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Abstract

Wave propagation in the nonlinear-elastic isotropic media was ana-
lyzed in a two-dimensional case. In the analysis, governing equations
take into account both the physical nonlinearity caused by the stress-
strain relation and the geometric nonlinearity resulting from the
quadratic strain-displacement relation. The equations obtained are
numerically evaluated by use of the extended finite difference method
expanded in Taylor series.

The wave sources have a form of mountain ridge with a width
—2<hx<2, where hx is a distance x normalized by wave number h
of P waves in the linear theory. The waves generated are then
aperiodic. Only soliton-like or step-shaped simple waves (after gas-
dynamics) are found numerically. Existence of these waves are also
confirmed analytically by use of the second order theory. Unlike the
linear theory, the velocity of the simple waves in the nonlinear theory
is not exactly the same as that of P or S waves in the linear theory
relying on the elastic media. Advancing speed of the waves depends
on the gradient of the front simple wave.

In simple waves with large amplitude, the % component (in the
direction of the propagation) is more remarkably dispersed than the
transverse component. This phenomenon is likely to be observed at
a great distance as the P wave dispersion instead of simple wave
dispersion.

Introduction

Most of the previous theoretical investigations into seismic waves
used linear-elastic models. This approach was natural, because the
general adopted view had been that the seismic ground strains were
too weak to excite any nonlinear phenomenon. Meanwhile, the non-
linearity of the waves seems to be still significant in big earthquakes,
particularly near the seismic source.
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The nonlinear theory of wave propagation has been developed fully
in different fields of physics, such as optics, fluid and gas dynamies.
Impressive results, both theoretical and experimental, have been ob-
tained in nonlinear acoustics (RUDENKO and SOLUYAN, 1977; LJAMOV,
1983). In the last few years, experimental investigations by means of
powerful vibrators has revealed some unusual seismic effects, such as
the generation of combinations of frequencies, which cannot be explained
in terms of linear theory (NIKOLAEV et al., 1983).

Recent theoretical studies concerning nonlinear-elastic media have
used perturbation method (WHITAM, 1974; LJamov, 1983; TSVANKIN and
CHESNOKOV, 1987). Assuming the nonlinear waves to be relatively
small, they represented the displacement as a sum: the main term
having the transient plane wave satisfying the linear equations of
motion and the secondary term superimposing the main term. The
perturbation method is only useful in the evaluation of the nonlinear
effect on the linear periodic waves. In the study we report in this
paper, it will be found that the waves in the nonlinear-elastic media
are mever periodic, as the Kdv nonlinear equation possesses steady
progressing wave solution in the form of solitary waves or solitons
(ScorT, 1973).

In this paper, we developed the theory of wave propagation in
nonlinear-elastic isotropic two-dimensional media without assuming the
periodicity. The development of the theory will be made by use of
computer algebra installed on NEC 9800 computer (NEC COMPANY,

Japan).

1. Notation

The following notations will be used in this paper.

t : time,

0 : density of the medium,

x,z . Cartesian coordinates,
x being horizontal and z vertically downwards,

xk : alternative notation of Cartesian coordinates with k (as
suffix) running 1 to 2, i.e., x1=x and x2=z,

u,w : displacement components in the direction of the coordinate
X, Z,

ui . alternative notation of displacements with i (as suffix)

running 1 to 2, i.e., ul=u and u2=w,
La, mu: », ¢ in Greek,
vp . velocity of P waves, ((L+2u)/0"*, in the linear theory,
vs : velocity of S waves, (¢/0)?, in the linear theory,



Wave Propagation in Nonlinear-elastic Isotropic Media 415

h : wave number of P wave in the linear theory,

La, mu, A,B,C,D, E, F, G: elastic coefficient,

Lm, Am, Bm, Cm, Dm, Em, Fm, Gm: elastic coefficient normalized by
mu, i.e., La/mu, A/mu, B/mu, C/mu, D/mu, E/mu, F/mu
and G/mu,

Uik : strain tensor (i, k: suffices), i.e.,

Uik = (uik +uki+ujixujk)/2

with uik =0(ui)/o(xk),

summation over repeated index j being implied,
11,12, 13: strain tensor invariants, i.e.,

I1="Uii, 12=Uik? I3=Uij*Ujk+Uki,

suffices i, j, k following the summation convention,

2. Expression of Energy

In isotropic media, it is known that the strain energy function En
is expressed by use of strain temsor invariants I1, I2, I3, in a series
of generalized Taylor expansion (BLAND, 1969; LANDAU-LIFSHITZ, 1965).
In this paper, the expansion will be taken up to the fourth order of

strain tensor and the phenomenon will be limited to a two-dimensional
case, i.e.,

En=Enl+En2, 2.1)

Enl=el+e2+e3+ed+e5, (2.2)

En2=e6+e7+e8+e9, (2.3)
el=12mu, e2=11*La/2, e3=A13/3,
ed=BI112, e5=CI1%3, (2.4)

e6=DI113, eT=E 12, e8=F1I1*12, e9=11'G. (2.5)
In equation (2.1), the first Enl and second En2 indicate the terms
up to third and fourth order of strain tensor, respectively.
In case the displacements ul and u2 are only x1-dependent, the
above energy is expressed, after substitution of I1, 12 and I3, by
En=FEnl+En2, (2.6)
Enl=ull®* Lamu+u2l* mu/2+ull® F1+ull u21* F2, 2.7
En2=ull'F3+u2l* F4+4+ull*u21* F5, (2.8)
where
Lamu=mu+La/2,
F1=A/34+B+C/3+Lamu,
F2=A/4+B/2+Lamu,
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Figs. 1-1, 1-2. Nonlinear waves at tp=5.0 generated by local wave origin.
Elastic coefficient: Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=1.0. Initial
condition: Q=A(Q)/2#{1+cos (hx*z/2)} (—2<hx<2) with A(hu)=0.6 (Fig.
1-1), —0.6 (Fig. 1-2), A(thw)=A(U)=A(W)=0. Vertical scale: Xx2. Hori-
zintal seale: X1. ‘PW’ in Fig. 1-1 indicates the supposed arrival point
of P waves in the linear theory.

F3=A/2+3/2B+C/2+E+F+Lamu/d+D+G,
F4—A/8+B/4+E/4+mu/d+La/s,
F5=5/8 A+7/4B+C/2+E+F/2+Lamu/2+3/4D,

3. Equation

Stress tensor Sij (i, j: suffices) is related to energy function (Seeger
and Buck, 1860)
Sij=oFEn/ouij . (3.1)

By use of the above relation, governing equations for nonlinear
isotropic media can be expressed (LANDAU and LirsHITZ, 1985) by

0 5*u/ot*=aS11/5x
0 &*w/ot=5S21/6x .
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Figs. 2-1, 2-2. Nonlinear waves at tp=6.0 generated by local wave origin.

Elastic coefficient: Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=1.0.

Initial

condition: Q=A(Q)/2+{1+cos (hx*r/2)} (—2<hx<2) with Athw)=0.6 (Fig.
2-1), —0.6 (Fig. 2-2), A(hu)=A(U)=A(W)=0. Vertical scale: Xx10 for hu

and X2 for hw. Horizintal scale: X1 for both.

By use of (3.1) and the expressions of energy in the foregoing

sectiqn, the above equations are reduced to the following.
(0*u/ot?)/vs*=eqll +eql2,
(0*w/ot*)/vs*=eq2l +eq22 ,
with
eqll=Lam o*u/ox’
+1/2 0 (Gil(ow/ox)*+ G2 (du/ox)?)/ox ,
eq2l =o*w/ox*®
+G1 o0((ou/ox)(ow/ox))/ox ,
eql2=12 G4 (Gu/ox)*(0*u/ox?)
+2 G5 o((ou/ox)(ow/ox)*)/ox ,
eq22=12 G3 (o0w/ox)*(6*wW/0x?)
+2 Gb 6((ou/ox)*(ow/ox))/ox ,

(3.2)
(3.3)

(3.4)

(3.5)

(3.6)

3.7
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Figs. 3-1, 3-2. Nonlinear waves at tp=6.0 generated by local wave origin.
Elastic coefficient: Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=1.0. Initial
condition: Q=A(Q)/2%{1+cos (hx*7/2)} (—2<hx<2) with A(U)=0.6 (Fig.
3-1), —0.6 (Fig. 3-2), A(hw=A(hw)=A(W)=0. Vertical scale: x2. Hori-
zintal scale: 1. ‘PW’ in Fig. 3-1 indicates the supposed arrival point
of P waves in the linear theory.

where vs is the velocity of S waves in the linear theory, the terms
on the right-hand sides of (8.2) and (3.3) are to be taken up to
(i) eqll and eq2l to the second order of the derivative of (u, w).
(ii) eqll+eql2 and eq2l+eq22 to the third order of the deriva-
tive of (u, w),
constants Lam, G1, G2, G3, G4, G5 are expressed as the sum of elastic
coefficient normalized by mu (see Section 1. Notation),

Lam=Lm+2,

Gl=Lam+Am/2+Bm,

G2=3Lam+2Am+6Bm+2Cm,
G3=Am/8+Bm/4+Em/4+Lam/8,

G4=Am/2+3/2 Bm+Cm/2+Em+Fm+Lam/8+Dm+Gm,
Gb=5/8 Am+7/4 Bm+Cm/2+Em+Fm/2+Lam/4+3/4 Dm,
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Figs. 4-1, 4-2. Nonlinear waves at tp=8.0 generated by local wave origin.
Elastic coefficient: Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=1.0. Initial
condition: Q=A(Q)/2x{1+cos (hx*z/2)} (—2<hx<2) with A(W)=0.6 (Fig.
4.1), —0.6 (Fig. 4-2), A(hu)=Ahw)=A(U)=0. Vertical scale: x2. Hori-
zintal scale: X1.

4, Finite Difference Equation by Taylor Method

In this section, finite difference scheme will be introduced by use
of the theory to the third order of the derivative of the displacements
u and w.

By use of wave number h of P wave in the linear theory as
normalization factor, equations (3.2) and (3.3) are reduced to

oU/otp=Ru/Lam , 4.1)
U=2shu/stp, ‘ (4.2)
oW/otp=Rw/Lam , (4.3)
W=shw/otp, (4.4)
Ru=Lam ux2+G2 ux2 ux+G1 wx wx2
+2 G5 ux2 wx*+12 G4 ux2 ux*+4 G5 wx wx2 ux, (4.5)
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Figs. 5-1, 5-2. Nonlinear waves at tp=6.0 generated by local wave origin.
Elastic coefficient: Lm=1.0, Am=Bm=Cm=Dm=Em=Fm=Gm=0, Initial
condition: Q=A(Q)/2#{1+cos (hx*x/2)} (—2<hx<2) with {A(hu)=0.6 A(hw)=
A(U)=A(W)=0} (Fig. 5-1) and {A(hw)=0.6, A(hu)=A(U)=A(W)=0} (Fig. 5-2).
Vertical scale: X2 (Fig. 5-1) and %10 (Fig. 5-2) for hu, and X2 (both)

for hw. Horizintal seale: XI1.

Rw=wx2+Gl ux2 wx+G1 wx2 ux
+2Gb wx2ux*+12 G3 wx®* wx2+4 Gb ux2 wx ux, (4.6)
where
hu=h u, hw=h w, tp=h vp t, hx=h x,
ux =ohu/ohx , ux2=o"hu/ohx?,
wx=0hw/ohx , wx2=0¢"hw/ohx®.
In order to evaluate the displacements (hu, hw) and velocities

(U, W) at a time tp-+dtp (dtp: increment of time tp), we will use
Taylor expansion in terms of tp to the second order of dtp such that

hu =hu0 +dhu[1] dtp+dhu[2] (dtp)¥/2 4.7
hw=hw0+dhw[1] dtp+dhw[2] (dtp)*/2, (4.8)
U=U0+dU[1] dtp+dU[2] (dtp)¥/2, 4.9)

W=WO0-+dW[1] dtp+dW[2] (dtp)’/2, (4.10)
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Figs. 5-3, 5-4. Nonlinear waves at tp=8.0 generated by local wave origin.
Elastic coefficient: Lm=1.0, Am=Bm=Cm=Dm=Em=Fm=Gm=0. Initial
condition: Q=A(Q)/2+{1+cos (hx*z/2)} (—2<hx<2) with {A(U)=0.6, A(hu)=
A(hw)=A(W)=0} (Fig. 5-3) and {A(W)=0.6, A(hu)=A(hw)=A(U)=0} (Fig.
5-4). Vertical scale: x2. Horizintal scale: Xx1.

with
hu0 and hw0 are hu and hw at the time tp,
dhu|1]=0hu/otp , dhu[2]=0hu/otp?, (4.11)
dhw[l]=0¢hw/otp, dhw[2]=0¢*hw/otp®, (4.12)
dU[1]=0U/otp, dU[2]=6"U/otp*, (4.13)
dW[1]=0W/otp, dW[2]=0*W /otp?, (4.14)

where the coefficients of power dtp are evaluated at the time tp.

The coefficients in (4.11) to (4.14) are expressed as follows by using
(4.1) to (4.6).

dhu[1]=T, dhu[2]=Ru/Lam , (4.15)
dhw[l]=W, dhw[2]=Rw/Lam , (4.16)
dU[1]=Ru/Lam, dW[l]=Rw/Lam, (4.17)
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Figs. 6-1, 6-2. Nonlinear waves at tp=8.0 gencrated by local wave origin.
Elastic coefficient: Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=3.0. Initial
condition: Q=A(Q)/2*{1+cos (hx*7/2)} (—2<hx<2) with {A(hu)=0.06, Athw)=
AU)=A(W)=0} (Fig. 6-1) and {A(hw)=0.06, A(hu)=A(U)=A(W} (Fig. 6-2).

Vertical scale: x20 (Fig. 6-1) and X200 (Fig. 6-2) for hu, and X20 (both)
for hw. Horizintal scale: X1.

dU|2]=Rutp/Lam , dW{2]=Rwtp/Lam , (4.18)
with
Rutp=0oRu/otp and Rwtp=0oRw/otp .

The last expressions Rutp and Rwtp are obtained explicitly by direct
differentiation of (4.5) and (4.6) with respect to tp and substitution of

U and W.
Rutp=Lam Ux2
+G2 Ux2 ux-+G2 Ux ux2
+G1 Wx wx2+G1l Wx2 wx
+12 G4 Ux2 ux*+24 G4 Ux ux2 ux
+2 G5 Ux2 wx*+4 G5 wx2 wx Ux
+4GEWx wx2ux+4Gh Wxwxux2+4Gh Wx2wxux, (4.19)
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Figs. 6-3, 6-4. Nonlinear waves at tp=8.0 generated by local wave origin.
Elastic coefficient: ILm=Am=Bm=Cm=Dm=Em=Fm=Gm=3.0. Initial
condition: Q=A(Q)/2*{1+cos (hx*z/2)} (—2<hx<2) with {A(U)=0.06, A(hu)=
A(hw)=A(W)=0} (Fig. 6-3) and {A(W)=0.06, Athu)=A(hw)=A(U)=0} (Fig.
6-4). Vertical scale: Xx20 (Fig 6-3) and X200 (Fig. 6-4) for hu, and Xx20
(both) for hw. Horizintal scale: X1.
Rwtp=Wx2
+G1 Ux2 wx+G1 wx2 Ux
+G1 Wx ux2+G1 Wx2 ux
+2G5 Wx2ux?*+4 G5 Wx ux2 ux
+12 G3 Wx2 wx*+24 G3 Wx wx2 wx
+4 G5 Ux2 wxux+4 G5 wx2 Uxux+4 Gb wx Uxux2, (4.20)
ux=ohu/ohx , ux2=0%hu/ohx*, (4.21)
wx=ohw/ohx , wx2=0"hw/ohx*, (4.22)
Ux=Ug/ohx , Ux2=0"U/ohx*, (4.23)
Wx=0W/ohx , Wx2=0"W/ohx*. (4.24)

In occasion of numerical calculation, (4.21) to (4.24) are computed
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Figs. 7-1, 7-2. Nonlinear waves at tp=6.0 generated by local wave origin.
Elastic coefficient: Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=—1.4. Initial
condition: Q=A(Q)/2+{1+cos (hx*z/2)} (—2<hx<2) with {A(hu)=0.05, A(hw)=
A(U)=AW)=0} (Fig. 7-1) and {A(hw)=0.05, A(hu)=A(U)=A(W)=0} (Fig.
7-2). Vertical scale: X20 (Fig. 7-1) and X200 (Fig. 7-2) for hu, and X20
(both) for hw. Horizintal scale: X1.

by the difference
Qx=0QQ/ohx
=(—Q1+Q3)/(2 dhx),
Qx2=0"QQ/ohx*
=(—2Q2+Q1+Q3)/dhx*?,

where Q in {Qx, Qx2} indicates variables {u, w, U, W}, QQ in the deriva-
tives variables {hu, hw, U, W}, dhx a mesh interval, {Q1, Q2, Q3} the
variables {hu, hw, U, W} at successive mesh points, respectively.

5. Numerical Computation

Numerical computation will be carried out by use of Taylor series
(4.7) to (4.10) in section 4.
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Figs. 7-3, 7-4. Nonlinear waves at tp=6.0 generated by local wave origin.
Elastic coefficient: Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=—1.4. Initial
condition: Q=A(Q)/2#{1+cos (hx*r/2)} (—2<hx<2) with {A(U)=0.05, A(hu)=
Athw)=A(W)=0} (Fig. 7-3) and {A(W)=0.05, A(hu)=A(hw)=A(U)=0} (Fig.
7-4). Vertical scale: x20 (Fig. 7-3) and X1000 (Fig. 7-4) for hu, and Xx20
(both) for hw. Horizintal scale: X1.

Model Assumed
At the origin of the coordinates, the initial (tp=0) displacement
or velocity

Q=AQ)/2 {1+cos (hx 7/2)} in the range —2<hx<2 (5.1)

is given, where Q=hu, hw, U or W. The expression (5.1) indicates a
local mountain ridge (since two-dimensional) with height A(Q).

In computation, mesh size dhx=1/3 and time step dtp=0.002 will
be assumed. The convergence or stability of numerical computation is
then confirmed by double increase of dividing points. Computed range
of hx is —10 to 10. The computations are terminated before the head
of the advancing waves reach one of the either end of the computed
range (hx=—10 or +10) in order to avoid the effects of the artificial
boundaries at both ends.

As for the effect of truncated terms of the computation, it is
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Fig. 8. Typical dispersion of high-amplitude simple waves. Time step: dtp=
4.0. Last time: tp=12.0. Elastic coefficient: Lm=Am=Bm=Cm=Dm=
Em=Fm=0Gm=3.0. Initial condition: Q=A(Q)/2%{1+cos (hx*7/2)} (—2<hx<2)
with A(U)=-0.6, A(hu)=A(hw)=A(W)=0. Vertical scale: x4. Hori-
zintal scale: X1.

evaluated approximately by the first one of the truncated terms. In
this paper, the fourth order term become the case, say, for x-derivative,

(ou/ox)*,
(ou/ox)*(ow/ox) , (ou/ox)ow/ox)*, (ou/ox)*(ow/ox) ,
(ow/ox)', ete.

Among the above terms, the first term (du/ox)* is the most signi
ficant as compared with the coupled terms, since the u and w components
are generally propagated at different velocity and hence the order of
the coupled terms is smaller than that of the non-coupled terms.

In the present computation, half width of the wave source is 2
and the height of the wave 0.6 (=A(Q)) in the case of the highest
amplitude. The derivatives du/ox and (0u/ox)* then become the order
of 0.3 (=0.6/2) and 0.008, respectively. That is to say, the effect of
the truncated terms are, at most, the order of the line width of the
curves depicted.

It must be noted here that the above discussion is based on the
assumption that the elastic coefficients of the above terms are the
same order.

Numerical Instances
In numerical computations, the following numerical values are used
for elastic coefficient and the amplitude A(Q) of the wave origin.
instance 1.
Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=1.0,
A(u)=0.6 (Fig. 1-1) and —0.6 (Fig. 1-2),



(i) Displacement-type:
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Ahw)=AU)=AW)=0,

nstance 2.

Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=1.0,
A(hw)=0.6 (Fig. 2-1) and —0.6 (Fig. 2-2),
Athu)=AU)=AW)=0,

instance 3.

Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=1.0,
A(U)=0.6 (Fig. 3-1) and —0.6 (Fig. 3-2),
Ahu)=Ahw)=AW)=0,

instance 4.

ILm=Am=Bm=Cm=Dm=Em=Fm=0Gm=1.0,
A(W)=0.6 (Fig. 4-1) and —0.6 (Fig. 4-2),
Ahu)=Athw)=A(U)=0.

instance 5.

Lm=1.0, Am=Bm=Cm=Dm=Em=Fm=Gm=0,

Ahu)=0.6, A(hw)=AU)=A(W)=0, (Fig.
Ahw)=0.6, A(hu)=AU)=AW)=0, (Fig.
A(U)=0.6, A(hu)=Athw)=A(W)=0, (Fig.
AW)=0.6, A(hu)=Atw)=AU)=0, (Fig.

instance 6.

Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=3.0,

Ahu)=0.06, Ahw)=AU)=AW)=0, (Fig.
A(hw)=0.06, A(hu)=A(U)=A(W)=0, (Fig.
A(U)=0.06, A(hu)=Athw)=A(W)=0, (Fig.
A(W)=0.06, A(hu)=A(hw)=A(U)=0, (Fig.

wnstance 7.

Lm=Am=Bm=Cm=Dm=Em=Fm=Gm=—1.4,

Ahu)=0.05, Athw)=A(U)=A(W)=0, (Fig.
A(hw)=0.05, Athu)=AU)=AW)=0, (Fig.
A(U)=0.05, A(hu)=A(hw)=A(W)=0, (Fig.
A(W)=0.05, Athu)=A(hw)=A(U)=0, (Fig.

Classification of Wave Source

For the convenience of later reference, the type of wave source is
classified into the following two categories (i) and (ii).
only initial displacement hu or hw are

427

5-1)
5-2)
5-8)
5-4)

6-1)
6-2)
6-3)
6-4)

7-1)
7-2)
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non-zero while initial velocities U and W being zero. Figures
of this type are Figs. 1-1, 1-2, 2-1, 2-2, 5-1, 5-2, 6-1, 6-2, 7-1
and 7-2.
(ii) Velocity-type: only initial velocity U or W are non-zero while
initial displacements hu and hw being zero. Figures of this
type are Figs. 3-1, 8-2, 4-1, 4-2, 5-3, 5-4, 6-3, 6-4, 7-3 and 7-4.
The above classification of wave source type is very reasonable
since solitary waves, say solitons, are generated by the wave source
of displacement-type while typical step-shaped waves by the source of
velocity-type.

6. Simple Waves

Throughout all the graphs in Fig. 1-1 to Fig. 7-4, it is seen that
the nonlinear waves generated from the local wave origin are not
periodic. Typical simple waves (BLAND, 1969; JEFFREY and TANIUCHI,
1964) are found. The equations of- waves to the second order of the
derivative of the displacement are very useful in explaining this feature.
The second order equations are given by (8.2) and (3.3) with terms eqll
and eq2l only.

Transcribing the second order equations (3.2) to (3.5) with the
moving axis with the velocity vr,

tr=vrt, kr=vrt—x, (6.1)
where tr and kr are new independent variables on the moving axis,
we have

o*u/otr®*+2 (0*u/otrokr) +o*u/okr®
=vp® (*u/okr®)/vr’

—vs? G2 (0u/okr)(0*u/okr®)/vr?

—vs® G1 (6w /okr)(0*w/okr?)/vr®, (6.2)

o*w/otr: +2 (6*w/otrokr) +o°w/okr®
=vs® (0*w/okr®)/vr®
—vs? G1 (6u/okr)(0*w/okr?)/vr*
—vs® Gl (6*u/okr®)(ow/okr)/vr® . (6.3)
In order to obtain the stable solutions on the moving axis, we

assume the displacements u and w to be independent of tr and integrate
with respect to kr. Equations (6.2) and (6.3) are simplified as follows.

Vrp (ou/okr) +G2 (du/okr)?/2+G1 (dw/okr)*/2=0, (6.4)
Vrs (ow/okr) +G1 (ou/okr)(ow/okr)=0, (6.5)
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where
Vrp=(vr*—vp’)/vs®,  Vrs=—1+vr¥vs’. (6.6)

The above two equations (6.4) and (6.5) are very important, since these
equations explain the characteristic behaviors in Figs. 1-1 to 7-4. It
must be noted here that egs. (6.4) and (6.5), from the derivation, are
only significant for the positive-ward advancing waves instead of
negative-ward.

Nomn-coupled Simple Waves

The ‘non-coupled’ implies that the components u and w are not
interrelated. In case of simple waves, it will be found that ‘non-
coupled’ is actually only u-component.

By assuming that

w=w0 (const), (6.7)
eq. (6.5) is found always zero and eq. (6.4) yields the solutions
u=Gu kr with Gu=—-2Vrp/G2, (6.8)
and
u=ul (const). (6.9)

Expressions (6.7), (6.8) and (6.9) indicate the generation of the
step-shaped stand-alone u simple waves which is not coupled with w-
component. Instances in this case are Figs. 1-1, 1-2, 8-1, 8-2, 5-1, 5-3,
6-1, 6-3, 7-1 and 7-3. As shown in these figures, existence of non-
coupled simple waves does not depend on the values of elastic coefficient.
Expression (6.8) implies that the advancing velocity (vr) of stand-alone u
simple waves depends on the gradient Gu of the front wave through the
relation (6.6). It must be noted that these simple waves are not pro-
pagated with the velocity of P waves. Instances in Figs. 1-1, 1-2, 3-1,
3-2 and etec. indicate that the stand-alone u simple waves on both sides
are propagated at different velocities depending on the gradient.

As readily seen from (6.8) with the help (6.6), it is found that,

when vr>vp, ‘pull’ wave occurs, (6.10)
while,

when vr<vp, -push’ wave occurs, (6.11)

where G2 is assumed to be positive (in ordinary case), ‘pull’ and ‘push’
imply the negative and positive displacements in the advancing direetion
of the waves. The typical instance is given in Fig. 3-2.

As typical instances, Figs. 1-1 and 3-1 indicate that the waves
propagated leftwards and rightwards move with a velocity faster and
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slower than that of P waves, respectively, where the situations with
‘PW’ in the figures are the estimated arrival points of P waves in the
linear theory.

Coupled Simple Wawves

The term ‘coupled’ implies that the components u and w are closely
interrelated in the governing equations. In the case of simple waves,
it will be found that the wave form of u-component is determined by
the equation with the acceleration term o°w/ot* while that of the w-
component by the equation with the term o*u/ot’. Solving eq. (6.5),
which originally has the acceleration term o°w/dt*, we have

u=Gu kr with Gu=-Vrs/Gl. (6.12)

Substitution of (6.12) into (6.4), which originally has the term
d*u/ot?, yields

w==+1"2 Gwkr  with Gw=1"Gw2, (6.13)

where
Gw2=Vrs {(1—vp¥vs)+ Vrs (1—G2/(2 G1))}/(G1?). (6.14)

As shown above, each component of the displacement is determined
by the counterpart equation to it. Expressions (6.12) and (6.13) indicate
coupled simple waves. Instances of these expressions are given in Figs.
2-1, 2-2, 4-1, 4-2, 5-2, 5-4, 6-2, 6-4, 7-2 and 7-4.

In order to obtain more clear physical interpretation for the above
figures, the quantity Vrs in (6.14) is assumed to be small. In other
words, the moving velocity (vr) of the simple waves is assumed to
have a value similar to that (vs) of S waves. Expression Gw in (6.13)
and (6.14) is then reduced to

Gw=1"—=Vrs1/ vp’/vs’—1 |/ |G1]. (6.15)

From the above expression, when Vrs is small, existence of the
coupled simple waves require —Vrs>0, i.e., vr<vs; the velocity (vr)
of the coupled simple waves must be smaller than that (vs) of S waves,
and also, by comparing Gu in (6.12) and Gw in (6.15), it is found that
the intensity of the u-component (~—Vrs) is the second order of that
w-component (~17—Vrs).

In Fig. 8, the computation range of hx is extended to —20 to 20.
This figure shows a typical dispersion of u simple waves, as the waves
advance. This phenomenon may be observed at a great distance from
the wave source as the P wave dispersion instead of simple wave
dispersion.

On the other hand, w simple waves are very stable, and no difinite
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dispersion like u simple waves is found throughout all the figures con-
cerning w component.

Summary

In nonlinear elastic media, dynamie equations to the third order
of the derivative of the displacement are introduced by use of the
expression of energy function, the stress-strain relation and the quad-
ratic strain-displacement relation. The equations obtained are numeri-
cally solved by use of the extended finite difference method expanded
in Taylor series.

The wave sources are assumed to have a form of mountain ridge
with a width —2<hx<2, where hx is the distance x normalized by
wave number h of P waves in the linear theory. In such a wave
source, no periodic waves are generated in nonlinear theory. Only
Soliton-like or step-shaped simple waves (after gas-dynamies) are then
found numerically. For the former, the waves are produced by a wave
gource of a type of initial displacement (displacement-type) while, for
the latter, the wave source is of a type of initial velocity (velocity-
type). Existence of simple waves are also confirmed analytically by use
of the second order thory.

Unlike the linear theory, the velocity of the simple waves in non-
linear media depends on the amplitude, literally gradient, of the front
simple waves. These waves are not propagated at a velocity of P or
S waves in the linear theory, though near these values.

As for coupled simple waves (u and w components co-existent), the
w-component of these waves is propagated at a velocity lower than
that of S waves in the linear theory.

In simple waves with large amplitude, the u component (in the
direction of the propagation) is more remarkably dispersed than the
transverse component. This phenomenon may be observed at a great
distance from the wave source as the P wave dispersion instead of
simple wave dispersion.
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