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Abstract

A macroscopic model for crustal dilatancy is presented: i.e. Gaussian
distribution of small tension-cracks. The influence of a single crack
is evaluated by an appropriate strain nucleus in a semi-infinite elastic
medium. The effect of all the cracks is given simply by integrating
it with the weight of Gaussian distribution. This is nothing but an
extension of the multiple Mogi model proposed by HAGIWARA (1977b).
Three kinds of cracks are adopted: (a) the spherical (i.e. the Mogi
model), (b) the T33-type (horizontal penny-shaped cracks) and (c) the
T11l-type (vertical penny-shaped cracks). The multiple Mogi model
composed of spherical cracks is mechanically equivalent to the case
where tensile cracks are oriented in every direction. Mechanical
distortion of the elastomagnetic half-space gives rise to changes in the
gravity and magnetic fields. All these distortion-related quantities
are formulated in a unified way. The multiple Mogi and T383-crack
models result in changes similar to each other. The only exception
is the magnetic total field change: the multiple Mogi model is
dominated by overall decrease, while the multiple T33-crack one
exhibits practically no field change. On the other hand, the multiple
T1l-crack model differs substantially from the foregoing two. The
upheaval has two humps in some cases and there appears a positive
region in the magnetic change. In particular, the gravity field varies
remarkably as compared with the height change. The multiple tension-
crack model is applicable to volcanic phenomena. It also works as a
source model for swarm earthquakes in volcanic regions and certain
kinds of magma reservoirs.

1. Introduction

The dilatancy model of earthquake precursors was originally proposed
by NUR (1972) and AGGARWAL et al. (1973) to interpret seismic velocity
changes prior to earthquakes. Besides the velocity change, various pre-
cursory phenomena looked upon to be explained by more sophisticated
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versions of the model: i.e. the dilatancy-diffusion (ScEOLZ et al. 1973,
ANDERSON and WHITCOMB 1973) and the diffusionless (dry) dilatancy
model (STUART 1974, MJACHKIN et al. 1975).

Precise measurement of the P wave velocity with explosion techni-
ques did not always support premonitory changes (e.g. the 1978 Izu-Oshima
Earthquake of M 7.0: GEOLOGICAL SURVEY OF JAPAN 1979). MoaGI (1985)
cast doubts on the reliability of some ‘“precursor” events such as the
crustal uplift preceding the Niigata earthquake and the electrical resisti-
vity changes in the Garm region, on the basis of which the dilatancy
(—diffusion) model was set up.

All these negative examples imply, however, the crack growth does
not take place within a sufficiently large volume, several times as much
as the focal region. Since the dilatancy itself is usually observed as a
forerunner to the failure of intact rocks (BRACE et al. 1966), the possibility
still remains that it does occur in a small scale volume near active faults
by local stress concentration.

Phenomena associated with the dilatancy in crustal rocks are classified
into two categories. One is the change in material properties of the
medium such as the seismic velocity, the electrical resistivity and some
chemical changes including radon emission. The other is the mechanical
distorsion, e.g. uplift, horizontal displacement and strain changes. The
gravity and magnetic changes are also anticipated in association with
resulting mass movement and stresses. Although the magnetic field may
possibly be generated by the electrokinetic effect along with the water
percolation (M1zZUTANI and ISHIDO 1976), we will take into account here
only the piezomagnetic effect of strained rocks (STACEY 1964, NAGATA
1970).

Distortion-related phenomena can be dealt with in a unified way.
‘We may simulate the crustal dilatancy by distributing small tensile cracks
within a semi-infinite elastic medium. The effect of cracks is approximat-
ed by replacing appropriate strain nuclei. We may evaluate the resultant
effect of all the cracks simply by integrating the influence function of
a single nucleus with the weight of crack distribution. Such superposi-
tion is permissible if cracks are distributed sparsely enough to disregard
the mutual coupling.

This kind of modelling has been conducted in an attempt to inter-
pret anomalous crustal uplift in terms of dilatancy. Types of strain
nuclei (a) and crack distribution functions (b) differ among several authors.
SiNGH and SABINA (1975) studied such models as (a) the center of dila-
tation with (b) uniform spherical and cylindrical distribution. HAGIWARA
(1977b) investigated the uplift and related gravity change of the multiple
Mogi model, i.e. (a) a cluster of small hydrostatically-pumped spheres
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with (b) the Gaussian distribution. Such a source is identical to the
center of dilatation (YAMARAWA 1955, Moci 1958). YAMAZARI (1978)
adopted (a) the center of dilatation plus double force without moment in
the vertical direction within (b) an elliptic disk and an ellipsoid. Yama-
zaki’s strain nucleus corresponds to a vertical opening of horizontally
embedded cracks.

HAGIWARA’s (1977b) model is versatile enough for various spatial
configurations of the dilatant volume which may possibly take place in
the actual earth. Moreover, his method of calculating gravity changes
is also applicable to the piezomagnetic field (SASAI 1984). The gravity
and magnetic observations should provide us with powerful constraints
to the model. In fact Hagiwara successfully interpreted the gravity
change associated with the Matsushiro uplift in terms of water-saturated
pores. The displacement field of the multiple Mogi model was approxi-
mately solved by Hagiwara. Its rigorous solution was presented by
SASAT (1984), which will be followed in the present study.

We have some comments on the gravity and magnetic change asso-
ciated with dilatancy. Dilatancy-related gravity changes were qualita-
tively discussed by NUR (1974) and KiSSLINGER (1975) with special re-
ference to the Matsushiro uplift. HAGIWARA (1977a) examined the gravity
change due to the Mogi model. The density change was properly taken
into account in his study. HAGIWARA’s (1977b) solution for the gravity
change of the multiple Mogi model is thus a rigorous one, which gives
a different result from preceding speculations (i.e. NUR 1974, KISSLINGER
1975). We follow HAGIWARA (1977a,b) in the gravity calculation.

Remanent magnetization changes of rocks due to dilatancy were ex-
perimentally investigated by MARTIN et al. (1978). Their results are not
directly applicable to the present calculation, because the constitutive
relationship between the remanence change and all the stress components
is not sufficiently established owing to experimental difficulties. One of
their results is, however, noticeable: the magnetization varies during the
dilatancy creep test with increasing dilatancy under a fixed load. The
situation can be modelled as the piezomagnetic change of the medium
caused by stresses of new cracks.

YAMAZAKI (1978) emphasized the importance of the dominant orienta-
tion of tensile cracks under the triaxial tectonic stress. We will investi-
gate two particular cases: indivisual cracks open vertically or horizon-
tally. Corresponding strain nuclei are given by MARUYAMA (1964). It
is also shown, however, that the multiple Mogi model is identical to the
case where the crack orientation is uniformly distributed in all directions.
Hence we will investigate the surface displacement, gravity and magnetic
changes associated with the Gaussian distribution of three typical tensile
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cracks, i.e. spherical as well as vertical and horizontal penny-shaped
cracks. All these distortion-related quantities are not expressible with
elementary functions. They are reduced to one dimensional integrals,
which will be numerically evaluated with sufficient aceuracy by the double
exponential formula (TAKAHASHI and MORI 1974).

The present model is a natural expansion of the multiple Mogi model
of HAGIWARA (1977b). We may call it the multiple tension-crack model.
In the last section we will briefly discuss its application to volcanic
phenomena.

2. Gaussian distribution of tensile cracks

Let us take the Cartesian coordinates (z, v, 2), in which the z axis
is taken positive downward. A homogeneous and isotropic elastic medium
occupies z>0. It is also assumed that the uppermost portion of the
medium from z=0 to z=H (the Curie depth) is uniformly magnetized.
Suppose that a small dislocation surface X (P) exists at a point P within
the elastic half-space. The m-th component of the displacement at an
arbitrary point @ caused by the dislocation is given by the following
Volterra’s formula (MARUYAMA 1964):

um@):ﬂzmaﬂ) WEP, Qu(P)d (2.1)
(k,1=1,2, 3)

du,(P) specifies the displacement discontinuity and v is a unit normal
to 3. Wn(P,Q) is the displacement field produced by the elementary
dislocation of the type (kl), which is given explicitly by MARUYAMA
(1964). The summation convention applies in this paper.

In the case of tensile cracks, the dislocation vector du is normal to

the surface X':

du
Au

=y or du,= duy, 2.2)

Then the sum of products Au, W5y, becomes
Au Wy, =JuW™ (2.3)
where
Wr=Wrp v (2.4)

We assume the crack is small enough to ignore details of erack opening
along the dislocation surface. Eq. (2.1) is reduced to
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2.5)

Un(@)=AUW™(P, Q)
AU:HEAu(P)dZ }

4U has a dimension of volume, i.e. the product of average opening dis-
tance and crack area. If the crack is penny-shaped with its radius a,
AU=ra*4u.

For an arbitrary oriented crack, we need a linear combination of six
sets of strain nuclei. We will consider here three particular cases as
shown in Fig. 1.

(A) T33 (B) T11 (C) T00

Fig. 1. Three types of tensile cracks: (a) T33 type,
(b) T11 type and (c¢) TOO type.

(a) Horizontal crack (T383 type)

Suppose that a penny-shaped crack is embedded horizontally and it
opens in the vertical direction. Since »=(0,0,1), W™ is reduced to only
one term, i.e. W*=W3. We call this sort of erack the T33 type crack.

(b) Vertical crack (T11 type)

A crack is placed within a vertical plane and it opens in the hori-
zontal direction. Since v=(y, v, 0), Wr=Wniu2+2Wnhow+ Wiyt With-
out loss of generality, however, we may put »=(1,0,0) by rotating the
coordinates. The W™ is given simply by W7. The crack lies within the
y—z plane and it opens in the z direction. We ecall it the T1l type
crack.

(¢) Spherical crack (the Mogi model or T00 type)

Instead of the dislocation X, we may assume a small sphere at P,
pressurized hydrostatically from the inside. This can be a simple mechani-
cal model of the magma reservoir (Mogr 1958). Its displacement field,
say W, is equivalent to that produced by the center of dilatation at P
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(YAMAKAWA 1955). The sum of three perpendicular A nuclei (i.e. k=l
type) is reduced to the center of dilatation, and hence Wgoc Wi+ Wi+
Wr (MARUYAMA 1964). We are to investigate the displacement field
caused by the Gaussian distribution of microcracks. If each crack is
oriented in an arbitrary but uniformly distributed direction, its displace-
ment field is equivalent to that of a strain nucleus which may be derived
by averaging direction cosines in equation (2.4) over the entire unit hemi-
spherical surface. Since

2, (k=1)
s S Q=13 (2.6)
121/2
0 (k1)
we have
W:;gocﬂ WowmndQ 2.7)
121/2

The displacement field by a cluster of small expanding spheres is quite
equivalent to that by tensile cracks with a uniformly scattered orienta-
tion.

°
[°] o °
o
° 0% °
° o % o
o oo
E)
°
o ° °

Fig. 2. A schematic view of the multiple tension-crack model.

Suppose a number of microcracks are distributed in Gaussian center-
ed at (0,0, D). See Fig. 2. We assume the variance ¢, in the horizontal
distribution is isotropic and the vertical variance ¢,* differs from ¢,°. The
distribution function is given by

1 2 2
Pl )= exp(— v Ay )

Ta, 20,7

1 (D—z)*

1= o exp{— 7o)
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Quantities related to the mechanical distortion are given by the
displacement field itself due to appropriate strain nuclei and/or its deri-
vatives. Let us put such an influence function f(z, v, z, 2/), which repre-
sents the effect of a single crack placed at (0,0, 2’). The effect of total
cracks under the distribution (2.8) is given by

o(@, v, 2) =S°’ () Fla, y, 2 2')d2’ 2.9)

0

where

(=-3

Flx, vy, z, z’):ﬂ Ffla—a, y—y', z—2")p(x', y')dx'dy’ (2.10)
The convolution integral (2.10) can be evaluated by the Fourier transform
method.

Surface uplift and horizontal displacement can be obtained by sub-
stituting the displacement field of a particular strain nucleus into f in
eq. (2.10). Strains such as tilt, extension and volumetric strain are easily
derived by differentiation. We will not deal with strain changes in this
paper.

Let us describe how to estimate the gravity and magnetic field
changes. HAGIWARA (1977a) obtained the gravity change associated with
the Mogi model. The solution consists of four terms: i.e. the free-air
change proportional to the uplift (G1), the Bouguer change caused by
the upheaved portion of the ground (G2), the gravitational attraction of
the material filling the expanding part of the source sphere (G3), and
the gravity field due to the density changes in the elastic half space
(G4). Correspondingly the magnetic change has four terms: free-air
magnetic change along with departure of the observation site from the

(A) GRAVITY FIELD (B) MAGNETIC FIELD

Fig. 8. A schematic representation of the four kinds of contributions to (a) gravity
and (b) magnetic change.
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geocentric dipole (M1), the magnetic anomaly produced by the surface
topography of the upheaval (M2), the effect of a void representing the
source volume change (M3), and the piezomagnetic effect caused by the
stress-induced magnetization of the top magnetic layer (M4). A schema-
tic illustration is given in Fig. 3(a) for the gravity and 3(b) for the
magnetic changes.

HAGIWARA (1977a) demonstrated |Gl|>|G2|>|G3|>|G4| when the
source sphere was filled with gas, and |G1|>|G2|>|G4|>|G3| when filled
with magma. Accordingly the gravity data bears information on the
material density filling the crack. In the case of the magnetic change,
the crack is regarded simply as a void because gas, water and magma
are non-magnetic. SASAI (1985) showed |M4|>> |M2|~|M3|>> |M1| for the
Mogi model. This feature is common even for T11 and T33 cracks.

In general the stress tensor 7' is subdivided into the sum of the
average stress ¢, and the stress deviation 7”:

T=0E+T (2.11)

where E is a unit matrix and

o= Lt Tyt 7)

3

Tez—00 Tay Tas (2.12)

/A
T = Tyz Tyy—00 Ty

Tz Ty Tz 0,

o, produces the density change and hence G4. On the other hand, 7’ is
the causative of the piezomagnetic field M4. In fact we have

47= %ﬁ 7 2.13)

in which 4J is the stress-induced magnetization produced within the
initial magnetization J and 8 is the stress sensitivity (SAsAr 1980, 1983).
Thus the information on the stress field involved in gravity and magne-
tic data is complementary to each other. -
G3 and G4 bear valuable information, although their contributions to
the total gravity change are less than those of G1 and G2. We will
evaluate all the terms of the gravity change for the three types of
tensile cracks. According to SASAI (1985), however, M4 is predominant
in the magnetic change, while the remainder are negligible. We will
calculate only M4 for the magnetic field. Elementary piezomagnetic
potentials (SAsA1 1980) are used for the present purpose. Owing to the
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property (2.13), the magnetic change is highly sensitive to the character
of the stress field. We will find later on that it varies quite differently
for the different types of cracks.

We have thus extended HAGIWARA’S (1977b) model. It is charac-
terized by three parameters {c,, ,, D} as well as three different kind of
cracks. We may simulate various situations of the crustal dilatancy by
the present model. The only defect is that the distribution is symmetric
in the horizontal direction (¢,=0,=,). It could be overcome, however,
by arranging some crack assemblages transversly.

3. The multiple Mogi model

Let us investigate the multiple Mogi model, originally proposed by
HAGIWARA (1977b). We will first derive an expression for the crustal
uplift. When a small sphere at (2, ¥/, 2/} expands hydrostatically, the
uplift 4h, at a surface point (z,y, 0) is given by (YAMAKAWA 1955)

— A+2p 3 2’
Ahp X, Y)=— a*AP. 3.1
) 2p(2+p) {w—a")+ (y—y')*+2"P" 8-1)

where 4 and g are Lamé’s constants, a the radius of a sphere and 4P
the internal pressure of the sphere. Substituting (3.1) into / in eq. (2.11),
we obtain the resultant uplift 4H, (z,y) as follows:

- 2+2/Z SAPSOO NEF Nz’
4Hy(x, y) et @’4P\ q(z)F(z,y, 2')dz (3.2)
where
n=\1" 2 rada' du’
F(x,y,2') SLO (@ Y-y 1" p(a’, y')dz'dy (3.3)

We now apply the Fourier transform method to evaluate the con-
volution integral (8.3). We denote the Fourier transform of a function
f by placing an asterisk to the right and top of the letter f (e.g. f*).
We follow the definition of the Fourier transform and its inverse as

f*(kn ,152) :,_1_—“00 f(:I;, y)e—i(k1x+kzy)dxdy

27 JJ)-=
(3.4)

F = |7 ket

2z JJ-o

The Fourier transform of a convolution f*g is given by

(fxg)*=2rf*g* (3.5)
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Since
* — 1 ___l-_ 27,2
p*(ky, kz) = o exp( 26’k> (3.6)
— 2+2# 3 —kz’
dh¥ ey, k) = ——2158 _aPAP 3.7
o ) = = ey T @7
where
K=ki+k? (3.8)
we obtain
Aﬂﬁwnk9=—-£t&L—fAPSwﬂ%ﬁ‘”exp(—lﬂfﬁ>dﬂ
2+ 1) : 2 .
S YY) JE P QPP VT ol Ll 1.2
. ST LA a exp{ 2(0, a.t) }e (D( et >
@ is defined as
—;—erfc(x) (x=0)
o)== o= (8.10)

S+erf(al}  (@<0)

in which erf(z) and erfe(x) are Gauss’ error and complementary error
function defined for positive =:

A
=2 ["grg
erf(x) v Soe 610

erfe(x)=1—erf(x)

Inverse Fourier transform of eq. (3.9) gives rise to

AHoo(r)=S:°AH(;§(k)Jo(kr)kdk (3.12)

4h,, the value of 4H,, at r=0, gives the maximum uplift:

A+2n s
Ahy=——""22 o APh .
0 2#(2_!_”) a*4 00 (3 13)
where |
;_ ® ___]; 2 _ovrel —&D '—D+0z2k

hoo._go exp{ L i—a }e @<—_%z >kdk (3.14)

hy is a constant peculiar to the model specified by parameters {o,, 0., D}.
All the distortion-related quantities are proportional to the moment of
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source spheres, i.e. @®4P in eq. (3.13). This parameter is not, however,
observable. Instead we may give the maximum uplift 4h, as a measure
of the moment intensity. Eq. (3.12) is rewritten as:

AH (e, ) =-2ho r Qu(k)e T ofor)odke (3.15)
where
@:(k) = exp {—-;—(af—af)kz} @(‘_f/iz—fgi (3.16)

Eq. (3.15) is the rigorous solution of crustal uplift caused by the
multiple Mogi model. HAGIWARA (1977b) put the @ term in eq. (3.9)
equal to unity assuming o, small. He expanded the exponential term in
a Taylor series around k=0, integrated it by terms and obtained an ap-
proximate solution expressed with elementary functions. Hagiwara’s
approximation is valid only in the limited case D»o,=¢.. The general
expression of the solution (3.15) is no longer reducible to elementary
funetions.

If we integrate eq. (3.15) after putting ¢, and o, zero, we obtain the
uplift due to the single Mogi model placed at (0,0, D). A question may
arise if the integral (3.15) does not converge in case that ¢,<g,: the
integrand of eq. (3.15) contains a steeply-increasing function exp {1/2
(c.2—0.2)k?. Actually erfe(z) is a very rapidly-decreasing function: ie.
we” erfe(z) remains finite as x approaches infinity (GAUTSCHI 1964). The
integrand of eq. (3.15) decreases with increasing & so that it converges
absolutely.

The error and Bessel functions are originally defined in integral
forms. In other words, eq. (3.15) is nothing but a formal reduction to
one dimensional integral from the volumetric one in eq. (3.2). We have,
however, useful mini-max approximation formulae for error and Bessel
functions (e.g. HASTINGS 1955) to compute numerical values with sufficient
accuracy and speed. The double exponential formula (DEF: TAKAHASHI
and MoRI 1974) is applied to numerically integrate eq. (3.15).

The horizontal displacement at the surface can be obtained in a
similar way. The surface displacement in the x direction due to the
center of dilatation at (2/,9/,2) was solved by YAMAKAWA (1955) as:

A+20 gup T -’ (3.17)

dz,(x, y)=— 2 (At 1) (w— )+ (y—y 2+

The resultant horizontal displacement in the % direction is given by
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AX(m, y) = —— T2 goyp r (2 Flo, y, 2')dz’ (3.18)
2p(2+p) 0
F(x,y,2') Zﬂm v—a p(x’, y')dx'dy’ (8.19)
—e{( =)+ (y—y )PP
Since
A+2p 3 (LA
Adx ¥ = — AP — L 3.20
o T ) ( e )e (8.20)
we have
* :_M 3 . 1k, __L 2 _2\7.2 <_D'{122k
AX5(k, k) Sp(it 1) aAP< ————k >exp{ 2(0,, g, )k}@ ————,\/-2_02
(3.21)
Inversion of eq. (8.21) gives
AX (2, y) =AM r(_ i}fl >Ql(k)e"°"Jo(kr)kdk (3.22)
A

The variable %, is still involved in eq. (3.22), which can be eliminated
as follows. Going back to the original definition of double Fourier trans-
form, we find a relation:

21 gro iklf(k)ei(k1z+k2v)dkldk2 = ~%§mf(k)e]1(k’l‘)kzdk (3 . 23)
T —0o0 ‘ 0

Thus eq. (3.22) is reduced to

AXo(z, Y) =% . f Quik)e™ 2T (o) ede (3.24)

06

The horizontal displacement in the y direction is obtained in quite
the same manner;

AY w(z, ) =% z S‘” Qu(k)e= 2T (er) led e (3.25)

00

Finally the displacement in the radial direction results in

ARu(, ) = ‘}’l’% Sle(k)e‘“’Jl(kr)kdk (3.26)

00 J°

The derivation process of uplift and horizontal displacement makes a
prototype for obtaining any other deformation-related quantities.
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Gravity change

We will briefly follow how to obtain the gravity change after HAGI-
WARA (1977a,b). He derived the gravity change rate (i.e. the ratio be-
tween the gravity and height change) due to the single Mogi model as

, 272G o2+ 1)
0g/dh, = —y+ STTONMTH) 3.27
gldh,=—r+ 20 (3.27)

7 is the free-air gravity change rate (y=0.3086 mgal/m), G the gravita-
tional constant and p, the material density filling the source sphere. 4h,
is already given in eq. (3.1). As has been discussed in section 2, the
gravity change consists of four terms. We will write down each term
explicitly (HAGIWARA 1977a):

G1: 0g:(2, y) = —ydh,(z, y) (3.28a)
G2: © dgy(x, y) =2xGpdh,(x, y) (8.28Db)

G3: 3gs(e, ¥) =27G (05— ) j+ £ Ah,(, v) (3.28¢)
+2p

G4 8g4(x, y) = —22Gp - fzg Ah, (2, ) (3.28d)

in which p is the density of the elastic medium.

It is easily understood that G1 and G2 are in proportion to height
changes, because G1 is by definition and the Bouguer change G2 is ap-
proximated by an infinite plate having a thickness equal to the upheaval.
For the Mogi model, the uplift 4h, happened to be of the same func-
tional form as that of the gravitational attraction of a point mass, and
hence dg, is also proportional to the height change. This is not valid
for other types of cracks.

The density change caused by the Mogi model with its source at
(0,0,2) is given by ‘

a*4P { 1 3{z+2) }

dolx, ¥, 2,2 )= —p dive= =
o( )=—p pH#

R B
where

R=+2"+9*+ (z+2')°
It produces the gravity field G4:

-]

do(x”, y", 2", 2)
o {(x—x”)2+ (y_y//)2+zl/2}3/2 dx”dy” (3.30)

3gs(x, ) =Gg:° " dz" g g
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The convolution integral (3.30) can be solved by the Fourier transform
method, which results in eq. (3.28d). This is again proportional to dh,.
Since other kinds of tensile cracks have different 4o, 6g, is not always
so simply related to the uplift.

In the case of the Mogi model, the gravity change at every point on
the surface is proportional to the height change at the observation site.
The relationship is exactly the same for the multiple Mogi model, since
the resultant gravity change G, is obtained simply by superposition.
Thus we have

_ 272G oo(2+p)
0G| AH = —  ZETLNT L) 3.31
oo/ 00 7+ 2-}-272‘ ( )

Magnetic change
The piezomagnetic field associated with the Mogi model was solved

by SASAI (1979). The magnetic potential at a point (z, ¥, z) due to a
center of dilatation embedded at (0,0, &) is given by

Wy . p [z z xD,
= - +9H
C‘fo 2(2+#) \ ;013 ﬂ33 > ‘035
0 (H<&) (3.82a)
+i8/ v =
2< o’ o ) (H>£:>0)
Wiy _ ¢ (D D, 1 3Dy
= - +8H|( —
Cy 20+m \ o2 pd ) < or T o5 )
0 (H<&) (3.32b)
+{3/ D _ D,
2( o 0 > (H>&>0)

where
Di=&—z2, D,=2H—&~2, D,=2H+&—2
o=V D] (3.33)
Co=2xpJ,C; (m=uz,z), Co=——§- AP

J. and J, are the horizontal and vertical magnetization of the crust
respectively. The stress sensitivity 8 is defined here on the ordinary
stress convention in the elasticity (i.e. compression is negative). The
negative sign in the definition of C, in eq. (3.33) is justified owing to this
stress convention.
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Exchanging the parameter &, for 2/, we may substitute wj and wj,
into £ in eq. (2.10). We can evaluate the convolution integrals by the
same procedure we used in the surface displacement. Fourier transforms
of (3.32a) and (3.32h) are given in Appendix A. Piezomagnetic potentials
due to the multiple Mogi model are as follows:

WalCio=—L S:’ Wik, 2)J(er) kedle (3.34a)

(=<3

Wiy Clo= 5 W, 2)olr) ledle (3.34h)

Wik, z) and Wik, z) are summarized in Appendix B. With the aid of
the relationship (3.13), Ci in eq. (3.34) is reduced to

" Atp Adh,
Cr=2 S 3.34
00 ”2_*_2# uB Fon ( c)

The magnetic field is given by differentiation of potentials (3.34).
We denote three components of the magnetic field in association with
J. and J, as (Zm, ¥u, 2z) and (%, ¥y, 2y) respectively. They are repre-
sented as

Ty=A+ ii (B—24), yu=-Y(B~24), 24 =Ci (3.352)
xy =Dz, yy=Dy, 2y=—F (3.35b)

where

Wk, 2)Jo(kr)Edk

0 r (3 . 36)

Elr, 2)= r Wiolle, 2)To(kr) i

Some of egs. (3.35) and (3.36) look apparently indefinite at r=0.
Taking into account the characteristics of the Bessel function

lim J, (k) /r= %k, lim J,(kr) =1 (3.37)

r—0 r—0
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we find all of them are convergent at »=0. In particular B=2A (at
r=0), and hence we have

2a(r=0)=A(r=0), yu(r=0)=0 (3.38)

4. The multiple T33 crack model

This type of crack was investigated in detail by YAMAZAKI (1978).
It effectively produces the surface uplift. The opening of a crack tends
to occur in the direction of the minimum compressive stress. The T33
crack develops under a stress field where compression prevails horizon-
tally. Thrust faulting should take place under such circumstances.

The displacement field due to a single T33 crack is given for the
Poisson solid case (1=pg) by MARUYAMA (1964). We may follow MARU-
YAMA (1964) to get the displacement and its Fourier transform via an
appropriate Galerkin vector even for arbitrary 2 and p.

The displacement field « is derived from the corresponding Galerkin
vector I'(I"y, [y, I's) as:

u=(V—a grad div) I’ 4.1)
where

At p
e (4.2)

Fourier transforms of the displacement field can be represented by

w,* = (aky’ — K+ p°) ' * +akik..* —aikpls*
w* =akide [ F 4 (ks — KB+ 0°) [o* — aikeopls* (4.3)
u,z*z —aiklppl*_aikZpFZ*-{— (_kz-l_ (1—a)pz)r3*

in which p is a differential operator:

p=—2_ (4.4)

We will later require div e for computing g, Its Pourier transform is
given by

(dw u)*=(1—a) (p*—K*) (the ¥ -1k L2+ p[5¥) (4.5)

The Galerkin vector for the T33 type strain nuecleus has already
been given by MARUYAMA (1964). We must, however, deal with its
Fourier transform in the sense of distribution or generalized functions
(see text, for example, VLADIMIROV 1971). Some problems related to its
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application are discussed in the derivation process of elementary piezo-
magnetic potentials (SASAT 1980).

The Fourier transforms (4.3) and (4.5) are summarized in Appendix
A. Transforms for the surface uplift and horizontal displacement 4h,*
and Jx,* are also given. In the case of the T33 type crack, the surface
displacement is irrespective of whether 2 and ¢ are equal or not.

The surface displacement due to the Gaussian distribution of T33
cracks can be derived in quite the same manner as in section 3. Only
the results are presented here:

Uplift
dh, ([ o 1 D?
AH3:——0-S _kex (———(hzkz—— >
B e 40 {«/277 P73 20 we
+(—a,2k2+Dk+l)e"‘DQl(k)}Jo(kr)kdk
Horizontal displacement in the x direction
dhy z [ © 1 D?
4%, =Aho _5 :_oxp( —Lo e — )
" The 1 Jo {x/Zn: p( 2 207 wn
+(D—Fko2)e0Q, (k) }Jl(kr)k"’dk
Horizontal displacement in the y direction
AY33=AX33(37‘_>?/) (4.8)
where
) o, __l 212 D?
h”_So {vz?kexp< 50k 20,2>
4.9)

+ (— 0.2+ Dl + 1)e~wQ1(k)}kdk

Gravity change

Let us first investigate the gravity change caused by a single T33
crack. By definition, G1 and G2 are proportional to the upheaval at the
observation site and are given as follows:

G1: dgi=—ydh,(z, ) (4.10)
G2: 8g.=2xGodh, (@, y) (4.11)

where the uplift due to a T33 crack is given by
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dh, (@, y):—%w% (4.12)

The incremental crack volume may be approximated by a circular
disk. Although the gravitational attraction of a circular disk is given
by SINGH (1977), it can be regarded as the gravity of a point mass of
4U(p,—p) when the crack is small. In this case G3 is given simply as

&

G3: 0gs=AU(p,—p) G 5

(4.18)

Referring to (4.12), we find dg; is not proportional to the uplift.
Finally G4, the gravity field due to density changes, is expressed by

—_ oo ! = div U3 (x,7 '!//» z,) / /
0g,=— Gx 'd H 3 de'd 4.14
RS B e e e A

With the aid of (div Ug)* in Appendix A, we obtain its Fourier trans-
form as
594*=pGAUr[(1—a)ke"‘h—{(1+a)k+2k2§3}e—k€z]e—“’dz’
= —p0GAUa(1+kE;)e s (4.15)

Inversion of eq. (4.15) gives
G4 : 3gi= —3pGAUa—§I—§5—= —270Gadh,(z, ) (4.16)

The G4 term due to a T33 crack is again proportional to the uplift as
we have seen in the case of the Mogi model. Its proportional constant
differs from that of the Mogi model (cp. eq. (3.28d)).

The total gravity change by a single T33 crack is thus given by

&s

- (4.17)

s9=(~7-+276o _:lZ#)Ahp‘*‘AU(Po‘P)G

A
The gravity change associated with the multiple T33 crack model can be
subdivided into a part proportional to the upheaval and a minor non-
proportional one. The contribution from the last term on the righthand
side of eq. (4.17), 6G, say, can be estimated in quite the same way as
we have obtained the uplift due to the multiple Mogi model, exclusive
of its coefficient :

8Gs= AU (00— 0) G f Qu(k) e~ 2, (k) ed e (4.18)
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The unknown factor 4U can be replaced with an observable quantity 4h,.
Hence the total gravity change 6G;, due to the multiple T33 crack model
is reduced to

5G33=<_T+27TPG 2_{_#2# )AH%(x’ )

+2n(po—p)G_‘}’L_h9_Sle(k)e-kDJo(kr)kdk (4.19)

33

Magnetic change

Elementary piezomagnetic potentials due to a T33 type strain nucleus
are obtained from SASAI (1980). They are not reproduced here because
of their lengthiness. We need Fourier transforms of potentials, which
are found in Appendix A. The same procedure as we have followed in
the multiple Mogi model leads to the magnetic potential associated with
the multiple T33 crack model as

£ ]Cs= _% g :’ Wik, 2)J (v ke (4.20a)
Wi/ Civ= f Wik, 2)Jo (k) kde (4.20b)
where
Co=—Lupr, A =g, 2 (4.21)
2 Foss

Wz, and Wz are given in Appendix B. We need a comment on the
negative sign on the righthand side of eq. (4.21). In SASAT’s (1980) paper,
the stress convention for j is opposite in sign to MARUYAMA’s (1964)
stress field solution: B is defined positive for compression, while the
latter is negative. The negative sign in eq. (4.21) is thus introduced to
accomodate the discrepancy.

Magnetic components are derived by differentiating (4.20). They are
expressed by eq. (3.35) and (3.36), in which we have to replace W3, and
W:, with Wz and Wi, respectively.

In fact, the T383 crack produces almost no appreciable magnetic
change. This is because the magnetic field arising from the upper por-
tion of the crust (0<<z<&;) and that from the lower portion (&,<z<H)
nearly cancel each other. In the case of the T33 crack model, therefore,
the magnetic field calculation is rather meaningless. Conversely, if no
magnetic change is ohserved in association with some local but marked
crustal uplift, the multiple T83 crack model could be a candidate for a
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possible mechanism of the event.

5. The multiple T11 crack model

As for the surface displacement caused by a T11 crack, the symmetry
breaks in a horizontally radial direction. The gravity and magnetic
changes are also complicated. Two kind of regional stress fields are re-
sponsible for the .opening of such cracks. In one field the horizontal
shear stress is prevailing, which will give rise to vertical strike-slip fault.
The other is the tensional field which will induce normal faulting.

Using the Galerkin vector given by MARUYAMA (1964), we can obtain
Fourier transforms (4.8) and (4.5). They are summarized in Appendix A.
The procedure to derive the surface displacement is the same as before.
We denote the uplift, horizontal extension in the z and y direction by
AH,, 4X, and 4Y, respectively. Fourier transforms of 4H;, 4X;; and
A4Y,, still contain 4k etec. We need final expressions for the surface
displacement involving % only. This can be achieved by the repeated use
of the formula (3.23). Results are shown as follows.

Uplift

AHH_AZ%[@—l) S:OUl(k)Jo(lcr)kdk

o

+(l_1>{< 1_ 2° )S?Ul(k) Jl(kr)dk+gSle(k)Jo(kr)kdk} (5.1)

r e

_<___ 207 S (k)Jl(]m)kdk——zS Uz(k)Jo<k7')k2dk]

Horizontal extension in the x direction

AXH—%K 1 4){— SUl(k)Jl(kr)kdk}

T
+(z—_i_){( 6o | 82° )S:’ Ul(lc)Jl(kr)Ciklf——rx—aj U (k) T (er) ke de
+(- )| v nnae) 5.2)
+( 8a° >S:°U2(k)J1(kr)dlc——§; fUz(k)Jl(kr)kzdk

+(3x < >§m Ualle)Jollor) ked ke ]

4

r? r
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Horizontal extension in the y direction

s (2

2r I\« r

)r U.(k) Jl(kr)%k

- %3 S:’ U, () T (o) led e+ @—y—%m V() To(kr) i)

5.3)
(4 B2 U0 ) de— 2[00 ek
1,.3 7.5 0 ,’,.3 0
g_— 4x2y o
+<T2 E )So U ) Jo(fer) e ]
where
Ui(k) =e~*"Q, (k)
Ul =-Feexp (= o == D)+ (D— Lo Till) 8.4

In the preceding two models the maximum uplift appears at r=0,
so that 4k, is a useful measure for the moment intensity of strain nuclei.
In the case of the multiple T11 crack model, however, the uplift at »=0
is not always the maximum one. Sometimes there are two humps along
the x axis. The peak positions are different for each combination of model
parameters {c,, o, D}, which are not a simple function of z. We had
better search numerically for the peak value 4k, along the x axis, which
may be used as a measure of 4U.

Gravity change

We start by investigating the gravity field caused by a single T11
crack embedded at (0,0, &). As has been described before, G1 and G2
are given by definintion as

G1: 0gi=—rdh,(z, y) (5.5)
G2 09,=2mpG4h,(x, ¥) (5.6)

where the uplift due to a T11 crack is given by

e =9 =) 5+ N ommrar Fimrar)
()] 5.

G8 can be approximated by the gravity attraction of a point mass
AU (p,—p) which is identical to that of a T83 crack:
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a3 89,= AU (0s—0)G f{; (5.8)

Obviously this term is not in proportion to the surface uplift (5.7).

G4 can be represented by eq. (4.14), in which U, should be replaced
by Uy. Using (div Uy)* in Appendix A, we obtain the Fourier transform
of dg, as

8g* = — AU pG{(1— a)<2———l— 1 Z) os (5.9)

44 24

Inversion of (5.9) gives rise to

oc m-somnofo- Do S )

(5.10)

In the T11 crack case, G4 is also not proportional to the uplift.

The gravity change associated with the multiple T11 crack model
consists of Free-air (G1) and Bouguer (G2) terms in proportion to the
uplift and non-proportional terms G3 and G4. The G38 term is equivalent
to that of the multiple T33 crack model, which may be rewritten as

3Gy =AU (00— p)Gf U)o ller) ledle (5.11)

wheae U, is already given in (5.4).
0G,, the contribution from the density change, can be represented
by

6G4=S:Oq(z’)dz’gr 0gi(z—a', y—v', &) p(a, y')da'dy’ (5.12)

in which we are to substitute (5.10) into dg, after rewriting the para-
meter & with 2. With the aid of (3.6) and (5.9) we obtain

1 k2

3G ¥ = — AU oG (1~ a)<2~—+ 2

e~ 2@y (k) (5.13)

Inverse transformation of eq. (5.13) gives

3G= —AUpG(l——a)[ 2—%)S:°Ul(k).fo(kr)kdk

+l{<i_ 22 >S:°U1(Ic)J1(kr)dk +i£ g:oUl(lc)Jo(icr)kdk}] (5.14)

[24

r 7
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The resultant gravity change 6G,, is thus summarized as follows:
5G11=(“T+27CPG)AH11+6G3+5G4 (5.15)

Magnetic change

Elementary piezomagnetic potentials due to the TI11 type strain
nucleus were obtained by SASAT (1980). Their Fourier transforms are
reproduced in Appendix A. Applying the same method as in the preceding
two models, we can derive magnetic potentials associated with the mul-
tiple T11 crack model. Final results are rather complicated because we
have to replace powers of ik, and ik, with ¥ by means of eq. (8.23):

WaiCs= | [{ = Lveth, o)+ (5= B2tk Z)vieth, 2|0k

_@_ﬂg_ 4:f >V2=°(k, 2) Jo(kr)k]dk (5.16a)

ia/c;azf[{—% Vilk, 2) +(67?{—%y:~ I %) Vielk, 2) . (hr)
—(3_7? —%?{i) Vilk, 2) Jo(lcr)k]dk | (5.16b)
e f(2-

+{ BVl 2+ Vi, 2| Tolor ) |k 5.160
T

27 >V1‘(k, )Tk
r

where

Cﬁ=—%ﬂ/3JmAU (m=, v, 2) (5.17)

V™ and V," are given in Appendix B. Again, the negative sign on the
right of eq. (5.17) is adopted for the same reason as we have stated after
eq. (4.21). Magnetic field components are also complicated, which will be
found in Appendix C.

6. Examples

Shown in Fig. 4 are (a) uplift, (b) horizontal displacement, (c) gravity
and (d) magnetic total field change associated with the multiple Mogi
model for D=1km, ¢,—=0¢.,=0.5km and 4h,=10cm. These are profiles
along the N-S meridian. Material properties of the medium and para-
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Fig. 4. Results along the N-S meridian for the multiple Mogi model with D=1.0 km,
g,=0,=0.5km and 4hy=10cm. (a) Uplift, (b) Horizontal displacement, (¢) Gravity change:
three curves indicate different kinds of crack-filling materials i.e. gas (G), water (W) and
magma (M), and (d) Magnetic total intensity.

Table 1. Material properties of the elastomagnetic medium
and parameters of the geomagnetic field.
Rigidity I 3.5X 101 cgs
Poisson’s ratio v 0.25
Density o 2.65 glee
Density of crack-filling materials p,
Gas 0.0 glee
Water 1.0 glee
Magma 2.35 glee
Average magnetization J 1.0%x10-3 emu/ce
Stress sensitivity B 1.0x10~4bar-1
Curie depth H 15 km
Average magnetic dip I 45 deg.
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meters of the ambient geomagnetic field are summarized Table 1. Three
curves in the gravity change correspond to three different materials filling
cracks, i.e. gas (G), water (W) and magma (M). Since the detection
capability of gravity change is at best 10g gal (TajmaA 1975), it is
difficult to distinguish each curve. In the case of an uplift of several
tens centimeters, however, we may expect to specify the source material
of the dilatant volume with the gravity data. As for the magnetic
change, the overall decrease in the total intensity is predominant, which
is reasonably anticipated from the piezomagnetic field of the single Mogi
model.

Fig. 5 shows these quantities for model parameters D=1.0km, ¢,=
0,=0.1km, 1km and 10km respectively. The gravity change is given for
the water-saturated case only. Results for ¢,=0¢,=0.1km are almost the
same as those for the single Mogi model. In fact, we can confirm the
multiple Mogi model practically coincides with the single Mogi model in
case of ¢,/D=0,/D=0.05 or less.

Since the gravity change is proportional to the uplift, we have about

(A) UPLIFT (C) GRAVITY

CM wG

(B) HORIZ. DISP. (D) TOTAL FIELD

30_CM .NT

10.

-10. : -2.

-30. -6.—
S-2 -1 0 1 N S-2 -1 0 1 2N
X/D X/D

Fig. 5. The multiple Mogi model with D=1.0 km, 4hy=10em, ¢,=0,=0.1, 1 and 10 km.
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a 30z gal decrease against 10cm uplift for any values of ¢,. On the other
hand, the magnetic change diminishes as ¢, increases. Why do we meet
such a phenomenon? The piezomagnetic potential due to the Mogi model
is nothing but that of magnetic dipole placed at the dilation center,
regardless of minor terms. Hence, in the multiple Mogi model, we are
to calculate the field of dipoles distributed in Gaussian. With increasing
g, the crust behaves as a uniformly magnetized plate magnet with an
infinite extent. A uniformly magnetized plate magnet of infinite extent
produces no magnetic field outside it, no matter how intensely it is
magnetized. Disappearance of the magnetic change with increasing o, i8
entirely attributed to this reason.

The intensity of the magnetic field is proportional to 4h,/D. As the
depth of the crack distribution center D increases, the magnetic field also
decreases even for the same value of the given maximum uplift 4h,.
This is in contrast to the gravity change, which is directly proportional
to 4h, and independent of D.

In Fig. 6 and Fig. 7 are depicted the surface displacements, gravity

(A) UPLIFT (C) GRAVITY
CM uG
) 0.
20 \\\T\ P el
) -20. M
10 //\\\ AW
] 5
0. ~ -40. ¢
-10. -60.
S-2 -t o 1t 2N S-2 -1t o 1 2N
X/ X/D
(B) HORIZ. DISP. (D) TOTAL FIELD
30. M 5. NI
10. 2.
= TN
-10. -2. N
-30. -B.
S-2 -1 o 1 2N S-2 -1 0o 1 2N
X/D X/D

Fig. 6. The multiple Mogi model with D=1.0km, 4hy=10c¢m,s,=0.5km and ¢,=0.3 km.
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Fig. 7. The multiple Mogi model with D=1.0km, 4hy=10cm, ¢,=0.3km and ¢,=0.5 km.

and magnetic changes for the cases ¢,=0.5km, ¢,=0.83km and for ¢,=
0.3km and ¢,=0.5km respectively. The magnetic field is sensitive to the
relative magnitude of o, and o,.

Next we will investigate the multiple T33 crack model. In Fig. 8
are shown the distortion-related quantities for model parameters D=1.0
km, ¢,=0¢,=0.5km and 4h,=10cm, which are the same as in Fig. 4. The
most outstanding feature is that the magnetic change is negligibly small
for any combinations of parameters. The reason has already been stated
in section 4. The surface displacements and gravity changes are very
similar to those of the multiple Mogi model. It would be difficult to
discriminate the two models with the displacement and gravity data alone.
A slight but significant discrepancy hetween the two lies in the relative
smallness of horizontal displacement in the T838 crack model.

Finally we will investigate the characteristics of the multiple T11
crack model. Fig. 9 shows the distortion-related quantities for the same
model parameters as in Fig. 4 and 8. The results are remarkably different
from the foregoing ones. First we find two humps in the uplift curve:
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Fig. 8. The multiple T33 crack model with D=1.0km, dh¢=10¢em, ¢,=0,=0.5 km.

the origin above the center of crack distribution becomes a saddle point.
In general the horizontal displacement prevails over the vertical one.
The gravity change curves for three different crack-filling masses suffi-
ciently deviate from each other even for a 10em upheaval, so that we
can specify the source material. There appears a positive area in the
total magnetic field on the southern slepe of the uplift, although the
negative area on the north is dominant.

Augmentation of gravity change is explained as follows: The maxi-
mum uplift 4hg.. plays the role of a measure for the total crack volume
in the present calculation. Since a single T11 crack is less capable of
producing the surface uplift, much more crack volume is required to
attain a certain amount of upheaval as compared to the spherical or T83
cracks. Hence the G3 term becomes dominant, which reflects the material
density within cracks directly.

For the multiple T11 erack medel, asymmetry appears in a horizontal
direction. Profiles along a line parallel to the crack orientation are given
in Fig. 10. The direction of the magnetic north is also deflected away
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Fig. 9. The multiple T11 crack model with D=1.0km, 4hy=10cm, ¢,=0,=0.5km.
The crack orientation is perpendicular to the profile.

by 90°. They are N-S profiles of the T22 type cracks. Along such a
meridian, the maximum uplift is at the col and the horizontal displace-
ment becomes much less than that in Fig. 9(b). The gravity change is
large, while the magnetic field takes on a weak negative value throughout.
Adding the magnetic change in Fig. 9 (d) and Fig. 10 (d) (strictly
speaking, together with a negligible amount of contribution in Fig. 8 (d)),
we obtain the overall negative change due to the multiple Mogi model
in Fig. 4 (d). This can be recognized from the nature of the center of
dilatation as has been discussed in section 2. :

In Fig. 11 are shown N-S profiles for ¢,=¢,=0.1km, 1km and 10km,
respectively. For small ¢, and o, the saddle-like deformation of the
surface is intensified. Even a subsidense occurs at the origin. This is
well-known for a single T1l-crack. In fact, we find the vertical displace-
ment for ¢,=¢,=0.1km is coincident with MARUYAMA’s (1964) result for
a T11 strain nucleus. On the other hand, this feature disappears for o,=
0,=1.0km. It is ascertained that around ¢,=¢,=0.6km the two humps
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Fig. 10. The multiple T11 crack model with the same parameters as in Fig. 9. The
crack orientation is parallel to the profile.

vanish and the plateau-like upheaval emerges instead. A similar feature
of the magnetic change to the multiple Mogi model is observed wherein
the total field diminishes as the ¢, increases. This is aseribed for the
same reason as given before.

In Figs. 12 and 13 are shown profiles for the cases o,=0.5km, ¢,=
0.83km and for ¢,=0.8km and ¢,=0.5km, respectively. Generally the
gravity and magnetic changes are intensified when ¢,<o,.

There are two outstanding features in the gravity change: (i) the
peak position of the maximum gravity change does not always coincide
with that of the uplift. In Fig. 9 (¢) we find the maximum change in
gravity appears at the origin in spite of two humps in the uplift curve.
For the 0,=0¢,=0.1km case in Figs. 11 (a) and (c), two peaks exist in both
the uplift annd gravity, but their positions are clearly separated. More-
over, peak positions of gravity change are slightly different for the three
kinds of crack materials. (ii) We may expect an extremely large value
in the gravity change rate. The highest expected rate in the multiple
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Fig. 11. The multiple T11 crack model with D=1.0km, 4hy=10cm, ¢,=0,=0.1km,
1km and 10km, respectively.

Mogi model is the free air rate (i. e. p,=0 in eq. (3.31)). For the multiple
T11 crack model, however, the rate is a function of the observation site.
In Fig. 9 (¢), we see that the gravity change rate at the origin amounts
to -Tpgal/em for dry dilatancy (i.e. more than twice the free-air rate).
Unsual gravity changes will be a useful constraint on the multiple T11
erack model. _

All these examples indicate that the magnetic change is observable
only when the dilatant region is shallow and localized. A large-scale
crustal dilatancy is, however, somewhat unreal. The present study tells
us that magnetic measurement is promising to detect the onset of
dilatancy at locked portions of a fault if it occurs prior to the rupture.

7. Application to volcanology

We have presented here a kinematic medel for crustal dilatancy.
The term “kinematic” implies that we give a priori the amount of the
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source deformation regardless of its physical mechanism. Three types of
dilatant deformation processes are proposed to cause volumetric increase
of crustal materials under shear stresses, namely a) sand, b) joint and
¢) microcrack dilatancy (NUR 1975). In the case of the sand dilatancy
the rigid body rotation of granular masses plays the major role: the
density and magnetization changes would be different from those we
have considered in this paper. We prefer the joint and microcrack
dilatancies in applying our model. There still remains a discrepancy:
cracks formed by the in situ rock dilatancy are not always sustained by
crack-filling materials, while dislocations in our model should naturally
be maintained by some internal pressure. In other words, the present
model is the most suitable for the case where tensile cracks are produced
by forced injection of some pressurized substances.

HiLL (1977) proposed a generating mechanism of earthquake swarms
in voleanic regions: a number of tensile cracks filled with magma open
in some preferred direction under the regional stress field, and shear
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dislocations develop so as to connect these cracks. If the spacing of
dykes is sparce, we may employ the multiple tension crack model as an
approximation to Hill’'s mechanism. We must be carefull, however, to
apply the model to the near-field data, since the mutual coupling of fluid
inclusions should certainly alter the results hithertc described in this
paper.

The multiple tension-crack model works as a simulator for the magma
reservoir. In the previcus section we found the multiple Mogi model
with small ¢, ane ¢, coincides with the single Mogi model, which is a
useful tool in volcanology. By analogy with the single Mogi model, the
multiple model can be regarded as an assemblage of small magma pockets.
Such a magma reservoir may have some spatial extent and different
aspect ratio in contrast to the limitation originally imposed on the Mogi
model.

FiskE and KiNosHITA (1969) suggested the aggregate of sills and
dykes as the reservoir beneath the Kilauea Volcano, Hawaii. The multiple
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Mogi model can be viewed as a cluster of tensile cracks oriented in every
direction : it seems suitable as a first-order approximation for the Fiske
and Kinoshita’s model. A merit of the multiple tension-crack model
applied to the magma reservoir is that magma is scattered within rigid
host rocks: the firm framework is built in within the reservoir. We
need not worry about the large-scale collapse of the vacancy after the
eruption, which enevitably accompany traditional reservoir models with
a large cavity.

As for the multiple Mogi model there are two other candidates for
its physical entity. One is the thermal expansion. Its mechanical distortion
can be calculated by replacing the center of dilatation whose intensity
is proportional to the increased temperature. The temperature increase
with a spatially Gaussian distribution will cause exactly the same
mechanical effect as the multiple Mogi model. The other is a model for
dacite volcanism. WATANABE (1984) presented a bubble growth model in
the dacite magma supersaturated with veolatiles. He ascribed it to the
driving force of the cript-dome formation at Usu Voleano, Japan. Such
a force source can be again simulated by the multiple Mogi model with
appropriate ¢, and o,.

The multiple tension-crack model is thus useful for describing volcanic
phenomena. We should, however, take into account changes in the
material properties due to the high temperature. In particular, thermal
demagnetization surely affects the magnetic field. We have to subtract
the contribution of the hot region from the solution given in this paper.
This can be successfully achieved with the aid of the surface integral
representation of the tectonomagnetic field (SAsA1 1983).

The multiple tension-crack model is now applied to the anomalous
crustal uplift associated with the Matsushiro swarm earthquakes, the
result of which will be reported elsewhere.
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Appendix A Fourier transforms

All the Fourier transforms referred to in this study are summarized.
Some of them are reproduced from SASAT (1979, 1980).
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A 1: Displacement field of a T33 crack at (0,0, &)
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A2: Displacement field of a T11 crack at (0,0, &)
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where D,, D, and D, are already given in (3.33).

Alk: Prezomagnetic potential due to a T33 strain nucleus
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A5: Piezomagnetic potential due to a T11 strain nucleus
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Appendix B  Weight functions for magnetic potentials

% and Wi in eq. (3.34), Wz and Wi in eq. (4.20) and V2, Vi VY,
4, Vi and Vi in eq. (5.16) are summarized. They consist of R functions
A
arising from integrals of a form S 2"'q(z')dz’(lI=0 or 1, A=H or ). R
0
funections are listed separately.

B1. The multiple Mogi model

o 1 31
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B2: The multiple T33 crack model
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B3: The multiple T11 crack model
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B4: R functions
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@(x) is defined by eq. (3.10).
In the case that ¢,<o,, the expressions (B. 20)—(B. 23) are inade-

quate, since the exponential terms become divergent. Instead we had
better use the following formulas for large k.
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where
U () =e”®(x) (B.29)

Useful approximation formulas for erfe (x) involved in @(x) and e erfe
{(z) in ¥(x) are found in HASTINGS (1955).

Appendix C Magnetic field of the multiple T11 crack model
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Aé:f*= cos o [{(Zt-Lh Vit Vi) gufhr) = 2V |
+ cos ¢ cos 2 g - V{{(—% +%k2 )Jl(kr) +%Jo(kfr)k}dk (C.7)

e sns{ (2o v Lyl

Cia
+ sin ¢ cos 20 S‘” V;{(-%Jr%k? )Jl(kr) +%Jo(k¢)k}dk (C.8)
AZ;]_ = ____l_ z__ z 2
44 _So ( Lve-v, )Jo(kr)lc e
+ cos 2¢r V;{iJl () — & Jo(kr)k}kdk - (C.9)
0 r 2

With the aid of the following relations, we can dissolve apparent in-
definiteness at r=0:
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