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Abstract

In order to interpret seismograms, we should separate the effects
of source and medium, which are strongly coupled. The medium
effect is usually estimated by computing synthetic seismograms for a
model of the Earth. Of course, a three-dimensionally heterogeneous,
arbitrarily anisotropic and attenuative medium is the most realistic
model, but it requires a great deal of theoretical and numeriecal
effort. At present one- or two-dimensionally layered, isotropic and
attenuative media consisting of homogeneous layers are the most
productive models for precise waveform analyses of seismograms. A
new approach based on the reflectivity method is presented here to
compute complete synthetic seismograms in these models.

Following the standard derivation of the reflectivity method,
displacement and stress components are doubly transformed into the
frequency-wavenumber domain, and they are treated together in a
motion-stress vector. In one-dimensionally layered media which have
only flat interfaces, the boundary conditions at the interfaces are
simply satisfied by the motion-stress vectors and propagator matrices
for individual wavenumbers. Thus synthetic seismograms can be
obtained by summing up displacement transforms computed indivi-
dually. These seismograms include all multiple reflections and surface
waves. The effect of Q-values can easily be introduced into them.

In two-dimensionally layered media, on the other hand, scattering
by irregular interfaces causes the coupling among different wave-
numbers. The boundary conditions are not satisfied for individual
wavenumbers, but only for a total wave-field. Then we introduce
the Aki-Larner technique to solve the integral equations for these
conditions and enlarge the propagator matrices to express the total
wave-field.

Numerical examples are presented for several one- and two-dimen-
sionally layered media to confirm the validity of our approach. Some
of them compare to the results of other methods, 7.e. the finite
element and difference methods, the asymptotic ray theory, and the
Gaussian beam method. Our results agree well with those of the
finite element and difference methods even in a later portion where
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the latter two methods break down.

In the second half our approach is applied to investigate the
effects of the details of crustal structures on synthetic seismograms.
Computations for typical models reveal that layers thicker than /10
(2: wavelength of input signal) cannot be ignored, and interface
dents larger than 2/10 must affect seismograms. Seismograms are
also synthesized for the crustal model of the Kanto plain obtained
by refraction experiments. They show that the irregular interface
strongly affects their waveform and amplitudes.

1. Introduction

Seismologists look at the Earth’s interior and earthquake sources
through windows called seismograms. Since the effect of medium on
seismograms is strongly coupled with the effect of source, the inter-
pretation of seismograms should start with the separation of them.
On interpreting amplitudes or waveforms the medium effect is usually
estimated from synthetic seismograms computed for a model of the
Earth. It is no wonder that a detailed analysis of medium requires
synthetic seismograms for a realistic model. Moreover, a source analysis
also requires them, because wrong estimations of medium and source
effects can produce a result apparently consistent with observation.

Of course a three-dimensionally heterogeneous, arbitrarily aniso-
tropic and attenuative medium is the most realistic model, but it
requires a great deal of theoretical and numerical effort. It also has
too many parameters to build an initial model, or to obtain significant
results from data presently available. One- or two-dimensionally layered
media consisting of homogeneous, isotropic and attenuative layers are
the most productive models for precise waveform analyses of seismo-
grams.

From the 1960’s a number of methods were presented for synthe-
sizing seismograms in layered media. At present it can be said that,
except for some computational problems, the theory of seismogram
synthesis has been completed for one-dimensionally layered media (1—D
media) whose physical properties depend only on depth. Methods for
1—D media can be divided into three groups. The first group (e.g.,
CERVENY and Ravindra 1971; HRON and KANASEWICH 1971) is based on
the asymptotic ray theory. Methods of this group are approximate
but very fast. The second group, based on wave theory, can generate
more accurate seismograms at the cost of longer computation time.
The last group is purely numerical and requires much more extensive
computation. The general finite difference, finite element, and boundary
element methods belong to this group. Recent efforts of theoretical
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seismologists were focussed on the second group, 7.e. wave-theoretical
methods. In this group are the Generalized Ray Theory (HELMBERGER
1968; MULLER 1969), the WKBJ Theory (CHAPMAN 1978) and the Full
Wave Theory (CorRMIER and RICHARDS 1977), which can compute seis-
mograms for specified phases. On the other hand the reflectivity
method can generate complete seismograms including all body and
surface waves. In its original version (FucHS 1968; FucHS and MULLER
1971) a few approximations still remained, but they will be removed in
this paper following the formulation of KIND (1978).

In the reflectivity method a doubly transformed wave-field is com-
puted using propagator matrices, and seismograms are obtained by
numerical inverse transforms. The transformed wave-field is expressed
by a linear combination of reflectivities (generalized reflection coeffici-
ents) in the original reflectivity method and its revisions (e.g., FABER
and MULLER 1980; KoHKETSU 1981), but reflectivities do not explicitly
appear in the complete wave-field of the extended version described
hereafter. However, KENNETT and KERRY (1979) have shown that the
latter wave-field implicitly includes reflectivities for all parts of a
layered medium. Thus, following AKI and RICHARDS (1980), we suggest
that all methods where transformed wave-fields are evaluated with
matrices and inverted numerically will be referred to as Reflectivity
Methods.

The reflectivity method has many variations. Some authors modi-
fied propagator matrices to avoid numerical instabilities at high fre-
quencies (e.g., KENNETT 1980; HA 1984), and others deformed the
integration contour of inverse transform to improve convergence (e.g.,
WANG and HERRMANN 1980; SATO and HIRATA, 1980). BoucHON (1979)
and CORMIER (1980) replace the Hankel transform with the double
Fourier and the spherical harmonic transforms to apply the method to
rectangular faults and the spherical Earth. The ‘Discrete Wavenumber
Method’ of BoucHON (1981) and the ‘Wavenumber Integration Method’
of APSEL and Luco (1983) are essentially identical to the reflectivity
method. The modal summation method (e.g., HARKRIDER 1964; HARVEY
1981) is a distant relative with residue approximation for numerical
inverse transforms. The Alekseev-Mikhailenko method (ALEKSEEV and
MIKHAILENKO 1980), the collocation method (SPUDICH and ASCHER 19883),
and the discrete wavenumber/finite element method (OLSON et al. 1984)
can be called half-breeds of the reflectivity method and purely numeri-
cal approaches.

Here it should be noted that the reflectivity method has been
able to be applied to 1—D media. At present, however, seismologists
and geophysicists are strongly interested in the Earth’s laterally hetero-



204 K. KOHKETSU

geneous structure. Synthetic seismograms used in analyses of the
lateral heterogenelty are usually computed by the asymptotic ray/beam
method (e.g., CERVENY et al. 1977; CERVENY 1983) or purely numerical
methods (e.g., BOORE 1970; SmiTH 1975). The former contains many
serious approximations, and the latter requires extensive computations
and large core storage. Wave-theoretical approaches, especially the
reflectivity method, may be superior to the above method’s cost-
accuracy trade-off. In the second chapter of this paper the reflectivity
method will be extended to the complete seismogram synthesis in
1—D media and two-dimensionally layered media with laterally varying
interfaces (2—D media).

In the third chapter our method will be applied to investigate the
effects of the details of crustal structures on synthetic seismograms.
Thin layers in the shallow part of the crust and fluctuations on inter-
faces are usually ignored, but they must influence seismograms in some
situations. By numerical simulations it will be shown how thick layers
and how large fluctuations on interfaces can affect synthetic seismo-
grams.

Finally, synthetic seismograms will be computed for the actual
structure beneath the Kanto plain. The two-dimensional structure of
attenuative sediments will be derived and its effects will be estimated
by comparing synthetic seismograms for a variety of crustal models.

2. Method

In this chapter we will derive the double integral transform of
the surface displacement due to an incident plane wave, a line source
or a point source in 1—D and 2—D media. To a possible extent we
will follow KOHKETSU’S (1987) formulations for SH waves. We will
then rewrite this transform in a matrix form so that it can be inverted
numerically by a digital computer. Examples of synthetic seismograms
will also be presented and some of them will be compared to the results
of other methods in order to confirm the validity of our method.

2.1 Boundary condition

The considered medium consists of M—1 layers overlying a half-
space. The halfspace will sometimes be called the M-th layer. A
Cartesian coordinate system (z, v, z) is used with z-axis taken position
downward (Fig. 2.1). Each layer is isotropic and homogeneous with
P-wave velocity «,, S-wave velocity B,, and density p,(k=1, -, M).
If a layer is attenuative, we should take the following complex velo-
city models:
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faces separating the layers z |
have laterally irregular Fig. 2.1. A layered medium consisting of M—1
shapes expressed by the layers and a halfspace. The k-th layer with
b b . material parameters a;, B and px is bounded
depth function: by the (k—1)-th and k-th interfaces at the
0 depths of zx—; and zx. The solid line associ-
zk(w)_zk+hk(x) ated with a thin line is the free surface.
k=0, «+-, M—1), (2)

which fluctuates around the average depth 2} with the function 7,(x).
The average thickness of the k-th layer is d,=z}—z}_,.

We consider plane waves whose initial direction of propagation is
confined in the x—z plane. Since their motion will be independent of
y at any time in our 2—D media, the wave-field as well as the medium
properties are functions only of x and z. The elastic displacement
[u, v, w] can be expressed by

op 9% y. 9P ﬁ]
[ax oz vl 2 1), 8z+ax (8)

with the P-wave potential ¢(x, z,t) and the SV-wave one ¢(z, 2, t).
v(x, 2z, t) represents a displacement of SH wave. Since the wave-field
is independent of y, stress components are reduced as
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where )\ and g are Lamé’s constants. The four upper components are
due to the P—SV wave, and the two lowers due to the SH wave.
Following the standard derivation of the reflectivity method, we
doubly transform the potentials, displacements and stresses into the
frequency-wavenumber (w—%) domain as

4o
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As in (4), the six upper transforms in (5) and (6) belong to the P—SV
wave, and the two lower to the SH wave. Since ¢, ¢ and v satisfy
the wave equations
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@, ¢ and ¥ should have the form

P=A_ete* 4 A, 7"
55=B_e+5”ﬂ’+B+e""”ﬂ’

T=C_e*# +C e , (7)
where
VEE—E k,>k
TR k<k, =2

v represents the P wave velocity (a) or the S wave velocity (B).
When an upper layer with «,, B, and p, is separated from the
lower with «, B, and p, by the interface at z(z)=2"+h(x) (Fig. 2.2),

Z° + h(x)

n = (nx. o, nz>

Fig. 2.2. An irregular interface between two layers. 7 is the unit normal to
the interface.
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the condition of continuity must be imposed along the interface. The
condition for continuity of displacement

S+°°1,7,'1(k, z(x), a))eikxdk — S+w77:2(k, z(x>’ a))ejka:dk

S+°°@T;l(k, 2(x), w)e=dk :Ewwz(k, 2(%), w)e**dk
e . +oo .
g 171(16! z(x)! w)e]kxdk :S 1172(16, Z(x), a))eﬂkxdk (8)

has to be satisfied for every x. If z=2" i.e. the interface is horizontal
(1—D media), kernels are independent of #, and These integral equations
will simply be solved as

ﬁl(k! zo’ a)) =ﬁ2(k; zo’ (1))
W,(k, 2°, @) =W,(k, 2°, w)
.k, 2°, 0) =Tk, 2°, w) . (9)

For an irregular interface, however, we have no trivial solutions
like (9). In other words, scattering by irregular interfaces causes the
coupling among different wavenumbers. AKXI and LARNER (1970) found
a practical way to solve (8) for irregular interfaces, but their formula-
tion is restricted to one-interface problems. In the present paper we
will extend it to the reflectivity method for multilayered media. After
insertion of (7) and (2) into (6), we now approximate the infinite
integrals of #, @ and ¥ in (6) by the finite sums

N—1 .
‘2; 2 [FHLp X2+ P HE p X2 PHE X2 L HYy X e
Ak N—1
21 i

Ak R 7 indkz
o 3 LeH X X e (10)

H:pX2+53Hpp X7+ H X2+ 5 HY X g2k

with
pHL=jndke¥ert® | tHI= 4 gy, ¥t
PHI=F jye™ et - L= jpAle™ s
PX;:Ale:jyﬁnzo , ,u\’;':B;e;’.”ﬁ"‘O
IIHg:e:jy'Mh(x) ’
X =C:ne—T-J'vlgnzO
where v,,=v,|—.s(v=0a, B). We next insert (10) into the boundary

condition (8) and take the Fourier transform of both sides with respect
to x, then we have
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27 J-o
(11) are a system of 4N simultaneous linear equations for the P—SV
wave, and a system of 2N equations for the SH wave. They can be
rewritten in a matrix form as

P®1— —PQZ—
[; - $H,_ :H, © } v 0, _r . PH,_ 3H,, © } @,
;’ 1— Iz’ 1— Iz’ 14 f 1+ P¢1+ B ;’ 2— f 2— ;’IIH- f 24 I’q)2+
VQH- J’Q2+
[, H,.] ["“D“}:[HHE_ »H,.] [”“DZ“J (12)
11(p1+ H¢2+

where
e R o
_H;N,—N H;N,—N—H Ve H;N,N—-l -

HZF+L-N fo¥+L-N4 L proVeLn—

=
Il

(13)

N—1,— N—1,-N+ N—1,N—
I ¥ 1oL, HY-uN-

H. can easily be calculated by the Fast Fourier Transform.

Similarly, the condition for continuity of traction must be imposed
along the interface. Taking n=(n,, 0, n,) as the unit normal to the
interface (Fig. 2.2), we require continuity of the traction

r=[T. T, Tl,

T.=7on,+ Tl
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T,=t .+t M,
T,=T.M+Tul, . (14)

From (4) we have

T, m(&u +22 3+ (20, 2% 4o, (221,00 1)

0z “on 0z 0%
T,,:)m,( gu +aaw )-I— #(27&,%—0—-% (gg —I—a;; ))
7= (24,20 (15)

In 1—D media only the continuity of <., 7., and 7, is required,
because n=(0, 0, 1). Moreover, it is good enough for 1—D media that
transformed stresses individually satisfy these conditions as

§1(k, Zor w):gz(ky zoy (0)
ty(k, 2°, w) =T,(k, 2°, ®)
ik, 2°, @)=D,(k, 2°, ®) . (16)

On the other hand, for irregular interfaces we should apply the same
procedure to T as to the displacement. Using equations

—h' 1 y__dh
Ny =55 » Ne =775 ==
(1452 (LR dx
we obtain
N—1
3[BT X0+ T X0 4 I X A 5T X

N—-1
= 3 [ Xe o+ 5T ee X 5 X T X
S X BT T X T K]
= 3} [IEXE A T XA T XS + 1T X
Ne1 N—1
__zl\' [HJZn—nIIXl{L— +II mIIXll'E}-] = —Z‘—N [HJ;’ZLHXZE +IIJ;n-IZLHXZTEl—] ’

m=—N, =N+1, -+, N—1

Jmn =_f2,_7]§_SiNJnej(n—m)Akxdm , (17)

where

;Jl [ h’(zvan kﬁ) +2ndk1)an]€+”“”h(z)

T+ h”)w
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L= m[+h'ndkvan+l]e“w"‘“
7t —(1 +h’2)1/2[h,l +2ndkys,JeT et )
wli= Lt [ WAk Ty, et (18)

AR

with [=2k*—k}. Thus, the matrix form of the continuity condition
for traction becomes

_P@1—_ p¢2_

[%Jl_ W Bk HJ » D _[; e B B, E ﬂ 0,

Pl P 3y il {20 | e por Py | 2Dy
Ly D+ Doy
’_H@l*— Ild)z—

[HJ1— IIJ1+] _11¢1+J:[HJ2_ H z+] [H(DZ_J (19)
where
o e Y e i

JIVHLmN JONHL-NEL | JoNALN -1

S
|

. . cee s
L J¥-1-N JE L=+ cen JE-LN-1 J

Finally, by combining (19) with (12) the boundary conditions of
the P—SV wave at the irregular interface yield 8N linear equations
with the 8N variables (,X* and ,X2),

Ko, =K., (20)
where
PH. TH_ ;H. iH,
PH_H_ 3H. {H,
VN Y A
VSN S A
O=[;0_ ,D_ P/ L

The conditions for the SH wave similarly yield 4N linear equations
with 4N variables (,X?), where
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K= [HH- 11H+}
11J - 11J +

O=[,0_ HQ)+]T . (21)

K, which represents scattering due to the irregular interface, will
hereafter be called the Irregularity Matrix.

2. 2 Propagator matrix

Some vectors and matrices defined by HASKELL (1953) for indivi-
dual wavenumbers are used in the reflectivity method developed for
1—D media. The motion-stress vector expressing the wave-field was
defined for the wavenumber ndk as

s*()=[@" ? 5 T]* (P—SV)

=[o pr]” (SH) . (22)
Using this vector the boundary condition at a flat interface yields
s7(=") =s1(2°) . (23)

The amplitude vector
O™(z)=[pX2 X2 X7 XY (P—SV)
=[x X2 4 X7]" (SH) (24)

was introduced to represent the solutions of the wave equation (7).
These vectors are related by

s (z)=1"0"(z) , (25)
+jk =gy +ik FIvs
v 7 v, T
e +av +7 Jv +J (P—8V)

+pul —2pky,  +pl F2pky,
—2pky, —pl  F2pky, —pl
i im] (SH) .
IV IV
Two amplitude vectors at different depths in a layer are also related by
O"(z+d)=e"(d)D"(2) (26)

in which:
gtivand 0 0 0

0 etivn® 0 0

0 0 e #ant 0

0 0 0 e Pt

e*(d)= (P—SV)
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=[e+”’”" 0 J (SH).

O e—jvﬂ“z

Then we can relate two motion-stress vectors at different depths in a
layer as

s"(z+d)=g"(d)s"(z)

g™ (d)=trer(d)t" " . (27
g" is usually called a Propagator Matriz. We now specify these ma-
trices for the k-th layer with ¢3;=g¢"(d,), & and el=e"(d,), and the
vectors with s}(z) and @;. TUsing the propagator matrices and the
boundary condition (23) for 1—D media, the motion-stress vector s7(z9)
at the free surface is related to the amplitude vector @%(z%_,) at the
upper boundary of the halfspace by

(7)) =m"si(zy) ,
m =G5 g o 97 . (28)
If we apply the stress free condition and the radiation condition
syz)=[U™ W0 0]" or [V™ 0]"
05(25-)=[0 0 X2, ;X7 J" or [0 zX3.]° (29)
to (28), we can obtain transformed surface displacements U”, W™ and
V™ for 1—D media. Synthetic seismograms computed from these

transforms are complete, because there is no approximation in our
formulation.

On the other hand, the boundary conditions at irregular interfaces
cannot be satisfied for individual wavenumbers, but only for the total
wave-field as shown in the preceding section. Thus the reflectivity
method itself should be modified to treat it. When we consider
wavenumbers from —N4k to (N—1)4k, the total wave-field can be
expressed by the enlarged motion-stress vector

S(z)=[u w s t]* (P-SV)

=[v p]" (SH) (30)
u= [,ZZ—N gL, aN—-l]T
w=[wY @V, GVT
v=[0Y FVH... Y-
s=[§"¥ Fvu... §y-1T
t :[z’——y E—A +1, ., .Z'N—I]T
p=[F T,

where #"=1H(ndk, z, w) etc. We can also define the enlarged propagator
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matrix G(d) for this vector as
Gll GlZ GIS G
G21 G22 G23 G24
G(d)= P-SV
D=6, 6. 6. 6. T
G41 G42 G43 G

G, G
| T e (31)
[Gm GJ (5

— =N -
G4

—N+1
i

L g5
G(d) consists of sixteen or four diagonal submatrices. A submatrix

G,; further consists of the (4, j) elements of the propagator matrices
gy, g7, ... g Like g"(d), G(d) can also be factored as

G(d)=TEd)T. (32)

T and E(d) have such a partitioned diagonal form as G(d). Their
submatrices are made of the elements of ¢ and e(d). After some
matrix calculations we find that 7' is a partitioned diagonal matrix
consisting of the elements of #7.

We again specify these enlarged matrices for the k-th layer with
G.,=G(d,), T. and E,=E(d,), and the enlarged motion-stress vector
with S,(2). The following relations among them are still valid:

Sy(2}) =G, S (2h-1)

Si(2)=T,9,(2) , (33)
where @, is the enlarged amplitude vector defined for the k-th layer
by (20) and (21). The condition of continuity at the k-th flat interface
and the stress-free condition at the flat surface are simply represented as

S(21) = S;4.(2})
S,z)=[U W 0 0]" (P-SV)
=[V off (SH) (34)
with
U :[U—N U-¥+... UN—I]T
W=[W-¥ WL T
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V=[V~-¥ y-¥+... yr-e

0=[00--.-0]".
For the irregular interface, on the other hand, we have
Kk,k¢k(zz):Kk,kﬂ@kﬂ(zz) (35)

from (20). K, ; is the irregularity matrix for the 4-th interface on
the side of the j-th layer. Inserting (33) into (35) the condition for
the enlarged motion-stree vector can be written as

Ko TS (2) = Ky i TikiSpn(2h) - (36)

Similarly, at the irregular surface we have the stress-free condition
K, T7S,z)=[U W 0 0]° or [V 0]". (37)

1—D and 2—D media have the same radiation condition
D,(25-)=[0 0 pDyy vDyi]" or [0 4Py.]" (38)

in the total wave-field.

Now we can carry the total wave-field in the halfspace up to the
free surface using the boundary conditions (84) or (86). When all the
interfaces are flat, the motion-stress vector S,(z)) is related to @,(z%_,)
by

¢M(z31—1):MS1(Zg) ’
M= TJ_IIG.YI—IG.U—Z. * 'Gl . (39)
This equation is identical to (28), which was derived for an individual
wave-field, excepting the enlarged form of the matrices. If only the
k-th interface is irregular and all of the others are flat, M in (39)
becomes
M= T.I_IIGM—lGM—?.' ¢ 'Gk+1Tk+lKl:,1k+lKk.k Tk_leGk—l' ‘ 'Gl . (40)
(40) is obtained by adding the part indicated with a underline to (39).
In the case of an irregular surface we have
M= TA_rIGM—lGM—z' * ‘Gk+1Tk+1KIZIk+1Kk,le:IGka—1' * 'G1T1 (Ti (41)
from (387). Furthermore, if all of the interfaces and the surface are
irregular, (41) yields

M= KJ_Il—-l,JL’KM—l,JI—lEM——lKA_II—Z,.‘I—-IK\I—E.M—ZEM—z. * 'K;éK1,1E1KE<1> (42)

by (32).

2. 3 Synthetic seismogram

In this section we will show how to compute synthetic seismograms
using the boundary conditions and the enlarged propagator matrices
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presented in the previous section. Seismograms due to a plane wave,
a line force and a point dislocation will be considered.

(1) Plane wave incidence

Hereafter we drop ‘‘enlarged’”’ from terms such as the enlarged
propagator matrix, the enlarged motion-stress vector etc. When a
plane wave with the horizontal wavenumber I4k travels from the
halfspace into the overlaying layers at time t=0, the radiation condi-
tion is slightly different from (38). If a plane P-wave is incident, the
amplitude vector at the upper boundary of the halfspace is expressed as

¢M(zf’v—1>=[l 0,9, V@M+]T (43)
with
1=[0 0--:010-- -0]*.

In case of an incident SH-wave, it yields

D, (z%-)=[1 HQ)M+]T . (44)
Substituting (43), (44) and (34) for @,(2%-,) and S,(2f) in (39) we obtain
-1 - U
w
0 M
PQM+ 0
Ly Dy | 0 |
1 —_—M[ . (45)
LH¢M+ _ 0 =

Solving (45) for U, W and V yields

U=(M,—M.M;M,)"1

W=(M,,— M, M;'M,,)"*-1

V=M1 (46)
with the submatrices of M defined as

Ml MZ MS M.«i

| o M | [M M}
M, M. M M, M, M,
M, M, M M,

(47)

The surface displacement can be obtained by integrating numerically
the elements of U, W and V and inverting the integral into the time
domain with FFT.

Since there are surface wave poles along the integration path (the
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real k axis), some of the elements diverge to infinity. In order to!
avoid this mathematical difficulty, we introduce a small imaginary part
into frequencies as w=w;—jw;. It moves all the poles away from the
real axis into the second and fourth quadrants of the complex % plane.
It also prevents aliasing in the time domain. Its effect can easily be
removed from the final time history by multiplying e“s!. For all the
computations in this paper we will take w,=x/T (T; duration of seis-
mogram).

Here we test the validity of our method against other techniques
such as the Aki-Larner method (AL, BARD and BoucHON 1980), the asymp-
totic ray theory (ART, HoNG and HELMBERGER 1978), the Gaussian
beam method (GB, NOWACK and AKI 1984), the finite difference method
(FD, BOORE et al. 1971), or the finite element method (FE, HONG and
Kosvorr 1978). SH waves in the basin structure of Fig. 2.3 have
already been studied with these methods. The symmetrical basin varies
in thickness from 1km at the edge to 6 km in the center along the

interface
z(x)=D+%[1—cos(27r (x—%)/w )] , (48)

w=50km, D=1km, C=5km.

A plane SH wave is impinging vertically from the lower halfspace.
Its time function (Fig. 2.4) is described by the Ricker function

— T 2 1 —b2
f(t)_%f@ — E)e (49)
where b=xn(t—t,)/t,, t,=20sec and ¢,=18.8sec. Figure 2.5, in which
our results are appended to Fig. 13.26 of AKXI and RICHARDS (1980)
and Fig. 19 of NowACK and AKI (1984), compares synthetic seismograms
generated by the six different methods. The letters at the tail of the
rightmost traces indicate which method was used to compute them.

-20 -10 0 +10 +20 km
I 1 I I 1 I T I I I 1
0
1
0. Tkm/sec
2.0 s
B8, = 8. Bkm/sec g/cm
p, = 3. 8g/cm®
6km

Fig. 2.3. A two-dimensional basin structure with a soft sediment layer.
A plane SH wave is impinging vertically from the lower halfspace.

i
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" On computing our seis-
ole mograms RF, we calculate

the irregularity matrix K
with N=128 and 4k=2x/
128 km. If we directly
apply the radiation condi-
tion of the halfspace at the
Fig. 2.4. Ricker’s wavelet used as a source time irregular interface, up-go-
function. ing scattered waves will
be neglected (AKI and
RicHARDS 1980). To avoid this Rayleigh ansatz error, a dummy layer
with material parameters identical to the halfspace is introduced im-
mediately below the interface. The wave-field in the layer has an
up-going part as shown in (7), and up-going waves scattered around
the interface can be taken into account. Since our formulation has
been constructed for multilayered media, we can easily insert layers
at any depth. In all computations hereafter, a dummy layer will
always be inserted.
Although the Aki-Larner method suffers the Rayleigh ansatz error,

A
o
y

250

(SEC)

(KM)
0

Fig. 2.5. Comparison of synthetic seismograms computed by various methods
for motion on the surface of the structure in Fig. 2.3. Our seismograms
are indicated by the letters RF. The results of Aki-Larner (AL), Gaussian
Beam (GB), Asymptotic Ray Theory (ART), Finite Element (FE), and
Finite Difference (FD) were obtained from Ax! and Ricmarps (1980, Fig.
18. 26), and NowacCk and Ak (1984, Fig. 19).
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the seismograms AL of BARD and BOUCHON (1980) agree well with
ours. This agreement shows that the error is small for the structure
of Fig. 3 and the time function (387). In the lower halfspace, plane
waves with (87) have a predominant wavelength of 64 km, which is
sufficiently longer than the amplitude of interface irregularity, C.

In the early portion all of the traces agree with one another, but
in the later portion the ray and beam seismograms (ART and GB)
differ from the others. This may be due to the high-frequency feature
of the asymptotic ray and beam theories, or to the neglect of some
multiples in the seismograms.

As in the case of an irregular surface, we consider a simple
mountain-like topography shown in Fig. 2.6. The S-wave velocity of
the medium is 500 m/sec, and the time function of an incident SH
wave is expressed by (49) with ¢,=0.2sec. The seismograms section
in the left half of Fig. 2.7 was computed by BOORE (1972) with the
finite difference method. He used the surface indicated in Fig. 2.6
by a solid line. Its ramp nature resulted from the grid configuration
of his method. Since the wave length of the incident wave is suffici-
ently longer than the ramp size, we adopt the smooth surface indicated
by a dashed line in computing our section in the right half. We take
N=64 and 4k=27/128 m for the irregularity matrix. The two sections
excellently agree to each other. We find a strong amplification in the
traces at the top of the mountain and a reflected wave from the other
side in the traces at the mountain’s foot.

We next consider the basin structure of Fig. 2.8, which consists
of two layers. The upper and lower interfaces are expressed by (48)

24 - -
MODEL

-64 -48 -32 -16 o 16 32 48 64
DISTANCE IN METERS

(after Boore,1972)
Fig. 2.6. A two-dimensional mountain-like structure. The solid line with ramp
nature shows the surface used in the finite difference calculation. A plane
SH wave is impinging vertically from the lower part.
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Finite Difference 2D-Reflectivity

1 1
(o} 10 20 30 40
TIME (1072 SEC)

\/\/—
7\/\/—\/\/_
A

(after Boore,1972)

Fig. 2.7. Comparison of synthetic seismograms computed for the model of Fig.
2.6 by the finite difference method and the 2—D reflectivity method. The
numbers at the head of the left traces indicate for which point in Fig. 2.6
a trace is computed. The trace with letters REF is an input signal.

-20 -10 0 +10 +20 km

B,=8. Okm/sec p,=2. Bg/cm®
5. Okm

B,=3. Bkm/sec p,=2. 8g/cm®

Fig. 2.8. A two-dimensional basin structure with two layers. The velocity
contrast between the basin and the halfspace is rather low. A plane SH
wave is impinging vertically from the lower halfspace.

with (w, D, C)=(40km, 1.4km, 1.4km) and (40 km, 3km, 2km) res-
pectively. The velocity contrast between the basin and the halfspace
is rather low. Figure 2.9 compares our seismograms RF with the
seismograms FE computed by Iwashita (personal communication) with
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Fig. 2.9. Comparison of synthetic seismograms computed for the model of Fig.
2.8 by the 2—D reflectivity method (RF) and the finite element method
(FE).

the finite element method. An incident SH wave has the time func-
tion

f(t)=(1—cos 2zfit)/2nf, (50)

with f,=0.5 Hz. In Fig. 2.9 we find two obvious differences. First
the FE trace at 18 km has a much smaller amplitude than the RF
trace. Secondly the FE traces close to the center of the basin are
contaminated by some artificial phases in the later portion. In order
to suppress artificial reflected waves due to the limit of model size,
the efficient absorbing boundary of CUNDALL et al. (1978) was intro-
duced at +20 km in the finite element computation. It suppressed
actual waves as well as the artificial ones in its vicinity, and reduced
the amplitude of the 18km trace. Moreover, it could not perfectly
erase artificial waves, which are distinct in the traces close to the
basin center.

The last example in this part is presented to show the seismic
response of a sedimentary basin due to an incident P wave. The basin
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a,=1. 40km/sec B,=0. Tkm/sec

p1=2. Og/cm®

1. Okm

a,=6. 06km/sec B,=3. 5km/sec
0,=8. 3g/cn®

Fig. 2.10. A two-dimensional basin structure with a high velocity contrast.
A plane P wave is impinging vertically from the lower halfspace;

3.6 ‘\/\ e MR
4,0—-—/‘\/\—W ~— ———
(km)
1
S SEC

Fig. 2.11. Vertical responses of the model in Fig. 2.10 to an incident P wave.

shape in Fig. 2.10 is again represented by (48) with w=10km, D=0
km and C=1km. The Ricker’s function (49) is also used with ¢,=
2.8sec as a time function of the incident wave. We take N=128 and
4k=27/64 km for the irregularity matrix. Fig. 2.11 shows vertical
displacements at the free surface. Since the velocity contrast between
the basin and the halfspace is as high as in the model of Fig. 2.3, a
reverberation appears in the basin with large amplitudes.

(2) Line source
A buried line source requires somewhat different matrix ecalcula-
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tions. The source causes discontinuity of displacement and stress
represented by the discontinuity wvector
4=[0u éw és §t]* (P—SV)
=[év op]* (SH) (51)

ou =[ou™> ou vt ...ou¥ "

ow=[0w~ 6wt . ow¥]"

oo =[657F TV .. 5P T

08 =[08~F 5FVH .. .55V

ot =[6T~Y STV ...5FF T

op =[6p~" op~*.--5p"7']",
where 6%"=0%(ndk, 2, w) etc. We assume without loss of generality

that the source is located on the s-th interface. As there is no
incident wave from the halfspace, we have

- 0 7 _ T
0 w
=M,| 4+ M, (P—SV)
P¢M+ 0
L V¢M+_ L. 0 =
F 0 i VT
=M, A+ﬂ[z[ | (SH) (52)
_H¢M+_ L 0 i

instead of (45). The s-th interface divides M into the lower part M,
and the upper M;. The solution of (52) is

R, U —R, 0 R, R,
[—Ru W]{ 0 R, R, leM‘—lA
—M, V =[M, M)M*4 (53)
where
R,=M;M,,—M;M, .

s, t (the subscripts of R)=1, 2, 8, 4, 5, 6 correspond to the pairs jk, Im
(the subscripts of M)=12, 13, 14, 23, 24, 34. Like the plane wave incident
problem the surface displacement due to the line source can be obtained
by integrating numerically the elements of U, W and V and inverting
the integral into the time domain.

We compute a section of seismograms with our 2—D reflectivity
method for the flat two-layer (one layer and halfspace) structure where
By, B:=2.0, 3.6 km-sec™ and o, 0.=2.3, 2.8 g-cm™. A transverse line
force is buried at 0.5 km depth in the upper layer 8 km thick. Figure
2.12 compares our section with the one computed by the 1—D reflec-
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!W.A i
TV

5 sec
Fig. 2.12. Comparison of synthetic seismograms computed by the 1—D and
2—D reflectivity methods. The traces are tangential surface displacements
at distances 5, 10, 20 and 25 km from a line force buried in a flat strue-

ture.
-20 -10 0 +10 +20 km
I ] 1 I ] i T I T I 1
0
X

8; = 2. Okm/sec 3

Py = 2. 8g/cma
B: = 3. 8km/sec
p; = 2.8g/cm® C+3 km

Fig. 2.13. A two-dimensionally irregular structure with a moderate velocity
contrast. A line or point source is buried in the center of the upper
basin. .

tivity method. Their travel times are reduced with the velocity of
the halfspace, 3.6 km/sec. As a source time function (49) is used with
t,=1.83sec. The agreement between the two sections shows the
validity of the 2—D reflectivity method for line source problems.

We next consider the basin structure shown in Fig. 2.13. In this
structure the layer and the halfspace in the previous example are
separated by the interface whose shape is expressed by (48) with w=
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FLAT " IRREGULAR

__/*V\/V\/\,.

5 sec

Fig. 2.14. Comparison of synthetic seismograms due to the line force computed
for flat and two-dimensionally irregular structures. The irregular strue-
ture is shown in Fig. 2.13. The seismograms are reduced by the S velocity
of the lower halfspace. Arrows and black triangles indicate the arrivals
of head and direct waves, respectively.

50 km, D=3 km, and C=2.5km. The line force is located 0.5 km deep
in the center of the basin. We take N=128 and 4k=27/128 km for
the irregularity matrix.

The traces in the right half of Fig. 2.14 were computed for this
structure. For the laterally homogeneous case the seismograms in
Fig. 2.12 are presented in the left half to show the effect of the
laterally heterogeneous structure. Both the irregular and flat interfaces
generate clear head waves, which are indicated by arrows in the figure.
Multiply reflected waves are coming a few seconds after the arrival
of direct waves (A in the left half indicates the arrival of the direct
waves). They are strongly distorted by the irregular interface.

(3) Point source

We are most interested in synthetic seismograms for a seismic
point source, because an earthquake source is usually modeled as a
point dislocation or a group of point dislocations. The wave-field of a
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point source is generally expressed by a triple Fourier transform in
the the Cartesian coordinates (x, ) and ¢. Since the triple inversion
requires extensive computation, we use the Hankel transform in a
cylindrical coordinate system (7, 0, 2).
The displacement (u, v, w) in the cylindrical coordinates is written
in potential form as
00 Y 140X
=—— +—=
or ordz  r 00
100 16% o0X

U a0 v a0 ar
0P T _,
=0 —p 54
oz + 07* 4 (54)

where

+o0

O, 0, 2, )= A(‘”S "“’da)g Bk, 2, @), (er)dk

]

W(r, 0, 2, )= A(ﬁ)g thdwg Tk, 2, @)J,(kr)dk

—o0

X(r, 6, z, t)=a—/1(‘9—)g f‘“‘da)g Rk, 2, )7, (kr)dke

2700
A(@)=radiation pattern ,
J;=Bessel function (l-order) . (55)

In % and v of the above equations we find the coupling of P—SV and
SH motions. However, if the near-field terms concerned with the
coupling decay at long distances depending on 1/, their effects can be
ignored except at very close distances, or at very low frequencies, as
pointed out by WANG and HERRMANN (1980) and KOHKETSU (1985).
When we neglect these near-field terms, (54) is reduced to the decoupled
form
o | T

- +araz

oX

or
8D 3T
6z ort

v=—

w= (56)

Under the similar approximation stress components are also reduced to

_ ow ou @ﬂ
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82& ow ou aw
2
T=h = —+ (+ /J) /J( ar)
ov ov
=nY Tog=M — . 5
Y Fya o =M . 67)

Comparing (55) and (57) with (3) and (4), we find that the basic equa-
tions in the cylindrical coordinates coincide with those in the Cartesian
coordinates by the following substitutions:

—r, Y—0 , 65"’—>J,(k7‘),

ﬂ , P— — a_.X (58)

0, g—>— .
P ¢ or or

Thus, when a 2—D medium depends on » and z, its elastic response
to the point source can be computed in the far field with the same
procedure as shown in the preceding sections. The diseontinuity
vector due to a point source can be calculated from the results of
SATO (1972). The asymptotic expansion of the Bessel function

Jy(kr)= 1/_ exp[ (lcfr — ﬁ%l)—ﬂﬂ (59)

10

30

50

70

90
(km)

T
HHT

10 sec

Fig. 2.15. Comparison of tangential displacements due to a point source com-
puted without the near-field terms (A) or with them (B). The velocity
model of Table 2.1 is used as a crustal structure.
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Table 2.1. The Central U. S. model (after HERRMANN 1979)

d(km) a(km/s) Bkm/s) o(g/em?®)
1 5.00 2.89 2.5
9 6.10 3.52 2.7
10 6.40 3.70 2.9
20 6.70 3.87 3.0
— 8.15 4.70 3.4

is also valid at distances where the near-field terms can be ignored.

Figure 2.15 illustrates a comparison between the seismograms in a
1—D medium computed with and without the near-field terms. They
represent tangential displacements at 10, 30, 50, 70, and 90 km distances
due to a vertical dip-slip source buried at a 10 km depth in the Central
U.S. model (HERRMANN 1979, Table 2.1). HERRMANN’S (1979) source
time function

0 t=<0
(t/r)[4c 0<t<t
FO=4(—(t|r)+4t]r)—2)/4r T<t=3T (60) -
(¢ —8(t/t) +16)/dr  4dr<t=<dr
0 t>4r

e
s o A

40
(km)

10 sec

Fig. 2.16. Comparison of radial displacements due to a point source computed
without the near-field terms (A) or with them (B). The velocity model of
Table 2.2 is used as a crustal structure.
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Table 2.2. The Tokyo model

d(km) a(km/s) Akm/s) p(g/em?)
1.0 1.8 0.7 2.0
1.6 2.5 1.5 2.3
— 5.5 3.0 2.5

is used with r=0.5sec. Although the seismograms in section (A) do
not include the near-field terms, the two sections compare favorably.
The difference appearing in the early part of the 10km traces arises
from the neglect of the terms in (A). Figure 2.16 compares radial
displacements computed with and without the near-field terms. A
strike-slip source with §=80° and \=5° is buried at a six km depth
in the crustal structure beneath Tokyo (Table 2.2). @,=35 and Q,=15
are given to the top sedimentary layer. The source time function is
the same as that for the previous example. The sections in Fig. 2.16
also compare favorably except for the top traces at the 10 km distance,
which show the significant difference caused by the loss of SH waves
in section (A). The asymptotic expansion (59) for the Bessel function
may also lead to wrong waveforms. Thus these two examples show

1-D 2-D

5 sec
Fig. 2.17. Comparison of synthetic seismograms computed by the 1—D and
2— D reflectivity methods. The traces are tangential surface displacements
at distances 5, 10, 15, 20 and 25 km from a point dislocation buried in the
flat structure.
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FLAT IRREGULAR

25——“/\/\/\/\/\/\-— -————-——-\/V'\/\/\/\/'
(km) A

5 sec

Fig. 2.18. Comparison of synthetic seismograms due to the point dislocation
computed for the flat and two-dimensionally irregular structures. The
irregular structure was shown in Fig. 2.13. The seismograms are reduced
by the S velocity of the lower halfspace. Arrows and black triangles
indicate the arrivals of head and direct waves, respectively.

that the near-field terms can be ignored and the asymptotic expansion
(59) can be used at distances farther than 10 km from the source.

Figure 2.17 shows the synthetic seismograms which were computed
by the 1—D and 2—D reflectivity methods for the flat structure in
the previous section. A point source with vertical dip slip is buried
at a depth of one km. The time function (60) is used with 7=0.5 sec.
Both the record sections agree with each other, except for the upper-
most traces. Acausal arrivals arising from the neglect of the near-
field terms contaminate the early part of the trace computed with the
92— D reflectivity method at 4=5km.

The seismograms in the right half of Fig. 2.18 were calculated for
the basin structure of Fig. 2.13. The interface is expressed by (48)
with D=8km and C=1.0km, and the source is buried in the center
of the basin. We take N=128 and 4k=27/320 km for the irregularity
matrix. Comparing them with the traces for the flat structure in the
left half, we again find multiply reflected waves with distortion and
clear head waves.

3, Effect of crustal models

In this chapter we will reveal how much the detail of a crustal
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mode] affects synthetic seismograms using the method mentioned previ-
ously. Seismograms will be computed for typical models to investigate
the effect of a thin layer, and that of an interface dent or trough.
Our approach will also be applied to the actual structure beneath the
Kanto plain.

3.1 Effect of crustal details

Here it is considered how synthetic seismograms are influenced by
the details of crustal models. First we investigate the characteristics
of SH waves travelling through a thin layer. A line force is buried
at a depth of five km in a halfspace underlying a thin layer (Fig. 3.1).
The velocity contrast between the upper layer and the lower halfspace
is 2.0/3.6, which is rather low. Since f(¢) in (49) is used as the time
function of the source force, the incident wave propagating into the
layer has the time dependence represented by

giwf(s)ds . 61)

The layer may have various thicknesses. The seismograms in
Fig. 3.2 are computed at 10 km, 30 km and 50 km for some particular
layer thicknesses, 7.e. /60, A/30, /10, A\/6 and /3, where )\ is the
predominant wavelength of the incident wave in the halfspace. Com-
paring them to the top traces which are computed for the model
without the layer, it is found that the layers of \/10 or more strongly
deform the seismograms. Especially, the traces at distances of 30 km
and 50 km are contaminated by well-developed reverberation phases in

10km 30km 50km
| ]

ol

B,=2. Okm/sec p,=2. 3g/cm®

Skm

8,=38. Bkm/sec py=2. 8g/cm®

Fig. 3.1. Configuration of the crustal model studied. The upper layer may
have various thicknesses (k). A big cross indicates the line force burried
at a depth of 5km.
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Fig. 3.2. Comparison of the synthetic seismograms computed for various layer
thicknesses. The values at the head of the leftmost seismograms indicate
the layer thickness using the predominant wavelengh 2 of incident waves.

the later portion. The traces for A/60 and A\/30, on the other hand,
have shapes quite similar to that of the top traces.

Secondly, we investigate how dents on interfaces affect SH waves
propagating through them. A plane SH wave is impinging vertically
from a halfspace into an overlying layer (Fig. 3.3). Its characteristics
are represented by (49) and the predominant wavelength ) in the
layer. On the interface there is a dent, whose width is 4x. It may
have various depths.

We consider two cases of the velocity contrast between the layer
and the halfspace. Figure 3.4 shows the synthetic seismograms for
the case of low velocity contrast (8,/8,=1.7/8.5). They are computed
at the points 4, B and C in Fig. 3.3. In the seismograms computed
for dent depths of /30 and \/10, the principal parts agree well with
that of the top traces computed for a flat interface. In the seismo-
grams of /6 and \/3, however, reverberation phases contaminate
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A B Cc
| | |
Bi+ Py 1/6
Bar Py K
5 o o
Low Contrast High Contrast
B,=1.Tkm/sec p,=2. 3g/cm® B,=0. Tkm/sec p,=2. Og/cm®
B,=3. 5kn/sec p,=3. 3g/cm® B,=8. 5km/sec p,=3. 3g/cm®

Fig. 3.3. Configuration of the crustal model with a dent on the interface. A
plane SH wave with the predominant wavelength 4 is impinging vertically
into the upper layer. The dent may have various depths (h). Two cases
of velocity contrast are considered.

their principal parts.

The situation is more serious in the case of high velocity contrast
(B./B,=0.7/3.5, Fig. 3.5). The reverberation phases are strongly amplified
even in the seismograms of A/30. Moreover, they are very sensitive
to the interface dent, and the seismograms in Fig. 3.5 have different
shapes from each other.

The last example in this section is presented to show the effect
of an interface trough on synthetic seismograms. The same line force
as in Fig. 3.1 is buried in a layer three km thick overlying a halfspace
(Fig. 3.6). The velocity contrast between the layer and the halfspace
is rather low (B,/8.=2.0/3.6). A trough extends on the interface from
10 km to 30 km. It may have various depths.

The seismograms at the top of Fig. 8.7 are computed for the
model without the trough. On these traces the arrivals of head and
direct waves are indicated by A and A, respectively. Comparing
them to the seismograms for the trough depths of \/30, A/10 and /6,
the arrival delay of head waves due to the trough is not obvious.
However, the distortion by the trough can be seen, though the ampli-
tudes of the head waves are very small.
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Low Contrast

1/3—/\/\/v\/\/\~\-—/\/’\/\/\/\/\/~/\/“\/\/\-/\/

A B o]

Fig. 3.4. Comparison of the synthetic seismograms at A, B and C (see Fig.
3.3) computed for various dent depths. The low velocity contrast is
adopted. The values at the head of the leftmost seismograms indicate
the dent depth using the predominant wavelengh 2 of the incident wave.

Of course the direct waves are affected little by the trough. The
trough delays the arrivals of reflected wave trains coming after the
direct waves. This delay can be identified in the seismograms of /10
and )\/6 by the separation of the direct wave and the reflected wave
train. Even in the leftmost seismograms observed in front of the
trough, we find a small effect of the trough at the tail of the principal
phase.

From the above three examples it can be said that layers thicker
than a tenth of \ (A: wavelength of an incident wave), and interface
dents or troughs larger than a tenth of A may affect synthetic seismo-
grams. Reverberations in low velocity sediments may suffer very
strong effects by them. Thus, seismograms which are computed ignor-
ing them may lead to wrong estimations of medium effects.
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High Contrast

Fig. 8.5. Comparison of the synthetic seismograms at A, B and C (see Fig. 3.3)
computed for various dent depths. The high velocity contrast is adopted.
The values at the head of the leftmost seismograms indicate the dent depth
using the predominant wavelengh 2 of the incident wave.

10km 20km 30km 40km
| | !

B,=2. Okm/sec

3ki
0,=2. 3g/cm® o
h B8,=3. Bkm/sec
p2.=2. 8g/cm®
20km

Fig. 8.6. Configuration of the crustal model with a trough on the interface.

‘ The trough may have various depths (k). The big cross indicates the line
force buried at a depth of 0.5km.
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10km 20km 30km 40km

Fig. 8.7. Comparison of the synthetic seismograms computed for various trough
depths. On the traces computed for the flat interface, A and A indicate
the arrivals of the head and direct waves, respectively. The values at
the head of the leftmost seismograms indicate the trough depth using the
predominant wavelengh A of incident waves.

3.2 Seismograms in the Kanto plain

(1) Two-dimensional structure

Finally we apply our approach to compute synthetic seismograms
in the Kanto plain. The shallow structure in and beneath the Kanto
plain has been investigated in detail by more than 20 refraction ex-
periments (SHIMA et al. 1976a,b, 1978a, b, 1981) and 4n situ measure-
ments at deep boreholes (TAKAHASHI and HaMADA 1975, OHTA et al.
1981).

The three layers of Table 3.1 have already been revealed. The
influence of @ cannot be ignored, because even in the near-field seismo-
grams may be distorted by such a low @ as expected for sediments
(TAKEO 1985). The @, values on Table 3.1 were estimated by KOHKETSU
and SHIMA (1985) from a comparison of observed and synthetic explosion
seismograms.

The 6-th, 12-th and 21-th Yumenoshima experiments were carried
out along the Yumenoshima-Hatoyama profile, which extends from

Table 3.1. Velocity model in the Kanto Plain

a(km/s) B(km/s) p(g/ecm?) Q@
1.8 0.68 2.0 35
2.7 1.5 2.3 100

5.5 3.0 2.5 400
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36. 0°

0 20km

Fig. 3.8. Map around Tokyo. The shot and observation points of refraction
experiments are indicated by big cross and small plus signs. A big plus sign
and a triangle indicate the epicenter of the Saitama earthquake of 1931
and the Earthquake Research Institute, respectively.

Tokyo in the NW direction. They were followed by the reverse
experiments of the Hotoyama and Bijoki explosions. Figure 3.8 shows
the shot points (big cross) and the observation points (small plus signs)
of these experiments.

The 2—D structure along this profile is obtained by comparing
the observed and calculated travel times. The travel time calculation
for 2—D media is performed by the ray tracing program SEIS83
(éervem’r and Psenéik 1983). The result of the 6-th Yumenoshima
experiment is shown in Fig. 3.9. In the right diagram big crosses
and small plus signs indicate observed and calculated travel times,
respectively. The interface separating the sediments and the basement
has a basin shape except for the velocity anomaly around 45 km. The
phase appearing beyond 55 km with a high velocity is considered to
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Fig. 3.9. Ray and travel time diagrams for the 6-th Yumenoshima refraction
experiment.

come from a deeper part of the medium.
The shape of the first interface is not determined well, because
the phase traveling along it could not be detected except at the vici-

nity of the explosive sources.

(2) Seismograms for a point source

We here show the effect of the two-dimensionally layered attenua-
tive sediments in the Kanto plain on long-period synthetic seismograms.
The Saitama earthquake occurred in 1981 at the north-western part of
the Kanto plain, and seismograms were obtained at the Earthquake
Research Institute, the University of Tokyo. As shown in Fig. 8.8
the epicenter and the ERI are located on the Yumenoshima-Hatoyama
profile. Then we compute synthetic seismograms of this earthquake
for a variety of crustal models. Since we cannot compute seismograms
for a finite fault in a 2—D medium by the current computer facility,
only SH waves due to a point dislocation are computed. From the
results of ABE (1974) the source is assumed to be with a vertical

Table 3.2. Crustal models

d(km) A(km/s) olg/em?)

Model F, H 3.5 2.8
Model M 1.5 1.2 2.2
— 3.2 2.5

Model MQ 1.5 1.2 2.2
MQ2 — 3.0 2.5
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Fig. 3.10. Simplified two-dimensional structure along the Yumenoshima-Hatoyama
profile. A big plus sign and an arrow indicate the point source and the
observation point, respectively.

strike slip at a depth of six km.

We consider four models in Table 8.2. Model F is an infinite
space, and Model H is a halfspace with the same material parameters
as Model F. Model M is the simplified 1—D structure along the
Yumenoshima-Hatoyama profile. Since the first interface cannot be
determined well, the two sedimentary layers are combined into a 1.5
km thick layer with g=1.2km/sec and p=2.2¢g/ecm’. Attenuation is
considered in Model MQ. The @, values are estimated from the @,
values on Table 3.1 with the relation Q,/Q,=4/9. Finally the irre-
gularity of the interface between the sediment and the basement is
considered in Model MQ2. The interface shape is presented in Fig.
3.10. The source and the ERI are also indicated by a big plus sign
and an arrow in the figure.

We computed seismograms for a long-period seismograph installed
at the ERI (/=68 km) with adjustments for arrival times. The seismo-
grams for Model F are computed by the method of SATO (1975) and
doubled for including the effect of the free surface. Figure 3.11 shows
the computed seismograms for the crustal models. It is clearly found
that a waveform is distorted more and an overall amplitude becomes
greater, when the crustal model comes close to the actual structure
(from Model F to Model MQ2). Especially, the trace for Model MQ2
is strongly amplified and distorted by a thick sediment beneath the



240 K. KOHKETSU

|
A
AN,

observation point. Com-
paring the traces for
Models M and MQ, we also
find that the low @ value
of the sediment reduces
the amplitude of the later
potion of the trace MQ.
During the initial half
cycle they have a similar
waveform.

These distortions and
amplifications, or the reduc-
tion by the attenuative
sediment must appear in
synthetic seismograms for
a finite fault source. The
reason for this is that they
are synthesized by summ-
ing up seismograms for
point sources distributed
over the fault.

Ma

Maz

S sec

Fig. 3.11. Synthetic seismograms due to the 4, Conclusion
fixed point source for the variety of crustal L.
structures listed in Table 3.2. The reflectivity method

is extended to compute
synthetic SH and P—SV seismograms in one- and two-dimensionally
layered media. We introduce the Fourier transform technique of AKkI
and LARNER (1970) to solve the integral equations for the two-dimen-
sional boundary conditions and enlarge the propagator matrices to
express the total wave-field. Numerical examples are also presented
for structures consisting of homogeneous layers separated by irregular
interfaces.

Our method can be applied to vertically inhomogeneous layers by
using appropriate propagator-matrix elements (e.g., WOODHOUSE 1978;
KENNETT and ILLINGWORTH 1981). Because of limitations of the Fourier
transform, seismograms cannot be computed for a block structure or a
vertical discontinuity.

At present two computational problems still remain. First, we
have no analytical expression for the inverse of irregularity matrix,
K~!. When the interfaces are highly irregular, off-diagonal elements
of the submatrices of K grow so large that a numerical inversion
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breaks down, or large noises remain. These noises may become much
larger if seismic waves propagate through many irregular interfaces.

Secondly, our method also suffers the overflow errors related to
high frequencies, slow phase velocities and thick layers as in the 1—D
reflectivity method. It is not so serious in SH-waves calculations, but
for P—SV waves we havo to introduce some techniques such as delta
matrix extension (DUNKIN 1965) and normalization (HARVEY 1981), or
to reformulate the problem without the propagator matrices (KENNETT
1980; HA 1984). Recently KENNETT (1986) extended his formulation to
three-dimensionally heterogeneous media by extracting terms associated
with heterogeneity.

If we neglect the coupling between the SH and P—SV wave-fields,
the extension to a three-dimensional structure is straightforward.
However, we should carry out a double Fourier transform with respect
to both # and ¥ coordinates to construct the irregularity matrix K,
and the linear equation system for the condition of continuity is ex-
panded into SN x 8N or 4N x 4N equations. Since it takes 10 (plane wave
incidences) or 30 (point sources) minutes for Hitachi M-280H (15 MIPS)
to compute the numerical examples in this paper, a three-dimensional
computation requires 100 or 900 minutes.

To illustrate the effects of the details of crustal models on synthe-
tic seismograms, several examples are presented. Numerical simulations
reveal that surface layers thicker than /10 (\: wavelength of an
incident wave) cannot be ignored, and interface dents or troughs larger
than \/10 can affect seismograms.

The results of refraction experiments (e.g., SASAKI et al. 1970,
AOKI et al. 1972) and travel-time analyses of natural earthquakes (e.g.,
UrAawA and Fukao 1981) show that the main body of the crust (V,=
6~7 km/sec, V,=3~4km/sec) does not reach the Earth’s surface.
There are several layers separating them, and their interfaces often
have irregular shape. When we analyze seismic waves in the ecrust
with a dominant frequency of 1/5 Hz, layers thicker than one km and
interface dents larger than one km should be taken into account.

If those are neglected, synthetic seismograms lead to wrong
estimations of medium effects. For example, the source models of
Japanese earthquakes were mostly derived with synthetic seismograms
for infinite or semi-infinite crustal models. They certainly include
some errors.
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