zomagnetism is approximately proportional to applied stress. This line-
arity makes it easy for us to compute the piezomagnetic field. Actually
tectonomagnetic modeling has hitherto been limited to models based on
the linear piezomagnetic effect.

Many experimental studies have been reported: e.g. KAPITSA (1955)
KINOSHITA (1968), NAGATA and CARLETON (1968), KEAN et al (1976).
Physical interpretations of the piezomagnetic effect of rocks have been
attempted (e.g. KERN, 1961; STACEY, 1962; KINOSHITA, 1969; NAGATA 1970b;
STACEY and JomNSTON, 1972; HopycH, 1976, 1977). For ferromagnetic
minerals with single domain structure, the reversible change can be ex-
plained by rotation of spontaneous magnetization. Most minerals have
multi-domain structure, in which movement of the 90° domain wall occurs
at a certain stress level to bring about irreversible changes. NRM’s of
some rock samples often show quite complicated behavior against applied
stresses (HENYEY et al., 1978; REVOL et al., 1978, HAO et al., 1990).

The dependence of stress sensitivity on the hydrostatic pressure was
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investigated (NAGATA and KINOSHITA, 1967; NULMAN et al., 1978). The
stress sensitivity, i.e. the proportionality constant of induced magnetiza-
tion vs. stress, increases with increasing hydrostatic pressure. However,
it sharply decreases with temperature around 300°C, far below the Curie
point (Pozzi, 1977). CARMICHAEL (1977) argued that the upper 15km of
the lithosphere is likely to be the most important in yielding cobservable
piezomagnetic fleld anomalies for earthquake prediction. As a first order
approximation, it seems to be valid that the uppermost crust is uniform-
ly magnetized with a constant stress sensitivity.

The effect of dilatancy on the remanent magnetization of rocks was
investigated by MARTIN et al. (1978). The onset of dilatancy produces
changes in the rate of magnetization changes. However, the rate of
change itself becomes smaller, which implies that the dilatancy-related
magnetic change should be small. On the other hand, in the case of
porous rock samples, the stress sensitivity is one order of magnitude
greater than that of stiff rocks (HAMANO, 1983; HAMANO et al., 1989).
This fact, together with world-wide observations of the dam magnetic
effect, suggests that the im situ stress sensitivity of the upper crust
may be on the order of 1x10~* bar™ (see section 4.3).

In the tectonomagnetic modeling, we seek a general linear relation-
ship among magnetization changes and stress components. ZLOTNICKI et
al. (1981) proposed a tensorial formulation for the linear piezomagnetic
law. The simplest form is given for isotropic.piezomagnetic material,
which is deseribed with two independent parameters. How to derive
these parameters from results of uniaxial compression experiments will
be discussed in section 2.1.

Let us review the history of calculations on the tectonomagnetic
field raised by the linear piezomagnetic effect. STACEY (1964) was the
pioneer of such study. He assumed a hypothetical distribution of coseis-
mic stress drop due to a vertical transcurrent fault to estimate the
seismomagnetic effect. The modeling procedure was: (a) to give the
stress field at each point in the magnetized region, (b) to compute stress-
induced magnetization, and (c) to calculate the magnetic field by apply-
ing the dipole law of force. In (¢), he performed numerical integrations
by subdividing the magnetized medium into small volume elements. Step
(b) was extended to a formula for a general 3-dimensional stress state
by STACEY et al. (1965) in their calculation of the volcanomagnetic effect.
As the stresses around a magma reservoir, they utilized the stress field
solution around a spherical cavity in an infinite elastic medium under a
uniform external stress applied at infinity. Thus STACEY (1964) and
STACEY et al. (1965) demonstrated that we can reasonably expect observ-
able magnetic changes due to stresses associated with earthquakes and
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voleanic activity. The work done by Stacey and his coworkers became
the prototype of tectonomagnetic modeling.

Once the elementary way of modeling was established, the next step
was to investigate more physically realistic models. YURUTAKE and
TACHINAKA (1967) caleculated piezomagnetic changes due to an infinitely
long cylinder under hydrostatic pressure from inside, embedded horizont-
ally in a semi-infinite medium. This was the first mechanically valid
model since the stress-free boundary conditions at the earth’s surface
were properly taken into account. Only a few nT change in the total
intensity was expected for an internal pressure of 100 bars. This sug-
gested that stress-induced magnetic changes would be smaller as com-
pared with those anticipated so far.

Piezomagnetic changes due to a fault model based on the elasticity
theory of dislocations were first calculated by SHAMSI and STACEY (1969).
They proposed a 2-dimensional vertical strike-slip fault for the 1906 San
Francisco earthquake and a dip-slip fault for the 1964 Alaska earthquake.
Their model is called the linear slip model since the dislocations are
degraded linearly to zero toward the deeper edge for a strike-slip and
toward both edges for a dip-slip fault. The maximum change in total
intensity was expected to be a few nT and was prominent only above
the fault. TALWANI and KOVACH (1972) estimated magnetic changes due
to stress concentration around the edge of a semi-infinitely long vertical
strike-slip fault. HILDENBRAND (1975) investigated some 2-dimensional
vertical faults including uniform and linear slip models. These studies
show that the seismomagnetic effect could be observed only near an
earthquake fault.

Computational difficulty increases in the case of 3-dimensional models.
DAvis (1974) calculated piezomagnetic changes caused by a square-shaped
load. The dam magnetic effect, i.e. magnetic field produced by water
load during the filling of a reservoir, was estimated by approximating
the shape of the actual reservoir with squares. DAVIS (1976) calculated
the piezomagnetic field of the Mogi model in voleanology (MoGI, 1958).
He compared his results with observations in Kilauea Volecano. Davis’
work became a breakthrough to 3-D modeling. JOHNSTON (1978) computed
piezomagnetic field changes due to a vertical rectangular strike-slip fault

- to interpret an aseismic magnetic change along the San Andreas fault.

OHSHIMAN (1980) developed a numerical integration program for seismo-
magnetic calculation of an inclined rectangular shear fault. These 3-D
fault models incorporated stress field solutions based on the elasticity
theory of dislocations (e.g. CHINNERY, 1963; MARUYAMA, 1964; IWASAKI
and SATO, 1979).

All these model calculations followed STACEY’s (1964) method. We
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may call it the volume element method. It has some difficulties: (1) the
incremental magnetization is a ecomplicated function of stress components,
(2) the only way to improve the accuracy of numerical integration is to
diminish the size of volume elements, which requires enormous computa-
tion time in the 3-D models. Defect (1) prevents us from finding analy-
tical solutions, while (2) makes it practically impossible to assess computa-
tional errors. SASAI (1979) obtained an analytic solution for the piezo-
magnetic field due to the Mogi model in the point source case. His work
was done following HAGIWARA (1977a), who presented an analytic solu-
tion for the gravity change in the Mogi model with the aid of Fourier
transforms. SASAI (1979) solved the difficulty (1) to find that the stress-
induced magnetization in the case of an axially symmetric stress field
can be expressed by a simple linear combination of stress components.

RIKITAKE (1966) first pointed out that the piezomagnetic law should
be represented by a linear combination of stress or sfrain components.
He proposed that these coefficients should be experimentally determined.
Such experiments were not, however, attempted because of technical
difficulty. SASAI (1980) proved that the extended piezomagnetic law by
STACEY et al. (1965) can be reduced to a simple linear combination among
stress components. This linear relationship made it possible for us to
develop an analytic approach to tectonomagnetic modeling. With the aid
of this formula, SASAI (1980) presented a unified treatment of tectono-
magnetic models related to dislocations. As an application example, he
showed that the piezomagnetic potential due to a vertical rectangular
strike-slip fault could be expressed in terms of elementary functions.
Moreover, the potential thus obtained had the same functional form as
some of the displacement field. SASAI (1980) made an effort to represent
the piezomagnetic potential with the displacement field of the strained
bedy.

Independently of SASAT's (1980) work, BONAFEDE and SABADNI (1980)
published a general treatment of tectonomagnetic modeling. From ther-
modynamical considerations, they derived constitutive relations of aeolo-
tropic magnetoelastic materials. They formulated tectonomagnetic model-
ing as a coupled problem of two differential equations, i.e. the elasto-
dynamic and Ampére-Maxwell equations, both of which were combined
through the Hooke law and the generalized piezomagnetic law. On the
assumption that the Green function exists a prior: for such a coupled
differential equations system, they derived a representation theorem for
the piezomagnetic vector potentials. Applying the theorem to a mag-
netoelastic body including a dislocation surface within it, they showed
that the magnetic field caused by dislocation sources is equivalent to that
of a distribution of magnetic dipoles along the dislocation surface, of
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which intensities are proportional to the dislocation moment density
through a set of piezomagnetic coefficients. They call these dipoles the
magnetic source equivalents.

BoNAFEDE and SABADINT'S (1980) result is the most general repre-
sentation of tectonomagnetic field in terms of the displacement field of
aeolotropic magnetoelastic materials. However, we cannot actually ecal-
culate the piezomagnetic field because we do not know the definite form
of Green’s function for a general aeolotropic medium. Even if isotropic
elasticity is assumed, their formula is mathematically complex because
the magnetic field is described in terms of a vector rather than a scalar
potential and the magnetoelastic coupling terms remain. In the case of
crustal rocks and the Earth’s magnetic field, the coupling terms are
negligible.

SASAI (1983) presented a surface integral representation of the pie-
zomagnetic potential produced by a homogeneous and isotropic magneto-
elastic body with uniform magnetization. It is given by an integral of
the displacement and its normal derivatives over the strained body. We
may call it the representation theorem for a tectonomagnetic field. Ap-
plying the theorem to a magnetoelastic medium containing a dislocation
surface within it, we find that the dislocation surface behaves as a sheet
magnet. It corresponds to the magnetic source equivalents as defined by
BONAFEDE and SABADINI (1980).

SASAT (1986a) obtained the fundamental piezomagnetic potentials, i.e.
magnetic potentials produced by a single force operative at a point in
a semi-infinite medium. Piezomagnetic changes due to mechanical models
which are constructed by a single force distribution are equivalent to those
which are obtained by arranging the fundamental piezomagnetic poten-
tials in the same way as the single force distribution. This leads to
analytic solutions for the piezomagnetic field of the surface load problem.
Actually SASAT (1986a) presented the magnetic field produced by a uni-
form circular load expressed by complete elliptic integrals. Thus we find
that all the problems which have been solved so far numerically with
the volume element method have analytic expressions.

Recently, Suzuki and OSHIMAN (1990) reexamined the piezomagnetic
field due to the Mogi model with the numerical volume integrals and
reproduced DAVIS’ (1976) result for the finite spherical source. They also
reproduced SASAT's (1979) result for the point source case (the type I
solution). They pointed out that both the results were very different
from each other. Spurred by their work, SASAT (1991) investigated an
analytical expression of the solution for the finite spherical source. He
found that the limit as the source radius was reduced led to a result
different from the type I solution, which was called type II. It was
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concluded that type II was appropriate as the point source solution. In
evaluating the effect of the divergent stress field at a singular point,
we should integrate over the medium excluding a small area around the
point, and then take the limit as the closed surface shrinks.

This implies that we should reexamine the Green’s functions for the
piezomagnetic field in the dislocation problems (SAsa1, 1980) and single
force source problems (SAsal, 1986a). In the following chapters we will
reformulate these Green’s functions by adopting type II solutions. Thus
we can develop a unified way of tectonomagnetic modeling on the basis
of the linear piezomagnetic effect. We should emphasize, however, that
the method described in this paper essentially follows the framework of
tectonomagnetic modeling devised by STACEY (1964).

The main contributions from the present study consist of four chap-
ters. In Chapter 2, the basic theory is formulated. The generalized
piezomagnetic law for isotropic magnetoelastic material which is an ex-
tended version of the result by SasAr (1980), is derived. The basie
equation and the representation theorem for the solution are given
(SasA1, 1983). The correspondence among piezomagnetic potential vs.
displacement and piezomagnetic field vs. strain is presented; the concept
of the “seismomagnetic moment” is proposed (SASAI, 1983). It will be
shown that the piezomagnetic effect is the predominant factor among
various causes of magnetic change associated with the mechanical dis-
tortion (SASAI, 1985).

In Chapter 3, the piezomagnetic field associated with the Mogi model
will be fully investigated. This chapter is based on SASAI (1979, 1991).
In particular, we discuss how to deal with the divergent stress field
around -a point source. Two mathematical tools, i.e. the double Fourier
(or Hankel) transform and the integral of Lipschitz-Hankel type, are
introduced. They will be frequently used throughout this study. In
Chapter 4, we will investigate the mechanical models given by the dis-
tribution of single forces in a semi-infinite solid. This chapter is based
on SASAI (1986a). The dam magnetic effect will be effectively calculated
by the Green’s function method. In Chapter 5, we will treat the dis-
location problems. Volterra’s formula for the piezomagnetic potentials is
presented. We present some corrections to SASAI's (1980) results for
elementary piezomagnetic potentials.  The theory will be applied to the
multiple tension-crack model (SAsA1, 1986b) and fault models.

Chapter 2. Basic Theory

In this chapter, we formulate a theoretical basis for tectonomagnetic
modeling. In the first section we derive a linear relationship between
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magnetization changes and applied stresses in the three dimensional stress
state. This constitutive law is based on two independent piezomagnetic
parameters. Although the traditional formula for the piezomagnetic
effect of rock samples has been described with a single parameter, i.e.
stress sensitivity, the new piezomagnetic law is verified by recent experi-
ments as well as by some theoretical considerations.

In the second section we represent the piezomagnetic law by the
displacement field, using Hooke’s law. The fundamental equations for
tectonocmagnetic problems are the Cauchy-Navier equation for the dis-
placement under static equilibrium and the Gauss-Maxwell equation for
the magnetic field. Both these equations are combined to deduce the
basic equation for the tectonomagnetic field. We use the scalar potential
to deal with the static magnetic field proeduced by rock magnetization.
This simplifies the formulation as compared with the use of the vector
potential. ‘

In section 3 we will derive a representation theorem for the solution
of the basic equation in the form of a surface integral. Then we find
that the magnetic potential corresponds to the displacement, and the
piezomagnetic field to the strain. One nanotesla change in the tectono-
magnetic field is expected to correspond to the earth’s strain of a few
microstrain, -

The elasticity theory of disloeations was introduced to successfully
interpret crustal deformations produced by earthquake and volcanic ac-
tivity. We also consider dislecation problems in the magnetoelastic con-
tinuum. In the fourth section we apply the representation theorem to
such cases. We will demonstrate that an equivalent magnet emerges
along a dislocation surface. This magnetic scurce equivalent has an
intensity proportional to the moment tensor of dislocations, which leads
us to the idea of the ‘“seismomagnetic moment”. This concept is con-
venient to intuitively recognize the seismomagnetic effect.

In the final section we will investigate the relative importance of
the piezomagnetic effect in the tectonomagnetic field. The Mogi model
is taken as an example. Factors of the magnetic change associated with
mechanical distortion of the magnetoelastic medium are: (a) the change
due to spatial movement of the observation site in the earth’s main field
(the Free-air change), (b) the change produced by deformation of the
ground surface (the Bouguer change), (¢} increase or decrease of magnetic
mass in the source and (d) the piezomagnetic effect. We will find that
the piezomagnetic effect is the only major contribution to the mechani-
cally produced magnetic field changes.
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2.1 The Linear Piezomagnetic Effect

The magnetization of rocks containing ferromagnetic minerals varies
when mechanical stresses are applied. This phenomenon is called the
piezomagnetic effect, which is the inverse effect of magnetostriction. It
was discovered by laboratory experiment for induced magnetization by
KALASHNIKOV and KAPITZA (1952), and for remanent magnetization by
OBNAKA and KINOSHITA (1968). The magnetization changes reversibly
and/or irreversibly against applied stresses. Experimental and theoretical
studies on piezomagnetism of rocks were summarized by NAGATA (1970a)
and by STACEY and BANERJEE (1974). In this study we are concerned
with only the reversible piezomagnetic effect.

The magnetization of rocks behaves under mechanical stresses as
follows:

Ji=— I gi14p0) (2.1a)
(l_ﬁlg) i
L JOJ_ ~ 1
Tom e = (1) (2.1b)

in which the superseripts // and L represent the magnetization components
parallel and perpendicular to the applied stress direction respectively,
while the subsecript 0 indicates the initial value of magnetization under
no stress. We denote the incremental magnetization by 4J. We have

ATV =BTy (2.2a)
ATE = Bod - (2.2)

We follow the standard sign convention of stress in the elasticity theory:
i.e. compression is negative. It is opposite to the traditional one employed
in studies of piezomagnetism because laboratory experiments started as
uniaxial compression test in its early history. However, tectonomagnetic
modeling has developed in close contact with elasticity theory, hence the
new sign convention is reasonable.

It has usually been assumed that the following relation holds good
(STACEY, 1964; NAGATA, 1970a):

ATV =Bad, (2.3a)

AT+ = —%ﬁa,ﬂ (2.3b)

STACEY, BARR and ROBSON (1965) extended this formula (2.3) to a general
three-dimensional stress state as
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Ad o= ,8J¢<0i— "f;’ % >ei (2.4)

(1,7, k=1,2,8; i#j+k)

where J; and 4J; are the magnetization and its increment in the ¢-th
principal direction, while e, indicates a unit vector direction of the prin-
cipal stress ;. SASAI (1980) derived a modified formula which is equi-
valent to eq. (2.4):

47= _?é_,em (2.5)

T’ is the stress deviation tensor, which is related to the stress tensor T
and the average stress ¢, as follows:

T=0y+ T (2.6a)

oozé(rwrmru) (2.6b)

Eqgs. (2.5) and (2.6) imply that piezomagnetism of rocks is produced
only by deviatoric stresses. This is in contrast to the gravity field due
to density changes, which responds only to hydrostatic pressure o, This
is. the direct consequence of eqs. {2.3), where the magnetization change
rate in the perpendicular direction is exactly half of that parallel to the
stress. In view of the fact that piezomagnetism is the inverse effect of
magnetostriction and that velumetric magnetostriction of ferromagnetic
minerals is almost zero, this result (2.5) is quite acceptable. This ex-
perimental result has been interpreted in terms of the ‘“rotation of
spontaneous magnetization” model (i.e. single domain theory: NAGATA
1970b; HopycH, 1976, 1977) and/or with the aid of thermodynamic con-
sideration (STACEY and JOHNSTON, 1972). However, many authors includ-
ing KALASHENIKOV and KAPITZA (1952) have been aware that the relation-
ship (2.3) is valid only as an average.

ZrLoTNIick1, Pozzi and CORNET (1981) proposed the most generalized
formula of the linear piezomagnetic effect as follows:

AJi:PijknTkan (2.7)

in which Einstein’s summation convention applies. P,;, is a component
of a fourth rank tensor. Only 36 components out of 81 are independent
from symmetry considerations of stress tensor. Their experiments were
done only for remanent magnetization of rocks. They went further to
deduce the following formula for the isotropic piezomagnetic material:

AJ¢= (Pl’:kkﬁﬁ + ZPZ‘Ci,-)Jj (2.8)
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Eq. (2.8) is analogous to Hooke’s law for isotropic elasticity. We can
medify it to correspond to eq. (2.5) as follows:

47= (3P, +2P,)o,J +2P,T'J (2.9)
Eq. (2.9) coincides with eq. (2.5) only if

PZ:%ﬁ, P= —§P2= ——21—5 (2.10)
Eq. (2.9) implies that the piezomagnetic effect can be caused not only
by deviatric stresses but also by hydrostatic pressure. ZLOTNICKI et al.
(1981) interpreted the observations as due to the movement of a magne-
tic domain wall caused by local stress concentration under hydrostatic
pressure (i.e. multi-domain theory).

BoNAFEDE and DRAGONI (1986) derived the same formula as eq. (2.7)
for induced magnetization. They cbtained the resalt from thermodyna-
mical considerations, namely by taking account of the Helmholtz free
energy of magnetoelastic substances. They proved that eq. (2.8) holds
in the case of isotropic piezomagnetism. It isimportant from a geophy-
sical viewpoint that the thermodynamical discussion verifies eq. (2.8).
This implies that an aggregate of crystalline rocks obeying different pie-
zomagnetic laws behaves as a whole as if it were a single isctropic
material. This is analogous to the fact that the Earth behaves, to the
first order approximation, as an isotropic elastic body although the Earth
itself consists of varicus materials with complicated mechanical anisotropy.

Now we will demonstrate that the experimental result (2.2) does
give the same formula as eq. (2.8). Following STACEY et al. (1965), we
extend eqs. (2.2) to a three-dimensicnal stress state. Suppose that rock
samples cut in any arbitrary direction always yield the same stress-
induced magnetization as in eqs. (2.2). We may regard such rocks as
“piezomagnetically isotropic”. Superposing contributions from the three
principal directions, we cbtain the incremental magnetization in the i-th
principal stress direction as follows:

AJie,;: Ji{ﬁz(0j+0k) +ﬂ10i}ei

(2.11)

By making use of the characteristics of the modal matrix, or the principal
axis transformation matrix, we can reduce eq. (2.11) to the following:

AT ={(B1+28:) 00+ (B, — L) T'}T (2.12)
The derivation is given in Appendix A. Egq. (2.12) coincides with eq. (2.5)

if ;=g and ﬂzz—%ﬂ. ZLOTNICKI et al.’s (1981) parameters are given
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by

Pi=p, Pzzé(ﬁl—. 8 (2.13)

Thus we can derive the isotropic piezomagnetic law (2.8) by apply-
ing the superposition principle to experimental results. In this chapter
we employ formula (2.8) as the fundamental constitutive law for the
linear piezomagnetic effect. The traditional formula (2.5) corresponds to
a Poisson selid (i.e. A=p¢ in Hocke’s law, eq. (2.14)) as a particular case
of an isotropic elastic material. We will often assume the special case
of eq. (2.10) in actual calculations. :

2.2 Basic Equation

Isotropic elastic materials are also isotropic in their piezomagnetic
properties (BONAFEDE and DRAGONI, 1936). Hence we assume that Hoocke’s
law for isotropic elasticity applies to the substance considered:

ou ou )
O 2.14
0x, + 02, ( )

oo =20, divut ;4(

2 and p¢ are Lameé’s constants. Substituting eq. (2.14) into (2.9), we can
represent the stress-induced magnetization in terms of displacement com-
ponents as follows:

AM=[(B2+20 Pt 2P0 divut 2uP( Do 4 27 (215)
ox; 0y,

Here we specify 4M, as the incremental magnetization produced by the
k-th component of the initial value and 4M, is the I-th component of
4aM,. : '
Since the source of the magnetic field is the magnetization alone,
there exists a scalar potential W,. The magnetic field H, the scalar
potential W,, the magnetic induction B and the magnetization 4M, are
related to each other as follows:

H=—grad W, (2.16)
B=H+d4zdM, (2.17)

Ampére’s law under no electric currents holds automatically by virtue
of eq. (2.16). Therefore the fundamental equation for the magnetic field
is the Gauss law: : EEEE

div B=0 T 2.18)
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From eq. (2.16), (2.17) and (2.18), the magnetic scalar potential should
satisfy the following equation:

V*W,=4r div M, (k=x,y,2) (2.19)

On the other hand, the displacement field of a homogeneous and
isotropic elastic body satisfies the equation of static equilibrium under a
body force F:

0

div u+ g+ F=0 (2.20)
oxy,

(2+p)

By taking the divergence of eq. (2.15) and applying eq. (2.20), eq. (2.19)
is reduced to

V2 Wk: 4z div AMk‘—_—47TCkV2uk+47TDka (221)

where
Co= =342, p g 201 1 )puPT, (2.22a)
A+p
m:@jiffmzpz \=2((1+) P+ Py J; (2.22h)

where v is Poisson’s ratio represented by

y=L 2 (2.22¢)
2 itp

This is the basic equation for the tectonomagnetic field. The boundary
conditions at the surface of a magnetic body are continuity of the
potential itself, of the tangential component of H and of the normal
component of B. They are given by

W= W, (2.23a)
oW, T+
[_at_J__o (2.23b)
[a_m]+ — —4zdM,-n (2.23¢)
on J1-

where n denotes the outward normal to the boundary surface S, while
t and n are the directions tangential and normal to the surface. Thus
the problem is reduced to solving the basic equation (2.21) under the
conditions (2.23).
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The displacement field is found by solving the Cauchy-Navier equa-
tion (2.20) under appropriate boundary conditions. In other words, the
equation for the magnetic potential and the one for the displacement are
decoupled. This situation exists owing to the following two approxima-
tions.

1) In eq. (2.17) we ignore the secondary magnetization induced by
the primary piezomagnetic field. Actually this term is two orders of
magnitude smaller than the primary one.

2) In eq. (2.14) we neglect the magnetostriction. It is negligibly
small compared with the mechanical strain.

2.3 Representation Theorem

The source term on the right hand side of the basic equation (2.21)
is not a function of W, itself. The scalar potential is defined uniquely
even within the magnetized area. Then the solution of eq. (2.21) can be
given in a well-established way (i.e. Poisson’s analysis: see STRATTON (1941),
Chapter IV) as follows:

Wiir) = — S va(z Vi Sss%ds (2.24)

With the aid of Gauss’ theorem we find that eq. (2.24) is equivalent to
the dipole law of force:

W,,(r):mVAMk- V(%)dV (2.25)

The volume V surrounded by S is assumed to be a uniformly magnetized,
homogeneous and isotropic elastic body.

The function (4zp)™' is the fundamental solution of the Laplace-
Poisson type equation, which satisfies

72[ 4;p]=—5(r—r’) (2.26)

p=[r—r|
Substituting the third identity of eq. (2.21) into eq. (2.24) and applying

Green’s theorem, we obtain

W) =A4zCous(r)B(r € V) +D,¢S§S%dv

+ ([, [{-o2al) 1 ans. n/}%w,,uk(w)%(%)]ds (2.21)
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where
1 (reV)
Olre V)= (2.28)
=l ey
‘For 4M,, we may rewrite eq. (2.15) as follows:
AMF= Ao, divu(r’)—}—B,( 0w, | 0wy > (2.29a)
0%, 0y,
'_ ' _ 1+v 2v
Ak_{(3z+zﬂ)P1+2zP2}Jk_zﬂ(1_ZDP1+ - 2UPZ)I,G (2.29b)
B.=2uP,J, (2.29¢)

Eq. (2.27) is a representation theorem for the tectonomagnetic field.
The first term on the right hand side of eq. (2.27) appears only when
the observation peoint is located within the magnetized area. ‘A bore-hole
magnetometer has been developed in recent years for monitoring earth-
quakes and volcances. This term is important for tectonomagnetic ob-
servations under the ground. It represents the nature of the tectono-
magnetic field the most plainly: the potential is simply proportional to
the displacement. The total field change due to this term is given by

ou
F=—4zC,—~ .
where
Uy=1u, cos Iy+u,sin I, (2.31a)
| gf—:ef-Vzcos Ioaa—x—l—sin I"aiz (2.31D)
_ 31+2

Cy=— P.J 2.31¢
0 Atp ULy ( )

J and I, are the average magnetization and the inclination of the ambient
magnetic field. The unit vector e, indicates the direction of the ambient
field, which is assumed parallel to that of J. For a model earth with
material constants f=1.0x10"* per bar, J=1.0 A/m and i=p=3.56Xx10°
bar, 1nT change in the total intensity corresponds to a strain change
of 1.8%x10-%. This gives a measure of the sensitivity of a magneto-
meter as a strain gauge. Since we follow the standard sign conven-
tion of stress, simple extension along the e, axis decreases the total
intensity. :
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Across the boundary surface, it appears as if a gap in the potential
value 47Ci{w:(r)} might occur owing to the vanishing of the first term
in eq. (2.27) outside the bedy. This is completely compensated for by a
jump in the potential across the double layer, the latter term in the
surface integral of eq. (2.27). Accordig to the well-known theorem across
a double layer potential (KELLOGG, 1929), the value of the jump is equi-
valent to 4z times the intensity at the cross point, i.e. 4zCi{u,(r)}. Thus
the magnetic potential is continuous at the boundary surface. However,
the normal component of the magnetic field varies discontinuously across
the boundary.

Magnetic measurements are usually made in free space, where the
analogy between the strain and the piezomagnetic field fails. The surface
magnetic field, however, contains some information on the crustal strain
just at the observation site. Let us investigate the contribution of the
surface integral in eq. (2.27) along the earth’s surface. We take the z
axis in the magnetic north direction and the 2z axis positive downward.
We specify the plane z=0 as the earth’s surface and denote the surface
integral by W,©: N

o —AMkz}l—{Ckuk(r’)}~aaz,—<%>]z/:0dx'dy' (2.32}

w05 )

Taking account of the stress-free boundary conditions, i.e.

_ T ou, , ou, _
t"_#[ o’ + 02’ ]z.'=°_

z‘zz:[l divu+2p¢ au,] =0
07" Jder=0
We have
Wx-m:Cwa [fm@ L_um(r')i<l>] dx'dy’ (2.33a)
—ol 02/ 0 0z’ o/ dar=0

o — T _A+2¢ ou, 1 n 0 ! dar!
W, )—Ca”_m[ S o )]yﬂdxdy (2.33h)

Note that the piezomagnetic parameter P, originally involved in 4M,
disappears in the final results egs. (2.33). '

Now we apply two theorems on the derivatives of single and double
layer potential when a point approaches the source layer. Proper con-
ditions should be assumed for the curvature of the layer and the smooth-
ness of the density distribution (KELLOGG, 1929). The normal derivatives
of a single layer potential U® with a surface density ¢(p) on the posi-
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tive and negative side of the layer are given by

[V =—2eota)+ ([ ot (L)as (2.34a)
[ ag;m ]— =2n0o(p) +Hso(p’) a‘;/ <%>dS’ (2.34b)

On the other hand, tangential derivatives of a double layer potential U®
with a surface moment density u(p) have a similar property (COURANT
and HILBERT, 1937):

[ a(a]tm ]+= 27?6;;(;?) n S S Y p,)%<%>ds, (2.352)

Since the source layer is simply a plane, integral terms in eqs. (2.34)
and eqs. (2.35) vanish.

Applying these formulas to derivatives of W,® and W,®, we obtain
the magnetic field arising from the free surface potential W,:

4X0 = —27C, 0% _ ¢, 00" (2.36a)
0x 0x
AYO = —270, 0% _ 00" (2.36b)
oy oy
47° = —27C, M _ 00" (2.36¢)
oz 0z
where
Up=Us— 20:;—”) U, sin I, (2.37a)
U= H‘” [ ou, l] da'dy’ (2.37h)
-l 02/ p der=+0
0 “ 0 (1 1ot
U, ’:H [uf <—>] dx'dy (2.37c)
—co 02/ \ p /der=+0

The contribution to the total intensity is given by

0 _ __ ouy  2(24p) ou,
AF® = 2rcC’o[ o 7 % sin IO]
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_ co[aUp“” cos I+ 201 gin L,] (2.38)
o 0z

The first term of eq. (2.38) represents a linear combination of the surface
strain components just at the obsevation site.

If the first term of AF™ in eq. (2.38) is a representative of the re-
gultant total intensity as estimated from the total piezomagnetic poten-
tial (2.27), the tectonomagnetic observation is nothing but a kind of
strain measurement. However, things are different from such simple
circumstances. In the next chapter we will apply the representation
theorem to obtain the piezomagnetic field associated with the Mogi model
as an example. We will find that the terms in eq. (2.27) have the same
order of magnitude: some cancel and other augment each other. More-
over, the latter integral terms in eq. (2.38) are comparable with first one.
In the special case of the Mogi model, 4F® is actually zero: the first
and the latter terms completely cancel each other.

Thus we cannot say anything definite about the strain change just
at the observation site from the magnetic measurement. Although the
direct correspondence between the piezomagnetic field and the pointwise
strain fails in free space, we may say that a few nT changes are ex-
pected around the strain field of 10~° with a magnetization of 1 A/m.

2.4 The Seismomagnetic Moment

We have derived eq. (2.27) with the aid of Green’s theorem. This
requires that the displacement field u(r) and its first order derivatives
must be continuous in V+S, while its second order derivatives be piece-
wise continuous within V. When the magnetoelastic medium V involves
an internal dislocation surface X, eq. (2.27) no longer holds as it is. In
this case, we divide V into two parts with a surface S including %, as
shown in Fig. 1. Then we apply the formula (2.27) to each part sepa-
rately and add the two parts. The unit normal is assigned to point
outward. We define

y=y_=—uy, on X (2.39a)
Ry o= —Ng_ on ' besides ¥ (2.39Db)

The contribution of the surface integral from S’ except for X be-
comes zero owing to (2.39b). Hence we have

W= W, + W, + W, ® (2.40)

where
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Fig. 1. A magnetoelastic body V with its surface S and an internal dislocation
surface Y. n and v are unit normal vectors. S’ is a subdivisional surface including 3.

Wk‘z’zggz{[@gradu,,(r’)—AMk]j-u%—[Ckuk(r’)T 0 (—1—>}d2

— \p
(2.41)
WS = HS{[—Ck grad u,(r') —I—AM,,] . n% + [C’kuk (,r’)] a??/ <%>}dS
(2.42)
and
W, :D,,Sggv%dV (2.43)

The symbol [ ]+ represents the discontinuity of the quantity within
the bracket.

Let us investigate the characteristics of the dislocation-related poten-
tial W%, In the case of natural dislecation events within the Earth
such as seismic faulting, dyke formation by intrusive magmas and so on,
no external force acts upon the dislocation surface. Hence the traction
across 2 should be continuous. Then we obtain

W = HE{(Ck grad uy(') — (32-+24) P, div u ek]+ -»%

—[Ckukw)]j:_v %)}dz (2.44)
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Moreover we often prefer a simple model, in which all the stress com-
ponents are continuous across the dislocation surface, as is the case with
the Volterra dislocations. In this special case, all the spatial derivatives
of the displacement become continuous, and the single layer term in eq.
(2.44) vanishes. Eq. (2.44) reduces to

= e
W= C,,ng[uk(r )]_ 2 (p )dZ (2.45)
Summing up for k==, y, 2, we have a resultant potential W as follows:
@ = ([ 0 (L
W _Hzmav(pﬁz | (2.46)
where
m=—Coe; du (2.47)

e; is the unit vector in the magnetized direction, and 4u the vectorial
representation of the displacement discontinuity. Thus the piezomagnetic
field accompanying a dislocation surface is equivalent to that of a double
layer X, whose magnetic moment is given by (2.47).

At far-field distances, where we may regard the earthquake fault
as a point source, we have an expression:

we =y2 l) (2.48)
v \p
where
M=3212Lp 731 cos ¢ (2.49)
A+

M, is the seismic moment (i.e. My=pduA; A is the fault area. See text:
e.g. AkI and RICHARDS, 1980). ¢ indicates the angle between the mag-
netization and the slip vector. The magnetic moment given by eq. (2.47)
or eq. (2.49) is suitable for measuring the seismomagnetic effect. We
may call M the total seismomagnetic moment and m the seismomagnetic
moment density. This concept can be naturally extended to tensile faults
produced by intrusive magma (OKADA, 1986).

The important result in this section is that the dislocation surface
within a magnetoelastic body forms the sources and sinks of the mag-
netic lines of force. The surface magnetic source distribution in eq. (2.44)
corresponds to the magnetic source equivalents as named by BONAFEDE
and SABADINI (1980). In general Somigliana dislocations, we have not
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only the double layer but also the single layer. The total sum of these
monopoles over the dislocation surface should vanish, or else their counter-
part should appear in the surface integral term W, .

The concept of the seismomagnetic moment is useful for intuitively
understanding the dislocation-related magnetic field near the source. KEq.
(2.47) tells us that the intensity of the seismomagnetic effect strongly
depends on the angle between the magnetization and the dislocation
vector. In some instances the seismomagnetic moment becomes null, e.g.
an East-West oriented shear fault and a North-South oriented tensile
fault. It should also be mentioned that bore-hole magnetometers have
an advantage for deteciting dislocation-related magnetic changes because
they are in general located closer to the magnetic sources.

2.5 The Stacey-Nagata Piezomagnetic Solid

Our formulation has so far been based on the piezomagnetic law eq.
(2.8) with two independent parameters P, and P,. The law of one para-
meter eq. (2.3) by STACEY (1964) and NAGATA (1970a) and accordingly
eq. (2.5) by SASAI (1980) can be regarded as a special case of eq. (2.8)
by ZLOTNICKI et al. (1981) (cf. eq. (2.10)). However, eq. (2.3) is essenti-
ally valid for “linear” piezomagnetism for the following two reasons.
First, spontaneous magnetization of titanomagnetite bearing rocks changes
little under hydrostatic pressure because their volumetric magnetostric-
tion is negligibly small. Secondly, if the piezomagnetism due to hydro-
static pressure is caused by movement of magnetic domain wall, as
ZLOTNICKI et al. (1981) claimed, the magnetization never recovers to its
initial value after applied stresses are removed. The linearity breaks in
this case. The irreversible piezomagnetic effect is rather difficult to in-
corporate into the framework of the linear elasticity theory, hence it is
beyond the scope of present study.

On the other hand, a number of laboratory experiments show that
the relation (2.3) holds as an average for the magnetic susceptibility and
“the hard remanent magnetization. Thus we will hereafter model sub-
stances for which eq. (2.3) and hence eq. (2.5) hold good. We may call
such material the Stacey-Nagata piezomagnetic solid. This is an analogue
to the Poisson solid in the case of isotropic elasticity.

The piezomagnetic law for the Stacey-Nagata solid is given simply
by

47=pS-J (2.50)
where
8. 150 i(ﬁui %>_ i
Su=Sep—20,0= ;1{2 e dwu} (2.51)
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The representation theorem corresponding to eq. (2.27) is as follows:

Wk(ro)—_—ckggs[{_ ous(r) | 2(2+p) Am(""n}%-l-{uk{r)}%(?l)_)]ds

on 34+2p
(2.52)
where

<Ic)=_3_<auk auz)_a : 5

Amz 2 axl +—axk ¥l leu (2. 3)
1., 32+2u

Cy==pJ 2.54

& 2,8 13 At ( )

We will often refer to eqs. (2.50)-(2.54) in the following sections.

2.6 Predominance of the Piezomagnetic Effect
—the Mogi Model as an Example—

In tectonomagnetic modeling studies, the piezomagnetic effect and
the thermal demagnetization or remagnetization effect have so far been
considered. There is, however, another simple cause of magnetic change
related to tectonic activities. All tectonic events, such as earthquake
faulting, inflation of a magma chamber, formation of a dome, intrusion
of magma sheets and so on, are accompanied by the deformation of the
earth’s surface. This can be regarded as the relative movement of mag-
netic masses. A question arises: how much does the deformation-related
magnetic change amount to? Is it comparable with the piezomagnetic
field?

A relevant problem was solved in the field of gravity. HAGIWARA
(1977a) presented the gravity change associated with the Mogi model.
Hagiwara discriminated four types of contributions to the gravity change;
i.e. (1) G1: free-air gravity change accompanying the uplift of the ob-
servation site, (2) G2: Bouguer change caused by the excess mass corres-
ponding to the upheaved portion of the free surface, (3) G3: the effect
of chamber wall expansion which implies replacement of surrounding
mass with gas or magma, and (4) G4: the gravity change produced by
density changes within a semi-infinite medium. ‘

SASAI (1985) investigated the same problem for magnetic change due
to the Mogi model. Similarly, four ways of generating the magnetic
change are conceivable. They are (1) M1: “free-air” magnetic change
resulting from movement of the observation site in the earth’s main
field, (2) M2: magnetic change due to undulation of an initially flat sur-
face, (3) effect of chamber wall expansion corresponding to loss of mag-
netic mass, and (4) M4: the piezomagnetic field caused by the stress
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types of contributions to magnetic change.

change within a magnetic medium. They are schematically depicted in
Fig. 2.

The piezomagnetic field due to the Mogi model will be fully investi-
gated in Chapter 3. A brief description of parameters for the Mogi
model is given here. Let us take the Cartesian coordinates as follows:
x positive north-, y east- and z downward. A small sphere with radius
a at a point A (0, 0, D) suffers excess hydrostatic pressure 4P from inside.
The surface uplift 4h(r) is given by

D3
R

Ah(r)=h,

Fig. 2. A schematic representation of the four
(2.55)

R=(r*+ D) (2.56)

where k, is the maximum uplift at the origin. This is related to model
parameters as

_ A+2¢ d’4P
2p(2+p) D

(2.57)

0

According to SASAI (1985), M1, M2, M3 and M4 are given as follows. Only
the final results are quoted here.

‘Free Air’ Magnetic Change (M1)

The source of the earth’s magnetic field is well represented by a
geocentric dipole. The magnetic field decreases as the cbservation site
moves“away from the dipole. The total intensity change associated with
the uplift 4h(r) is given by
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' 3F, , / DY
grom—_3F <_) (258

. R, '\ R | 1258
where F, is the geomagnetic total force intensity at the observation site
and Bj is the earth’s radius. Even for an uplift of 1m high, 4F™V ig
at most 0.002%T at mid-latitudes such as in Japan.

Magmnetic Terrain Effect (M2)

The surface uplift caused by the Mogi model is symmetric around
the z axis. We have a useful formula for calculating the magnetic field
of an axially-symmetric bedy with uniform magnetization, which was
originally derived by RIKITAKE (1951) for a circular cone. The total
intensity component of the magnetic terrain effect is '

AF® :i%J—%’—{(F’1 cos 2¢ — G, cos® ¢)cos® I,— H, sin 21, cos ¢+ G, sin® I}

(2.59)

where F, G, and H; are functions of the observation point and are re-
presented as one-dimensional integrals containing elliptic integrals of the
1st and 2nd kind.

Source Expansion Effect (M3)

The source sphere expands under an internal hydrostatic pressure
4P by an amount (HAGIWARA, 1977a):

AP
da="2
a i

(2.60)

This implies vanishment of a uniformly magnetized shell with radius a
and thickness da, which brings about total intensity change as

Ao —op AT g R {<£>3+ _3L<1 — _”_><_D_>5 cos 21, + 3<_D_>5 €in 2 [o}
A+2¢ D \\R 2 R/\R R
(2.61)
Piezomagnetic Change (M)
As for piezomagnetic change we refer to the result in the next
chapter. We employ a point source solution of type II, i.e. eqs. (8.55).

For a shallow source the influence of the Curie depth is negligible. The
total intensity change is given hy:

a4 (B
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5 8 5
—3—%(%) sin I, cos Io-i—%{-(%) —I-3<%> } sin? Io] (2.62)

where

h
= o 2.
C=2mupl 2 (2.63)

Figures 3(a)-3(d) show total intensity changes along a N-S meridian
corresponding to M1 to M4. Model parameters are A=p=3.5X10" cgs,
p=1.0%x10"* bar, J=1 A/m, F;=46,000 nT, and I,=46°. The maximum

FREE AIR o TERRAIN
—o.ooo“T ' D.lONT
il N
- /\
7.00! X 7 0.05 5
-0.002 0. ook |/
-0.003 -0.05
S -2 -1 0 1 2N S-2 -1 0 1 2N
X/0 X/0
a b
SOURCE EXPANSION PIEZOMABGNETIC
O.OSNT > ol
-0.00k - 1.0
— \
-0.05 0.0 \ P
-0.10 -1.0
S -2 -1 0 1 2N S-2 -1 0 1 2N
X/0 X/0
c . ' d

Fig. 8. (a) M1: ‘Free air’ magnetic change. (b) M2: Magnetic terrain effect. (c) M3:
Source expansion effect. (d) M4: Piezomagnetic change.




Tectonomagnetic Modeling Based on Linear Piezomagnetism : 615

uplift %, and the depth of pressure source D are taken to be 10cm and
1km, respectively. In calculating M2, the sensor height is taken as 2.5m.

Since all the types of contributions are proportional to the ratio

0 the relative magnitude of each part remains invariant for any com-

bination of model parameters. Figure 3 tells us
| M4| > > |M2| =~ |M3|>>|M1|

For gravity change due to the Mogi model (HAGIWARA, 1977a),
|G1|>>|G2|>|G3|>|G4| (when the source sphere is filled with gas), or
|G1]>>|G2|>|G4|>|G3| (when filled with magma). Accordingly, a grav-
ity survey measures mainly height changes caused by mechanical sources,
while magnetic observation detects stress changes associated with the
same sources. However, if precise leveling is done along with gravity
and magnetic measurements, such a data set will surely provide us with
definite information on the sources of tectonic events.

As for the Mogi model, the tectonomagnetic field can be regarded
almost entirely as of piezomagnetic origin. Moreover, we can expect the
piezomagnetic effect to dominate for dislocation models with sources
at moderate depth. This is because the dislocation surface behaves as
a distribution of multipoles with their intensity proportional to the mo-
ment of double-couple force sources (see Chapter 5). Thus we have only
to take into account the piezomagnetic effect in most cases of tectono-
magnetic modeling.

Chapter 3. Piezomagnetic Field Associated with the Mogi Model

In this chapter we will investigate the piezomagnetic change asso-
ciated with the Mogi model. A hydrostatically-pumped sphere buried
within a semi-infinite elastic medium is called the Mogi model in volcano-
logy (MogI, 1958). The source sphere is an analogue to a magma reser-
voir. As has been reviewed in the Introduction, piezomagnetic change
associated with the Mogi model has been studied in the history of tecto-
nomagnetic modeling (DAVIS, 1976; SaAsAI, 1979; SuzuUkl and OSHIMAN,
1990; SASAI, 1991).

In applying the representation theorem (2.52), we must evaluate
convolution integrals. Two kinds of mathematical tools are introduced
for that purpose. One is the double Fourier transform (or Hankel trans-
form) to deal with convolution over an infinite plane. The other is the
Lipschitz-Hankel type integrals to estimate potentials accompanied with
an axi-symmetric source distribution. Both are closely related to each
other through Bessel functions. We will systematically use these two
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tools throughout the present study.

First we will derive a point source sclution of the problem when the
source volume is reduced to zero. However, a paradox appears in that
two different sclutions are ocbhtained for different ways of taking the
limit as the source decreases. We call them type I and type II solutions,
respectively.

How to manage the singularity around the source peint is crucial in
our Green’s function approach to tectonomagnetic modeling. In order to
identify the cause of the discrepancy between the two kinds of solutions,
the finite scurce problem is further investigated. The type III solution
for the finite spherical source is reduced to a cne-dimensional integral
containing complete elliptic integrals. With the aid of the double ex-
ponential formula (DEF: TAKAHASI and MORI, 1974) we can accurately
conduct numerical integrations.

Finally we investigate the limit of type III solution as the source
radius decreases to zore. We will find that type II is appropriate as the
point source solution. We can then clarify the cause of the discrepancy
between the two types of solutions.

3.1 Point Source Problem—A Paradox

Let us take the Cartesian coordinates shown in Fig. 4. A semi-
infinite elastic medium occupies z>0. It is also assumed that a layer
from z=0 to 2= H is uniformly magnetized. We assume a small sphere
with radius « centered at a point A(0,0, D), which is acted on by hy-
drostatic pressure 4P from inside. Since the spherical pressure source

Fig. 4. Ceordinate system, a hydrostatically pumped
pressure source at A (0,0, D) with radius @, the ther-
mally demagnetized zone with radius b and the Curie
point isotherm at a depth H.
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is regarded as a magma chamber, a concentric spherical shell with radius
b is assumed to be thermally demagnetized and non-magnetic. Its bound-
ary may coincide with the source sphere: i.e. b>a. The Curie point iso-
therm may lie either above, below or even across the demagnetized
sphere. The point source problem corresponds to the case in which a
and b are infinitesimally small.

The displacement field of the Mogi model is equivalent to that pro-
duced by a strain nucleus called the center of dilatation (MINDLIN and
CHENG, 1950; YAMAKAWA, 1955). It is given as follows:

_Cl=x  A4+3¢ x _ 6wz(z+D)
= 2# {R13 2—'—[,6 RZS R25 } (3.1&)
_Cly  a+3¢ y _6yz(z+D) |
", Zﬂ{ R L ) (8.1b)
C(z—D , (A—pz—(A+8u)D  6z(z+D)*
U, =—— — 3.
A T L) (3.1¢)
where ’
Ri=vV2Z+y+(z—D)y o (3.2a)
R,=V2*+ 9+ (z+ D) (3.2b)

2 and p are Lame’s constants, while C is the moment of the strain
nucleus. Under the condition that a is sufficiently small as compared
with D, the moment C is given by

C= —%aﬁAP (3.3)

The first terms on the right hand side of eqs. (8.1) are the displace-
ment field due to a center of dilatation in an infinite medium, while
the remainder represent the effect of the free surface. We will here-
after specify the former u®’ and the latter #®. In the point source
problem displacements become singular at the point A(0,0, D). Differen-
tiation of egs. (8.1) gives the stress field. Applying the piezomagnetic
law eq. (2.50), we obtain components of the stress-induced magnetization
at an arbitrary point. They are given in SASAI (1979, 1991), which are
not reproduced here.

Let us consider the point source problem. We subdivide the mag-
netized crust into two parts: a layer from the earth’s surface to the
source depth (0<<z<D) and one from the source depth to the Curie point
isotherm (D<z<H) (see Fig. 5(a)). - SASAI (1979) obtained an analytical
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(a) TYPE I (b) TYPE II

D—e

D+e

H

Fig. 5. A schematic representation of integration area (shaded) for (a) type I and (b)
type II solution.

solution for this problem. He applied the magnetic dipole law of force,
i.e. eq. (2.25), to the stress-induced magnetization and performed velume
integrals with the aid of the Fourier transform method. If we apply
the representation theorem, eq. (2.52), we may take account of four plane
surfaces, i.e. the earth’s surface (z=0), a horizontal plane just above the
source point (z=D—¢), a plane just below the source (z=D-e¢) and the
Curie point isotherm (z=H). Actually, SASAI (1983) recalculated the
piezomagnetic potential of the Mogi model with the aid of eq. (2.52) and
arrived at the same result through volumetric integrals. The contribu-
tion from the point source is defined as a limit as the distance between
two surfaces, z=D—e and z=D-+¢ becomes very small. We call it the
type I solution.

We may consider another way of integration which is usually adopted
in improper integrals. It is to do integration over a region except for
a small sphere with radius e centered at (0,0, D) and then to let a=b=¢
approach zero (see Fig. 5(b)). We call this the type II solution. How-
ever, it is much easier to do surface integrations according to eq. (2.52)
than volumetric ones. We are to evaluate contributions from the earth’s
surface, the Curie point isotherm and a spherical surface with radius e.
The former two have already appeared in the type I solution. Let us
investigate these solutions respectively.

Type I solution

The piezomagnetic potential produced by the k-th component of the
uniform magnetization consists of three parts:
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Wi=W,"4+ W, + W, (3.4)

in which the superscripts indicate contributions from the free surface (0),
the pressure source (P) and the Curie point isotherm (H) respectively.
Because of the symmetrical nature of the Mogi model, we may take the
x axis in the magnetic north direction without loss of generality. The
observation point of the magnetic field is denoted by (x, %, 2,).

The contribution from the free surface is represented by

2p (0)__2(2+2y)p”°° 3D 1 | «x zo] 35
Gwe=—2e, | o T s [dedy @5

E&W;oJ:_Z(_Pimc,H:[_(L_ﬁ) 1,D ]dxdy (3.5b)

C At+p R Ry Ro
where
Ry= (& +9*+D*)'® (3.6a)
o= {(xo— )"+ (Yo—1y)* +27 1" (3.6b)

Similarly, the contribution from the Curie point isotherm is expressed
as follows:

2ty [ [a(-2Ltde slH=D) | (_(1=py B2 Ny

C 31+2¢ RS Aty 3i+2p
(2—}—3/1_ 2 >D>_a_c_+ 10(32+4p) H(H-D)? x}__
ity 3442y R, 32+42¢ Ry Ox
_{_L_H'?’ﬂi_l_ GacHH—!-D} H]docdy (3.7a)
R? 2+p RS

2 (H):CH“’ [ _31+4y[_ 1 3(H-D} i—p 1
C . : { 32424 R13+ R’ A+p R}

+3<72+5pH+2 pp\H+D _ 30H(H+D)]

—o0

rr  arn” ) RS B

8y [L_S(H—FD)]}L_{_E—_D
3i2+2uLR? RS Mooy R

A—pg 48up\ 1 | 6HH+D \ay—H|y 0 a1
+< Rl Fn >R2+ Rf }pa“] v B

W, and W, are convolution integrals, which can be evaluated by
the Fourier transform method. All the integrands in the convolution
integrals are axially symmetric functions and their derivatives with re-
spect to x or y. Fourier transforms of such functions can be reduced
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to Hankel transforms. A convolution integral in the space domain is

converted into a product of Fourier transforms in the wave number

domain. Moreover, differential operation with respect to x or ¥ is simply ]
multiplication of ik, or ik, in the transformed space. Such unique pro- ]
perties of the Fourier transform are briefly summarized in Appendix B.

All the Fourier transforms and their inverses required in this study are 1
found in SASAT (1979) and SASAT (1980). |
Thus we can evaluate the integrals in egs. (3.5) and egs. (3.7). We l

obtain
W,® =0 (3.8a)
W.0=0 (3.8b)
and
20 vy _ [ o %o, 6(A+p) oy 3mDs
—Wm( )—4 Cx — [l H
C s R Wi PR L YH P
_3(A+p) H>D
32+2u ;02‘9’] (H>D)
+ - (3.9a)
S\ (H<D
32+2p¢ pf] (H<D)
Z_ﬂwzw)zlmc,[ £ Dy 6(a+p) H(_L+3032>
C 32+2¢ o  32+2¢ oF o8
_3(4+p) &] (H>D)
32+21 o
+ D (3.9b)
—_t *] (H<D)
32+2¢ of
where
0= (%’ + Yo' + D) (3.10a)
D,=D—z2,, D,=2H—D—z, D,=2H+D-—z, (3.10b)

Since outward normals of the surfaces z=D—¢ and z=D-+¢ face
each other, W,'» is given by

WP =lim{ W, #0000 | (3.11)
€0 :
Substituting eqs. (3.9), we obtain

2u 32+4p
SEW, P =4xC 220 0 3.12
C i 32+24 pf (8.12a)
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3

2y o gro D (3.12b)
C 01

Those terms containing p, in eqs. (3.9) are contributions from »‘®. They
cancel each other in the limiting operation (8.11). However, not all the
terms arising from #“Y survive in egs. (3.12). ‘A close ingpection tells us
that the single layer potential remains in W,® and the double layer in
W.®. Thus the magnitude of the source sphere contribution is different
for the horizontal and vertical magnetization cases respectively.

Combining egs. (3.8), (3:9) and (3.12), we obtain the type I solution
as follows:

2y =m0 2B — 2o )y S ) gy 32D

C 32+2p\ o o 31+2p 05
S(A+p) xy I
| >D
41 82+2p <pf" 2y )] ( ! (3.13a)
0 1 (H<D)

20y _ [ ¢ (D D\, 6(1+p) ( 1, 3D¢
¥Wz—4~ 2 e T 3 L H( ——
c SI42A oo p33>+ 3142 +20)

o ps
3t D D) (mr>p)

+{32+2\ o’ o)

0 1 (H<D)

(3.13b)

Type II Solution

We evaluate the surface integral (2.52) over a spherical surface of
radius b as shown in Fig. 6. Let us take the spherical coordinates (R,
8, ¢) with origin at A(0,0,D) and polar axis in the z direction. An ob-
servation point Q(r,) in free space is given by Q(o, 6,, ), while a moving
point P(r)=P(b, 0, ) sweeps the source sphere. Then we have

= '\/[012 + Rlz —_ 2p1R1 COoS 7 (3.14)
in which 7 is the angle between AP and AQ. cosy is given by
cos y=cos 0 cos 6,4 sin 0 sin 6, cos(d — &) (3.15)

o1 and R, are defined by eq. (3.10a) and eq. (3.2a) in original Cartesian
coordinates. We write the contribution from the spherical surface R,=b
as W, Since the outward normal is given by n=—ep, We have

Wk<K>:ck§i”d¢§ [Fl,,-G1+F2k-G2] sin 6d0 (3.16)

T
0
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: Q(91390)¢0)
o [
> x
P1
P
y
A
¢
! P(b,0,d)
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¥4

Fig. 6. Spherical coordinate system for integration
over a spherical cap.

where
_p2| 0w _ 3(2+p) ’ ]
F _bZ[__k—___A .
U R, Barer T “la-
F2k=b2[uk]
R1=b
and

=7 ...

o=l 3 ()

(3.17a)

(3.17h)

(3.18a)

(3.18D)

F,’s and Fy’s give density distributions of single and double layer poten-
tials respectively. We may discriminate those arising from #“ and «®.

2—Cﬂ P 2;;9}2 jzzl:) sin 0bcos ¢ (3.19a)
ol ) S o
4 30;?;1 +2ipe) DS(SSJ:D)Z] (3.19b)
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—ZCﬁFZm‘A’zsin 0 cos ¢ (3.19¢)
2 . 2+3p 1 6s(s+D

2=t sin 0 cos 6 o b LI (3.19d)
_?.ﬂF w _ 2(82+4p) cosd (3.19€)

c " 31+2¢ b

%ﬁm@:zb[( A—p +2+5”D> 1 +(10 +322+5”D> 1

Atp  Ap S? 32+2p / S*
+ (Z—Hz Z—hu S +3(2¢'+7Ds+ D7) S5
_92+p) (13s+D )(s+D)* <212+11y +32 7;¢D>32~—D2
8242u 32+2¢ 324-2p St
_30Ds(s+D)* | 180(2+p) s*(s+D)° 3.19¢
S’ + 32+2n S’ ] (8.191)
%&F2;A>=cosa (3.19¢)
2t g o e[ (A=t 243y 6s(s+ D)
A g B D)— 3.19h
o KH—# Atp ) S? ] (8.19h)

where s and S are z and R, in polar coordinates when P moves on the
source sphere:

s=bcosf+D (3.20a)
S=4/b*+4bD cos 0 +4D*=+/'b*+4Ds (3.20b)

o~' can be expanded as follows:

1-5 B peosy) (3.21)
S

Thus the single layer potential G, on the sphere with unit intensity and
the double layer potential G, can be given by

Z o .(Cos 7) | (3.22a)

Go= 321" b (cosy) (3.22h)

n=1

ot
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To compute (3.16), we may use the following integration theorem of
spherical harmonies.

5d¢§ (0, §) Pa(cos 7)sin 6d6

47
Yn 0 70 =
_Jzngi % =) (3.23)

0 (n+£m)

Y.(0, ¢) is an arbitrary spherical harmonic function.

By applying this theorem, we can readily evaluate integrals involv-
ing # term. As for (B) terms we have an infinite series of P,(cos6,).
This solution is less useful because of its poor convergence. However,
all the (B) terms are multiplied by a factor 6, so that they vanish in
the limit of b approaching zero. As far as the point source problem is
concerned, we may disregard the contribution from #®. We will give
different expressions for the (B) terms in the next section.

With the aid of the theorem (3.23) we obtain the pressure source
contribution as follows.

2u o~ f20B2+4p) 1 . b . 1 4r
LEW =0 222 20~ sin g —— —Sin 6, — X ==
C { Sav2u b sin 6, cos ¢ 02 sin 0cosngOplz} 3
—47C, A+2p sing, cos @, _ 4rC, A+2p x, (3.244)
32'!‘2[1 o 32"{‘2# o
and quite similarly
2u _f28i4+4y) 1 b } 4r
WO =C oy S eos Op—,-— (9— X =
C { Bat2n b S er RN ”g
Ba+2¢ pf 32+2ﬂ 2y

The solutions (3.24) have nothing to do with the source radius b. Thus
they survive when the radius b approaches zero..

Combining eqs. (3.8), (8.9) and (3.24), we obtain the type II solution
as follows:

‘%‘Ww=4 c[

(xo % +6(2—l—ﬂ) 77 3% Ds

32+2u\ 0 o 31+2p¢ 05

A+p <aco 32, ] H
o 9% ~D
+{32+2u\ o o7 ( !

0 1 (H<D)

(3.252)
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20 vy [ © <D1 D3> 6(2+4) < 1 3D32>
S W, =4xC,| — S _ Dy oarpigl 1o
C 32+2u\p®  pd/  32+2n o Py
At+p <D1 3D2>]
—arieo\ st os)| (H>D)
+1 Ba+2p\p’  pf (3.25b)
0 1 (H<D)

As shown in egs. (8.24), both the source terms produced by J, and J,
are identical. This feature is naturally expected because #’ has spheri-
cal symmetry. In other words, type I solution, egs. (8.13), lacks some-
thing. We should investigate the cause of the discrepancy between the
two. Moreover, in type II solution, the source term W,® suddenly
emerges when the Curie depth H becomes larger than the source depth
D. We have to analyze such transitional behavior for type II solution.
These issues will be discussed in section 8.3.

DAvis (1976) computed piezomagnetic changes for Kilauea Volecano
with model parameters as follows: D=4km, a¢/D=1/4, 4P=1Xkbar, 1=
p=3X10° bar, f=2X10"*bar?, J=5X10"* A/m, magnetic dip I,=385°, and
declination D,=11° east. Total field changes associated with the cor-
responding peint source model are shown in Fig. 7(a) for type I and in
Fig. 7(b) for type Il solution respectively. Both are apparently quite
different. Which type of solution is appropriate?

I solution
(a) type (b) type 1X solution

Fig. 7. Computed total intensity changes for Kilauea Volcano with the same model
parameters as DAvis’ (1976) for (a) type I solution and (b) type II solution. Unit in nT.
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3.2 Finite Spherical Source Solution

Now let us consider the case when the Curie point isotherm inter-
sects the thermally demagnetized source sphere. We cannot apply theorem
(8.23) in evaluating W,©, i.e. integrals over a spherical cap. Nor can we
use Fourier transforms to calculate W,®, because the horizontal plane
with infinite extent has a circular hole. We are now to formulate such
a case. The formulation allows for integration either over the whole
spherical surface or an infinite plane without a hole as a special case.

Contribution from Spherical Cap

We take the same spherical coordinates as those in Fig. 6. The
integral over a spherical cap is defined in eq. (3.16) by letting the lower
limit of # vary from 0 to @ as below.

CosH=D | H_D|<b)
0= b (3.26)
0 (|H—D|>b)

Integrating with respect to ¢, we obtain the following expression in place
of eq. (3.16):

W, = C,J: sin 0d0 [ Fi.(0) - Gu(0; ro) + Fu(0) - Goi (05 1) (8.27)
where
Fou(0) = {F® 4 F.®}/cos ¢ (3.28a)
Fo(0)={Fo® + F,.®)cos ¢ (3.28b)
Fo(0)={F.,“+ F,,®)  (3.28¢)
Fou(0) ={Fo, " + Iy, "} (3.28d)
and
Guls )= %L dp=2 cos -0 (3.29)
o 0p
Gu(0: m)= | LA cos g
0 05
=208 G{2(b—~,c0o88) - D,—7,8in 0 - (D34 D)} (3.29Db)
Gha 0: 70) :S"%M:wl | (3.29¢)
0 b
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2r h__
Gu:(0; 1) =SO b—%f—os—rdsé
b

=2(b—C,cos80) -@;—2r,sin0-D, (3.29d)

0, is given as p(R,=b) in eq. (8.14). Fu“’s and Fy®’s have already
been given in egs. (8.19). Notice that a common factor cos¢ in Fiy and
F,x is included within G,y and G.x for the first integration as to ¢. @,’s
in egs. (8.29) are defined by the following integrals:

@1=§:_1_d¢, @zzg”ﬂdgb (3.30a)

04 0 Oy

@—.—ﬁ%dgb, @:S” €08 g, q)5=§” cos2¢ 45 (3.300)
Py ¢ 0y L 27

04 is rewritten from p, as a function of ¢=¢—d¢,:
ps=(b*—2bp, cos 0 cos B,+ p,* —2bp, sin 0 sin 6, cos ¢)'*
={b? sin?  —2r,b sin @ cos ¢+ 17 + (b cos 0 — &)’} (3.31)
where
Co=p,c080,=2,—D (3.32)

7, is the horizontal distance from the observation point in the original
Cartesian coordinates: i.e. ro=4/2 -+ ¥y’

Since @,’s are not expressible with elementary functions, we have to
integrate numerically with respect to 6. We seek to obtain expressions
for the magnetic field components in the form of integrals with respect
to @, by differentiating potentials (8.27). Thus we have

AT = CkS@ $in 040 [ Fyu(6) - Gui' + Fiu(6) - Gar'] (3.33)
AF® implies the I-th component of the magnetic field arising from the
potential W, . For example, G..* is given by
G ¥ =2r,c08* ¢ D,—b sin 0 - (D3 cos 2¢, - D;) (3.34a)
while G,.* is
Gz.X=5in 6 - (Dy+ cos 26, - D5) + 67, cos? Py(b— &, cos 0) - D,
— 372 cos® @, sin 0 - (P + Ds) —3b sin (b —, cos 0) - (Ps+-cos 26, Ds)

-+ 3br, sin® 0{(% + cos? ¢0> @+ —;— cos 2¢, - @9} - (8.34b)
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All the GuVs and GyYs are given explicitly by SAsa1 (1991). They are
rather intricate functions of @,’s and are not reproeduced here. In addi-
tion to @,’s (n=1,5), we need the following ones.

0= S”J?d¢, @:S” cos ¢ g, (3.352)
’ Oy 0 Py
oo S Z cos %90 dg, By= S:Eﬁ_(w (3.35b)
P4 Py

@,’s can be expressed with complete elliptic integrals. Following
EASON et al. (1955), we treat these integrals in a unified way. We first
reduce @, to an integral of Lipschitz-Hankel type, which is defined as

Iim, n; 1) =er(at)Jn(bt)e‘”tldt (3.36)

0

J. and J, are Bessel functions. We should replace a, b and ¢ with the
following variables.

a=>bsind, b=7r, c¢=bcosf+D—z, (8.37)

Transformation of @, into the Lipschitz-Hankel integral is achieved in

Appendix C. Next we will express those with ecomplete elliptic integrals.
Some integrals of the type in egs. (3.85) were not given explicitly by
EASON et al. (1955). All the integrals necessary for the present purpose
are tabulated in Appendix C. They are eventually represented by com-
binations of complete elliptic integrals of the first and second kind.
Numerical approximation formulas are available for these two functions
(HASTINGS, 1955).

Thus integrands in egs. (3.33) can be calculated accurately as well
as rapidly. As for one dimensional integrals of analytic functions, we
have a useful algorithm for numerical integration, i.e. the double ex-
ponential formula (TAKAHASI and MoORI, 1974). Now we have an analytic
expression for integrals over a spherical cap and an effective way of
integrating it: the problem is solved.

Contribution from the Curie Surface with a Circular Hole

We take the cylindrical coordinates (u, ¢,z) with origin (0,0, H), at
the intersection of the z axis with the Curie depth surface (see Fig. 8).
Let us consider the surface integral over the magnetized portion of the
Curie surface. The integral in the radial direction should be carried out
from u, to infinity. wu, is given by
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Q (ro, o5 L0)

Fig.8. Cylindrical coordinate system for integration
over the Curie surface with a circular hole.

{vm (|H—D|<b) (3.38)
0 (IH—D|=b)

0:
We first conduct integrations with respect to ¢ and obtain

Wk(H)=Ck5:° [{flk(A)(u/) +f1k(B)(u)} - Gu(U; Fo)

+{fa () + 1w (W)} gulu; ro)Judu (3.39)
where
20 oy _gy, [ _34+4p H—D ' (3.40
g 3u{ Siren S } (3.40a)
20 5 (A=t 6 A+3p 2¢ \pl 1
Cf‘“ _Su[{ <,2+,u+32+2,u>H+ At p 31+2/x> }S;'
+10(3l+4ﬂ) H(H+D)2] (3.40b)
3242 S’
2w Y (3.40c)
C S
2 w_,[2+3u 1 GHUI+D)  (aaod
¢l u[2+p S Sy ] ‘ (3.40d)
20t o _32+4pf 1  3(H—D) 3.40
2o 32+2p{81 SR } (340
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2ufu<m 32+4ﬂ[ 1 3(72+5yH+2—y pYH+D

3a+2platp S itp e/ S

30H(H+D)? 8 [ 1 3(H+D) 3.40¢
+ S’ ]+32+2y S;? S ] (3.401)

2¢ “4) — H-D 3.40
C sz S13 ( M g)

20 - @ _ 'H'?’/u]) 1 _6H(H+DF 3.40h
N (H—y ity >s; Sy (8.40)

in which

S,=vVur+(H—D)}, S,=+vu'+(H+D}. (3.41)

The unit single layer potential g,’s and the unit double layer potential
g’S are given by v

Ju= and¢=2 cos ¢, D, (3.42a)
0 pOg
j mc°S¢ d$=2(z— H)cos 6,0, (3.42h)
gu= | Ldp=20, (3.42¢)
O
=S (&= H) g4 2(2y— H) - @, (3.42d)

where
pr={W+ (H—2,)" 425" + ¥, —2u(x, cos #+y, sin ¢)}'*
={uw* —2ru cos ¢+ 1)+ (H—2z,)*}'” (8.43)

Comparing eq. (3.43) with eq. (3.31), we find that integrals in eqs. (3.42)
are formally quite identical with those in eqs. (3.29). In this case we
have only to replace @, b and ¢ in eq. (3.36) with the following variables:

a=u, b=r, c=H—z, (3.44)

Differentiation of potentials gives us the magnetic field components

AR = C"jw [fo(t) - g’ + () - g Jud e (345)
“

X

Again as an example, g,,* is given by
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915 =27 CoS* B+ Dy — 1 - (Dy+ cOS 263, - Dy) (3.462)
and ¢, % as follows: _
92> =3(2o— H)[27, cOS® ¢y - @y — U - (D5~ €08 2y - Ds) ] (3.46Db)

All the g,"s are listed in SASAI (1991), but are not reproduced here. We
can numerically calculate integrals in egs. (3.45) with the aid of DEF.
Thus we have managed to evaluate the contribution from an infinite
plane boundary with a circular hole.

If the Curie surface does not intersect the demagnetized sphere, we
should always evaluate integrals over a plane without a hole, i.e. eq.
(3.39) in which %,=0. We have already obtained analytic solutions for
these particular integrals with the aid of the Fourier transform method.
The integral (3.39) must reduce to egs. (3.9). Actually this is true, which
is proved by SASAI (1991). For |H—D|>b, we may omit elaborate nu-
merical integrations in egs. (3.45).

Let us investigate how the surface magnetic field varies with increas-
ing depth of the Curie point isotherm. The behavior of the solution
when the source radius decreases is also shown. This gives us a helpful
suggestion for the cause of the discrepancy between the type I and type
II solutions.

Curie Depth Dependence of the Magnetic Field at the Origin

DAvIS (1976) and SASAI (1979) investigated how the magnetic field
at the origin (0,0, 0) just above the center of dilatation varies with in-
creasing Curie depth H. At this particular peint, only two field com-
ponents, i.e. X, and Z, are non-zerc. SUZUKI and OSHIMAN (1990) re-
examined DAVIS’ numerical calculations by subdividing the medium into
sufficiently small elementary volumes. Their model parameters are al-
most the same as those of Davis (1976) for Kilauea Volcano, except for
the depth D and the radius b of the source sphere, i.e. D=12km and
b=3km, respectively, We follow their model parameters here for the
sake of comparison.

Fig. 9 shows the Curie depth dependence of X, and Z, at the origin.
This figure agrees very well with SUzUKI and OSHIMAN’s (1990) result
(Fig. 7(b) in their paper). This implies that their numerical calculation
is very accurate. DAVIS’ result is also similar to Fig. 9. As DAvIS (1976)
has already pointed out, the piezomagnetic changes become maximum
when the Curie depth H is around the source depth D. They decrease
to certain values with increasing depth of H. This characteristic is quite
different from the type I solution, in which the maximum (absolute)
changes are attained at H infinity (SAsA1, 1979; See Fig. 15(a) in this
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Fig. 9. Two non-zero magnetic com- Fig. 10. Curie depth dependence curves
ponents at the origin with increasing depth of the magnetic components at the origin
of H. Model parameters are the same as for 5=30 m.

Suzuki and OSHIMAN’s (1990). XH and ZV
indicate X, and Z, components, respectively.

paper). Fig. 9 shows that the contribution of the vertical magnetization
J, is much more dominant than that of the horizontal one J,. This fea-
ture was also noticed by DAvis (1976).

Let us investigate the influence of the source size. Fig. 10 shows
the curve of the Curie depth dependence for 6=30m. The other model
parameters are the same as those in Fig. 9. The special feature of the
curve in Fig. 9 is preserved, somewhat exaggerated as b decreases. The
peak values of the surface magnetic field around H=D are kept constant
for smaller values of b. It never happens that the H dependence curve
is drastically converted into that of the type I solution (i.e. Fig. 15(a)).

Surface Distribution of the Magnetic Field on the Earth

Finally we present the surface distribution. Fig. 11 shows total
intensity changes we may expect in Kilauea Volcano following Davis’
model parameters. DAVIS (1976) gave a numerical result for this model
(i.e. Fig. 3 in his paper). Fig. 11 exhibits a slightly different pattern
from Davis’ results. However, the positions and values of positive and
negative peaks roughly coincide with each other. Hence Davis’ numerical
computations are confirmed again by the present analytic approach.
Comparing Fig. 11 with Fig. 7(a) and 7(b), we recognize that the finite
spherical source solution obviously resembles the type II solution of the
point source problem.
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Fig. 11. Surface distribution of total
intensity changes for Kilauea Volcano, with

the same model parameters as DAVIS’
(1979). Unit in nT.

Fig. 13. Total intensity changes for
H=12km. Model parameters are SUZUKI
and OSHIMAN’s (1990). Unit in nT.

Fig. 12. Total intensity changes for
H=5km. Model parameters are SUZUKI
and OSHIMAN’s {1990). Unit in nT.

/”\
e .

Fig. 14. Total intensity changes for
H=20km. Model parameters are SUZUKI
and OSHIMAN’s (1990). Unit in nT.

Let us investigate the Curie depth dependence of the surface distri-
bution. Coming back again to SuzuKl and OSHIMAN’s (1990) parameters,
we put D=12km, b=8km, [,—45° and D,=0°. In Figs. 12, 13 and 14
are shown total intensity changes for H=5km, 12km and 20 km, respec-
tively. The pattern of piezomagnetic changes is highly dependent on the
spatial configuration of the demagnetized sphere and the Curie point
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isotherm. In particular, the sign of magnetic field changes reverses
depending on whether or not the Curie depth H lies deeper than the
source depth D.

3.3 Point Source Solution as a Limiting Case of Finite Spherical Source

In the previous section we found that the general feature of the
finite source solution resembles that of type II solution as the source
radius diminishes. We will demonstrate here that the type II solution
is actually obtained by reducing the source radius b to zero in type III
solution. As has been pointed out in section 3.1, the influence of the
source sphere is abruptly added as the Curie depth H exceeds the source
depth D. Accordingly the magnetic potential varies discontinuously at
H=D. The transient behavior of the solution around H=D will be pre-
sented by investigating the limiting case. The cause of the discrepancy
between the type I and type II solutions will be clarified. We find that
type II is appropriate for the point source solution.

Let us investigate the integrals over the spherical surface, i.e. eq.
(3.27). Among various terms in the integrand, those arising from &
are finite at the source point (0,0, D) and are multiplied by b. They
vanish in the limit as b approaches zero. We have cnly to take account
of the contributions from u“:

% 1w 2032+4p) sind ‘
P g R4 = .

c 31+2¢ b (8.472)
%&Fm@:sine (8.47h)
EI“LF "4 _ 2(31+4p) cosé (8.47¢)

c " (82+24) b

2—(;5 F, % =cos @ (3.474)

According to Appendix C, the unit potential functions, G, etc., have
power ‘series representations in k*. Expanding them further into a Taylor
series in b, we obtain the following:

Gh= o7 COS @% sin 0{1-+0(b)} (3.48a)

G = — 7 COS o Si;" 1+0(b)} . (348D)

3
1
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G1,=2n{i+b—c°-°§ﬂ+0(b2)} | (3.48¢)
01 01 ‘ '
Go= —218, czsf 1+0()} (8.484)

Substituting eqgs. (3.47) and eqs. (3.48) into eq. (3.27) and integrating by
terms, we have

2 L 8m(a2) @ S -
LW ES = 2N T AR 0do+0(b 3.49
= C Si02n o  sin’0d0+0(b) (8.49a)

20y wn— g AnBA+4p) _LS” in 6 cos 6d6
C W, C, 32192 Bpr @sm cos

6(2+2p) 'C_O“Y 20 sin 0
+C’,-———————32+2ﬂ o , cos*dsin do+0(b) (3.49b)

In case H>D, the infinitesimal source sphere is fully included within
the magnetized region: we may put @=0. The first term on the right
hand side of eq. (3.49b) becomes null. Taking the limit as b approaches
zero, we obtain '

2ty wn g, 4734 20) 3 | (3.50)
C 31428 pf
2 g en g ATA+2¢) —D, (3.50b)
C 3242 ,013

in which we use the relation {,=z2,—D=—D, (cf. eq. (3.32)). Eqs. (38.50)
are coincident with eqs. (3.24). Thus the limit of type III solution as
the source radius b decreases is proved to be type II solution.

Next we will investigate the special case in which H=D. Since the
source surface is a hemisphere, we may put O®==/2. From eqs. (3.49)

we obtain
2p n 2r(A+2p)
LE W kS SR AR) T 3.51a
C 32+2¢ o ( )
2% _ 27(32+4p) 1 27(A+2p) —D,
W EL= —C TR = 4, ~ 3.51b
C 3242 bp, + 32+2¢ pf ( )

The first term on the right hand side of eq. (3.51b) diverges as we de-
crease b to zero. However, a counterpart of this divergent term emerges
in the Curie surface integral and they cancel each other. Then only the
second term in eq. (3.51b) survives. Notice that the integrals over the
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 hemispherical surface are Just half of those over the entire spherical
surface.

We are now to evaluate the Curie surface 1ntegra1 for H=D. fi®
and f.™ have no singularity at (0,0,D). The integral containing them
are reduced to elementary functions: i.e. terms having p, in egs. (3.9).
We should examine integrals involving 7, and f,“’. Putting H=D in
eqs. (3.40a), (3.40c), (3.40e) and (3.40g), we have

21 p ' 3.52
2 = o (3.52a)

2 1
—Cﬁfu“"z—u; o (3.52b)
: zﬂf _ 3A+4p 1

3.52¢
32+2p w ( )

2_0/«‘ =) - (3.52d)
The lower limit of integratioh u, is equal to b. We denote the Curie
surface integral contributed from #'“ by superseript (HA). We now seek
to obtain the limit of the following integral as we let b approach zero:

2 W, B4 =C,2(z,— D)cos ¢, r ldliolu (3.53a)
C b U ‘

20y away_ v 2(82+4p) ri 3.53b
C w, C, 374 2u buz@ldu (3.53b)

Referring to Appendix C, we substitute Lipschitz-Hankel integrals into
@, and @, in egs. (3.53). After some manipulations we find

2 gy = _ 970, cos gy 0= — 20,5 (3.54a)

C ( +D2)3/2 [01
2¢ (HA) 9 031_"4)& _D O _1_ 3.54b
2L 70 =25 ,3“2#{ Rl >+bpl} (3.54b)

Comparing eq. (3.54b) with eq. (3.51b), we find that the divergent term
in W,%4 is completely canceled out by the divergent one in W,#4,
Since we always: consider the total sum W, 4+ W, "4 the divergent
term disappears. Mathematical details are given in SASAI (1991).

- Taking account of eqs. (3.50) and eqs. (3.54), we rewrite the type IL
solution as given by egs. (3.25) as follows: - B
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o _:_IJCQ_>+ 6(2‘*““) H 32Dy
<P1 3A+2¢ o) ‘
A+p (900 ;3900)1 H

T _ 90y >D
34+2p\ o o, /] =20

__te m H=D ‘
3+ o0 ( ) (3.55a)

z(ffW 4770[

32-1—2/1

0 | (z<D)

2w J4 <D1 D3> 6(A+p) ( 1 3D32> :
ZEW,=4xC,| ——& — AL rly  f
C 4 [ 3A42p\ p? + 32+2¢ o5 + N

e Wl =2 H>D)

32+2p<p13 02/ (H>D

%) D ey
si42u pr | HED) . (8.55b)

_‘

0 (H<LD)

The magnetic potentials has a gap écmss H——D The potential value at
H=D is just the average of the two limiting values for H=D—0 and
H=D+0.

F1g 15 shows the Curle depth dependence of two magnetlc com-

NT

20 L » _ il 50 \
0 /70 U [ VU I A—
o\ ZV
| N ZV
-20 | 20 | —
Z\\/ ‘/"\— XH
O SRS gl U
-40
N N XH.
- XH
50— R Y A 20 e
0 10 T a0 40 0 10 20 30 40
H (kM) H  (KM)

) type 11
Fig.£15.7. Curie’ depth dependence of the two magnetic components at the origin for

the point source solution of (a) type I, and (b) type II respectively.  Model parameters
are Suzuki and OSHIMAN’s (1990).
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ponents at the origin for (a) type I and (b) type II solutions, respectively.
The discontinuity at H=D in type II solution can be recognized as the
limit of a steep increase in the magnetic field around H=D for a small
value of b as shown in Fig. 10. The nature of the discrepancy between
the two types of solutions is now obvious: type I solution is the re-
mainder after subtracting the effect of the source sphere from type II
solution. Hence we should naturally suspect the possibility of overlook-
ing part of the piezomagnetic components produced within the whole
magnetic body in the type 1 case.

Now let us recall the definition of the integration area for the two
kinds of solutions as depicted in Fig. 5. The magnetic potentials W,®
for type I and WP for type II are given as the sums of surface poten-
tials:

WD =W, 4+ W, D+ W, (3.56)
W90 = W,0 4 W, 4 W, (8.67)

where

W, B = W, (H=D=0 _ |/, (E=D+9 (3.58)

Before taking the limit as e approaches zero, we find that disagreement
of integration area exists between the two. It is a region surrounded
by two horizontal planes H=D—e and H=D+e¢ and the source sphere as
shown in Fig. 16. We call this area K’. The contribution of K’ to the
potential is given by

Wk(K’) — Wk(K) _ Wk(H=D-e) + Wk(H=D+e>

(3.59)

In the limit as ¢ approaches zero, the volume of the region K’ be-
comes null. In evaluating type I solution, we implicitly took it for

z=20

H

Fig. 16. A schematie representation of the integra-
tion area K’ (hatched) which is ignored in the type I
solution.
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granted that the contribution from K’ vanishes as well. This is incor-
rect: the region K’ reduces to a thin layer at H=D but produces a finite
magnetic field. The relationship among these surface potentials as given
by eq. (3.56) through (3.59) holds good even for the limiting case e—0.
Then we have

WD 4 W& = WD (3.60)

In other words, the jump in the potential values arises from the stress-
induced magnetizaticn in a thin layer at H=D.

All these considerations imply that type II solution properly evaluates
the contributions from all piezomagnetic constituents. Hence we arrive
at a final conclusion: the type II solution 1is the correct one for the point
source problem. The earlier result by SASAT (1979), t.e. the type I solu-
tion, should be rejected. This conclusion compels serious alteration of
some earlier works by Sasal. It is because the same way of integration
around singular points has been undertaken in constructing Green’s func-
tions for tectonomagnetic modeling (i.e. SASAI, 1980; 1986a). We will
reexamine all these previous results in the following chapters. However,
we will find that in most cases the type I and type II solutions are
identical and hence that previous results are still valid.

SASAT (1979) derived the type I solution under the direct suggestion
of HAGIWARA’s (1977a) work on the gravity change associated with the
Mogi model. Hagiwara integrated to obtain the density-related gravity
change in the same manner as type I solution. A question arises: is
Hagiwara’s solution for gravity change erroneous? Since a@=C/2uV(E,™),
the density change at an arbitrary point due to u'® is given by

do=pdiva®=po-L 2B = —470-C 5(R))
2u 2u

Hagiwara put this term equal to zero, because J*(R,™)=0 everywhere
except R,=0. According to the characteristics of Dirac’s delta function,
the density integral due to » produces a point mass at (0,0, D). In-
stead he tock into account the loss of surrounding mass due to inflation
of the source sphere. Recently OKUBO (1991) formulated gravity changes
due to point dislocations. He demonstrated that the gravity produced
by the delta function is the mass loss due to inflation of the pressure
source. Consequently, HAGIWARA’S (1977a) result for the gravity change
due to the Mogi model is correct.

In our calculation the delta function does not appear explicitly. How-
ever, the treatment of the problem in the form of surface integrals is
verified with the aid of Green’s theorem. Actually the equivalence of
7*(R,™) to —4rd(R,) is also verified through Green’s theorem, so that our
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derivation of W,® is equivalent to applying the delta function.

However, the physical interpretation of the source term in the gravity
change by OKUBO (1991) does net hold as in the case of piezomagnetism.
In the Mogi model the source radius expands by da=adP/4p under an
internal pressure 4P (cf. eq. {2.60)). The magnetic potential correspond-
ing to the vanishing of a magnetized spherical shell of radius ¢ and thick-
ness Ja is given by

W, To (8.61a)
;01
W4 =, Fo =D (3.61b)
01

where

mk:47mzda,Jk::27t%Jk (3.62)
Comparing eqs. (3.61) with egs. (3.50), we find

wo=L A2 gy ae (3.63)

2 2ty

The source term due to the type II solution is amplified by —;—

21":2'“ 258y times the source expansion effect. This factor amounts to 26.25

for p=1.0x10""* bart, 2=p=85x10°bar. As we have already seen in
section 2.6, the piezomagnetic effect is an order of magnitude or more
larger than other causes of magnetic change due to mechanical distor-
tion, i.e. free-air effect, the field produced by upheaved portion of the
earth’s surface and the source expansion effect. This difference originates
from the fundamental nature of piezomagnetism caused by quantum
mechanical spin-spin interactions.

Chapter 4. Green’s Function Approach to Tectonomagnetic Problems

. In this chapter we will develop a unified method to evaluate piezo-
magnetic field changes associated with various mechanical distortions.
We adopt the simplest model of the Earth: i.e. a homogeneous and iso-
tropic elastic half-space having a uniformly magnetized top layer. For
such a simplified medium, a variety of tectonic models can be constructed
by superposing the displacement field solution of a single force operative
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at a point in an elastic half-space. Once - the piezomagnetic potential
caused by such a force is known, tectonomagnetic changes of these models
can be derived from linear combinations of the prescribed potentials. We
may call them the fundamental piezomagnetic potentials. The surface
integral representation eq. (2.52) will be successfully applied to their
derivation process. A Green’s function for surface load problems is given
simply as a special case of the fundamental potential. The magnetic field
produced by a uniform circular load will be calculated as an application
example of the present ‘theory.

4.1 Formulation

Let us consider a simple earth model: a homogeneous and isotropic
elastic half-space with a uniformly magnetized top layer. We will de-
velop a unified treatment for calculating the piezomagnetic field associated
with various types of mechanical deformation within the medium. We
take Cartesian coordinates (x,, %, %), in which the semi-infinite elastic
medium occupies #,>>0. The magnetized region is bounded, from the free
surface w3=0 to the Curle depth xg_H _

eq. (2.20). The displacement field » should satlsfy ‘the tractlon-free
boundary condition at x,=0: v .
1'31‘: 7322733:’:0 ‘ » (4 1)

The stress field is related to the dlsplacement throagh ‘Hooke’s law: i.e.

q. (2.14).

We begin with the fundamental solution of eq. (2.20) satisfying con-
dition (4.1), i.e., the displacement field ca.used by a single force operative
at a point within an elastic half space. "Let G, be the z, component of
the displacement at Q{x,, %, x5) produced by a unit .single force at
P(g,, &, &) acting in the x, direction. We will hereafter refer to the
vector representation G, together with

Gur= (s )= Gl 3,25 5 8. 60 o (4.2)
G, satisfies the following equation: o ’
(24 p) grad div G, + ¢V*G,+ F;=0, (4.3)
which is tdhe same form as eq. (2.20) excépt that
Fu=5u5( —&)0(@—&)o(w ( —&), (4.4)

in which g; is the Kronecker delta, while 5( ) is the Dirac delta func-
tion. G, fulfills the boundary condition (4.1), which is rewritten as
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R

axl aa/'3 axz 6%3
0x, ax 025

i

0 at W3:0.
(l— 1,2,3)

| Sinee both the basic equatlon and the boundary condition are linear,
the principle of superposition holds. Then the displacement field # as a
linear combination of G, also satisfies egs. (2.20) and (4.1):

u=3 AG(x; &%) | (4.6)

in which &» denotes the k-th discrete source point. This important
characteristic of G, can be extended to a more general class of linear
combination, which is expressed by

(4.7)

o =L(8)G/(x; &).
The functional L(é) is called the integro-differential operator, defined by

L@r=3| (k.6 ¢\ D7@0dE + AD 78 | (48

where D implies the partial differential operator (D=0/0¢) and « is a
non-negative integer. Obviously the integral with respect to & is a limit-
ing case of the linear combination (4.6). We may also interpret deriva-
tives with respect to £ as a kind of linear combination, in view of the
fact that G, 05, for example, is by deﬁnition

lim {

48,0

15 Gl (3 E1+ B, B, B0) ——— Glalx; &1, &, 53)}

51
Hence derivatives of G, with respect to the parameter & as well as their
weighted integrals, namely the displacement field given by eq. (4.7), are
again the solution of eq. (2.20) under the boundary condition (4.1).

Once the displacement field of a magnetoelastic body is specified, the
piezomagnetic potential due to associated stresses is expressible with its
displacement as we have seen in the previous chapter. It is given by
the following integral, i.e., eq. (2.25): '

W (r) :mv AM™(u(x))-F (%)dac (4.9)
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=|x—r|=A (2 — )+ (2, — )+ (x:—2)". o (4.10)

AM™(x) is the stress-induced magnetization vector.

Let U™ be magnetic potential due to 4M™(G,) which is the st-ress-'

induced magnetization caused by G, operating on J,:
U (r; &)= m M (G)(x; £))- ( >dx (4.11)

AM™ is given by derivatives of u, in other words, by a linear combina-
tion of u. We now substitute the displacement field (4.7) into (4.9). If
we are allowed to interchange the order of operations, i.e., integration
with respect to x and operation of the linear functional L(g&), we obtain

S H AM™(L(§)G(x; §)) -7<%—>dx

L(s)m M (Gy(x: &) l7< )dx )l/;,m(r% &)

However, this interchange is not verified for a particular kind of linear
operation. G, has a singularity of an order of r'(r=|x—¢&|) at x=&.
Then 4AM"(0G,/0¢) becomes a function of an order O(r~®). In this case
the integral in the second identity does not converge as an improper
integral. Thus the above relation does not hold good for the differential
operator. Dislocation source problems correspond to this case, which will
be discussed in detail in Chapter 5. :

We meet no such difficulty when the linear operator (4.8) consnsts
only of weighted integrals. 'We can represent the piezomagnetic poten—
tial associated with such mechanical models as follows:

W (r)=Lo§) U (r; 12)

in which we restrict ourselves to deal with only an integral operator:

Log)f=Kig &1r(@)e’ 48)

It is much easier to get at the solution Wm™(r) through eq. (4.12) than
through eq. (4.9) via eq. (4.7). We may call U™ the fundamental piezo-
magnetic potential.

There are some problems of geophysical interest which can be de-
scribed in the from of eq. (4.7) and hence eq. (4.12). One is the surface
load problem. A typical example is the dam-magnetic effect (DAVIS and
STACEY, 1972). The local magnetic change caused by surface load of a
man-made lake can be caleulated by integrating fundamental potentials
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with the weight proportional to the depth topography of the reservoir.

Another application is the volume source problem. A strain which
is not associated with stress is called a “stress-free” strain (e.g., ESHELBY,
1957) or an “eigen” strain (MURA, 1982). Eigen strains of geophysical
importance are thermal expansion and plastic deformation. Such strains
behave as a sort of body force in the elastic equation. Problems contain-
ing inelastic inclusions are solved by volumetric mtegrals of fundamental
potentials over the source region.

4.2 Fundamental Piezomagnetic Potentials

In this section we will derive the fundamental solution of the pro-
blem, i.e., piezomagnetic potential due to the stress-induced magnetization
produced by a single force operative at a point in an elastic half-space,
i.e., eq. (4.11). In order to avoid confusion, we discriminate three nota-
tions of coordinates for different field quantities: the source point is re-
presented by &(&,,&,, &), and the displacement is a function of x(x,, ., 2s),
while the magnetic potential is a function of r(x, y,2). Since the mag-
netic field is usually measured in free space, z is assumed to be negative
in the following calculations. ‘

MINDLIN (1936) obtained the fundamental solution for an isotropic
solid with semi-infinite extent. Although Mindlin’s solution is given in
terms of the Galerkin vector stress function, we find an explicit form
of the displacement in a textbook (e.g., MURA, 1982). We may assume

a single force acting at a point (0,0,&). Replacing « and y by (z—§&)
" and (y—§&,) in the final expressions, we obtain the correspondmg results
for any arbitrary source position &(&, &, &).

The displacement component at. x(z,, ,, x;) due to a unit smgle force
at (0,0,&,) is denoted by g., which indicates the z; component of the
displacement produced by a single force in the &, direction. They are
given as follows (MURA, 1982, p. 95):

1 [3—4v L2
= 5w 51} -
Y= Torni—v L R, +R TR
.25 | 2245, 30
+(3 41)) R2 + Rs {1.] Rzz }
4(1—v)(1—2) 20
+ 55— =,
Ry +o3+6, { Ry(Ry+25+&;) }] g
g 2; —& | (B—dv)(z,—8)
93" 16z p(1— p)[ R} + AN

6903&3(”34"&3)_}_ 4(1— )(1 2”)]
) R} Rz(Rz+x3+Es)
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- g} .7 [ 2,—& + (8 —4v)(x;—&,)
16rp(1—v)l Ry R}
+ 6%353(973‘}“53) _ 4(1—”)(1'—2))) ]
Ry Rz(R2+ T+ Ss)
1 [3—dy | S(1—vf—(3—4y) |, (w,—&)
I ezui—v)| &, L R, + R}
(3 4y) (@3 +E&s)* — 206 65Es(2s+&,)° 4.13
R T RS ] (418)
(1,5=12) .
where -
RP=wx+ a4 (2,—&;)? (4.14a)
Rl=x+x+ (x4 &)% (4.14Db)

We are now to evaluate eq. (4.11). Instead of performing volumetric
integrals, we will use an equivalent method of evaluating the piezomag-
netic potential through surface integrals, ie. eq. (2.52). Since there is
no body force, the fundamental piezomagnetic potential in free space can
be rewritten as follows:

001 8= Cu [ [{~ Pt +- L m=). n—+{gm 2 (L))as @

‘ 1+v on
where ,
(m) — 3 <6g'ml agyl di (
= (Ot ) 3., div g, (4.16)
Co=Lp7, W22 gy pi4y) (4.17)
2 Ad-p

We seek to obtain U™s in the same way as we have obtained the
type II solution for the point scurce problem of the Mogi model. Surfaces
surrcunding the magnetized medium are the earth’s surface z;=0, the
Curie point isotherm at x,=H and a small spherical surface of radius e
centered at the point force. If the force acts on the earth’s surface or
at the Curie point isotherm, we take the sum of a hemispherical surface
and an infinite plane with a circular hole.

Thus we have three kinds of surface potentials:

(a) The contribution from an infinite plane surface at depth x, (&)

V"B (r; & @5) = CMS Siom{fml % —Gm .’763(-;2 }dxldxz (4.18)
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in which the outward normal » is tentatively defined in the downward
direction. ‘

(b) The contribution from a plane surface with a circular hole of radius
€ (23=&)

B (p £y e)—_-omﬁ”dgﬁg {f’ m,zp Sf"}uolu 419)

in which the cutward normal is also taken downward.
(e) The contribution from a spherical surface of radius e

Elco_s_r_} sin 0de
e o

m(K)( ES, €, 01’ 62) S d¢g { (A)
(4.20)

fmz, Floty For®’s and gui, ¢'wiy Gu™’s are single and double layer distri-
butions, respectively.
. There are four typical positions of the single force source. The

fundamental piezomagnetic potential can be constructed by summing '

contributions from these three surfaces.
. Case I: when the source point lies at the free surface (§,=0):

€0

Uy =lim{ v (r; 0; ¢ +v,""‘K’<r; 06,0, %)}juw(m(r; o H) (4.21)

Case II. when the source is included in the magnetized region
(0<&<H): '

Ur=—v™"(r; 53, 0)+vm(r; & H) +HI:1 v," " (r; &5, 6,0, ) (4.22)
Case ITI: when the source is at the Curie depth (5,=H):

U;"f:-—?)m(m(l’ I 0)+11m{1){””(H)(r, H ¢ +,vm(K)< H;e, -5 7t>} - (4.28)

€0

. Case .IV: when the source lies beneath the Curie point 1sotherm
($3> H):

U= —v™®(r; & 0) + v, P (r; & H) : (424)

Fui in eq. (4.18) is given as follows:

=% 1 {3 0 i 6g3,>_5 di } 42
Jm= = T 2 Can, T, ) OV (4.25)

The integration can be done by Fourier transform method. This com-
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putation has already been done by SASAI (1986), and hence his results
are quoted here. e

S'm and ¢, in eq. (4.19) are f,; and g,, in eq. (4.18), rewritten in
the cylindrical coordinates (u, ¢, z,) as shown in Fig. 8. We separate the
displacement field g, into two parts: the source terms containing R, and
the surface boundary terms containing R, in eqs. (4.13). They are speci-
fied with superscripts (A) and (B) respectively. Since contributions from
¢ are regular at u=0, they can be easily calculated by the Fourier.
transform method. Only the contributions from g, are computed ac-
cording to eq. (4.19).

In the following the common factor 1/16zp(1—v) is omitted. This
factor will be included only in the final expressions for the solution, i.e.
eqs. (4.34) and eqs. (4.35).

™ and ¢/, at x;=§&, are expressed in the cylindrical coordinates
as follows:

Fra®=0, g M =C, {3 v, 1 cosp) (4260
U U
F'a=0, = C,,% sin ¢ cos ¢ (4.26b)
4—-5v 1 ,
f,zl(A) = Cz 1+p —%2— €08 ¢’ g,zl(A) =0 (4260)
St =0, g M= C"% sin ¢ cos ¢ (4.26d)
f/yZ(A) — 0’ g/yz(A) — C,{g —4y + _l_ sin? ¢} (4266)
u U
Fla®=C, 41;5: ui 0S4,  ¢'av=0 (4.26f)
Fla®=C, —fi:’fy _%_ sin b, ¢ =0 (426g)
—445y 1 - ,
Fl®= C,,————1 _:—,, d 5 cos 3, ¢:=0 o (4-2@)
Fla®=0,  gaw=cB ;4” O (4260)

On the other hand, p, in eq. (4.19) is given by

o= =TT GOS(F— B F It B e
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in which (z, x,) and (x,y) are given in the new coordinates (u, ¢, x;) as
follows:

G=UCOSP, B=using, w=r,co8¢, Y=T,Sing,

We first integrate with respect to ¢ in eq. (4.19), which results in the
Lipschitz-Hankel type integrals. Then we can obtain the final result by
letting ¢ decrease to zerc, as we have aIready donein section 3.3. After
some mampulatlons we find

1, 1 o
v 0 =2xC, 1 v)—+ — 4.284a
{ ( i ) 01 o1t ﬁl(ﬂl+01)2} ( )
v = —2rC, ( +c B “ . (4.28Db)
) PO T O )
v =grcA=OY @ (4.28¢)
] 1+V P1(P1+C1)
1) E(H)—— ——27[.'0 —_('q:’c—)_ ‘ (4-28d)
O1{01TC
. . . y
v =2rC —4(1—y)—+ — } 4.28e
’ { (A=) o pten pipitc) ( !
v =orc A=Y Y (4.28f)
1+v ofoi+c) :
4—5y x
“) — _9rC, .28
v 14v P1(ﬂ1+c1) (4.258)
4—5by Y
V) = —27C, 4.28h
Y T 1+y ,01(,01"{-01) : . . ( )
0B = — 270, (8 —dv)-L_ (4.281)
01

F,,* and G,,'* in eq. (4.20) are contributions from g, ‘Those from
¢,'® are regular at the source point and hence they vanish in the limit
¢e—0. F,'“ are given as follows:

C. [ o(—B+4v) | 32—3) ooan . .,
A) = Y=
F 62{ 2R S sin'd cos ¢} (4.292)

F,*®= % % sén%’ sin é cés ngv , (4.29b)
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F,® :_CT' B2=Y) Gin g cos § cos é (4.29¢)
€ 1+v
Fo="C 327 gnegsin g cos (4.29d)
€ 1+v :
F z%{”( - i t ), 3(12;”) sin% sinzqﬁ} | (4.29€)
Fo®="C 327 gngeososing (4.20f)
€ 14y
Fo =S 3272 ginpeosgeos g (4.29g)
€ 1+v
Fpo="Cr 32— i1 g ooshsin g (4.29h)
€ 14
C, [v(—b+4y) | 3(2—v) _ .
=" 9 4.29
o= 1+v Tt 0% J (4.25)
G4 are givén as follows:
G =Co (38— 4v) +5in% cos') (4.308)
€
G =Cv sin% sin ¢ cos ¢ (4.30b)
€
G = L. sin @ cos 4 cos ¢ (4.30c)
€
G ® = G sin ¢ cos ¢ (4.304)
€
G4 = _Qv_{(g —4v) +sin@ sin®¢} (4.30e)
€
G = C: §in 6 cos 0 sin ol (4.30f)
€
G, M= G sin 6 cos 4 cos ¢ (4.30g)
. € .

s =_O sin 0 cos G sin ¢  (430h)
6 f




650 : Y. Sasal
G W= i{ (8—4v)+cos’6} o : (4.301)
€

o. in eq. (4.20) is expressed in polar coordinates (R, 0,¢) in Fig. 6
as follows:

=4/€%8In%0 — 27 e sin 0 cos (P — @) + 1> + (€ cos 0+ &;—2)* (4.31)

As for the integration in eq. (4.20), we apply the same treatment as in
section 3.3. We first integrate with respect to ¢. The Lipschitz-Hankel
integrals thus obtained are expanded in a Taylor series in € and then
integrated by terms with respect tc 4. By taking the limit as e ap-
proaches zero, we obtain the final results. Since integrals in the double
layer terms G,.“’s are O(e), they all vanish in the limit e—~0. Moreover,
only such single layer terms as [=m have non-zero values. Those with
I+#£m disappear because they are also O(¢). Thus we have

o v(—5+44v) ‘ 3(2—v)
0 = Cx{2n———~1 s IORARES e AT 02]} (4.32a)
—5 —

?)z”(K) = Cy{Zﬂ‘v———( 1+_l;4u)11[01, 02]+ T 332_*_ vp) ;2[01, 02]} (4'32b)

0 = C,{Zn——( li 8110, 0,1+ 22 <12 “) 100, 02]} (4.32¢)

/U[M(K) — 0 (l ;&m) (4.32d)

where

1[0, 0] =S? sin 0d0= [—eos e]zz (4.33a)
1 1

L[6,, 6,]= j:z sin'0do= [— cos 0+ c°§3‘9 ]:2 (4.33b)
1 1

L[, 0z]=ﬁ2 cos' sin ada:[ﬂ ‘30;8‘9 ]Z“‘ (4.33¢)
1 1

Eq. (4.32d) indicates that all the fundamental piezomagnetic poten-
tials with I#m have no contribution from the spherical surface (K).
This implies that the Type II solution coinsides with the Type I in those
cases. Moreover, in the case of I=m in which a non-zero contribution
from (K) emerges, the source term v,"® is completely canceled out by
a term equal but of opposite sign, arising from the free surface v,
However, this situation is valid only for the Stacey-Nagata piezomagnetic
solid. A preliminary survey tells us that the source term survives for
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the general isotropic piezomagnetic solid with 2 parameters. Anyway,
no correction is required for SASAT’s (1986a) results for the fundamental
piezomagnetic potentials, as far as the Stacey-Nagata solid is concerned.

Finally, following the procedure from eq. (4.22) to eq. (4.24), we
obtain fundamental piezomagnetic potential for &>0 as follows, in com-
plete agreement with SASAT'S (1986a) results.

8 rre_pal 1T @B—4)d+v)[ 1 a? !
Uf=6| =| — —
B ' [p]3 1—v [,0-1-0 plo+c)’ ]3
+43 ) e -
{ 1—v 1—v }{ﬂa(ﬂ3+ca) 1033(‘03‘[‘03)2}
6 1 3w
-5 g 2%
1—v % <p3 ,035)

1*‘2” 1 w2(2p1+ 61) ;
H-¢&, — H<E,
1—v ( ¢ ){;01(;01+01) Pls(;o1+01)z} (H<¢ )

6[7(1)—]: 1i:[pic (pxj—c)z]:

3 —&, 1 _ 2*(2p0,4¢s) H>¢, 434
+2—(H 5){p2(p2+cz> ,023(,02+02)2}( >&)  (4.34a)

8 v B—)A+y) wxy T, 18
B, Ui 1—v Lp(p+c)2]‘3 +1—vH$3
_[3(8—4y) 1—2v . \ 2y(20;+¢y)
{ 1—y B 1—v 83} 05 (05 + ¢5)°
1—2y 2y (20,+¢1)
- H H 3
1_u( &) oot o) (H>&)

. (4.34b)
1+ 2y T 3 (H— vy(2ostcs) (g
l—va(ﬂ+0)2]2 1—v S)Pz(Pz'Jf‘cz) (H>2)

3

3

. v(b—4y) x o 3(38—4y) H 1-2v. .\ &
B, Ur= 1—y [ (p+c)]3+{ 1—vy + 1—v Eg} o8

H T
+-5 Hewe s

1—2p
T =) (H<&)

4B @ ]1_ 3
I—vlplode) e 1—»

+ (4.34c)

<H—&>f—s (H>¢,)
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,38,] U= { ﬁSJ : Ul"} (2>7) - (4.85a)

(1=3)

8 Up= (5—4»)»[ (93 )]:+{ 3(3—4v) H—I—l ngg}ps

ﬁJ 1—7) lo+c 1 v 1 D]
18
1_ HSacap
11 2,) (H— 53)‘0 (H<&s)
" ! 1 (4.36a)
e 3 Het) ®  (H>e,
1—va(p—|—c) ]z 1_.,,( &) 0 (H>&5)
8 .
A ~{/eJ Us}(”“y) | (4.36b)
8 3—bv+4°I 1 3(3—4y) 1—2y
BJ. = 1—v I_p]s { 1—y H+ 1—» 53}p3
6 1 a0
1—!) {E ‘035}
~TRE-g) T (H<E
(4.36¢)

1—-v
+
b—Tv[1]_ 3 Cz
| -nr-e gy e

-y

where

[f(p’ c)]llc:‘f(pl! C,') _f(pkr Ck)

o=Vt +el, e=&—2
p=VE+ P+, ce=2H—&—2 _ (4.37c)
o=V +cd, c;=2H+E&—2 (4.37d)

In eqgs. (4.35), the notation (x<>y) implies interchange of x and .
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In particular, when a single force acts at the earth’s surface, we
have Green’s functions for a surface load problem. We denote these
potentials by V,". They are given as follows:

(l#l)

8 1ol 11 _ 1 2 0
v _12[p]H 4(1+v)[p+c e | |
1 2205+ cx)
12H . 438
+ {PH(PH+CH) PHS(PH+CH)Z} ( 8]
8 » _ Yy 0 xy(ZPH'FCH)‘
S yo=a14u)| -2 | —12m2Y(20u+tca) 4.38h
B, ( +v)[ plo+e) ]” pr'(0n+cn)? ( )
8 . k x 0 . %
o= 4(1+v).[p(p+c) ]H 122, (4.38¢)
(=2)
8 e[ 8 y o
S _{ﬂ 7 Vl} (z7) | (4.39a)
8 o [ 8 . /
L _{M Ve we) o (4.39b)
8 el 8 pal i, " ‘ '
oV ={ o Vil (wes) | (4.39¢)
(=3)
8 x 0 2 i ’
=4 — —_ .
S (1+»)[p(p+c) ]H 128, (4.40a)
8 vi_[ 8 1.
Il _{E V3} (m>y) (4.40b)
8 e 4011 Cy
oy V= ”)[;]H 12022, (4.40¢)
where
[f(e)Ia=/(co) —f(cx) (4.41a)
pi=V&+y+e?  (§=0, H) (4.41b)

CCy=—2, cp=2H—z. (4.41c)
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4.3 Dam Magnetic Effect

The dam magnetic effect is an interesting subject in tectonomagne-
tism. The observation of local magnetic changes during the filling of a
reservoir is regarded as a large-scale control experiment. Such an effect
was observed at Talbingo reservior in Australia (DAVIS and STACEY, 1972),
at Charvak reservoir in the USSR (ABDULLABEKOV et al., 1979), at Miyun
reservoir in China (ZHAN, 1989) and so on. A model calculation of the
dam magnetic effect was done by DAvis (1974). He estimated the mag-
netic change caused by a uniform square-shaped load. The actual man-
made lake can be approximated by the sum of squares with normal load
proportional to the water-depth. '

According to egs. (4.40), the physical meaning of the piezomagnetic
change due to surface load is obvious. In Fig. 17 are shown schemati-
cally the equivalent magnetic sources due to the normal load (i.e. Bous-
sinesq problem). The horizontal magnetization J, produces a line of
horizontal dipoles parallel to J, between the load point (2=0) and its
mirror image with respect to the Curie depth (z=2H). It also produces
a quadrupole at the bottom point. The vertical magnetization J, results
in a line of vertical dipoles anti-parallel to J, and a minor quadruple
term at the bottom. The magnetic field caused by a square load is nearly
equal to that of a uniformly magnetized rectangular prism. The quad-
rupole term at z=2H would have negligible influence on the surface
magnetic field. Now we can well understand DAVIS’ (1974) results: com-
puted piezomagnetic changes are local magnetic anomaly maps of a prism-
shaped magnetic mass.

Fig. 17 also tells us why we always observe decrease in total inten-

0 . 3
Jx a0
. ;"-
H-"— 3 — -
cjﬂy

Fig. 17. A schematic representation of the equivalent magnetic sources of the Bous-
sinesq problem. Left: Horizontal magnetization case. Right: Vertical magnetization case.
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sity in association with the filling of a man-made lake. One may presume
that considerations on the qualitative nature of the piezomagnetic effect
would lead us to the same understanding; the normal load produces néga-
tive J, and positive J, component respectively. It is difficult, however,
to imagine the exact features of stress-induced magnetization owing to
the complicated stress pattern near the margin of the load.

Let us investigate here local magnetic changes caused by a uniform
circular load. The main part of the solution is the field of a uniformly
magnetized right circular cylinder. Unlike a prismatic body, the solution
is no longer expressible with elementary funections.

We take the x axis in the magnetic north direction. The magneti-
zation is assumed parallel to the ambient field. We replace  with x—&,
and y with y—¢&, in the fundamental potentials V,* and V. We inte-
grate V;™ over a circle of radius a: &2+&2=a’ With the aid of polar
coordinates :

x=7rcosd, Yy=rsing, &zééosgzﬁ, &,=&sin ¢ (4.42)

the potentials associated with the uniform load are expressed by

o= cds( Vil 657, a8 (m=0, ) 4.43)

where W, is the load per unit area. To integrate eq. (4.43), we refer
to SINGH and SABINA (1978), who obtained an analytic expression for
the magnetic field produced by a vertical right circular cylinder.

Eq. (4.43) can be regarded as a. convolutlon of Vy* with the follow-
ing function: :

9(§)=WH(a—§) (4.44)

where H(a—¢) is the Heaviside step function. Eq. (4.43) is rewritten as

or=(" g6, )Vrlo—g, v-2idds, (4.45)
We denote the Fourier transform of a function by an asterisk. We have
already found the Fourier transforms of V,™s during their derivation.

Then @,~ is transformed as

O*=2m g*Vi*=2n 0 W, J 1(121’“) Vo (4.46)

The inversion of (4.46) gives rise to

Or=27a WOS Vit J,(ak)d, (k) (4.47)
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All the terms in V,** have a factor e~ in common, and hence integrals
in eq. (4.47) are of the form

I[m, n: L; c]:r (k)T (kr)e— &t ke (4.48)
0
This is the Lipschiz-Hankel type integral, i.e., eq. (3.36), of which para-
meters are

a=a, b=r, ¢c=¢, Or Cy

Finally we have the piezomagnetic potential caused by a uniform
circular load:

1 & 14v 3
1 == 1L L —1 o)~ HI, 15 0; 4.49
svar 282 o)l > HI ca)| (4:49)
L pr=27Y1111, 0, -1 o)l'—SHI(L, 0; 0; ca)  (4.49b)
2rW,BJ. 2 v 2 ’

In deriving @,°, we use the following relation:
lﬂ V koo f (o, Feo)e Mt dle, die,= r £0) 2JolE) g
2w )= 0 o

This is an application of operational rules as described in Appendix B.

The corresponding magnetic field is obtained by differentiation. Dif-
ferentiation of the Lipschitz-Hankel type ‘integral with respect to its
parameters @, b or ¢ is again reduced to the same type of integral of
different m, n or I. All the necessary functions are given in Appendix
C. Formulas for the magnetic field are obtained from SASAI (1986a).
- In Fig. 18 are shown horizontal and vertical component changes
produced by horizontal magnetization (4X* and 4Z*) and those by vertical
magnetization (4X? and 4Z%) along the N-S meridian. Putting »=0.25
and H=15km, we computed field components for a=1 km and sensor height
—2=25m. Unit of the vertical axis is 8JW,. Numerals along the axis
are given in units of nT if we assume =2.0X10"*bar™", J=5.0 A/m and
- W,=10 bar (load by 100 m water depth) after DAVIS (1974). The 4Z*
and 4X? components become divergent at r=a for z=0. The peak values
at r=a are highly dependent on the ratio z/a for small z. At distances
several times as much as z from the edge, however, either 4Z* or 4X?
has nearly the same values for different values of z/a. In other words
the local edge effect rapidly diminishes as we leave the periphery of
the load.

Fig. 19 shows changes in the F component for W,=14 bars with the
magnetic dip I=55°, which are specified for the Talbingo reservoir case
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(A) XX (B) ZX
12.0 12.0
6.0 5.0 ,
I\
3.0 = 0.0 -
-6.0 -6.0
-12.0 -12.0
S-2 -1 o 1 2N S-2 -1 8 1 2N
X/ A X/A
(C) XZ I (DY 727
12.0 12.9
6.0
6.0 \
0.0 | B 0.0 |
6.0 . -6.0
-12.0 —12.0
S-2 -1 9 1 2N S-2 -1 8 1 2N
: X/ A X/ A

Fig. 18. Magnetic field elements due to a uniform circular‘load along a line passing
through the center from magnetic North to South: (A) 4X*®, (B) 4Z=,(C) 4X* and (D) 4Z¢
component.

by DAvis (1974). These are reasonably expected from the schematic
illustration in Fig. 17. Although the shape of the load is different,
numerieal values are in good agreement with Davis’ result for a square-
shaped lake. According to these model studies, we are obliged to assume
BJ=0.1nT/bar in order to attain several nT changes against 10 bars load.
This parameter is an order of magnitude larger than the ordinary one
BJ=0.01nT/bar (e.g. F=1.0x10"*bar~!, J=1.0 A/m).

DAviS and STACEY (1972) detected an average local change in the
geomagnetic total intensity of 5.3 nT in the vicinity of Talbingo reservoir,
coinciding with the filling of the lake. DAVIS (1974) assumed an intense
magnetization of 5 A/m at depth beneath the Talbingo reservoir, based
on geological evidence. Recently ZHAN (1989) compiled observations of
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Fig. 19. The total intensity anomaly caused by a
uniform cirecular load. Unit in nT. The thick centered
circle indicates the location of the load.

the dam magnetic effect. According to his collected examples, the geo-
magnetic change rate against water level ranges from 0.025 to 0.28 nT/m.
The Talbingo reservoir case gives the smallest value for the change rate.
Then a question arises: Are all the reservoirs in the world located on
an intense magnetization of 5 A/m or much more?

HAMANO (1983) conducted uniaxial compression experiments on natural
remanent magnetization (NRM) of various rocks. He found that some
porous rocks show several tec more than 10% decrease in the NRM under
the pressure of 100 bars. Some samples exhibited irreversible changes,
though. Stress sensitivity of susceptibility was also measured for the
same rocks by HAMANO et al. (1989). The susceptibility changes were
in most cases reversible. They found that some mechanically weak rocks
such as tuff have stress sensitivity of 1.0xX10*bar~'. HAMANO (1983)
concluded that the stress sensitivity increases with porosity due to stress
intensification multiplying local stress within the sample. Then we may
naturally presume that the same condition holds as a whole in the upper
crust: the in situ stress sensitivity of the upper crust might be on the
order of 10~°bar~. Further investigation of the dam magnetic effect is
needed to verify such a presumption. The formulas (4.38) through (4.40)
can be a powerful tool for calculating piezomagnetic changes due to
surface load with any shape of the actual reservoir.
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Chapter 5. Dislocation Source Problems

In this chapter, we will systematically develop a method of calculat-
ing piezomagnetic changes accompanying dislecation models. The mathe-
matical treatment is quite similar to that in the previous chapter. When
the dislocation, i.e. the discontinuity in the displacement, exists along a
surface in a homogeneous and isotropic semi-infinite medium, its elastic
field can be given by the Volterra formula (STEKETEE, 1958a, b; MARU-
YAMA, 1964). This formula consists of an integral of certain strain nuclei
over the dislocation surface: the nuclei are called elementary dislocations.
Now we consider the piezomagnetic potentials produced by elementary
dislocations. We call them the elementary piezomagnetic potentials. It
is shown that the piezomagnetic change associated with any dislocation
model can be obtained by integrating elementary piezomagnetic potentials
over the dislocation surface with weight of displacement discontinuity.
We call this equation Volterra’s formula for a piezomagnetic field.

In evaluating elementary piezomagnetic potentials, we follow here a
modified version of SASAT’s (1980) method. The volumetric integrals in
SASAI (1980) are converted into surface integrals by virtue of the repre-
sentation theorem. However, operational calculus based on the Fourier
transform will be extensively used as before. It is convenient to deal
with convolution integrals of complicated secondary terms arising from
the traction-free boundary conditions. The only difference from SASAI
(1980) is that we seek to obtain a type II sclution around a point dislo-
cation. The shape of the closed surface surrounding the source point is
assumed to be a thin disk. Unlike the single forece problems described
in Chapter 4, we are required to correct some previous results (SASAI,
1980). Although the corrections are simple, they seriously affect overall
features of piezomagnetic changes due to dislocation sources.

One important application is the multiple tension-crack model. SASAI
(1986b) extended HAGIWARA’s (1977b) multiple Mogi model. The multiple
tension-crack model is the Gaussian distribution of a number of small
tensile cracks in an elastic half-space: formulas for surface displacement,
gravity and magnetic change are presented (SAsSAI, 1986b; 1988). In the
formulation, we need Fourier transforms of elementary piezomagnetic
potentials, which is another reason why we follow the Fourier transform
method.

Finally, we consider a vertical rectangular fault. Both strike-slip
and tensile faulting are considered. The piezomagnetic field associated
with such a fault, or the seismomagnetic effect, can be obtained by in-
tegrating elementary piezomagnetic potentials over the fault. Formulas
based on type I solutions have already been given by SASAI (1980) and
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SASAI (1984); they are corrected here according to a new version of the
elementary piezomagnetic potentials.

5.1 Volterra’s Formula for the Piezomagnetic Field

The elasticity theory of dislecations was originally introduced into
geophysics by STEKETEE (1958a, b). He developed a Green’s function
method to include the effect of a stress-free plane boundary, and formu-
lated displacement and stress field in a semi-infinite elastic medium. A
dislocation surface, across which the displacement discontinuity exists,
is equivalent to a distribution of strain nuclei. There are six sets of
such strain nuclei to discribe any type of dislocation. The analytical
expressions for all these Green’s functions were obtained by MARUYAMA
(1964). PRESS (1965) showed that we can derive the same results by
combining MINDLIN and CHENG’s (1950) solutions for various strain nuclei
in the semi-infinite solid.

We take Cartesian coordinates (x,, %, x;) as before; the =z, axis is
positive downward. A semi-infinite elastic medium occupies x;>0. It is
also assumed that the top layer from the plane surface boundary z,=0
to the Curie depth x,=H is uniformly magnetized, the stress sens1t1v1ty
B being constant within the layer.

Let us consider a dislocation surface Y in the semi-infinite elastic
medium. A Somigliana dislocation is defined as a discontinuity in displa-
cements across the surface X, AJu,=u,*—u,~, which may have any form
as long as the tractions to maintain the dislocation satisfy continuity
conditions across X: 7n,*v;—7, v,=0. A point on the dislocation surface
is designated by &(£, &, &). The displacement field produced by the
dislocation 4u,(&) at an arbitrary point x(x,, ®,, ;) in the elastlc medium
can be given by the following Volterra’s formula: :

w()=(| s T wuigazie) (5.1)

k, 1=1, 2, 8. n=wx, Yy, 2

where y,(€) denotes the I-th component of a unit vector outward normal
to the surface element dX. Einstein’s summation convention applies
with respect to k¥ and I. The third rank tensor T, indicates the n-th
component of displacement at x produced by a certain strain nucleus at
&, which is called an elementary dislocation. Suffixes k¥ and [ specify
the type and orientation of the elementary dislocation. Strain nuclei
with k=1 represent relative movement normal to the dislocation surface
3, while those with k=4[ describe parallel ones along 3. STEKETEE (1958b)
called the former A nuclei and the latter B nuclei. They can be ex-
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pressed by combinations of double forces as shown schematically in Fig.
20.

3 3 3
2 ™ 2
|/
1/ 1
11 3'3
3 3
l 2 2
1 1
23 31 12

Fig. 20. A schematic representation of elementary dislocations (after MARUYAMA,
1964). The A nuclei, (11), (22) and (33), correspond to the crack-forming movement, re-
presented by the center of dilatation (circle) and the double force without moment (arrows).
The B nuclei, (23), (81) and (12), can describe the shearing offset of the dislocation surface,
represented by two co-planar, mutually perpendicular double forces with moment.

We are now to obtain the piezomagnetic potential due to the displa-
cement field given by eq. (5.1). Substituting eq. (5.1) into eq. (2.58) we
obtain the stress-induced magnetization:

A () =C,[ Au(@)Sum(8, xpg)d 52
where |
mn_§ aTklm aTkln —_ i
Skl — 2 < ax_._n +__—6xm > Oumn div Tu (53)

The piezomagnetic potential is given by the dipole law of force:
W’”(r)-—-” AM™(z).V <-1—>da; (5.4)
v P

where p=|x—r|. Substituting eq. (5.2) into eq. (5.4) and interchanging
the order of intergrations with respect to x and & we obtain the follow-
ing formula.
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W)= [ suierwie, nuigazie) (5:5)

where

W (&, r)= C’”SHV Su™ -V<%> do (5.6)

S.™ is the stress-induced magnetization vector, the n-th component of
which is defined by eq. (5.3). Since eq. (5.5) has the same form as eq.
(5.1), we may call it Volterra’s formula for the piezomagnetic potential.
Eq. (56.5) was first derived by SASAI (1980). wy™ is the piezomagnetic
potential produced by a point dislocation of the type (kl). We may call
it the elementary piezomagnetic potential.

In deriving eq. (5.5) from eq. (5.4), we define the integration area
as shown in Fig. 21. It is a magnetized region surrcunded by the free
surface x,=0, the Curie point isotherm z,=H and a thin closed surface
S’ including the dislocation surface Y in it. Within this volume, the
order of integration is allowed to interchange, because all the singular
points are excluded. The formula (5.5) is obtained in the limit as the
closed surface S’ approaches the dislocation surface 2. Hence we should
choose an appropriate shape of the closed surface in evaluating the type
II solution for the elementary piezomagnetic potential. In other words,
the orientation of the dislocation surface should be properly taken into
account.

H

Fig. 21, The integration area for the piezomagnetic
caleulation of dislocation problems.

5.2 Elementary Piezomagnetic Potentials

Let us consider the piezomagnetic potential produced by a point
dislocation. The situation is very similar to the case when we obtained
the fundamental piezomagnetic potentials in the previous chapter. How-
ever, we must be careful about the shape of the “point” dislocation
source in evaluating the type II solution. Recently, this problem was
discussed by OxuUBO (1991), who formulated gravity change due to dislo-




Tectonomagnetic Modeling Based on Linear Piezomagnetism 663

cation sources. He pointed out that the infinitesimal volume surrounding
a point dislocation should have surfaces parallel to the (infinitesimal)
dislocation surface. According to his arguments, we should adopt a small
circular disk rather than a sphere.

This is because even the “point” dislocation is also defined as the
displacement discontinuity across an infinitesimal plane surface. We
specify the orientation of the disk parallel to the dislocation plane. We
first pass a limit by decreasing the thickness of the disk 2, indefinitely
and then letting the radius e, approach zero. Surface potential arising
from the cylindrical side of the disk should vanish when ¢, diminishes.
This is actually true, as will be proved later in this section. The con-
tributions from the circular surfaces of the disk remain finite as the
radius decreases. Thus we can construct the closed surface S’ envelop-
ing Y with such disks distributed along 3.

SASAT (1980) obtained type I solutions for elementary piezomagnetic
potentials. To convert those to type II ones, we should add the contri-
bution from the K’ region for the case of the Mogi meodel as depicted
in Fig. 16. The K’ region is defined as an infinite horizontal plate of
thickness 2¢ from which a disk-shaped area including the small disloca-
tion surface is excavated. The disk lies horizontally for elementary dis-
locations of type (kl)=33, 13 and 23, vertically for those of type (kl)=
11, 22, 21, 12, 31 and 32, depending on the orientation of the 1nﬁn1tes1mal
dislocation surface (see Fig. 20 and Fig. 22).

0

H

Fig. 22. The K’ region (hatched) defined for strain nuelei (k1)=33, 13, 23 (left) and
(Bl)=11, 22, 12 (right) respectively. The small rectangle indicates the cross section of a
disk including the point dislocation.

We assume that the elementary dislocation is located at (0, 0, &,).
Replacing » and y with (x—¢&;) and (y—§&,) in the final expressions, we
can arrive at corresponding results for any arbitrary point &(&, &, &).
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Now we apply the representation theorem (2.52) to obtain the type II
solutions of the elementary piezomagnetic potentials. Each potential for
the particular type of strain nucleus (kl) consists of three parts: i.e.

w“m: wklm(O) + wklm(H) + wklm(K) (5.7)

wy™® and w,™* are contributions from the free surface (0) and the
Curie surface (H) respectively. w,™® arises from the surfaces of the
disk, where the outward normal is defined toward the inside. This term
vanishes if the point dislocation lies beneath the Curie depth (&§,<H).

First we seek to obtain w,™*®”s. Taking a horizontal plane x;=H
as the surface S and putting the direction of outward normal n=e,, we
can represent the surface potential as follows:

W™ H _—_:Cmggm [Sktm —1~+Dkz(m) —H—_sz—] dx,dax, (5"8)
—oo [OH 10H (wg=H)

where

oT,™ 20 [ /0Tu™ | 0TW"
S mn— —9dm {_( 2] ki >_5M”V.T } 5.9
" 0%, +4a—1 2\ oz, + 0%,, " (6.92)

D™ =Ty" (5.9b)

and pg=+(x—x.) + (¥ —,)*+ (2—H)®. S, is the n-th component of the
vector S,™, while T, the m-th component of the displacement due to
a strain nucleus of the type (k). According to MARUYAMA (1964), the
displacement field T,, is derived from a Galerkin vector I7,, as

T.=(V*—agrad div) "}, (5.10a)
where
Lu=w I Ty 40, 0, Ty) (5.10b)

and a=(A+p)/(24-2¢). The first term on the right hand side of eq.
(5.10b) represents the effect of strain nuclei at (0, 0, &) and at its mirror
image (0, 0, —&;), while the second term, the Boussinesq sclution, cancels
the resultant normal force due to the first term.

By taking Fourier transforms of both sides of eq. (5.8), we have

w0t =2 Cyf Syt €5 — Dymite) (5.11)

where {=H—z. All the Fourier transforms S,™*s and D, ‘™*s are
calculated systematically by the method developed in Appendix B. Such
calculations are briefly described in Appendix D1. The inverse Fourier
transformation of eq. (5.11) leads us to w,™*’s, which are expressed with
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elementary functions.
Obviously, wy™® is defined by

W™ O = — gy, ™ HE=0 (5.12)

wy™®’s thus obtained are listed in Appendix D2.

Finally we will obtain w,®. The displacement field due to a point
dislocation can be divided inte two constituents: i.e. u4 arising from
the source point and »® from the traction-free boundary conditions.
Since #® is regular at (0, 0, &), the contribution from this component
vanishes through limiting operations as the K region becomes smaller.
Thus we have only to take into account »“. The displacement com-
ponents due to a point dislocation of the type (kl) in an infinite medium,
or ), are given as follows (MARUYAMA, 1964):

1 r r P rerr
T m=_{ 1— <5t m4 gy, T ) 3o TH1 m} 5.13
kl in ( 0() 3 R13 + O R13 + 0, Rla + 3a R15 ( )

where

Ri=~'2 + 27+ (25— &5)* (5.14a)
=2 —& (5.14b)

and &=§&,=0, &+0 in this case. We find that all the strain nuclei in
infinite medium are axially symmetric with respect to their normal axes
to the dislocation surface. By symmetry considerations, we can easily
obtain w,"®’s and w,™*"s, once we know w;"*®’s. Similarly, w,"%’s
and w,"*’s are obtained if w,™*®’s are known.

We consider a disk of radius ¢, and thickness 2¢, as shown in Fig.
23. The circular surfaces of the disk are parallel to an infinitesimal
dislocation surface, which is included within the disk. We ecalculate
potentials arising from surfaces of the disk for strain nuclei of the type
(kl)=(33), and (kl)=(13). The latter is equivalent to that of (kl)=(31).
We take the cylindrical coordinates (r, 6, 2) whose origin is at the source
point (0, 0, &) and whose polar axis is the x, axis, positive downward.
The moving point P(x;, %, x;) on the disk and the observation point
Q(x0, Yo, 2,) are expressed by the new coordinates as

2, =7 cos 8, 2,=78in 0, Xy=2

Lo="7, COS O, Yo=17, 8in ,, 2y=2,

We specify the bottom surface of the disk with B—|~,m the top surface
with B- and the cylindrical side with C respectively. See Fig. 23. wy™®
consists of three parts:
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Fig. 23. A closeup of the disk enveloping the point
dislocation of the type (kl)=33, 13, 23. A small dis-
location surface lies horizontally at the center (0, 0, &s)
within the disk.

Ky __ B B— c
wssm( )_w83M§ +)_|_w33m( )-[-(033"”( )

(5.15)

Let us calculate wy"® as an example. Potentials from three surfaces

B., B_ and C are given by

iﬂ.‘(c)samu'“) = Ser’r‘d’r [ S+ (r)rwﬂs.i de +C+D+(7')Sh cos d dﬁ]
C. : o e

4r w%w(s—):j‘rqﬂdr[s_(msz" cos 6 d@-l—C"D'(T)S% cos 0 lﬂ]
C, 0 o p_ 0 p_3
%Em3;<c> _ S dz e,[ S¢(z) S:”C%S’?de
3 2 c
+D°(z){ c, r" cossﬁ dﬁ—’f'or” cos 0 0033(0—00) dﬂ}]
o Pc ¢ Pc

where

S*(r)=—3 (1—a)(1—2a) R 1+2a &'
fa=1  (Pted® da—1 (Pl

D+ = —(1— r 3 &
(/r) ( a) (T2+8z2)3’2 + a (7.2+sz2)5[2

S-(r)=S8*(r)
D-(r)=—D*() |
o= lt6a)l=a) 1 p(l-a)it2e) &

4a—1 @+e )~ da—1 (22 + e, 2

(5.16a)

(5.16b)

(5.16¢)

(5.17a)

(5.17b)

(5.17c)
(5.17d)
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3a(2a—5) 2! 15a(1+2a)  &,%?

T ha—T Fte i da—1 (@tel)” (6.17e)

T &, &2k
Dee)== (L) o Ba o (5.17%)

and

0+= V12 =217, cos(0—6,) + 1,2+ (€, Cr=&—2z,te, (5.18a)
0_=N1"=2rr,c08(0 —0,) +12+ (C)? ( =6&—z,—¢, (5.18hb)
pc=~"e2—2¢,1, COS(0 — b)) + 15+ (E;—2,+2)° (5.18¢)

Integrals with respect to 6 can be reduced to the Lipschitz-Hankel
type ones. Referring to Appendix C, we have the following series ex-
pansions for small values of 7 and/or z.

j cos d8=2 cos 6, O,=r cos b, W" {1+0(")} (5.19a)
0 P 2y
S” €059 49 —2 cos 0, Bu=37 cos -2 {1+0(r)} (5.19D)
o
j cosada 2 cos 0, @y=1 cos 0, {1—3_01_§+---} (5.19¢)
{Ol 01
S €050 19— cos 0, B,= 57 cos 0, "o [1-5% 4. } (5.19d)
,01 ;01
rfc cosecos 0—6,) d0=cos 0, (Dy+Dy) = T €08 00{1 3012+ }(5.19e)
;01 ,01
where
PIZW/T02+012, 6=85—2, (5.191)

Since the infinite series in egs. (5.19) are uniformly convergent, we may
substitute them into egs. (5.16) and integrate by terms with respect to
r or z. However, we may neglect the effect of higher order terms of
r and 2, because they ultimately vanish as we approach a limit by de-
creasing ¢, and e,.

Thus we obtain the following:

4_75%3““):”[{_3 (1—a)(1—2a) , g . 15a(l+2e) ang} )
. 1

~z

C, 4a—1 da—1
+3{— (1- ) Kot Bae? K} ] (5.20)
‘01 . H



4—71.(033“3—): 77[{—3——*(1_“)(1_20() 8,K2+ 15&(1+2a) stKs} 90(;

|
1
|
|
1
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C, 4a—1 4a—1 01
+3{(1—a)Kl—3aezzK2} il ] (5.20D)
o
42 g (A1) e g U=lLe20) o
3a(2a—5) 3¢ 15a(1+2a) g\ %
+ 4a — 1 e’r G+ 4a — 1 & 7} p13
+ {—3(1—a)s,3K4+9aer3K6} w05 —l—{(l—a)eﬁK,;—Saest} x"s
O 01
+1_55:{(1—a)K4—3aK6}M] (5.20¢)
8 o
where ‘
_ e rdr e 42e7
K= 5 e 2, (5.21a)
o rdr e (e42/8e7) 2
ime ) e T e (5.21b)
eik=ed| T 1 et g1 el 2 (591

o e B e tel® B lei e 15

ST VS Bus

o de  _ 2, 2 g’ (5.21e)

o (e Weite? B (e +e)R

(5.21%)

‘2 22dz
-, (zz+€rz)7/2

2 gl 2 el
= E (e24¢e7)" —E (e tel) (5.21¢)

S
J
eReme|” B P 3, (5.214)
|
J
5

According to egs. (5.21), we find that the limit values are different
depending on whether ¢, or ¢, is first decreased. This implies that the
solutions depend on the shape or aspect ratio of the closed surface sur-
rounding the point dislocation. As we have discussed in the beginning
of this section, we first decrease the thickness of the disk to zero (¢,—0)
and then shrink the area of the disk (¢,—0). We denote such a limit-
ing operation by (¢,—0, ¢,—0). Then we obtain the final results as follows:
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47 . - @
Way® B = l:m \ {05 1) 4 g™ @ '@ V=4 (5.22a)
» (sz—> 58 ) pl

Similarly we have

<K>=Cﬂ% (5.22b)

1

Wyt ®) = C, 61 (5.22¢)
o

Similarly deriving egs. (5.22) from eqs. (5.16) leads us to wy,™*’s:

wgf“‘)zcga% (5.23a)
1
Wy ® =0 (5.23b)
Cwyr®=—C, % (5.23¢)
101

We notice that w,,"®’s vanish by first setting ¢, equal to zero (see eqs.
(5.21d) through (5.21g)). wy™® and w,™® are elementary piezomagnetic
potentials due to the A and B nuclei respectively. By symmetry con-
siderations, other w,"*’s are easily obtained; they are summarized in
Appendix D3.

Finally we can construct type II solutions for elementary piezoma-
gnetic potentials via eq. (5.7). They are given as follows:

(kl=11)

2 ., 3a z T 12z, 1 xBy—2")(Bo+c) T
Ewu =_4a—1[_F]3 —(Z—Q)[ +7f ( ypg(p—lz(c)f )]s
2a(1—a) 53[_ 3v(2ote) 207 3x*(20+¢) ]l
do—1 lotef — plote)  olote) b
_ 18a? H {_3x(2p3+03) n 20° 3m3(2p3+03)}
4a—1 1033(403+ Cs)? Pas(‘% +¢)° ;035(;03 +c5)°

+

12a(1—2a) %(205+ ¢s) 2ay* 3xy* (2054 cs)
+ H{— + +
4a—1 { 04 (ps+c35)? .033(;03 +cs)° 1035 (Ps + 03)2 }
12a° 1523
——= _H:
Tda—1 Es{ :03+P3}
20(1—a) gl _ 3%(201+c) 22° 32?20, + cl)}
- - + H<53
da—1 { of(ote)  pllote)  pf(oitc) ( )

+ 3 [_pia];_l_ 4a(1+2a){__gc_}

4da—1 da—1 o0d
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[__1_ x 1 x@y—a")(Bp+c) ]1
4 0 4 p'(o+c)’ 2
{_ 32(20,+¢) n 22 n 32} (20, + cl)}
pflote)  pflote)  pflotel)
6a’ 3x(20,4¢s) 22° 32°(20.+C5)
- H- - + H>¢
4a—1 (H—) { poatc)t oot (0o } ( !

(5.24a)

—2—w11”= 2(1—2a)(1—a) [_

C, 4a—1
2 2 1
9_ [___y_ Yy (3 —y)(310+0)]
+(2—a) 10 + Floto) .
2a 1—a) [ Y(20+¢) 20%y 32*y(20+c) ]1
da—1 plote)  plote)  ploto) b
18a* (2,03 +¢,) 202y 32%y (2054 ¢s)
— H: — + +
da—1 { pf(os e p(ost o) 05 (05t Cs)* }
12a(1—2a) ¢ { _By@ote) 200 | 3Y2ot 03)}
da—1 05 (0s+C4)° (st 0s)° 505+ Cs)?
12a7 3y |, 152%y
He, | —2Y
+4oz—1 53{ p35+ 05 }
2a(1—a) H y(20,+¢) 2™y 3x*y (20t ¢,
- - + +
4a—1 { 1013(;01 + 01)2 .013(,01+ 01)3 ‘015 (o1t 01)2 }
+ (H<&)
_ 2a(1+2a) [ _ _y_] _8a(1-a) {_ y }
4a—1 0 4a—1 05
1y, 1y 9Bt
+“[ 1o 1 (p+c)3 ]z
_ 2a(l—a) , {_ Y(20,+¢1) 2x%y 4 3x*y(20.+¢1) }
da—1 pllote)  pl(oto)? (o1t ¢)’
6o Y(20:+Cs) 20"y 32y (205 +02)
— H—- - + +
da—1 ( ) { pl(etco) 0 (0t Ca) 0 (02t Ca)? }
(H>&,)
(5.24b)

I

u>|r—a BAS

+

2y L2 2tal] 1 _ 220+ ]
c, 4a—1 olo+ec)  plo+e) s
+ 2(1—2a0)1—a)[ ¢ ] Zoz 1—a) [_}__ 3 ]‘
- 4a—1 Lo da—1 0
1842 H{ 1 _390} 12a(1—2a) {

da—1" Lp# o7 - da—1

)

+
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1207 3¢,  15ca?

—_ H { 3 _ . 3
do— o5 o5 }
(_ 2a(1—a)H{ 1 3902}

da—1 ot pf

stssafe] w3}
oz(2a—5)[ : 1 2*20+¢) ]1

"~ da—1 Lp(ote) Plotor
_ 2a(l—a) { 1 _i")ﬁz} 6a’

(H<E,)

1 3
— H-g——"% (H
da—1 °° o 5 +4a’—1( 53){‘023 p25} (H>&)
(5.24c)
(kl=22)
Way" (%, y):wuy(y, 90) (5-253)
W' (%, Y)=wi’ (Y, x) (5.25b)
We' (X, Y)=wu*(y, @) (5.25¢)
(k1=383)
2 . [_a]_2a(1—a).[_ 3ex |
C,wm _a[ p3]8 4da—1 53[ 0° ]3
6a* 3eqx 1207 3x  15¢ix
_ H!— gl He. l2% 3
da—1 { ,035} 4a—1 83{[035 05 }
4a—1 { pf} (H<&)
..|_
_J_a  2a(l—a), [ 3ex
0([ p3]2+ da—1 53{ {015}
6a’ 3eqw 5
o (H=g) - = I (H>6) (5.26a)
w33y(w9 ?/)='w33w(?/, x) (5.26b)
2 __al+2a)f c|_ 2e(l—q) ~1 3¢
Czw%— 4a—1 lp"']s da—1 83[ + ]s
6a’ _ 1, 3¢ 120" 4 _963 15¢*
+4a—1H{ ,03+ o5 }+4a 1 { p5+ ,037}
2a(l—a) H 3¢, H
4da—1 { of o 1} (H<&)

= PIT TS S

01 01
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~ S ) LB g

4&—1 02 12
(5.26¢)
(kl=23)
2 . %al—a)] _ wy@oto)T, 2e(l—a) ] Sy
awm— 4a—1 [ o*lo+c) ]3+ 4a—1 Ea[ p ]8

6o’ 3xy 1247 H 15¢2y
4a—1H{ }+ 4a—1 5‘”’{ P }
 %a(l—a) . 3xy He

- H{ pf} (H<&)
+ B 2a(1—a)[_ 2y (20+¢) ]1_ 2a(1—a) sg{— Sxy}
L da—1 olp+ce)} b da—1 N
6a’ 3xy
- 0> (5.27a)
et (H>¢)
2 4__ 8a [c¢T, 2a(l—a) 1 _ 9@t ]
¢, 4a—1[p3]+ da—1 [ olo+o)  oloter L
2a(l—a)

o1 &[ ]

_ 6a’ 1 3y 12« 3c;  16csy*
40(——1H{p3 05 }+4a-— Ea{ PX }
_Za(l—a)g (1 3 He

o {pf pf} (H<&)

+ 1

43“ 1 [ . ]2 2221:10:)[ (pl—i—c) —yzs((i%——l_c—)cz)]:

2l (1 ’3y}+ 6 (-e){ L3} (>

da—1 o da—1 0 P2
(5.27b)
nimme| 4]t -22]
B 426121H {— 3csy}+ 4fa 1 %H{ ig B 15;:7@}
wooalw) e
+

o[ -pl e e

6a’ - 3ey 597
o (=g - (H>8) (527
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(kl=31)
Wa (@, Y)=wu'"(y, %) (5.28a)
Wy"(, Y)=wy"(y, ) (5.28Db)
w3lz(xv ?/):’wzsz(’!/, x) (5.280)
(kl=12)
2, .__ 3a [__g]l 9_ [_ll 1 y(Bx*—9")(8o+c) ]1
c.e 4a—1L ols +2-a) 4 ,03+ 4 o*(o+c)® s

3

n 20(1—a) e [_ Y(20+c) 22y 32y (20+c) ]1
4a—1 Plo+e)f  pot+e)  plote)
— 6a(2—a)H _ Y(205+05) 22y + 32’y (205t ¢s) }

da—1 { o' (ostca) 505 +cy)° 05’ (s +¢5)° .
1247 3y , 1bz%
H &l —== Z
+ da—1 58{ 0 + 05 }
2a(1—a) ;[ _ y(20;+c1) 227y 32"y (20, +c1)
- + - H<§
da—1 { pf(ote)  pflote) ol(o+e) } HH<G
+ Sa [_yT 4 ba [y }
da—1L Gl 4a—1 07

_ 1y 1 yB2>—9)(Bo+e) T
po| e Y
_20(1—a) 83{_ Y(20,+¢;) 2%y 32’y (20, +¢) }
4a—1 o’ (o +cr)? o (p+c,)? o (o1+c.)?
6o’ Y(205+¢5) 22y 32’y (20,+c,)
- H-&){— + et
da—1 =4 { 0Pt ploate.)® oo (oatc)? }
(H>&) (5.29a)

W' (T, Y)=ws"(Y, ) (5.29Db)
2, :_2a—1)(a+2)[ _2y2o+c) T, 2a(l—a) [ _ Bxy T
a‘wlz— da—1 [ P (o+c)? ]s+ da—1 83[ 0 ]s
6a(2—a) 7 Bxy)| 1247 H: __ 1bcgy
) H{ p;} 4a—1 53{ PX }
(_2a(l1—a) [  3Bxy H
e H -2 (H<&)
+ _a2a—5) _wxy(20+c) ]‘_‘Za(l—a) Ss{— 3ocy}
da—1 L ploter k  da—1 o
b’ (p_g){_3%Y H>¢, 5.29
g e {2 (H>8) (5.29¢)
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Lflo, o)i=foi ¢:)—Flo5 c)

and ‘ .
P1:’\/$2+y2+012, ci=E&—2
o=Vt +e,  ¢,=2H—&—2

o=Vt red,  6=2H+E&—2

which already appeared in eqs. (4.37).
On the other handf we can construct type I solutions of elementary
piezomagnetic potentials by combining w,,™#’s as follows:

WP =wy™ O +wy ™" +wy "
in which :
wklm(P):Hm {wklm(l{zgs—s) _wklm(li=§3+s)}

g0

This procedure is the same as that by which we obtained the type I
solution for the Mogi model in Chapter 3. Actually, results thus obtained
were compared with those given by SAsAl (1980), which confirmed the
the validity of previous calculations.

Now we find that type I and type II solutlons are identical for
strain nueclei of (kl)=(33), (23) and (31). However, those for (kl)=(11),
(22) and (12) are different.’ All the terms arising from w,™™’s remain
unchanged even for these incosistent solutions, but they can preduce
only a weak magnetic field on the earth. On the contrary, the corrected
terms are equivalent dipoles at a position of point dislocation, and make
important contribution.

wy™® indicates the equivalent dipole bearing the seismomagnetic
moment as has been discussed in Chapter 2. Comparing Appendices D2
and D3, we notice that w,"® almost, or in some cases completely, cancels
wy™%. This implies that the concept of the seismomagnetic moment
does not work well in such a simple homogeneous earth model. In the
case of particular kinds of dislocations, i.e. (kl)=(33), (23) and (31), mag-
netic source equivalents do not appear at the fault position, but only at
mirror points far deeper below the Curie point isotherm. Even in the
case of the nuclei (kl)=(11), (22) and (12), the intensity of source equi-
valents is different from that expected from the seismomagnetic moment.
We will briefly discuss in section 5.4 what kind of fault motion can
produce surface magnetic changes effectively.

5.3 Multiple Tension-Crack Model

A multiple tension-crack model was proposed by SASAI (1986b) as
an extended version of HAGIWARA’s (1977b) multiple Mogi model. The
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Fig. 24. A schematic view of the multiple tension-
erack model.

multiple tension-crack model can explain surface deformations and related
gravity and magnetic changes accompanying the injection of fluid mate-
rials such as magma, voleanic gas and pressurized water into a shallow
portion of the earth’s crust. In evaluating piezomagnetic changes, SASAI
(1986b) used the type I solutions. Moreover, some results on the gravity
changes should be reexamined, according to OKUBO (1991). All these
corrections will be completed elsewhere. In this section, we will present
the basic concept of the model, and will derive the magnetic change
associated with the multiple Mogi model.

Suppose there is a Gaussian distribution of microcracks centered at
(0, 0, D) (see Fig. 24). We assume that the variance ¢, in the horizontal
distribution is isotropic and the vertical variance ¢, differs from ¢
The distribution function is given by ‘

_ 1 _ P+ , :
p(@, ¥)= S exp( 5 2 ) : (5.39a)
_1 _(D—zp
dle)=— e { =4 (5.30b)

Quantities related to the mechanical distortion are given by the
displacement field itself due to appropriate strain nuelei and/or its deriv-
atives. Let us assume such an influence function f(z, ¥, 2, 2’), which
represents the effect of a single crack placed at (0, 0, 2/). The total
effect of cracks under the distribution (5.30) is given by

|
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9(, v, z)_—_r Q@) Flx, y, 2, 2)de (5.31)

0

where

o
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©

Flz, v, 2, z’):ﬁ flo—d!, y—y, 2, 2)p(, ¥)do'dy  (5.32)
The convolution integral (5.32) can be evaluated by the Fourier transform
method.

Let us first derive an expression for the surface uplift due to the
multiple Mogi model. It forms a prototype for obtaining all the other
formulas. We already have the displacement field associated with the
Mogi model. When a small sphere at (x/, ¥/, 2/) expands hydrostatically,
the uplift 4h, at a surface point (z, ¥, 0) is given by

A+2p 2
hy(x, y)= ——2T2 _a34p . 5.33
A p(x y) 2{,{(2“"#)“ A {(x_w/)2+(y_yl)2+z/2}3l2 ( )

Substituting eq. (5.88) into f in eq. (5.32), we obtain the resultant uplift
4H,, (%, y) as follows:

L 2+2% (T, N gt
AHy(z, y)=——2"22 _a*4P 2V\F(x, ¥, 2))dz 5.34
ol 9)= =g PP [ g, v, 2) (534)
where
=) 4
F(=, ,'=“ £ ' y)de'dy  (5.35
(=, v, #) I e p(@ y)dx'dy’  (5.35)
Since
* 1 Y E
p* (b, ) = exp< Lo ) (5.368)
A+2r et
Ah ¥k, k)= —-2L120 AP et 5.36b
(ky, k) Slit g ( )
we obtain
- 2+2ﬂ 3 3- I\ p—kz’ 2102 4
Hy*t(ky, ky)=—-2"°2 ¢ ,
4 00 ( 1 2) 2#(24- ) a’4P q(z) exp( —0 k>dz
— 2+2‘L¢ SAP kz @ D+0'z
20(A+1) eXp{ } ( V2. >
(5.87)
@(x) is defined as
) -;—erfc(ac) (>0)
oo 2 _
O(x )2_«/_5 et di= (5.38)

%{1+erf(lwl) (2<0)

in which erf(x) and erfc(z) are Gauss’ error and complementary error
functions.
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The inverse Fourier transform of eq. (5.37) gives rise to

Amo(r>=j:° AH ()Tl (5.39)

Ah,y, the value of 4H, at r=0, gives the maximum uplift:

A+2n
hy=—="12C g*4Ph .
Ahy, 2{1(2+ﬂ)a’A 00 (540)
where
o R - 2
ho= | exp{—Lios =)kt Jero ¢(_%'%£)kdk (5.41)

he is a constant peculiar to the model specified by parameters {o,, ¢,, D}.

All the distortion-related quantities are proportional to the moment of

source spheres, i.e. —'zll'z—”—aMP in eq. (5.40). This parameter is not,
2p(2+ 1)

however, observable. Instead we may give the maximum uplift 4k, as a

measure of the moment intensity. Eq. (5.39) is rewritten as

AH,(x, y):f’hﬁ&f Q. (k)e="2 (e ek (5.42)
where
Q.(k) :exp{—% (02— 2kt }_q) (“_3%&) (5.43)

Eq. (5.42) is the rigorous solution for the surface uplift caused by
the multiple Mogi model. HAGIWARA (1977b) gave merely an approxi-
mate solution for the uplift, which was expressed with elementary func-
tions. It is valid only in a limited case D»¢,>0,. The present solution
(5.42) is no longer expressible with elementary functions. The error and
Bessel functions are originally defined in integral forms. In other words,
eq. (5.42) is a formal reduction to a one dimensional integral from the
volumetric one in eq. (5.34). We have, however, useful mini-max appro-
ximation formulas for error and Bessel functions (e.g. HASTING, 1955) to
compute numerical values with sufficient acecuracy and speed. The double
exponential formula (TAKAHASI and MoRI, 1974) is again applied to nu-
merically integrate eq. (5.42).

The horizontal displacements in the x and y directions are obtained
in a similar manner as follows:

AX (2, y):‘}’b_’%ﬁr Quie)e- T (ko) ed ke (5.44a)
00 T JO



678 ) : ) Y. SAsAr

A ula, 4) =40 L[ Qi )k (5.44D)
By 7 Jo .

The gravity change is simply proportional to the uplift at the observa-

tion site, which is given by

_ 22Gpo(A+p)
5 00—\ e —— Mo o
G { AR p }A (5.45)

where 7 is the free-air gravity change rate (y=0.3086 mgal/m), G the
gravitational constant and p, the material density filling the source
sphere. ‘

Now let us investigate the piezomagnetic change. We already have
a point source solution for the piezomagnetic change associated with the
Mogi model, i.e. eqgs. (3.55). We may use them as the influence functions
fin eq. (5.32). Exchanging x, %, and D for x—2a/, y—y' and 2/, we
rewrite W, and W, as w,” and w,". Fourier transforms of w,* and w,’
are given by

Weo™* - ik, key iy O(At 1) Hik, e *
O~ “marzn & T T e
At+p 1k, (e~kz1 3e—kz2) (H Y
- —e+1— >2')
+{ Ba+2¢ k (5.46a)
0 (H<?)
’LUoo"* — ﬂ (e—kzl___e—kzs) ——MH}{;@“"%
Co’ 32+2¢ 32+2u
— 2+ﬂ (e~kz1+3e—kzz) (H>z/)
+] 3a+2p : (5.46h)
0 (H<2")
where
Co =8, C SAH20 (5.47a)
A+p
2,=%'—2, 2,=2H—72'-—z, z3=2H+z’——z. (56.47b)

~ Combining egs. (5.46) with eq. (5.36a), integrating with repect to 2’
and conducting inverse Fourier transformation, we find piezomagnetic
potentials due to the multiple Mogi model as follows:

W[ Cu= — 2 j :’ Uut (e, 2) (k) ke dle (5.482)

Wt |Cof = r Uslle, 2)J,(er)le di (5.48b)
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where
ok, 2)= v 1 ) D, __ ,—kpy) _ B(A+ ) —1kDg
Uw’(k, 2) it 2n kQ(k) (e ) j3,2+2pHQ1(k)e
Atp 1 _ —kDy __ _ kD,
e =@t —@umne ™ —si@uii —Quiie |
(5.49a)
. _ )i —kDy __ p—kiDg 6(2+p) —1kDg
Uw'lk, 2)= 32+2MQ1U{$)(6 e )+———32+2ﬂHkQ1(k)e
_ Atp _ —iD; _ Qkpz
e [ (@i~ Quk) e+ 3@ — Qulle | (5.49b)
and
mk)=exp{——;-<af—of>k2}@<xn> . (5.50)
- —Dto’k  _ H—-D+o’k
2= Voo Xy= Voo, (6.51a)
__—D—0o’k , _H-D—0o’k
PLy= Voo Xy= Ve (5.51b)
Di=D—z, D,=2H—D—z, D;=2H+D-—z (6.51¢)

With the aid of the relationship (5.40), Cy™'s (m=2, 2) in eq. (5.47a) are
reduced to

C.m— g ©(82+2¢) Adh, \ ) 5.52)
® TCBJ A+2p broo - ' ( >

The magnetic field is given by differentiation of potentials (5.48).
We denote three components of the magnetic field in association with
J, and J, as (xz, ¥a 2z) and (xy, Yy, 2y) respectively. They are repre-
sented by

— * ' _ 2y _
xH—A+7(B—2A), yH"',rT(B_2A>’ z2p=Cx (5.58a)
Xy— Dm, yv_—_Dy, ZV——— ’_E \ ‘ - (5.531))
where ‘ C
Alr, z)erww(k, z):’@ Kedk (5.54a)
[}
B(r, z)zr Uk, 2o (kr)kedk (5.54b)
0 ~ S i

Clr, z)szmx(k, z)il(f_)mdgc (5.54c)
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Fig. 25. Results along the N-S meridian for the multiple Mogi model with D=1.0 km,
0,=0,=0.5km and 4hy=10cm. (A) Uplift, (B) Horizontal displacement, (C) Gravity change:
three curves indicate different kinds of crack-filling materials i.e. gas (G), water (W) and
magma (M), and (D) Magnetic total intensity.

Dir, z)=S:° Ui (k, z):’l(%lmk (5.54d)

E(r, z):SZOU.,o’(k, z) o (kr) ki dk (b.54e)
Some of eqs. (5.58) and eqs. (5.54) look apparently indefinite at r=0.
Taking into account the characteristics of Bessel functions

lim Jl(kr)/ﬁr':-;— k,

r—0

lirrol Jo(kr)=1,

we find that all of them converge at »=0. In particular, B=24 at »=0;
hence, we have:

wr=A(r=0), (5.55)

In Fig. 25 are shown (a) uplift, (b)

Yu=0

We will present an example.
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Table 1. Material properties of the elastomagnetic medium and
parameters of the geomagnetic field.

Rigidity o 3.5x101 cgs
Poisson’s ratio v 0.25
Density o 2.65 glee
Density of crack-filling materials 09
Gas 0.0 glee
Water 1.0 g/ce
Magma 2.35 gfee
Average magnetization J 1.0 Ajm
Stress sensitivity 8 1.0x10-4 bar-t
Curie depth H 15 km
Average magnetic dip Iy 45°

horizontal displacement, (c) gravity and (d) magnetic total intensity
changes associated with the multiple Mogi model for D=1km, ¢,=0,=
05km and 4h,=10cm. These are profiles along the N-S meridian.
Material properties of the medium and parameters of the ambient geo-
magnetic field are summarized in Table 1. Three curves in the gravity
change correspond to three different materials ﬁlhng cracks, i.e. gas (G),
water (W) and magma (M).

5.4 Magnetic Change due to Vertical Strike-Slip and Tensile Faults

Finally we will derive some formulas for piezomagnetic changes
associated with faulting. SASAI (1980) obtained the piezomagnetic field
due to a vertical rectangular strike-slip fault. He also formulated the
magnetic changes caused by intrusion of a vertical dyke (SASAI, 1984).
Both the formulas should be corrected because of a new version of ele-
mentary piezomagnetic potentials.

Fig. 26 shows the geometry of a vertical strike-slip fault. Accord-
ing to Volterra’s formula, eq. (5.5), the piezomagnetic potential due to
such faulting can be given by the following integral;

Wi, v, z):AUSj d&fz W G—&y U, 7, E)dE T (5.56)

Integrals with respect to & can be easily done with the aid of a property
of Fourier transforms, as deseribed in Appendix B. Final results for
integrations of eq. (5.56) are summarized in Appendix E1.

Some typical examples are computed. Model parameters are given
in Table 2. In Figs. 27 are shown magnetic changes accompanied by a
magnetic N-S oriented fault. They are (a) horizontal (northward), (b)
declination (eastward), (e) vertical (downward) and (d) total intensity,
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G3

Fig. 26. The geometry of a vertical rectangular strike-slip fault.

respectively. ,Similarly, results for a NW-SE oriented and an E-W oriented
fault are shown in Figs. 28 and Figs. 29 respectively. Unlike the pre-
vious results (SASAT 1980), relatively intense magnetic changes are seen
only around both tips of the fault. This arises from a characteristic of
w,," that no dipole term appears along the fault surface. Integration
of higher-order magnetic sources over a fault plane results in having
the outlets of magnetic lines of force only along both edges of the fault.

Fig. 30 shows a schematic view of a vertical rectangular dyke. The
piezomagnetic potential due to a vertical tensile fault W™ is represented
by

D +L :
W, y, =40 a8 ] ware—ty v, 7 S0 65D
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Table 2. Parameters of a vertical rectangular fault.

Fault length

2L 10 km

Fault width w 5 km
Depth of burial d 0.5 km
Dislocation 4U 1 m

_ N Rigidity B I 3.5x101 _cgs
Poisson’s ratio v 0.25
Average magnetization J 1.0 A/m
Stress sensitivity B 1.0x10—* bar-1
Curie depth H 15 km
Average magnetic dip Iy 45°

o

(e)
south oriented fault.
intensity (F) respectively. Unit in nT.

B

683

(d)

Fig. 27.. The magnetic field accompanying left-lateral strike-slip faulting’ of a north-

(a) Northward (H), (b) eastward (D), (c) vertical (Z) and (d) potal



Fig. 28. The magnetic field accompanying left-lateral strike-slip faulting of a NW-SE
oriented fault. (a) Northward (H), (b) eastward (D), {¢) vertical (Z) and (d) total intensity
(F) respectively. Unit in nT.

Final results of integrations are summarized in Appendix E2. Magnetic
changes are computed with the same model parameters as given in Table
2, for crack openings of 1 m. They are depicted in Figs. 31, 32 and 33
for N-S, NW-SE and E-W oriented dykes, respectively. Magnetic changes
are relatively large, owing to the effect of equivalent source dipoles
along the fault position.

Now let us investigate what kind of faulting can generate piezo-
magnetic changes effectively. We consider a fault as shown in Fig. 34.
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H

U
~

0 0

(c) (d)

Fig. 29. The magnetic field accompanying left-lateral strike-slip faulting of an E-W

oriented fault. (a) Northward (H), (b) eastward (D), (¢) vertical (Z) and (d) total intensity
(F) respectively. Unit in nT.

Arrows indicate the movement of hanging-wall side block relative to
foot-wall side one. We define positive U, as left-lateral movement; posi-
tive U, as thrust motion for sin 26>0, but as normal faulting for
8in 20<0; and positive U, as the crack-opening movement. We introduce
the coordinate &, measured positive down the fault dip as shown in
Fig. 34.

We apply Volterra’s formula, eq. (5.5), to such a fault. Piezomag-
netic potentials for three kinds of faulting are represented by the follow-
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&3

Fig. 30. The geometry of a vertical rectangular tensile fault.

ing integrals:
(i) Strike-slip fault

L
W= Ulswdsg {wy,™ sin 6 —wy,™ cos 0}dé;
0 —L
(ii) Dip-slip fault
w L 1 ‘ .
Wpr= U2S dSS {i(wga’” — Wy™)sin 20+ w;," cos Zé}dél
0 —L .
(ili) Tengile fault

L

w
Won = Uss dsg [ SI08 — 105" i 25 W™ COSB)dE,
0 L !

(5.58)
(5.59)

(5.60)
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(a) (b)

0

N~ ]
/ 0

0

(e) (d)
Fig. 31. The magnetic field caused by intrusion of a north-south oriented dyke. (a)

Northward (H), (b) eastward (D), (c) vertical (Z) and (d) total intensity (F) respectively.
Unit in nT.

In the above equations, wy"=w."(x—§&, y—E&, 2, &).

We have already found in section 5.2 that two types of strain nuclei
exist: those which produce magnetic source equivalents at the fault
position and the remainder which do not. Actually we have only to
notice elementary potentials of w,," and w,,™, which have magnetic sources
at the fault position. Consequently we can clearly discriminate what
kind of fault motion can generate magnetic field changes most effectively.
They are (i) vertical strike-slip fault, (ii) normal or thrust fault inclined
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Fig. 82. The magnetic field caused by intrusion of a NW-SE oriented dyke. (a)
Northward (H), (b) eastward (D), (¢) vertical (Z) and (d) total intensity (F) respectively.
Unit in nT.

by 45°, and (iii) vertical tensile fault. Results of integrations in egs.
(5.58) through (5.60) as well as some case studies will be reported else-
where.

Further Subjects of Tectonomagnetic Modeling
We have so far developed the Green’s function method for tectono-
magnetic modeling. As has been stated in the Introduction, the tradi-
tional volume element method compelled us to do elaborate computer
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/ N

-5 v -
ST 5 | ) ¢
a N

(e) (d)
Fig. 83. The magnetic field caused by intrusion of an E-W oriented dyke. (a) North-
ward (H), (b) eastward (D), (e) vertical (Z) and (d) total intensity (F) respectively. Unit
in nT.

work. According to the Green’s function method, we no longer need to
calculate the stress-induced magnetization itself, but only specify the
shape and slippage of the fault. This simplification involves, however,
serious defects. In the simplest Volterra dislocations, there exists stress
singularity along the fault edge. The Green’s function method implicitly
builds in such locally divergent stresses. The approximate formula for
the linear piezomagnetic effect does not work at a high stress level.
This is the very point on which HAO et al. (1982) criticized SASAT’S
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Y
Z

Fig. 34. The geometry of an inclined rectangular fault.

(1980) result. They revived the volume element method and showed
that the magnetic field change became smaller for a fault model with
the slip discontinuity decreasing step-wise to zero at the edge. ZLOTNICKI
and CORNET (1986) investigated such fault and dyke models that had no
stress singularities.

. Recently, some authors have noticed the enhancement effect of
tectonomagnetic signals due to inhomogeneous magnetization of the crust
(e.g: UHRENBACHER, 1988; OSHIMAN, 1990). In fact, STACEY (1964) had
already discussed this problem in his first seismomagnetic calculations.
He estimated the seismomagnetic changes in the case in which one side
across a fault is non-magnetic and showed that coseismic changes were
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much enhanced. In other words, according to the representation theorem,
a magnetic source layer appears along the surface of a strained magne-
toelastic body: magnetic lines of force concentrate at the boundaries
of magnetic blocks, where the signal enhancement occurs. This gives
an effective guide for selecting the most sensitive observation sites in
such a case (UHRENBACHER, 1988). v

‘Since we have little knowledge of such tectonomagnetic changes as

due to local inhomogeneity of magnetization, we should Systematically_;’
promote such studies. For that porpose we should develop a hybrid

method combining the volume element and the surface integral methods.
As we have seen throughout the present study, piezomagnetic modeling
is simply analyses of the stress field. The analysis around the singular
point we have developed in this study would be useful for further in-
vestigation of magnetic changes based on more reahstlc models of earth-
quake faulting.
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Appendix A: Derivation of the Isotropic Piezomagnetic Law

- Eq. (2.11) is reproduced here:

4T e;=J:{B:(0;+0) +Bioite; ; - (A1)

We may write the stress tensor in Cartesian coordinates as

Tow - Tyw Ton

T=|%s  Tw Tul| - . (A.2)
Toe  Tye Tz
g 0 0
PLT-P=|0 o, 0 (A.3)

0 0 o
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Components of P and P! are given by

/21 /22 23 21 t Yy
P=luw o |, P'=|k t (A4)
Y1 Y Y3 A Mz Vg

Let us first investigate the changes in the J, component: ie. J,=
(J.,0,0)". The superscript ¢ denotes the transpose matrix. Substituting
(J1, o J5)i=P71(J,, 0,0)¢ into (A.1), we have

4, =,TJ, (A.5)
where
Ti=p.0+ (i +Bs)o: (A.6)
and
O=0,4+03+0=7,+ 7, + 7o (A7)

On the other hand, the set of unit vectors {e,, e,, e;} is related to the
original set {e,,e,, e,} as follows:

31:213z+223y+233z
e;= e, the,+ e, (AS)
e;=ye,+vse,+vqe,

We may represent the total magnetization change produced by J, as 4J,:

AJZZAJlel—{‘AJzez'*‘AJsea

= (S..e.+ S.e,+S..e.) (A.9)
where .
Sxx = 212 T+ 27 T3+ 132 Ts (A-loa)
Sxy =T+ Aopts To+ A Ty (AlOb)
Sxx == 1211)1 T1 + 22”2 Tg + 23’)3 TS (A.' 100)

Multiplying P on both sides of eq. (A.3), we have the following relations:

era:a; + ‘Uﬂ'w + vlz-:cz = 2101
erm + HUaT oy +v,7,, = A0, (A.ll)

237":”: + y37mu + ”3735% = 230-3
Then we have simply
203+ 205+ A0, =1, (A.12)

in which we used the following properties of the modal matrix;




Tectonomagnetic Modeling Based on Linear Piezomagnetism 693

212+/222+232: 1, 21[11"'22#2‘{‘ 23[13: 0, etc. (A.].S)
Finally we obtain

Sacx: 52(212 + 2"+ 2:«’.3)@ + (ﬁ1 “ﬁz) (2120'1 + 2220'2"'" 12320'3)

=80+ (fi— Ba) 7.0 (A.14a)

Similarly we have ,
Su=(Bi— Bl (A.14D)
Sua= (B1—Pa)Te (A.14c)

In the same manner we can obtain the incremental magnetization
due to J,=(0,J,,0)" as

Syo= (B1—Ba)Tye (A.15a)

Sy = PO+ (81— Ba)7y (A.15D)

Spe= (81— Be)Tys (A.15¢)
and the incremental magnetization due to J,=(0,0, J,)! as

Seo= (81— Pa)sx (A.16a)

Sov=(Bi— B2y (A.16b)

S..=BO+ (B1—B)T.s (A.16¢)

Summarizing eqs. (A.14), (A.15) and (A.16), we have
Saw Sacy sz J{G

AJ:[SW S, S| -|J,|=87J , (A.17)
Szan Szy Szz Jz

8= B0+ (b1 — o) T= (B1+2B:) 00+ (8,—B:) T/ (A.18)
This is nothing but eq. (2.12) in Chapter 2. ‘

Appendix B: The Double Fourier Transforms

In this paper we define the double Fourier transform and its inverse
as follows: :

f*(kh kz) zz—l;r-ggoj Jla, xz)e"“klﬁ""‘z”z)dxldxz (B]_)

S (@, @) ‘—‘-LH‘” ko, ky)etmnriesd d ke dk, (B.2)
27 JJ)-

o
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The convolution of two functions f(x;, x;) and g{z, x,) is defined by

—o0

h{zy, 22)= Sr Flad, m)g (o —xy, 20— ) day/ day

= SSOO g(xlk; /) f (% — 2, @y — ) day/ dw (B.3)

—oo

It is easily proved that the Fourier transform of h(x, x.) is given by
W (b, ko) = 2mf * (Foy, o) g (Ko, Feo) (B.4)

We can evaluate the convolution integrals with the aid of eq. (B.4).
All the Fourier transforms required in this study are those of deri-
vatives of the following function: '

1
w)= 1 >0 B.5
Sl ) Vit &> ) (B.5)
Now let us obtain fi*(k, ku): ie. |
1 ([ 1
o )= || e tnesdnd .
Si*(ky, ko) 2r -°°’\/901Z+Q722+C26 vthedmde, ~(B.#6)
Substituting
e z,=rcosl, x,=rsind, k=kcosd, k,=ksing, (B.7)
eq. (B:6) is reduced to
Firll k) = o) B8)

in which we use Hansen’s integral representation of the Bessel function
J . (kr): '

T

J,,(lmn):'(—z»Jﬁ” o5 cos ngdd (B.9)

Multiplying eq. (B.9) for n=0 by e * aﬁd integrating it With respécf to
k, we obtain the following (WATSON, 1922),

e 1
| ek Vo= - :
50 e Jo(kT)dk—«/?2+C2 (€>0) R 1(B.10)
Hankel’s inversion theorem is applied to eq. (B.10), which leads to
i&sm _#__ —i(ky 71 +k%9) ol e : r)_,]'* =‘Lk£
el Bver s S oRrIrdr ="

do v/ P2+ 0
S (B.11)
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- Differentiating eq. (B.11) with respect to {, we have the following
formula: _ .
ngw 1 —i(kac+kz')d'b d __ch : 'B '
2r M- (xf o + C7)%° ¢ amdh= € (B.12)
Thus we obtain the Fourier transform of a function whieh is the deriva-
tive of fi(xy, ;) with respect to {. Differentiating both sides of eq. (B.2),
we have

LA™ it (i, o) (B.13)
ox,

This formula gives the Fourier transform of a function which is the
derivative of fi(x,, 2,) with respect to x,.

Eq. (B.13) implies that differentiation in the space domain is converted
simply into a multiplication in the wave number domain. By utilizing
this property, we can deal with complicated derivatives; this is ecalled
operational calculus. This technique is systematically used in evaluating
fundamental piezomagnetic potentials (section 4.2) as well as elementary
piezomagnetic potentials (section 5.2). The operarational caleulus based
on eq. (B.13) sometimes does not work as it is, because the (inverse)
Fourier transform of ik, f*(k,, k.) does not always exist even if f*(k,, k)
itself exists. In such cases, we must take into account the Fourier trans-
form in the sense of distribution or gemeralized function (VLADIMIROV,
1971). Such a generalized Fourier transform was actually used by SAsAI
(1980). Details are given in Appendix A of SASAI (1980).

Besides, eq. (B.13) implies the following useful relation.. Once the
Fourier transform of a function g¢(x,, x.) is known, (ik)'g*(k,, k,) gives
the Fourier transform of a function G, which is an indefinite integral of
g(x,, x,) with respeet to G:Xg(xl, xs)dx,. With the help of this prop-
erty, integrations with respect to &, in the fault models can be easily
achieved (see section 5.4). ‘

Looking back to the derivation of eq. (B.8), we find that the follow-
ing expressions hold good in general:

FE (e, k) :s:’ Flws, z)Toer)rdr (B.14a)

0o
0

e x2>=§ F*Uey )T (for) ks  (B.14b)

Egs. (B.14) are called the Hankel transform. Differentiating both sides
of eq. (B.14b) with respect to z;, we have

Zf - 5“’ P, 1) 9T g &r Fe Uy Ie) Tukr)iedk (B.15)
v, Joo . r Jo
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This relation is frequently used in obtaining the piezomagnetic field due
to a circular load (section 4.3) and in the formulation of the multiple
tension-crack model (section 5.3).

Appendix C: The Integrals of Lipschitz-Hankel Type -
Reduction of @, functions to Lipschitz-Hankel type integrals

The integral of Lipschitz-Hankel type is defined by EASON et al.
(1955) as '

I, v 2):SmJﬂ(at)Ju(bt)e‘”t*dt (¢>0) (C.1)
(4]
We consider here only the case in which 2, ¢ and v are integers; hence

we replace these letters with [, m and n. The problem is to reduce the
following integral into the form of eq. (C.1).

@:ﬂ” c0s(3¢) g (C.2)
o {pg}*
in which j and & are non-negative integers. p, is given by
po=VE+c* (¢>0) (C.3)
where
R*=a*—2abcos g +b* (C.4)

Such a simple form of integral cannot be expressed with elementary
functions. This sort of integral inevitably appears in any potential pro-
blem with axial symmetry.

Let us first investigate

0= j "1 g | (C.5)
* Py
We start from the Lipschitz integral (WATSON, 1922):

g — 1

L Rt = (C.6)
Substituting eq. (C.6) into eq. (C.5) and changing the order of integra-
tions with respect to ¢ and ¢, we obtain

@1:5je‘”‘dt§:Jo(Rt)d¢ (C.7)
We recall Gegenbauer’s addition theorem (WATSON, 1922):
Jo(Rt) = J(at)],(bt) +2 i J (@) . (bt) .cos me (C.8)
m=1
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Integrating both sides of eq. (C.8) with respect to ¢ from 0 to =, we find
S:Jo(Rt)dgb:nJo(at)Jo(bt) (C.9)

which is put into (C.7) to obtain A
0, = nr’ Jo(at)d,(bt)e-dt=rI(0, 0; 0) (C.10)
Differentiating (C.5) with respect to ¢ and taking eq. (C.10) into ac-
count, we find
o, 1 00,

__1 _T . .
== =T1(0,0,1) (C.11)

The procedure to obtain eq. (C.10) and eq. (C.11) is the fundamental
technique to reduce @, functions to Lipschitz-Hankel type integrals. We
summarize only the results in the following.

®,=rlI(1,1;0) (C.12a)
(DF%I(L 1;1) | (C.12h)
@5:%1(2, 2:1) | (C.12¢)
o= 3’; {cI(0, 0; 2)+ I(0, 0; 1)} (C.12d)
@,:%{01(1, 1;2)+1(1,1; 1)} (C.12¢)
@8=_3’TCT{(;I<2, 2;2)+1(2,2; 1)} (C.12f)
(.Dgz_g%{cI(?;, 3;2)+1(3,3; 1)} (C.12g)

The reason why we use a more complicated expression of the
Lipschitz-Hankel type is obvious: differentials of these functions (C.1)
with respect to a, b or ¢ reduce again to the same type of integrals with
different m, n or [. In the following we will find that these functions
are expressible as complete elliptic integrals. To directly differentiate
complete elliptic integrals is, however, a mathematical mess,.
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Lipschitz- Hankel Integrals as Expressed by Complete Elliptic Integrals

Some of the integrals (C.1) have already been given as combinations
of complete elliptic integrals by EASON et al. (1955). We follow their
notations. They define complete elliptic integrals of the first and the
second kind multiplied by 2/z as follows.

:_2_5”’2__&___
Bk =7) vice sin’¢ (C.13)
2 T2 .
Eo(k)z—-so VIZIP st dg (C.14)
T
where
4ab .
Pe = C.15
(@+b)*+¢* (C15)
a, b and ¢ are parameters in the integral ‘(C.l). We need I{0, 0; 0),
I(1,1;0), 10,0, 1), I(1,1;1), I(0,0;2), I(1,1;2), I(2,2 1), I(2,2;2), I(3,3; 1),
and I(3,3;2). The first four functions are found in EASON et al’s (1 55)
table, and are reproduced here:
k
1 0)=——F(k .
1(0, 0, 0) 5/l o(k) | (C.16a)
—_ 1 14 _
I(1,1; 0) = «/%{(1 Lk )Fo(lc) E'o(k)} (C.16b)
100,0: 1)=—%__Ek) (C.160)
T 8k (ab)**
D1y ck _—1_ 2 \1./—2 _
10,3 D= s {(1 ; k)k Ey(k) Fo(lc)} (C.16d)

where k*=1—FkK"
The remaining six functions have the form of either I(n,n;1), or
I(n,n;2). EASON et al. (1955) gave the formula:

(=L (77 cos(2ng)d¢ :
Lo, s 1) = by I, (1— ¢ sin'g)"" (47

Differentiating (C.17) with respect to ¢, we have
0
)

I(n,n;2)= —a—I(n, n; 1
c
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_ (—1)"%? _j""z cos 2n¢
A (ab)” { o (1—J? sin’¢)* %
3c%k? S =2 cos 2ng
4ab Jo (1—K*sin®

= ag ) - (ca8)

Some additional formulas are necessary for further calculations:

/2 dg __1—
50 A simgpe o) (C.19a)
T dp Ly 2(+1)

S" W_ Sk/zF(k) + 3k E(k) (C.19b)
g:’z (1—A® sinteh)*elgp = %(1 k") E(k) ——’%,Z_F(k) (C.19¢)

(Eq. (C.19b) corresponds to eq. (3.7) in EASON et al. (1955). The latter
is incorrect, probably owing to a misprint.)

Putting n=0 through 3 in eq. (C.17) and (C.18), we can obtain the
following: ‘

o BT rae 2(1+k)
1(0, 0; 2)_8—(&6—)‘”2‘19”[ Ey(k) + M{ Fo(ly+2LEE) Eo(k)}] (C.208)

LoV k 72 . 72
a1 2)_W[2k Fo(l) — (1+ ) Ey(k)
R e 21— R
p {1+ k) ALk E’O(lc)}] (C.20b)
12,21) =8~w;—)3—,;7;{—8(2—k2)m(k) +_"’4:1_2T’fiEEo(k)} (C.20¢)
D — LIV F (k) — K 16K 416
12,2 2)—W[8(2 1) (k) ST B
2 {06168~k - AE VALY g1 ]
(C.20d)
e [ [E-16E+16 80
1(3’3’1)_8(006)3/%3[(2 g ){. K +3}E°("°)
—{6(3k4—16k2+16) —%Zkﬂ}FO(k)] (C.20e)

o 1T o o (H—16k+16 80\ 4,
16,3 2) = g | — @ =T 4 T R

k* 3
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+{6(3k4—16k2+16)—%zk’z}Fo(k)
3¢k o eiren g (B—22(k— 16K+ 16)
i {2(9k' 6412+ 64 - A
oo aggr_ K164 16
iy 2)(48k . )Fo(lc)}] (C.200)

All these functions have ab and % in the denominators, which cause
numerical instability when a or b approaches zerc. For small values of
a, b and %k, we have power series expansions with respect to &t with the
aid of series representations for F,(k) and E,(k). They are summarized
in SASAI (1991). Only five formulas are listed here, which are required
in section 3.4.

100, 0; 0)—m-{1 4k2+ : 4k4+ } (C.21a)
I, 1 0):% «/(T&‘ CE{1+%k2+i’%k4+--~} (C.21b)
100, 0: 1)=m{1 ik%‘éi } (C.21¢)
L1 :% TE_‘%{_C—}/{H- %k’z + ggk } (C.21d)
1(2,2:1) = 11258 m%_céﬁ{w%k%---} (C.21e)

Other Important Integrals Required in Chapter 4

We need some other kind of integrals to compute the piezomagnetic
field due to a circular load. They are given as follows (EASON et al.,
1955):

I1,1; —1)=

cEyk) ke [ b

2 a—b
T 4ab«/ab\a *4-bi- -2—0 }Fo(k)+ 135 /10+2 (a>Db)
¢ ke 1 _
S Bl e, <2a e )Fo(lc)+—— (a=b) (C.22a)
CEo(k) ke 2 B2 b*—a?
) it vab\“ b+ >F A°+Zb (a<b)
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ke 1 1
ke poy— 1,41
4a+/ab (k) 2a ot a (@>b)
A 1
(1,0, 0)= ———4;2 Folle)+5 - (a=b) (C.22D)
ke 1
ke _piay+ Loy, b
40&«/abF( )+2a a<b)

o Blar—b—¢ k
I(1,0; 1) _W&m) + gy o) (C.22¢)

where 4, is Heuman’s lambda function multiplied by 2/z. 4, is related
to the complete elliptic integral of the third kind as

__2__12_2 e dl?s
Ay= (1)1~ I p)" S ot (C23)
where
4ab
= a1l (C.24)

Heuman’s lambda function can be effectively estimated by NAGY’s
(1965) method, while complete integrals of the first and second kind are
computed with HASTING’s (1955) formulas.

Appendix D: Three Constituents of the Elementary Piezomagnetic
Potentials

D1: Fourier transforms of the contribution from the Curie surface

We briefly summarize the procedure to calculate Fourier transforms
as given by eq. (5.11). This is quite similar to the method developed by
SASAI (1980) in obtaining the type I solution of elementary piezomagnetic
potentials. As shown by eq. (5.10), the displacement due to an element-
ary dislocation can be derived from differentiation of the Galerkin vector.
By virtue of the property of the Fourier transform, ie. eq. (B.13) in
Appendix B, the Fourier transforms of the displacement fleld can be
expressed with transforms of the Galerkin vector multiplied by (for ex-
ample) tk,. Actually the Fourier transforms of the displacement 7.
are given as follows:

Tul*z(a’k1z’—kz+p2)rkll*‘l’aklkzrklz*_aiklp(pkls*+Fkl*) (Dla)
Tmz*=ak1kzpul*+(akzz*kz—FpZ)szz*—aikzp(rms*+sz*) (D-lb)
Tkls*z —aikmpkzl*—aikzppkzz*-l-(—kz-{—(1—a)p2) (Fkl3*+rkl*) (D-lc)
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in which p is a differential operator:

) .
- D2
P= (D.2)

Utilizing the same property, we obtain the Fourier transforms of Sy"*’s
as

(da—1)S,* = {(1— )P’ — (L— ) F*p+a (2 + Ve p}
+a(26¥+1)k1kzppmz*
+{—Baiki+ 2 (1 — )ik} (I -+ ) (D.3a)

(4.““‘ 1)Skl2z* —C((Z(X—I‘ 1)k kzppkl
+H{(1—a)p'— (1—a)k*p+a(2a-+ 1)k p) Le*
+{—8aik,k? + 20 (1— ) thop®} (L™ + I'ir®) (D.3b)

(Ao —1)S,** = [ —Batk,p? + 20 (1 — )1k, K2 T *
+{ —Baikp*+2a(1— o)tk kP
+H{—(1+2)Ep+ (1—a)p" W W™+ Lu*) (D.3c)
Fourier transforms of all the Galerkin vectors are explicity given
by SASAI (1980). Egs. (D.1) and (D.3) can be calculated with his results.

Substituting S,™*'s and T,"*’s into eq. (5.11), we arrive at Fourier
transforms of w,™"’s. They are given as follows.

(kl)=(11)

S
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[4a ) Lot~ O (H - &) k] : (H>&)

(D.4a)
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2(1"20{)(1—6{) ﬁ ’Lkl kz 26((1_'0.’) __H T:klzkz ;kC H
| Z S T B e i<

_|_
_66{(1_’20f) _@_2‘_ ?:klkz__ 6a2 ’Lklkg —kC.
|-fell=2a) B ok S (gogg il (m>e)
(D.4b)
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(D.4c)
(kl=22)
W B (K, koy) = Wy, H* (o, Jy) (D.ba)
W E* (I, os) =, * (b, o) | (D.5b)
W ¥ (ley, Fog) = We" E* (key, k) (D.5e)
(kl)=(33)
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[t S8 H )it o (H>&)
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(kl)=(23)
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(50(—2) LkZ_ iklzkz 2(,1’(1“6()( —H 7:]512152 ~kCy H< &
J[ ot B ey IR <

3« lkl . 'I;klzkz__ 6a’ H— thky | ke H
[P e = Lol o e
(D.9a)
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D2: Contribution from the free surface
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D3: Contribution from disk surfaces
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Appendix E: Piezomagnetic Potential due to Vertical
Strike-Slip and Tensile Faults
E1. Vertical strike-slip fault
(a) Horizontal magnetization in the x direction

9 W (H=D)
CAT WS =W+ W, (D>H>d) | (E.1a)
Wi (d>H)

vl e (o e
Ds

+e—al [ - g e
2 sl(szjzrpl)}”f *z{m}”d]
e s - e {g ]
a =l st

+422f21H[{ }H¢+(z 2H){ "”ij g:; }Hé’] (E.1b)

e
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Wo=— 24— |{ - El(_s]—T}”“‘] (E.1e)




Tectonomagnetic Modeling Based on Linear Piezomagnetism

709
(b) Horizontal magnetization in the ¥ direction
9 W (H=D)
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HZ—ZH){Sﬂltpz —SZ(Sipz)z}”dD]
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(¢) Vertical magnetization
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E2: Vertical tensile fault (intrusive dyke)

(a) Horizontal magnetization in the x direction

\ W (H2D)
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(b) Horizontal magnetization in the y direction-
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where

t=x—x, r=8+9

=
-3
2

D1=%3—2, D:=2H—x;—2, ps=2H+x;,—2,

=
3
o
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and
{f (@1, @)}Hle=S(L, b)—fIL, a)—f(—L, b)+f(—L, a) (E.8)

In eqgs. (E.1d), (E2d), (E.3d), (E4d), (E.5d) and (E.6d), the notation
W,(D—H) implies replacement of the upper limit D in |? by H.
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