BULLETIN OF THE EARTHQUAKE
RESEARCH INSTITUTE

UNIVERSITY OF TOKYO
Vol. 66 (1991) pp. 475—49_5

The Orbit of Surface Waves in Weakly Anisotropic Media

Takac MoMOI

; : Earthquake Research Institute, University of Tokyo
[ (Received March 28, 1991)

Abstract

Surface waves in the weakly anisotropic media are discussed
focusing attention on the relation between the Rayleigh wave orbit
and its velocity and stability.

The wave number in weakly anisotropic media involves imaginary
terms. Rayleigh waves in an anisotropic medium always face a stabi-
lity problem due to the imaginary term.

In weakly anisotropic media, the longitudinal and vertical com-
ponents (u, w) compose quasi-Rayleigh waves which resemble Rayleigh
waves in an isotropic medium. The horizontally transverse components
(v) behave as quasi-Love waves which are independent of the former"
quasi-Rayleigh waves with respect to the elastic coefficients. The
quasi-Love waves then decrease in amplitude with depth in the
material. ~

The increase (or decrease) of Rayleigh wave veloeity due to ani-
sotropy of the media leads-to shrinkage (or expansion) of quasi-.
Rayleigh wave orbit. In this case, the vertical component of the
Rayleigh wave is more sensitive than the horizontal one to anisotropy.

The Rayleigh wave orbit is quite sensitive to the velocity change
due to anisotropy. For instance, a one percent velocity increase
causes about 10 percent increase in the Rayleigh wave orbit size
(major and/or minor axis). ’ :

When the quasi-Rayleigh waves are stable (or unstable), the Ray-
leigh wave orbit axis tilts backward (or forward). When a Rayleigh
wave increases (decreases) in amplitude by 10 or 20 percent after
traveling the distance of the wavelength, the inclination angle of the
orbit at the surface is in the range 5~30 degrees.

Introduction

~ Seismic velocity anisotropy is a widespread phenomenon in the Earth’s
materials. A large variety of mechanisms give rise to anisotropy: crystal
alignments, grain alignments, preferential alignments of cracks (including
pore closure under pressure), stress induced effects, the interleaving of
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thin sedimentary beds. Until about 1980, seismic data could be adequately
explained by assuming isotropy, so anisotropy could be largely ignored.
With the increasing resolution of seismic observations, however, there is
a growing awareness that the assumption of isotropy is often violated.
Anisotropy has been widely detected in the crust and upper mantle (e.g.
Fucus (1977); STEPHEN (1981); ANDERSON and DZIEWONSKI (1982)) and
laboratory measurements imply that the phenomenon must be widespread
in both crystalline and sedimentary rocks (CHRISTENSEN and SALISBURY
(1979); BACHMAN (1979); BABUSKA (1981)).

There are fundamental differences between wave propagation in
isotropic and anisotropic media (CrRAMPIN (1977, 1981)). In an isotropic
medium, P-wave particle motion is normal to a wavefront so the P
polarization vector coincides with the phase propagation vector. S motion
may be in any direction orthogonal to P. In an anisotropic medium,
the P polarization vector need not coincide with the phase propagation
vector. Two quasi-shear polarizations form a mutually orthogonal set
with the P. Thus for any particular direction of phase propagation,
there are three body waves with fixed orthogonal polarizations.

Even in the case of Rayleigh waves, the effect of anisotropy is very
significant. The theory of surface wave propagation in an anisotropic
half-space has been discussed by SYNGE (1957) and BUCHWALD (1961),
among others. Propagation in a half-space with cubic symmetry has been
investigated by STONELY (1955), and BUCHWALD and DAVIS (1963), and
with orthorhombic symmetry by STONELY (1963).

In 1975, Crampin calculated the particle motion of surface waves
propagating in particular symmetry directions in anisotropic media and
showed that propagation in some directions reveals particle motion ano-
malies diagnostic of the symmetry. In this paper, we will study the
- effects of the weak but general anisotropy of the media on the Rayleigh
waves focusing particular attention on the relation between the Rayleigh
wave orbit at the free surface and -the velocity increment or the wave
stability due to the anlsotropy A homogeneous half-space model is then
used. ~ :
The theory was developed usmg computer algebm 1nstalled on an
NEC 9800 computer. :

1. Expreseion ‘of Energy

In anisotropic media, the stram energy function E, can be expressed
by use of a stram tensor UJ up’ to the second order in U; ’

(1/2')01P*UJ*UP, DS : (1.1
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where x indicates the product, summations over repeated indices {J, P}
being implied (this convention will be used, unless stated otherwise), and
c,r the elastic coefficients defined by K. BRUGGER (1964), i.e.,

csp=0FE,[0U,0Up. (1.2)
In the above, Voigt Notation {ij~J}
{11~1, 22~2, 33~3, 23~4, 13~5, 12~6}
and the convention
U= (1/2)%(148,,)x Uy (1.8)
with
Uis= (w4 t3:) /2 (1.4)

are used, where u;;=0u;/ox; and {u,, u,, us} are displacement components
in the directions of the coordinate axes {x, %, ®;}. In later discussions,
{ty, Us, Us} and {m,, %, x5} Will be alternatively expressed by {u,v,w} and
{x,y,2). 0, is the kronecker delta with suffix 4, J.

In the later discussion, the elastic coefficients C;, normalized by po®
will be used, i.e.

Crp=csp/(0®%), (1.5)

where p is the density of the medium and ® the angular frequency of
the Rayleigh waves. ‘ ‘

In the weakly anisotropic case, the above normalized elastic coeffi-
cients are expressed as

Cn = LZm + dn, sz = Lzm + d227 ng = LZm + dss, ‘

CIZZLa+d12y ClazLa+d18' Czs:La+d23,

Cu=m,+dy, Css=m,+dss, Cos=m,~+ do,

C14: dm CIE= dlﬁy C1e: dlﬁ’ Cz4: dz4, Czs = dzsy ,CZG; dzs

034:- Ay Cous=dss, Css = dss; C45 = d45, C4s= d46’ ) Css:- dés, (1.6)

where L,=1/(p0?) and m,=(¢/po?) are the elastic coefficients normalized
by pw® in the case of an isotropic medium, Ls,=L,+2+m,, and d;; (i, J:
integers) is the weak deviation of the anisotropic elastic coefficients from
the isotropic ones.

2. Equations

The stress tensor S;; is related to the energy function.
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Sij:aEn/au/“,

2.1)

By use of the above relation, the governing equations can be ex-
pressed (LANDAU and LirsHITZ, 1985) by

p0Pu, [0 =0S;/ow;,  (i=1,2,3),

where t is the time factor.

(2.2)

By use of (2,1) and the expressions for energy in the foregoing

section, the above two equations are reduced to the following.

where

with

and

0FUp=0q1, P*Vi2=(s ©O*Wpr=4(s,

Q1= U*Cry T V¥ C1oF Vyak Cog + V¥ Cos + Wy, %k Cys
4 W, % Che 1 Wk Co5t+ Cig% Poa+ it Pog+ Cox Py
+Csx Pos+ Css* Pog+ Cuyt Py +- C4s*Pan +eu* Poys,

Q2= Uzg* 1T Uy * Cra— Uy Cyy + Vy2¥Cog+ Wy, % Cag
+ W, Cog T W,o%Cay 1 Cog P+ Cost Prg+ Cos* Py
+ Csx Ppy 4 Cog¥ Pyg+ Cisx Prg 3 Cogk Prya+ Cux Pygs,

Qs = UgkCys Uy ¥ Crg T Uy ¥ Crg Vg Cos 1 Vg Cag
4V % Cog + W% a3+ Coe® P g+ o5 P g+ Cog Py
+ o5 Py 4 Cag Pog+Cos* Pog+ Coex Py + Cu* Py,

Poo=2%Uyy+ V02, Pu= z*u_zz W,  Poy=Upp+ Vs,
Poy=2%Uy, +Vop+ Way, Pu=v,,4+w,, Poy= e+ W,,,
Py= Vye+ W2, Poy=v.,+ Wye,s

Pr=Usy+ V3, Pru=Ugu Wiz,  Pis=Upp 250,
Py=1y + 250+ Wayy  Pos=Uye+Wayy  Pro=Un+Wes,
Pyy=2%0,, +W,s, » Pyy=va+w,,

P,= Uyz F Vs Put=Upy+Waa, Poe= u'yé + vy,

Po= Uyt Vos+ 25Way,  Poo=1yt Vs,

Poy=1us +2’i‘wmzy Poo=0,+ Wy, Pau=v,+2%w,,

W = 0P[O, M =0%w[0%%,  u,, =0"u/0xdy,
U,y = 0°UJOXDZ, Uy =0"U[OY’, u,, = 0°u/0yoz,
U = 0"U[0Z,

v,y =007, Vag =0"0[027, V,y =0 [0%0Y,
V,, =0/[0202, v, =0"0[0Y", v, =0%/0y0z,
Ve =0[02%, ' :

(2.3)
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W,y = 070|017, W= 0%w[02?, W= 0%w[020Y,
W, =0"w[0x02, W,=0"w/0Y?, Wy, =0"W/[0Y02,
Woo— aZW/azz,

3. Surface Conditions
By use of relation (2.1), the surface conditions are expressed as
Sa1= Uy #Cr5 4 Uy # Cig+ U Cos+ Ua*Cre+ Uk Cs

+ g% O Ungk O+ Uagk Cs + gt Cos =0,

Sz =U11%Cry+ Ug15Crg+ Upg#Coy + 1% C s+ UggxCoy
+ U Cs+ UngC s+ Uggt Oy + UggxCyy =0,

Sps= U #Ci3+ un*Cz"ﬁ + Uk Cog 4 Ung% g+ Uy Cy
+ Uy Cgs + Uggk Cis + Uggk Coy + UggxCyi =0,
at z=0. 3.1)

4. Splitting of Lobe of the Quasi-Rayleigh Waves

In order to obtain the expression for the Rayleigh waves, we assume
the following for the displacements:

u=AxE, v=AxE, w=AxE, (4.1)
where '
E,=exp(—ixhk*x—abxz)
with hk and ab, in general complex, being the x- and z- wave numbers.
In the above expression, the time factor exp(ixwt) is omitted. This con-
vention will be followed in the subsequent discussion. :

Since weakly anisotropic media are considered in this paper, hk and
ab are expressed as ‘

hk=k.+dk, ab=ab,+dab, (4.2)

where k, is the wave number in the isotropic medium, ab,=a, (=a) or
b,(=p) with

al=k*’—1/(L,+2%m,) and b=k —1/m,, (4.3)

dk, and dab indicate the deviations of the wave number and « (or ),
respectively, in the weakly anisotropic medium from an isotropic one.

Substituting (4.1) into Egs. (2.3) and taking the first order of d,;, we
have the deviations dab={da, db, and db,} of ab from a, and b, in the
isotropic case, i.e.,
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da=ab—a,, db, or db,=ab—Db,,

as follows, where it will be found later that the deviation of b, splits in
the anisotropic case.

da = dn*dLl + dgg* sz + d55*dL3 + d13*dL4
+ i ds#d L+ tdgs:d Lg+ dk ,xd Ly (4.4)
with

dL,=k}*/(2xa,), dL,=a}/2, dLy= —2xa,+k},
ALi= —auk?,  dLy=—2xk?, dLe=2xak,,
dL7: k,,/ao. :

db,=dN+dS, db,=dN—dS, (4.5)
where

dN: dM*dls—le*d% + st*dll + dN5*d33 —Z*dN5*d13
+ dygxd Ny + dokd Ny + ke xd N+ dggtd N+ dssxd N, (4.5.1)

with
AN, =isk,C,[(2xm,), dNy=—isk./(2xm.),
dN,=k,/b,, dAN,= —k, b, /4,

dNy=FE.2/(4«m,xb,), dN,=C/*/(4xm,*«b,),
AdNyp= —b,/(4xm,), C;=2xksm,—1,

and
dS=(S,,+1%S;n) ", (4.5.2)

with S., and S,, given in Appendix Al.

The lobe of the Rayleigh waves associated with the distortional part
splits in an anisotropic medium. Expressions (4.4) and (4.5) involve the
imaginary terms. This implies the existence of the generalized Rayleigh
waves discussed by SYNGE (1957) which are propagated at an inclination
to the free surface.

5. Expressions for Surface Waves

Since we have three components of ab as discussed in the foregoing
section, the Rayleigh waves in the anisotropic media are expressed as

u=FE, %A, + EyxB,; + EyxDB,s,
v=E, %A, + EyxBy + EypxB,, .
w=FE, %A, + Ey*x B+ Ep*B,,, (51)
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where
a=a,+da, b;="by+db; (1=1,2)
E, =exp(—ixxxhk —2zxa),
B, —exp(—ixxxhk —zxb,),
Ej,=exp(—ixxxhk —2xb,),

and A,, A,, Aw, Bu, By, Bui, B, Bus, B, are the amplitudes determined
by the surface conditions.

6. Characteristic Equation

In this section, the deviation, dk,, of the wave number in (4.2) will
be obtained. :

Substituting (5.1) into (3.1), we have, taking the terms up to the
first order of d;,

dkr :der+i*Idkry (6.1)
der= dkrll+ dkr83+dk'r55 +dkrl3’ (6'2)
Idlcr = dk’rl5 + dkr%y (6.3)

where
dk,y=dywxDry, dk,s= sk D1y, dk,s5=dssxDrs,  dk,3=dgxDry,
k5= disxDrs,  dk,g5=dasxDrs,

Dry=8+SQRT (m,)#(16by,,* + 28%bon" + 18byn” + Tbgm +2)
#(4b,,, +8) kb, kM K UM,

Dry= — (2%(64%b,,° + 64 xb,,,* — 104%b,,,* — 164xb,,,*
—62:0y,, —8)#(4Dyy, +3) xbon 5k %) | (SQST (k) x D),

Dry= — ((512xb,,,° + 1152xb,,," + 128xb,,,* — 1712xb,,,* — 1856xb,,,"
—T784xb,,,* —186%b,,” —10xb,,, — 1)%C )/ (8xSQRT (k,,.) * Droxk,.),

Dry= — (2% (8xby,,2 + 12xby,, +5) % (4by,, +3) by #C 5k ) [SQRT (K ) . D1y),
Dr,= — (4«8QRT(k,,.) % (96xb,,° + 282xb,,,* + 192xb,,.° + 59xb,,,*
+5xby,, + 1) %by,, xC2) | D,
Dry;=— (8+SQRT (by,, ) # (82%byy,° + 64D, 2+ 405Dy, +T) 000 C 25k 1) [ D,
Dr;=4xSQRT (by,,) *(64b,,° + 160xb,,,* + 144b,,,° + 54:xb,,,*
+ 8xby,, + 1)xC 25k, | D1y, '
with by, =b2xm, (for b, refer to (4.8)),

Cr=2xby,+1, k,n=bwm+1, uuu:8*b0m2+8*bm+l.

In the derivation of the above, the characteristic equation in the
case of isotropic media

C—16xk,, 5by, %00 =0
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with
Qom =2 5m,=k,,,—1/(2+ L,,)

was used in order to eliminate the ratio L,.

As found from (6.1), the deviation term dk, includes the imaginary
terms, I, associated with d,; and ds, This implies that the Rayleigh
waves in an anisotropic medium always face a stability problem depend-
ing on the sign of the imaginary terms. As known from (4.4) and (4.5),
da, db, and db, also include imaginary terms, so the energy profile of
the quasi-Rayleigh waves along the vertical line is always moving in
response to the stable or unstable state of the waves. It must be noted
here that the stability of the Rayleigh waves depends on only two elastic
coefficients, d;; and d;;, out of the 21 coefficients in a weakly anisotropic
medium.

7. Surface Wave Orbit at the Free Surface

Substituting (5.1) into (3.1), we can obtain the following expressions
for the Rayleigh waves at the free surface.

w=A,#c08(04+ P.,),
w= Awr*cos(okr + Pw'r) »
v =A,,xc08(0,+ P,,), (7.1)

where

Aur= aur*Eim, Aw,r: awr*Eims Aw: a’w*EMn.ﬂ
Emzexp(fdk,*m), O,W::a)*t—.’)c* (k,.‘l‘Rd]W). (7.2)

For the amplitudes in (7.1), these are expressed as

Qe = Uy + U Ao ,gy + Uk A g5 + Uk Ao 55+ U DK 1, (7.3)
g = gy — Wy Qe iy — Wik U 33— Wil 55— Wik e 15, (7.4)
@ =SQRT (v + Aoy + e 1)+ (dyexv, + dgtvs + d 55 5)%), (7.5)
where
2o =24SQRT (k) £SQRT (Bon) /C., (7.3.1)
tu=1/C,, (7.4.1)

and v the coefficients

W, u29 Ugy Uy W1, W, Ws, W4, V1, Vay Vs, V4 Vs Vs
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are given in Appendix A2.

For the phases in (7.1), these are expressed as

P,=z/2— (dk'rIS*U5+dkr35*U6)’ ) (7.6)
P,M:ﬂ'— (dkr15* W5+dk7«35* WG)! ) (7.7)
P, =tan™((ds#vs+ dagtvs+ dysxvg) | (A0, + dagevy+ dogrvy)), (1.8

where the coefficients

U57 UGy W5’ WG

are given in Appendix A3.

By comparing the expressions in (7.3), (7.4) and (7.5) in the case of
amplitude and (7.6), (7.7) and (7.8) in the case of phase, it is found that
the elastic coefficients {d.;, ds, ds;, dis for amplitude and d,;, dy for phase}
in A.,, A.., P.,, P,, associated with the longitudinal and vertical ecompo-
nents are completely different from those {d.i, du, dss, di, dss, dis} in A,
and P, associated with transverse component. This result implies that,
in a weakly anisotropic medium, the  and w components compose a
quasi-Rayleigh wave which resembles the Rayleigh wave in an isotropic
medium. The v component is a quasi-Love wave which decreases with
depth. These quasi-Love waves are independent of the former quasi-
Rayleigh waves with regard to the elastic coefficients. The typical dif-
ference between quasi-Love waves and pure Love waves in an isotropic
medium is that quasi-Love waves are propagated with the velocity of
the quasi-Rayleigh instead of sc-called S waves. Similar features have
been also found by STONELEY (1955, 1963) in the particular crystals and
by CRAMPIN (1970) in multilayered anisotropic media. :

8. Dependence of quasi-Rayleigh wave orbit on the velocity

In order to examine the relation between velocity and quasi-Rayleigh
wave amplitude, the coefficients in expressions (7.3) and (7.4) are evaluated
for the value of the ratio L,=2/p in the range 0.5 to 50. Only four
numerical instances of the evaluated results are given here. For inter-
vening values of L,, the numerical values are approximately those that
would be obtained by interpolation.

The quantities %, and a,, are always positive for any value of L,
(see (7.3.1) and (7.4.1)):
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when L,=0.5,
Uy, :4.4, Us —_—9.4, u3:2.4, u4:5.9,
w,=—13.7, w,= —19.6, W= —6.5, w,= —13.7,
when L,=1,
u, =4.3, U, =8.5, U, =2.1, %, =5.9,
w,=—14.3, w,= —19.6, wy= —6.2, w,=—15.1,
when L, =10,
u1:4:.4, Ug :5.4:, Ug = 1.4:, u4:4.9,
w,=—17.3, w,= —18.8, w,= —5.6, w,= —18;
when L, =50,
Uy =4.5, Ug _—'4.3, u3:1.3, Uy _——-4.6,
w,= _‘18.1, W2=—18.5, Wy = —’5.4, Wy= '—18.3,

where the factor 4/m, is eliminated.

By use of the above evaluated results, the signs of the coefficients
in the expressions for the amplitude are illustrated below.

W = U+ Uy A 11 + Uk Ao 5+ Uk AR 55+ Uik 1s,
>0 >0 >0 >0 >0

Aoy == Qg — Wk — Wk Ao — Wik Ak 55— WK 15,
>0 >0 >0 >0 >0

where the evaluation took the preceding sign (+ or —) into account.

The above example indicate that when the velocity increases (or
decreases), dk,; (components of real part of dk,) decreases (or increases)
and, as a result, the amplitudes a., and a,,. decrease (or increase). That
is to say, the velocity ‘increase (or decrease) due to anisotropy causes
shrinkage (or expansion) of the orbit. From the physical point of view,
the above result is reasonal, since when the velocity decreases (or in-
creases) the wave energy is concentrated (or dispersed).

As found from the numerical values of {u;, w;} (j: suffix), the absolute
values of w; are larger (about 2~4 times) than those of u;. This implies
that the vertical component of the Rayleigh waves is more sensitive
than the horizontal component to anisotropy.

Here, the sensitivity of Rayleigh wave amplitude to velocity change
are evaluated. For this purpose, the following two quantities are defined.

(a) Rate of Increase of Velocity:

aVv,=dv.|v,,
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where there exists the relation w==Fk,*v,=(k,+ Ru,)*(v,+dv,). Here k,
and v, are the Rayleigh: wave number and velocity in an isotropic
medium. R, and dv, are the real part of dk, (see (6.1)) and increase of
the velocity due to anisotropy. By taking the first order of R,., the
above is reduced to '

d Vr= - Rdlcr/kn (8-1)
(b) Rate of Increase of Amplitudes:

Az = (e — ) [ty  Aur= (G — Uuso) [ Cge (8.2)
By using (6.2), (8.1) is reduced to
d Vr =d Vrll + d VrSS + d Vr55 + d V'rla’ i (83)

where ‘dV,; indicates the velocity change due to the anisotropy associated
with d,;, i.e., : ‘

- : dVrij: —dkm‘j/krv
with 4j (suffices)=11, 33, 55 and 13.
After some manipulation, (8.2) are also reduced to

AuR :kAuRu + AuRss + Aukss + AuR189
AwR = Alel + Asz3 + AwR55 + AleSv (8-4).

where
AuRij:dVrij*Suij and AwRa‘j=dVr~;f*Swij (8.5)
with ij=11, 33, 55, 13 and

Sun= —k.xu[u,, Suss= — kb, Us/ Uy,

Suss= — k[, Suts= — k&, Uy o,

S =K, %W,/ Ve, Suas =k, %W/ 0y,

S.s5= k% W3/ Wy, So1s= %W,/ Qo : (8.6)

From the above expressions (8.3) to (8.5), it is found that S,; and
S.i; (=11, 33, 55, 13) determine the sensitivity of Rayleigh wave am-
plitude for velocity change due to anisotropy d;;. In order to see the
order of the sensitivity, the numerical evaluation of (8.6) are carried out
for the following specified L.

When L,=0.5,
’ : Sull =-—9.8, Su33 =—20.9, Su55 = _5-4, Sum =—13.0,
Sen=—21.9, = S,:s=—3813, Sess=—10.8, = S,3=—21.8,




486 T. Momo1

* when L,=1, : ‘ . : ‘
; Suu = —9.4, Sugg = — 18.8, Su55 = "‘4:'-7, Sulg = —412.9,
: Sw‘.ll: —21.3, Sw33: —29.1, Sw55= —‘9;3, ’ Sw13: —22.5, .

* when L,= 10,
Sull = — 10.0, Sugg = 12-3, Su55 = — 3.3, S;,m = 11.2,
Swu: _22.2, Swgg———-_ _24.1, Sw.55: _7.1, Sw13: —23.1,

when L, =50, ‘ :
Sull = 10.3, Sugg : - 10.6, Su55 = _3-1, Sulg = 10.6,
Swn: _22.7, >Sw33: _22-9, Sw55: "_‘6-8, Swlgz '—22‘9,

~ For other intervening values of L,, the similar order including minus
sign holds. ' -

. From the above values, the amplitude sensitivity is found to be very
high, or 10 to 20 times the velocity change. For instance, a one percent
change of velocity due to anisotropy leads to a 10 to 20 percent change
of the Rayleigh wave amplitude. For a 10 percent velocity change, the
size of the orbit is approximatedly doubled (see Fig. la).

1 percent Decrease of Uelocity,
~ 18 percent Increase of Size.

approximately doubled
for 10 percent decrease
of velocity.

Fig. 1la. Expansion of the Rayleigh orbit due to the velocity
change caused by -anisotropy of the medium.

; The above result implies that the _analysis of the medium ahisotropy
by the Rayleigh wave orbit is more convenient than that by the usual
velocity method because of high sensitivity of the Rayleigh wave orbit.

9. Dependence of inclination of Rayleigh wave orbit on the stability

From the first two exprossions of (7.1), the orbit equation projected
‘on the x—=z plane (sagittal plane) is obtained as follows.
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- —2xuxwxcos(4P)| (A Ay, + U A +w? A, = (sin 4P)?, (9.1)
Whére_?, ' _ , |
Auw=a.xexp(Iux), Ay=a,exp(lysx), AP=P, —P,,.

In order to eliminate the coupled term, the first term of (9.1), the

coordinates of the displacements (u, w) are rotated into new ones (u,, w,)
by '

U, = WS, +uxC,, w,=wxC, —uxS,,
C,=cos(8,,), S,=sin(6,,,),

where 6,,, is the rotation angle.
The rotated equation becomes
Wk W, %C, +w;,2#C@+ u,*+C,= (sin 4P)?, 9.2)
where | -

Cow=58In(2x0,,,)x(—1/A,*+1/A..2)
” . —2xc08(2%0,,,)%c0s(4P) /(A xA.,),
Cw= (Sin @rot)Z/Aur2+ (COS @rot)z/Aw'r .
+2xcos 0,,,xco8 4Pxsin 0,,,/(A M*A,M),
0= (08 6,0)Y A+ (sin 0,,0)%/ A2 .
—2%€08 6,,,%C0S AP*sm 0,./(A ,,,*Aw,)

Puttmg the first expression C,, equal to zero and taklng the terms
to first order of d,;, we have the rotatmn angle 0,,. as follows.

@rat: d@m"‘d@as, (93)
with - '
dOs= Kixdk,i5, dOy= Kysxd,s, (9.4)
where ‘ : '

K;=2+3QRT(m,)+SQRT(by,,) (2048, + 8192xb,,,°+ 13568*6
+1224xb,,,* + 6640+, + 2232+b,,,2 +416%b,,, +- 25)

[((82%Do,® + 64¢bq,," + 404b,,, +T)C.2),

Ky =2+3QRT(m,)*SQRT (b, # (4096 %, -+ 22528+b,,,* + 54784:xb,..
+T7184:b,,,"+69536xb,,°+ 4187 2xby,* +17 152*b0m4+4734*b
+820%by,,> + T0%b,,, + 1)/ ((64by,,° + 160sb,,* -+ 144+b,,,° + 54:xb,,,

+ 8%y, +1)%C 2k, ). '(9.5)

In the above expressions (9.4), it is noted that K and K;; are always
positive (constant sign). This implies that the sign of the rotation angle
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@m depends on only the signs of dk,; and dk,s which aré the inecrements
of imaginary terms of dk, (see (6.3)). This feature leads to the results
that, for the orbit of the Raylelgh waves at the free surface (see Fig.

1b),

Orbit Inclination

cecemdemme e nrateranny - esessefessandasousefosece

direc. of direc. of
propagation propagation.

Stable Case - Unstable Case .
Fig. 1b. Inclination of the Rayleigh wave orbit axis due to the stability.

(i) when the Rayleigh waves are stable (dk,s, dk,<0), the orbit axis
is rotated counterclockwise (8,,.<0), ie., tilts backward, while
(ii) when the Rayleigh waves are unstable (dk,;, dk.>0), the orbit

axis is rotated clockwise (8,,,>0), ie., tilts forward.

In order to examine the dependence of rotation angle 6,,, on the
increase (decrease) of the amphtude, we introduce the following rate of
increase (decrease) of amphtude R,., in the distance of Raylelgh wave-

length L.

Rump a’u/r) /aur

(A.
= (Aur—ur) [0r
=( )/a'wr’ S
= —1+exp(L # g (9.6)

After some reduction by use of (6.3), the above becomes

Dk,15+Dk,35=l’n(l+Rm,,), - ’ (9.7)
where ‘ A o | ‘ | |
Dkrlsz dkrrm*Lrv Dkrasz dkrSS*Lra

and In is ‘the natural logarlthm
Let us here assume the expression

Ramp—dRamﬂs and/or dRamp%’ (9 8)

Where ARunyis and' dRen.s are the variation of R.., assomated Wlth Dk,s
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and/or Dk, respectively. The expression (9.7) becomes
Dk'r15:ln(1+dRamp15); Dkraszln(l_i'dRump%)' (9’9)

By use of the above notations, the expressions (9.4) are transcribed
as follows.

AdB1s=DOxIn(1+d R, ), dOym= DOyl (14 d Ry ppss) (9.10)
with
DOy=k,xKy|(2r), DOy=Fk Kyl (27). (9.11)

The above (9.11) can be evaluated numerically by use of (9.5). The
evaluated results for some L,(=2/p) are arranged below (unit: radian).

When L,=0,
DO,;=2.10766, DOy, —=2.44763;
when L,=0.5,
DO;=1.375217, DOy;;=1.59366;
when L,=1,
DO;=1.11201, DOy=1.27053;
when L, =10,
DO;;=0.65916, DO3;=0.68145;
when L, =100,
DO;=0.59309, DO,=0.59431. (9.12)

In the case of particular rate of increase (decrease) of amplitude,
$aY dRumps OF dRuppss~ +10 or +20 (—10 or —20) percent, the inclina-
tion angles are evaluated by use of (9.10) and (9.12) as follows (unit:
degree), where the values in parentheese are for decrease of the ampli-
tude. ‘

[a] Case of dR,uys OF dR,upss=0.1 (—0.1),

i.e.,, 10 percent increase (decrease) of amplitude:
when L,=0,

dO;=11.51° (—12.72°), dBO;=13.37° (—14.48°);
when L,=0.5,

dO,;=7.51° (—8.30°), dBO;=8.70° (—9.62°);
when L,=1, '

d0;=6.07° (—6.71°), dO;=6.94° (—17.67°);
when L, =10,

dO,;=3.60° (—3.98°), dO;=3.72° (—4.11°);
when L, =100,

dO,;=3.24° (—3.58°), dOy;=3.25° (—3.59°).
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[b] Case of dRyups OF dRunps=0.2 (—0.2), 7

i.e., 20 percent increase (decrease) of amplitude:
when L,=0,

dO,;=22.02° (—26.95°), dO,;,=25.57° (—31.29°);
when L,=0.5,

d0,;=14.37° (—17.58°), dO,;=16.65° (—20.37°);
when L,=1, .

dO,;=11.62° (—14.22°), dB,=13.27° (—16.24°);
when L,=10,

d0,;=6.88° (—843°),  dBO;x=T.12° (—8.71°);
when L, =100,

d0,,=6.20° (—17.58°), d0,=6.21° (—17.60°).

As shown above, when the Rayleich waves increase (decrease) in
amplitude by 10 or 20 percent after traveling the distance of the wave-
length, the inclination angles of the orbit at the free surface are in the
range 5~30 degrees, and the inclination angles in the case of decreasing
amplitude are slightly larger than in the case of increasing amplitude.

As already mentioned before, the Rayleigh wave stability depends
on only the elastic coefficients di; and ds, so knowing the inclination
angles leads to a possibility of analysis on medium structure particularly
associated with di; and ds. ' : :

"10. Conclusion

 Important conclusions are illustrated in Figs. 1a and -1b.

The wave number in a weakly anisotropic medium involves imaginary
terms. As a result, quasi-Rayleigh waves in anisotropic media always
face a stability problem.

In a weakly anisotropic medium, the longitudinal and vertical com-
ponents (u,w) compose quasi-Rayleigh waves which resemble Rayleigh
waves in an isotropic medium. The horizontally transverse component
(v) is a quasi-Love wave which is independent of the former quasi-Ray-
leigh wave with respect to the elastic coefficients and decrease in ampli-
tude with depth in the medium.

The increase (or decrease) of the quasi-Rayleigh wave velocity due
to anisotropy of the medium leads to shrinkage (or expansion) of the
quasi-Rayleigh wave orbit. In this case, the vertical component of the
Rayleigh wave is more sensitive than the horizontal component.

The quasi-Rayleigh wave orbit is very sensitive to the velocity change
due to anisotropy. For instance, a one percent increase of velocity causes
about 10 percent increase in the Rayleigh wave orbit size. For larger
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increase of the velocity, say 10 percent, the orbit size is practically
doubled. This consequence seems important, since it implies that infor-
mation on the anisotropy of the Earth can be obtained from study of
the quasi-Rayleigh wave orbit because of the high sensitivity of the orbit
in comparison with velocity.

When the quasi-Rayleigh waves are stable (or unstable), the Ray-
leigh wave orbit axis at the free surface tilts backward (or forward).
And the inclination of the orbit depends on only two elastic coefficients
dy; and ds; out of the 21 coefficients in the weakly anisotropic medium.
This fact makes it possible to investigate the elastic medium associated
with dy; and d;.

As for the inclination angle, when the Raylelgh waves increase
(decrease) in amplitude by 10 or 20 percent after traveling the distance
of the wavelength, the inclination angles of the orblt at the surface are
in the range 5~30 degrees.
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Appendix A1

The real and imaginary parts inside the root of the expressidn (4.5.2)
are given here. o

S,e= d55*d66*srel + dsstd %S 0+ g1, e5+ o5ty S,es— 2 gz %S, s
+ degtd S e+ Ao %S e+ Ao QggS g — Lo sell5%S o+ dsgxd1%S et
— ey S oo+ Dyt d %S, s+ i g S o — 2% S, 5 — ygeis%S rerg
+ dygdsxS,pe0+ A1 #gg#S oo — 2oy 1% S, 09— 2 gy i3%S 0
+ 4% S g — Do s S o0+ digdistS oo — Aol g% S, o5
4oy # Syeg + ds*S e + do®*Syes— z*dsez*sm + A4S e+ 2 ss™%S, oz
+ duz*srw/z + dsaz*srea/z + 2l 15"5S g9 — 2 log™6S o3 — 2l 17#S 5
— 2l 525 St 224 S, + 2% A% S 05— 251 % S, s — 23745,

Sz'm = dee*dls*smz - dsﬁ*d%*SimZ + dﬁﬁ*d46*siml + dls*dSS*Sim4 + d15*d44*sims
+ dysrdy % Smg + distdogt Sins — 21 13%.Si s — o5t 55 S ms— Doz g5 Sime
— s Sims— a5t ozt Sims + 2 dggrd s Sing+ 2 g5 S;me
A+ Qg (145 Sy — 2 gk Ayt Sipr — 2 Asge g% Sy s — 28 Asgie 5% S s
— 2y xS+ 2o % S+ Dsst s Sins Ayt g Sins
+ d oy S+ gy Sy — 2 g% Sy — 2 51 % S

+ 2 s Aok Sime,
S,a=—k,%C[(8xb*m}),  S,e=—k>/(8+m,)}),
Sra=k.! (8xm,), S,=C/(8+m,f),
S,is= —k.2xC/?/(8xm,?), S,s=k,*[(16xb,>xm 2,
S,e=C/*/(16%b,2xm,"), S,s= —bxk,?/(8+m,),
S,eo="by"xk,"/8, ‘ Sre0=k %C,|(2xm,}2),
Syen=by2/(16%m,%), o
Sim= —k,’[(4xbyxm.?), Sins= —k.*%C;/(4xbyxm.?),
Sims=k,%C 2/ (4xbyxm,?), Simi=Fk,+C 2/ (4dxbyxm,?),
Sims=boxk,/(4+m,2), Sime=boxk,xC;/(4xm,2),

Simﬂ: _bO*krS/ (4*mu) ’ Simgz — bo*krg*Cf/(4*mu) .

Appendix A2
The coeflicients in the expressions (7.3), (7.4) and (7.5) are given here.

Uy= — (Z#SQRT (m,) *SQRT (by,) * (2048+b,,,* -+ 10240:b,,,” 4 21504 b,,°
+24820xb,,,° +15936%b,,,* + 6272:b,,,> + 1688+b,,,” +412:b,,, + 69))/
((64by,° 4+ 645Dy,  — 104 4b,,,° — 164b,,, 2 — 62xb,,, — 3)+C ),

]



— (2+SQRT(m,)*(131072xby, "+ 10158081b,,,** + 3604480:b,,,
+7766016+b,,," -+ 11350016 b,,,"° + 11904000xb,,.° + 9255424 %b,,,*
+5450368:b,,,” +2469888:b,,° + 86667 2:xb,,.° + 230032+b,,.*
4216010 + 4160102+ 28500 — 21) 5By ) [(SART () (5125
+1152:by," + 128y — 1712:by,° — 18565D4," — 784*bom — 15’:6>x<b(,,,,,2
—10xb,,,—1)xC,%),

U= 2+SQRT (m,) *SQRT (byy ) (4096b,,,° 20480, + 44032*60,,,7

© 453248y, -+ 89936y, + 19584:Dy,, '+ 608Dy, + 1576b,,.°

+ 218Dy, +8) /((8%Dyn? + 12Dy, +5)«C,7),
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|

|

|

|

' = 2+SQRT (m,) «*SQRT (by,,) % (8192xb,,,° +483008xb,,,° + 98304 xb,,*

+129024+b,,,”+109440xb,,.° + 65280xb,,.° +29216:b,,.* + 9664 +b,,,*
19925y, + 163Dy — )k, (96:5Dr +232*b0,,,4+ 192*b0,,,

+59xby,. 2+ by, +1)xC ),

\
— (2«SQRT (m,,)*(8192xb,,,° +40960xb,,.* + 88064*60,,,," +106752x%b,,,° ‘
+8()960*b0,,,,5 +40992xb,,,* + 14784 %b,,,* + 8904 xb,,,2 + 640xb,,, +33)*b,,) /
(SQRT( om) % (32%Dy," -+ 64:Dy.” +40*b0m +7)%C,%), !
— (2+SQRT (m,,)* (16384 xb,,"* + 106496*b0mn+ 311296xb,,,° ‘
+ 540160+b,,,° +620416%b,,° - 5001605%b,," +294400xb,,° + 1§'}()192>i=bo,,,5
+48536+b,.' + 10486b,,,° + 1554+b,,” +- 883D, — 3) #by) | (SQRT (byw)
#(64%Don’ + 160Dy, + 144xb,,? + 54*60,,,2 +8xbyn+1)xC *4k,.0),
wy,= 2*SQRT( ) #(1024xb,,,” +4608:xb,," -+ 8448xb,,,° + 8256, +-4800xb,,,’
- +1808xby,” + 464Dy, +65) k. | (SQRT (K, ) # (645y,,° 464Dy * .
o —104sby,*— 1(':4>x<b(,mZ —62:b,,, —3)xC/7), ;
 wy=2+«SQRT(m,)xSQRT(k,, ) *(65536:b,,,* +47 5136*60m12+ 156467 ity
+3088384:b,,,"* +4068352:b,,,” + 3779584 :xb,,,° + 2559744 :xb,,,"
. 1290944 xb,,,° + 489008*1)0,”5&— 137008*1)0,,,4 + 26784*60,,,3 +3216xb,,,”
+176bon — 1)/ ((512Byn -+ 11524y, "+ 1285y, — 1712*b0,; 1856y,
— 784Dy, — 186Dy — IO*bOm —1) *C, ),
— (2+SQRT (m,) (2048+b,,,’ + 9216:by,," 4+ 17408by, ¢+ 18048*b0m
—I— 11456by,* +48005b,,,” + 1868y, + 222504, +7) k)| (SQRT (k....)
(8*60m2+12*b0m+5)*cf) 4
— (2+SQRT (m,,)*(4096:b,,,* + 15360>1=b0,,,7 + 24064*60m° +20992xb,,,°
+ 11776xby,,* +4672x%b,,.° + 1264 xb,,,2 + 176%b,,, + 5)*k,,.}) | (SQRT (k...
#(96xby,,” + 282xby,,* + 192xb,,,° + 5%y, + 5xby,, + 1) xC ),
— (2+SQRT (m,)*SQRT(%,,,) ¥ (4096 %b,,,° +18432xb,,," +34816xb,,,°
+ 86224 xb,,,° + 23264 xb,,," +9984xb,,,° + 2960+b,,,: + 524xb,,, +29))/
((82%by,° + 645y, +40%by,, +7)xC,5),
— (2«SQRT (m,) *SQRT(k,,,) %(8192xb,,,* +40960xb,,,° + 90112xb,,,*
+ 114944 xb,,,” +94784xb,,° +53696xb,,,” + 21664xb,,,* + 6160xb,,,*
+1094xb,,,* + 82xby,, — 1)) /((64xb,,,° + 160xby,,* + 144xb,,,* + 54xb,,,*
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+8xby, +1)xC/%),
and

V1= (8#byy + 6%byy, — 1) % (K ) [ (d e C Fem,),

Vy=,5%bop [ (A2 Cpxm,),

V3= (Kym)/ (duabynxm,),
— (SQRT (k1) * (8byy” +6*b0m —1)%(k,m)) | (SQRT (boy) #d e C 25xm,),
— (SQRT (o) «SQRT (% e %0 3) [ (g C ),

vs=SQRT(k,,)/ (SQRT (byn) *d n2xm,),

with

1= 165Dy, + 28y, 5 + 18%by,. 2 + Tby, + 2,
dn2:8*b0m2+8*b0m+ 1’ dn3:4*b()m+3-

Appendix A3
The coefficients in the expressions (7.6) and (7.7) are giveh here.

— (SQRT(10,) % (8192%B,° + 40960 by, -+ 88064xby,," + 106752y,
+80960*b0m5+40992*b0m4+14784*b0m3+3904*bo,,,2+640*bom+33))/
(SQRT (k) (32bon’ + 645Dy + 408D+ 7)5C,Y),

— (SQRT (1) %(16384D,,,"* + 106496y, " +-311296xb,,, + 540160+b,,.’
4 620416%b,,,° + 500160xb,,,” +294400%b,,,° + 130192xb,,,° -+ 43536 b,,,*
+104863b,,,> + 1554%b,,.” + 88%b,,, —8)) | (SQRT (k) % (64 by, +160%b,,,*
+ 144b,,,* -+ 54xb,,,” +8+by,, + 1)%C *5k...,), :

W= —2+«SQRT(m,) *SQRT (k,,) * (4096xb,,. + 18432xb,,,” + 34816:b,,,°
+36224xb,,," 4+ 23264xb,,." +9984xb,,,> + 2960xb,,,* + 524 by, +29)/
((82%by,° + 64by,,” +40%b,,, +T)xC %),

We= —2+SQRT (m,)*SQRT(k,,,) % (8192xb,,,* +40960xb,,° +90112xb,,.
+114944xb,,,” +94784xb,,.°* + 53696b,,,° + 21664 %b,,.* - 6160xb,,,’
+1094xb,,” +82xb,,, — 1) /((64%b,,,° + 160xby,,* + 144 xb,,,> + 54xD,,.2
+8xby,, +1)xC ). ‘ '
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