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Abstract

A number of fault-plane solutions of earthquakes (#=464) in and
around the Kanto District were determined by a numerical method,
and the spatial variation of earthquake-generating stress is derived
by using individual and average focal mechanisms. Averaging of
direction cosines is made for both axes of maximum pressure and
tension, and other axes are located by computation. The structure
of earthquake-generating stress is derived from the spatial variation
of fault types which are systematically classified into six types based
on dip angles and azimuths of pressure and tension axes and null
vector. The !spatial variations of focal mechanisms are derived by
summarizing pressure and tension axes and comparing them with the
distribution of earthquake hypocenters previously determined by cor-
recting the Pn station biases. The northern focal hemispheres of
fault-plane solutions are used for comparison with the vertical distri-
butions of the relocated hypocenters.

A reverse fault with the horizontal E-W compression is pre-
dominant for crustal and subecrustal earthquakes on the Pacific side,
and it is directly related to the westward convergence of the Pacific
Plate underneath the FEurasian Plate. Axes of maximum pressure
show some variations for individual earthquakes and hypocenter loca-
tions. An eastward increase of dip angle of T axis is observed along
the E-W section. The E-W compression appears also in the inland
region of the northern Kanto District. In the southwestern part of
the Kanto District a variety of focal mechanisms are observed. For
very shallow earthquakes near Izu-Oshima and the Izu Peninsula a
strike-slip with an N-S compression is predominant. Another type is
the normal faulting for earthquakes located south off the Kanto Dis-
triect. These two types of faulting commonly have the horizontal E-W
extension. Besides the down-dip compression observed for mantle
earthquakes, the down-dip extension along the inclined seismic zone
is observed for intermediate-depth earthquakes located on the Pacific
side. But the tensional stresses along the lower plane of the double
seismic zone show a variety of azimuths and dip angles.

* Read on December 21, 1982, at the monthly meeting (Danwakai) of the Earthquake
Research Institute.
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A significant contrast is observed in fault types between the Izu-
Bonin region and the Pacific coast of the Kanto District and North-
east Japan. The thrust faulting is predominant for earthquakes with
depths down to 60 km along the plate boundary below the Pacific
coast, but in the Izu-Bonin region various types of faulting are ob-
served without showing an obvious inclined seismic zone. Some
source regions with similar focal mechanisms are observed; the reverse
fault with the NW-SE compression in the sequence of the 1964
Niigata and 1972 Hachijojima Earthquakes, and the strike-slips in the
Matsushiro Swarm and in the Izu Peninsula and Izu Islands region.

1. Introduction

Complexities in the seismic activities and tectonics in and around
the Kanto District are considered to be generated by the convengence
of three lithospheric plates—the Pacific, the Eurasian and the Philippine
Sea Plates (Fig. 1). Some intense clusters of earthquake hypocenters
and systematic variation of focal mechanisms are noticeable features
especially in the Kanto District (MAKI et al., 1980). Recently it become
possible to obtain a large number of fault-plane solutions of earthquakes
in and around the Kanto District by a new numerical method (MAKI,
1982). In the present study the spatial variation of focal mechanisms
will be studied in more detail from these fault-plane solutions. The
location and size of source
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studies the regularities of focal mechanisms have been estimated by
summarizing the fault-plane solutions or by detecting systematic trends
in the geographical distribution of focal mechanisms. Averaging of
fault-phase solutions has been made by SCHEIDEGGER (1958) and RITSEMA
and SCHOLTE (1961) to obtain the mean axis of null vectors from nodal
-planes. FARA and SCHEIDEGGER (1963) revised the analytical method
by finding the eigenvector in the least-squares method. ICHIKAWA
(1970a, b) compared the spatial variation of mean directions of only
the pressure axes of earthquakes in and near the Izu Peninsula. Com-
plete sets of average fault-plane solutions have not been included in
these studies. In this paper the average fault-plane solutions will be
given for earthquakes selected for source regions. At first the average
axes will be obtained for maximum pressure and tension, and then
the null vector and poles of nodal planes will be located by computa-

tion.

Catalogues of fault-plane solutions have been published by FARA
(1964) and WickeNs and HopgsoN (1967) for earthquakes in the world,
and by ICHIKAWA (1971, 1979) and YosHII (1979a) for earthquakes in
and around the Japanese Islands. The number of earthquakes in these
catalogues is not sufficient for studies of the tectonic stress in specific
regions. Fault-plane solutions of earthquakes in the Kanto District
have been studied by ICHIKAWA (1962, 1970a, b), MAKI (1974) and MAKI
et al. (1980). In the present study fault-plane solutions will be de-
termined systematically for all the earthquakes occurred in and around
the Kanto District.

Recently focal mechanisms were studied in terms of the spatial
distribution in several areas in the world; by CARDWELL and ISACKS
(1978) for the Banda Sea, by ForsYTH (1975) for the South Atlantic
and Scotia Sea, by PASCAL et al. (1978) for the New Hebrides Are,
by STAUDER (1973) for Chile, by STAUDER (1975) for Peru, by STEIN
et al. (1982) for the Lesser Antilles Arc, by VEITH (1974, 1977) and
STAUDER and MUALCHIN (1976) for the Kurile Are, and by AoOKI (1974),
SuroNo and Mikumo (1975), UMiNO and HASEGAWA (1975, 1982), SASA-
TANI (1976), SHIONO (1977), HASEGAWA ef al. (1978a, b), MAKI et al.
(1980), SHIONO et al. (1980) and Uxawa (1982) for the Japan arcs.
Global surveys of focal mechanisms were made by ISACKS and MOLNAR
(1971), ISACkS and BARAZANGI (1977) and FuJiTA and KANAMORI (1931).
In the present study the structure of earthquake-generating stress in
and around the Kanto District will be derived in more detail from the
spatial variation of focal mechanisms in the Kanto District and vicinity.

Some intense clusters of earthquake hypocenters in the Kanto
Distriet have been shown by TsSuMURA (1973), UsAaMI and WATANABE
(1975), MAKI et al. (1980), MAKI and TSUMURA (1980) and MAKI (1981b)
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from small- and micro-earthquakes observed by the high-sensitivity
seismographs. These features were also identified by the precisely
relocated hypocenters of larger earthquakes (MAKI and TSUMURA, 1980 ;
MAkI, 1981a, b). Focal mechanisms may be useful for understanding
the causes of such intense clusters of hypocenters. There is a distinet
boundary of longitude 189°E in the spatial variation of focal mecha-
nisms of shallow earthquakes near the Izu Peninsula, namely the hori-
zontal N-S compression of the strike-slip on the western side and the
NW-SE compression on the eastern side (ICHIKAWA, 1962, 1970a, b;
MAxi1, 1974; SOMERVILLE, 1978; NAKAMURA, 1979). Two types of
focal mechanisms of the low-angle thrust and vertical slip with the
western side downgoing were observed for earthquakes in the south-
western part of the Ibaraki Prefecture by MAKI et al. (1980) and MAKI
(1981b). Earthquakes below the middle part of the Chiba Prefecture
were interpreted by the vertical slip along the N-S striking plane
(MAKI et al., 1980 ; SOMERVILLE, 1980).

Depth distributions of micro-earthquakes at depths from 80 to 200
km show a double-planed seismic zone in the Kanto District (TSUMURA,
1973) and in Northeast Japan (HASEGAWA et al., 1978a, b). A detailed
cross section of the deep seismic zone in Northeast Japan was shown
by YosHI1 (1979). He obtained a very thin seismic zone accompanied
by another seismic plane 30 km below by using focal depth estimated
by pP-P times, and showed the systematic variation of focal mecha-
nisms along the seismic zone, namely the normal fault near the trench
wall, the low-angle thrust along the deep seismic zone and the hori-
zontal E-W compression of shallow earthquakes in the inland region.
A down-dip compression is predominant for earthquakes along the up-
per plane of the double seismic zone, and a down-dip extension for
the lower plane. In this paper spatial variation of focal mechanisms
in the Kanto District will be presented in more detail with relation
to the double seismic zone.

2. Fault-plane solutions by the new numerical method

Fault-plane solutions of earthquakes (M=5.0) in and around the
Kanto District have been determined by a new numerical method (MAKI,
1982). In this method fault-plane solutions with plausible scores of
consistent first-motion data are adopted from 6156 tentative sets of
maximum pressure and tension axes located at the 10° interval of dip
angles and azimuths. First-motion data with lower consistencies are
discarded by an objective and automatic way. Fault-plane solutions
with scores of 95% or more are used to represent confidence regions
of fault-plane solutions. Null vector and poles of nodal planes are
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Fig. 2. Epicenter map of earthquakes whose fault-plane solutions are determined by
the numerical method. The earthquakes are limited to those which occurred in and
around the Kanto District during the period of 17 years from 1963 to 1979, with
earthquake magnitudes of 5.0 or more. Focal depths and earthquake magnitudes

are indicated by classified symbols shown in the legend.
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located by computation from possible sets of P and T axes.

The numerical method was applied to 459 earthquakes with mag-
nitude of 5.0 or more, which occurred during the period of 17 years
from 1963 to 1979 in the region bounded by latitudes 31°N and 39°N
and longitudes 137°E and 145°E. TUsable fault-plane solutions with
scores of 95% or more could be obtained for 454 earthquakes, whose
epicenters are shown in Fig. 2. Focal depths are shown by different
symbols for every 100 km and the symbols are classified according to
earthquake magnitudes, as shown in the legend of the figure. No usa-
ble solutions were obtained for the remaining five earthquakes due to
scores less than 95%.

In the Appendix equal-area projections of fault-plane solutions are
shown for only a few earthquakes, which are mentioned in the text,
to save space. Fault-plane solutions with scores of 99% or more are
indicated by asterisks (‘+’’), and for solutions with scores from 95%
to 98% by letters “P’’, “T”’ and ‘“N’’ on the left-hand side. These
solutions with scores over 95% constitute confidence regions of fault-
plane solutions. The most probable solution of focal mechanism and
first-motion data are shown on the right-hand side. Open and solid
circles show dilatation and compression of first-motion data, and ‘‘A”’
and “B”’ denote poles of nodal planes, respectively. Dip directions
and dip angles of maximum pressure and tension, null vector and poles
of nodal planes are given at the bottom of each figure. Origin times
and focal coordinates are given at the top. Origin times and hypocenter
locations were determined by correcting the station biases of Pn travel
time (MAKI, 1981a). For earthquakes whose fault-plane solutions cannot
be determined with scores of 95% or more in the first run, tenth digits
of greatset score are shown as seen by 7’7, ‘‘8” for earthquakes on
Apr. 22, 1966, Mar. 19, 1967 and Sep. 15, 1971 in the Appendix. More
possible fault-plane solutions could be obtained after discarding
apparently inconsistent first-motion data.

Fault-plane solutions were previously determined for some larger
earthquakes by using first-motion data read on the WWSSN seis-
mogram for the Niigata Earthquake on June 16, 1964 (HIRASAWA,
1965; ABE, 1975a), the Kashimanada Earthquake on Sep. 18, 1965
(SASATANI, 1971; MAKI, 1975a), the East Saitama Earthquake on July
1, 1968 (ABE, 1975a), the Middle Gifu Earthquake on Sep. 9, 1969
(MIKUNO, 1978), the Hachijojima Earthquake on Deec. 4, 1972 (MAKI,
1975b), the Off Izu Peninsula Earthquake on May 9, 1974 (MAKI, 1974;
ANDO and MIKUNO, 1974 ; MATSUZAKI and KAWASAKI, 1974; ABE, 1978),
the Near Izu-Oshima Earthquake on Jan. 14, 1978 (SHIMAZAKI and
SOMERVILLE, 1978, 1979) and the Off Miyagi Prefecture Earthquake on
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June 12, 1978 (SENO et al., 1980). These solutions seem to be identical
comparing with the confidence regions of faut-plane solutions in the
present study.

For earthquakes that occurred in and around the Kanto District
with magnitudes of 5.0 or more, the number of earthquakes in the
Ichikawa and JMA catalogues of fault-plane solutions is only 58% of
of the number in the present study. A complete selection of earth-
quakes with magnitudes over a certain level was not made in these
catalogues. Fault-plane solutions of some large earthquakes were not
given in those catalogues. For some earthquakes faut-plane solutions
were determined by less numbers of first-motion data than in the
present study.

Table 1.

and dip angles (“d”) from the horizon.

Examples of relative angular distances (in degrees) between the poles
of nodal planes, axes of null vector and maximum pressure and tension.
Azimuths of dip directions (“dd”) are measured clockwise from the north

Cases where the orthogonal relation

does not hold due to greater or smaller distance by 0.3° are marked by

“,
*7,

(1) Date Or.time Lat Long Dep Mag Obs
ymd hms °N °E km NR NU
63 818 16 949 35.81 139.58 154.7 5.3 34 27
Pole-X Pole-Y Null axis P-axis T-axis
dd d dd d dd d dd d dd d
192.3  69.7 79.1 8.4 346.5 18.8 100.0 50.0 243.0 33.8
0.000 89.897 89.624* 44.805 45.223
0.020 89.737 45.093 44,882
0.020 89.757 90.250
0.034 90.025
0.048
(2) Date  Or.time Lat Long Dep Mag Obs
ymd hms °N °E km NR NU
64 616 13 58 46 38.69 139.40 34.1 5.1 11 10
Pole-X Pole-Y Null axis P-axis T-axis
dd d dd d dd d dd d dd d
95.6 12.8 329.5 68.5 189.3 17.2 290.0 30.0 74.0 54.5
0.000 90.255 89.691* 44.993 45.019
0.034 89.648* 44.755 45.237
0.028 90.329* 89.790
0.028 89.989
0.028




LONG=137.00 - 145,00
LATI= 31.00 - 39.00
DEPT= 0.0 - 8600.0
MAG= 5.0 - 8.0

POLES A, B N

Fig. 3. Summary of 524 fault-plane solutions for 454 earthquakes which occurred in
and around the Kanto District during the period from 1963 to 1979 with magnitudes
of 5.0 or more. Axes of maximum pressure (P), tension (T) and null vector
(N) are represented by open and solid circles and crosses on the left, and poles of
nodal planes by open circles on the right.

The orthogonal relation in the fault-plane solutions obtained in the
present study has been examined. In Table 1 the relative angular
distances between the stress axes and poles of nodal planes are shown
for two earthquakes. According to the definition of fault-plane solu-
tion in the source model of double couple, the angular separation be-
tween the stress axes (P, T and N) and between the poles of nodal
planes should be 90°. Angular separation between the compression
and tension axes (P and T) and poles of nodal planes (A and B) should
be 45° or 135°. In all the 524 solutions for 454 earthquakes including
multiple solutions, the orthogonal relation are held within differences
of angular distances less than 0.4°. Absolute differences of 0.3° or
more compared with the orthogonal relation are marked by asterisks
(*) in the table. In order to keep the orthogonal relation within 1°,
it is necessary to give figures in fault-plane solutions by the unit of
tenths of a degree.

In Fig. 3 fault-plane solutions are summarized for all the earth-
quakes. On the left-hand side the axes of maximum pressure (‘‘P’’),
tension (““T’’) and null vector (‘“N’’) are shown by open and solid
circles and crosses, respectively. On the right-hand side the poles of
nodal planes are shown. No systematic trends can be read from these
distributions. These fault-plane solutions will be studied with respect
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to regional variation of focal mechanisms.

3. Averaging method of fault-plane solutions

Fault-plane solutions of large earthquakes may better represent
the tectonic stress in a region. However it is not understood what
level of earthquake magnitude can be representative of the tectonic
stress. When many fault-plane solutions are obtained, earthquake-
generating stress may be found by averaging solutions. Only a few
studies have been made for averging focal mechanisms (SCHEIDEGGER,
1958 ; RITSEMA and SCHOLTE, 1961 ; FARA and SCHEIDEGGER, 1963 ; ICHI-
KAWA, 19702, b). In these studies complete sets of axes in fault-plane
solutions have not been treated. In the present study a full repre-
sentation of average fault-plane solutions is treated, especially the com-
bined stress axes of maximum pressure and tension.

Averaging of fault-plane solutions in the present study is made
as follows: (1) omitting axes of maximum pressure and tension accom-
panied by large relative separation from the rest, (2) locating mean
axes of maximum pressure and tension by averaging direction cosines,
and (3) locating other axes from the mean axes of maximum pressure
and tension by computation. Fig. 4 shows the equal-area projection
of 45 axes of maximum pressure on the lower focal hemisphere
for the intermediate-depth
earthquakes with focal
depths from 200 to 400 km. s
Westward plunging axes of o :
maximum pressure are pre- .
dominant and relatively .
independent of other axes . ’
of maximum pressure lo- A :
cated on the eastern side. : 2o . ’

From the idea of double- )
couple source model the B -
critical angle is 45° for e T
distinguishing near or dis- " ’
tant solutions from others ‘
on the focal sphere. Axes e
with relative angular dis-

tances over 135° are rather Fig. 4. Equal-area projection of maximum
near to opposite axes of pressure (P) on the lower focal hemisphere
the force couples. Thus for errthquakes with focal depths from 200

to 400km. Numerals mean numbers of P

relative anglﬂar distances axes within the same columns.

are classified into three
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ranges as ‘‘near distances” from 0° to 45°, ‘“far distances’’ from 45°
to 135°, and ‘‘near but opposite distances’’ from 185° to 180°. Relative
angular distances are calculated for individual axes, and axes accom-
panied over half by far distances may be omitted.

Mean locations of P and T axes are obtained by the arithmetic
averaging of direction cosines. Comparing frequencies for 0.1-increment
of direction consines, axes located far from the peak frequency are
again omitted. Mean values of direction cosines are normalized using

< )2 < )2 < z>2 !

were @,, @, and @, denote mean direction cosine to the z, y and z
coordinates. Average locations of the maximum pressure and tension
are independently deter-
mined by the above

LONG=137.00 = 145.00 £ LAT=31.00 - 39.00 N DEP2200.0 - 400.0KH

s e e 1y method, and then the
A SR T orthogonal relation between
I B i these P and T axes may

IS T not be strictly held as 90°.

S Fig. 5 denotes an
i average fault-plane solu-

tion for the intermediate-

depth earthquakes. The

: , average P and T axes are
. . : denoted by asterisks (x),
L o : and “P” and “T”’ mean
P, . : : usable axes of the maxi-
. T mum pressure and tension
! oo - (19 out of 45 solutions).
: : “N”’, X’ and ““Y”’ denote

the null vector, poles of

) nodal planes obtained from

B P and T axes by computa-

Fig. 5. Average fault-plane solutions for earth- tion. This method is ef-
quakes with focal depths from 200 to 400 fective for clustering solu-
km. “P’’ and ““T”’ denote useful solutions, tions of P and T axes.

and asterisks (‘‘x”’) denote the average N b
locations of P and T axes, respectively. Scattered solutions may be

Poles of nodal planes and axes of null omitted by a preliminary
vector obtained by computation from the selection’ and several aver-
average P and T axes are shown by ‘X",

age solutions may be ob-

llY” a d NN)). . . N .
o tained individually for some
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groups of fault-plane solutions.

4. Spatial variation of fault-plane solutions

The fault-plane solutions of earthquakes in and around the Kanto
District are widely variable as shown in Fig. 3. In this chapter some
systematic trends in the spatial variation are derived from the in-
dividual and average fault-plane solutions. The stress of minor earth-
quakes can be produced in smaller source regions, but larger earth-
quakes must be generated by the tectonic stress over a wide region.
The intense clustering of earthquake hypocenters beneath the crust
in the Kanto District may not be interpreted simply by the Pacific
Plate descending to the west. Another possibility is the stress con-
centration by the head-on collision of the Pacific Plate with the
Philippine Sea Plate (MAKI et al., 1980; Maki, 1981b). Fault-plane
solutions of many earthquakes may be helpful in understanding the
mechanisms of such earthquake occurrences.

In Fig. 6 fault-plane solutions are summarized on the equal-area
projection of the lower focal hemisphere for shallow earthquakes with
depths of h=0—40 km (n=224) and subcrustal earthquakes with depths
of h=40—100km (n=205). Axes of maximum pressure and tension
and null vector are shown on the left-hand side and poles of nodal
planes on the right-hand side. No systematic trends or differences in
the fault-plane solutions can be found between these ranges of focal
depth. Nearly vertical axes of maximum tension (solid circles) are
commonly predominant at these depths.

For crustal and subecrustal earthquakes (h=0—100km) with mag-
nitudes of 6.0 or more, the geographical distribution of focal mecha-
nisms is shown in Fig. 7 by using schematic diagrams. Shaded areas
denote dilatational areas of first motion, and open areas denote com-
pressional areas. Axes of maximum pressure and tension and null
vector are denoted by ¢P’’, ““T’’ and ‘‘N’’ beside the encircled crosses.
For some earthquakes with multiple solutions, only the more possible
solutions are given by referring to neighbouring earthquakes.
First-motion data and confidence region of fault-plane solutions are
shown in the Appendix for some earthquakes mentioned in the fol-
lowing.

The reverse faulting with the horizontal E-W compression is ob-
served for such earthquakes on the Pacific side of 140°E as the Off
Miyagi Prefecture Earthquake (M 7.4) on June 12, 1978, the E Off
Hachijojima Earthquake on February 29 (M 7.1) and December 4 (M 7.2),
1972 and the Kashimanada Earthquake (M 6.7) on September 18, 1965.
The horizontal E-W extension is predominant for earthquakes located
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LBNG=137.00 - 145,00 LAT=31.00 - 39.00 Z= 0.0 - UD.0 MAG=5.0 - 8.0

POLES A, B N

N=224

LONG=137.00 -~ 145.00 LAT=31.00 - 39.00 Z= 40.0 - 100.0 MAG=5.0 - 8.0

POLES A, B N

N=205

S R S
Fig. 6. Summary of fault-plane solutions of crustal earthquakes (A=0—40km) and
subcrustal earthquakes (h=40-100km) in and around the Kanto District. Symbols
are the same as those in Fig. 3.

south off the Kanto District. These earthquakes are divided into two
types of focal mechanisms. One is the strike-slip with the N-S com-
pression for the Off Izu Peninsula Earthquake on May 9, 1974 (M 6.9)
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Fig. 7. Schematic diagrams of focal mechanisms for larger earthquakes (M=6.0) in
and around the Kanto District. Epicenters are shown by solid circles. Shaded
areas denote dilatation of first motion and open areas denote compression. Axes of
maximum pressure and tension and null vector are shown by “‘P”’, ““T> and ‘N”’,
respectively.

and the Near Izu Oshima Earthquake on January 14, 1978 (}M7.0).
The other is normal faulting for the earthquake south off Atsumi
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Peninsula, Aichi Prefecture, on January 5, 1971 (M6.1) and the one
northwest far off Hachijojima Island on June 27, 1974 (M6.1). Earth-
quakes in the inland region show the strike-slip with the horizontal
E-W compression as the Middle Gifu Prefecture Earthquake on
September 9, 1969 (M6.6). The Middle Saitama Prefecture Earth-
quake on July 1, 1968 (M6.1) shows the reverse faulting with the
horizontal N-S compression. Widely variable focal mechanisms are
observed even for some large earthquakes with magnitudes over 6.0
and suggest a regional variation of tectonic stress.

Spatial variation of fault-plane solutions will be discussed for four
ranges of focal depths, namely shallow earthquakes with focal depths
from 0 to 40 km, subcrustal earthquakes from 40 to 100 km, and mantle
earthquakes with depth ranges of h=100-200km and h=200-600 km.
Further regional variations are discussed by dividing the Kanto Dis-
trict and vicinity into four parts for crustal and subcrustal earthquakes.

4.1 Crustal earthquakes with depths of h=0—40km

Fig. 8 compares the summaries of fault-plane solutions of the
crustal earthquakes (h=0—40 km) in all four quarters. Axes of maxi-
mum pressure (P) and tension (T) and null vector (N) are shown by
open and solid circles and crosses, respectively. The reverse fault of
the nearly vertical extension is commonly observed in all four quarters,
especially in the northeastern quarter. Two types of strike-slip with
the E-W and N-S compression are also observed in the northwestern
and southwestern quarters. Predominant types of faulting cannot be
obtained for the southeastern quarter due to the less number of fault-
plane solutions.

An average fault-plane solution for the all 58 earthquakes that
occurred in the northwestern quarter was effective for only 8 solu-
tions. But by dividing into two groups with 19 and 16 solutions, two
types of average fault-plane solution are obtained. The first type is
such that tension axes are preliminarily selected around azimuth ¢=0°
and dip angle §=90°, showing the reverse fault of the vertical exten-
sion. The second type is selected around azimuth of $=10° and dip
angle 6=0°, showing the strike-slip with the E-W compression and
N-S extension. The first type is observed for some aftershocks of
the Niigata Earthquake on June 16, 1964 (}7.5), and the second type
for earthquakes of the Matsushiro Swarm that occurred from 1965 to
1968. Average fault-plane solutions for shallow earthquakes are illus-
trated in Fig. 9 by using schematic diagrams of focal mechanism.
Average vectors of maximum pressure and tension are denoted by in-
ward and outward arrows. Epicenters are shown by open circles on
the background map.
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(a) Northwest Lons=137.00 - 1u1.00 LONG=141.00 - 145.00
LATI= 35.00 - 39.00 (c) Northeast LATI= 35.00 - 33.00
DEPT= 0.0 -  40.0 DEPT= 0.0 - 40.0
MAG= 5.0 - 8.0 MAG= 5.0 -~ 8.0

N=10Y4

LONG=137.00 - 141.00 LONG=141.00 - 145.00
(b) Southwest LATI= 31.00 - 35.00 {d) Southeast LATI= 31.00 - 35.00
DEPT= 0.0 -  40.0 DEPT= 0.0 - wo.0
MAG= 5.0 - 8.0 MAG= 5.0 - 8.0

Fig. 8. Regional variation of summarized fault-plane solutions of crustal earthquakes
(h=0-40 km) in and around the Kanto District; (a) northwestern, (b) southwestern,
(e) northeastern, and (d) southeastern quarters. The Kanto District and vicinity is
divided into four parts by the longitude line 140°E and latitude 85°N.

In the southwestern quarter only 12 out of 45 solutions can be
interpreted by the strike-slip with the N-S compression and E-W ex-
tension. Three types of average focal mechanisms by preliminary
selection of tension axes are shown on the lower left-hand side of
Fig. 9, the first with T axes around azimuth ¢=80° and dip angle
0=0°, the second with T axes around azimuth ¢=3830° and dip angle
0=45° and the third with T axes around azimuth ¢=380° and dip angle
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Fig. 9. Regional variation of average fault-plane solutions of crustal earthquakes
(h=0-40 km) in and around the Kanto District. Average fault-plane solutions are
obtained for earthquakes within every quarter divided by the longitude line 140°E
and latitude 85°N, and are represented by schematic diagrams of focal mechanisms.
Shaded and open areas denote compression and dilatation of first motion, respectively.
Arrows with letters “P’’ and “T”’ denote average axes of maximum pressure and

tension.
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6=60°. The first type is the strike-slip with the N-S compression
and E-W tension, and the second is the reverse fault with the hori-
zontal N-S compression. By the two types of average fault-plane
solutions 13 and 9 solutions are interpreted. Nine other solutions
show the normal fault with the E-W extension as observed for the
earthquakes on January 5, 1971 (M6.1) and June 27, 1974 (M6.1) in
Fig. 7.

In the northeastern .quarter an average fault-plane solution for
104 solutions is applicable to only three earthquakes. By preliminary
classification of solutions with maximum pressure around azimuth ¢=
90° and dip angle 6=0°, and azimuth ¢=10° and dip angle 6=0°, two
types of average fault-plane solutions of the reverse faults with the
horizontal E-W and N-S compression are obtained for 31 and 35 solu-
tions (upper right of Fig. 9). In the southeastern quarter no average
solutions were obtained for 18 solutions. Two groups of maximum
tension are observed around azimuth ¢=110° and dip angle 6=70°,
and azimuth ¢=310° and dip angle 6=380°. These solutions mean the
reverse faulting and the NW-SE extension, respectively (lower right
of Fig. 9).

4.2 Subcrustal earthquakes with depths of h=0—100 km

Fault-plane solutions of suberustal earthquakes (h=40—100 km) are
also summarized in Fig. 10. The reverse fault of the vertical extension
is predominant all over the region, especially in the northern quarters.
But azimuths of maximum pressure are variable, and the horizontal
E-W extension is observed for earthquakes in the northeastern quarter
and the N-S extension in the southeastern quarter. Fig. 11 shows
the geographical distribution of average fault-plane solutions by sche-
matic diagrams. The background map denotes epicenter distribution
for this depth range.

In the northwestern quarter 20 out of 58 earthquakes, located in
the southwestern part of the Ibaraki Prefecture, are interpreted by
the reverse fault with the horizontal E-W compression. Two types
of average fault-plane solutions are obtained by preliminary selection,
that is the reverse faults with an E-W or N-S compression. In the
southwestern quarter two groups of maximum tension are obtained
for 19 solutions, showing the horizontal N-S extension and the reverse
fault.

For 48 out of 77 solutions in the northeastern quarter an average
solution of the reverse fault is obtained for axes of maximum tension
around azimuth ¢=147° and dip angle 6=80°. Three types of faulting
are obtained by restraining solutions, showing the reverse faults with
the horizontal E-W and N-S compression for 27 and 17 solutions, and
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Fig. 10. Regional variation of summarized fault-plane solutions of suberustal earth-
quakes (h=40-100km) in and around the Kanto District; (a) northwestern, (b)
southwestern, (¢) northeastern, and (d) southeastern quarters.

the normal fault with the horizontal E-W extension for other 8 solu-
tions. In the southeastern quarter average fault-plane solutions are
divided into the reverse fault with the horizontal E-W compression
and the normal fault with the horizontal N-S extension. The reverse
faults are classified into two types of the vertical and northward
extension.

4.3 Mantle earthquakes with depths of 72=100-600 km
Fault-plane solutions of intermediate-depth earthquakes from 100
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LONG=131.00 - 145.00 LAT=31.00 - 39.00 Z=100.0 ~ 200.0 MRG=5.0 ~ 8.0

POLES A, B N

Fig. 12. Summary of fault-plane solutions of mantle earthquakes (=100-200km) in
and around the Kanto District. Axes of P, T and N are shown by open and solid
circles and crosses on the left and poles of nodal planes by open circles on the
right.

to 200 km are summarized in Fig. 12. Two groups of maximum ten-
sion with eastward and westward plunging are observed. These aver-
age fault-plane solutions showing the normal faults with the NW-SE
compression and horizontal NW-SE extension are presented by sche-
matic diagrams in Fig. 13. These types show the opposite motions
along the inclined seismic zone, namely ‘‘down-dip compression’’ and
“‘down-dip extension’’ (ISACKS and MOLNAR, 1971). Earthquakes with
the down-dip compression are located on the inland side (denoted by
“P’?), and earthquakes with the down-dip extension on the Pacific side
(denoted by “T”’). Such a tendancy is consistent with the double
seismic zone (HASEGAWA et al., 1978a. b). The third type of faulting
is the southward compression. These types of average solutions inter-
pret 7, 8 and 8 solutions, respectively.

Fault-plane solutions of deeper earthquakes from 200 to 600 km
are summarized in Fig. 14. Compared to other depth ranges the axes
of down-dip compression along the inclined seismic zone are less scat-
tered. An average solution for about half of 67 solutions was obtained
as the type of the western side downgoing along the vertical N-S plane
with variable azimuths of tension axes from NE to S, shown by
schematic diagrams in Fig. 15. Another type of fault with the east-
ward extension is obtained by preliminary selection of T axes around
azimuth ¢=120° and dip angle 6=380°. Nine other solutions have the
southward extension.
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LONG=131.00 - 145.00 LAT=31.00 - 39.00 7=200.0 - 600.0 MRG=5.0 - 8.0

POLES A, B Ll

Fig. 14. Summary of fault-plane solutions of deeper mantle earthquakes (%=200-600 km)
in and around the Kanto District.

4.4 Average focal mechanisms within 1°-mesh along the E-W section

Summarizing and averaging fault-plane solutions are made for
areas of 1°-mesh of latitude and longitude. Average focal mechanisms
on the equal-area projection of the mnorthern focal hemisphere are
compared with the depth variation of the relocated hypocenters.

Spatial variations of fault-plane solutions along the E-W section
of latitude from 38° to 39°N are shown in Fig. 16. Fault-plane solu-
tions are summarized for each 1°-mesh comparing to the focal mecha-
nisms of the Niigata Earthquakes on June 16, 1964 and the off Miyagi
Prefecture Earthquake on June 12, 1978 (Fig. 16a). The reverse fault
with the E-W compression is predominant in this section. An east-
ward increase of dip angles of T axes is observed. Fig. 16b shows
schematically the equal-area projection of average fault-plane solutions
on the lower focal hemisphere for earthquakes within 1°-meshes. The
vertical extension is observed for almost all earthquakes, but axes of
maximum pressure (P) are variable. Average fault-plane solutions
are compared with the depth variation of relocated hypocenters (MAKI,
1981a) by using the equal-area projection on the northern focal hemi-
sphere in Fig. 16c. Other than the E-W compression the reverse fault
with the N-S compression is observed for some aftershocks of the
1964 Niigata Earthquake and in a mesh of the longitude from 142° to
143°E. The vertical extension and hrizontal E-W compressions are
predominantly observed, although the N-S and E-W compressions are
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Fig. 16a. Summary of fault-plane solutions of crustal and subcrustal earthquakes (A=
0-100km) along the E-W section from latitudes 38° to 39°N. The top denotes
the epicenter distribution of earthquakes whose faultplane solutions are determined.
The middle part shows summaries of fault-plane solutions for earthquakes within
1°-mesh of the longitude along the E-W section. The bottom shows the focal
mechanisms and first-motion data of the 1964 Niigata and 1978 Off Miyagi Prefecture
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Fig. 16c. Equal-area projection of average fault-plane solutions on the northern focal
hemisphere for earthquakes along the E-W section between latitudes 38° and 39°N.
The top denotes the depth distribution along the E-W section of the relocated
hypocenters by correcting the Pn station biases (Maxi1, 1981a).

also observed.

In Fig. 17a the spatial variation of fault-plane solutions along a
section of latitude 36° and 87°N are summarized. This section includes
the Matsushiro Earthquake Swarm (1965 to 1968) from 138° to 139°E,
the Kashimanada Earthquake on September 18, 1965 and earthquakes
in the southwestern part of the Ibaraki Prefecture around 140°E. In
the Kashimanada region from 141° to 142°E, a variety of azimuths of
compression from NE to SE are observed. The horizontal E-W ex-
tension is observed for earthquakes located far east off the Ibaraki
Prefecture from 141° to 143°E. Most of the earthquakes in the
Matsushiro Swarm are interpreted by the strike-slip with the E-W
compression. Fig. 17b shows schematic diagrams of average fault-
plane solutions within each mesh along this section. Reverse faults
with the horizontal compression of NW-SE, NE-SW and E-W directions
are predominant. Fig. 17c compares schematically the northern focal
hemisphere of average fault-plane solutions with the depth variation of
the relocated hypocenters. Most of the earthquakes along this section
have the reverse fault along the plane dipping to the west.

Along this section two intense clusters of suberustal hypocenters
are found beneath the southwestern part of the Ibaraki Prefecture
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Fig. 17a. Summary of fault-plane solutions of crust and subcrustal earthquakes (h=
0-100km) along the E-W section of latitudes 86° and 37°N. The bottom
denotes the focal mechanisms and first-motion data for the 1965 Kashimanada (Off

Ibaraki prefecture) Earthquake.
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Fig. 17b. Equal-area projection of average fault-plane solutions on the lower focal
hemisphere for earthquakes along the E-W section between latitudes of 36° and

37°N.
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Fig. 17c. Equal-area projection of average fault-plane solutions on the northern focal
hemisphere for earthquakes along the E-W section between latitudes 86° and 37°N.
Two groups of earthquakes are distinguished, namely earthquakes of group “A”
are located at the shallower depths on the western side of 140°E, and earthquakes
of group ‘B” are located at deeper part on the eastern side of 140°E.

(MAKI et al., 1980; MAKI and TsSUMURA, 1980; MAki, 1981b). One
cluster is located at the shallower part on the western side of the
longitude 140°E (A in Fig. 17e) and the other in the deeper part on
the eastern side (B in Fig. 17c). Both groups commonly show the
reverse fault with the NW-SE compression. MAKI et al., (1980) pre-
ferred the vertical slip along the N-S striking plane for the deeper
earthquakes on the eastern side of 140°E due to the vertical alignment
of hypocenters within the seismic zone, and the low-angle thrust fault-
ing for the shallower ones due to the agreement with the ineclined
seismic zone along the upper boundary of the Pacific plate.

5. Structure of earthquake-generating stress

Average fault-plane solutions of earthquakes within some extent
have been used for studying regional variations of focal mechanisms
in the previous chapters. The size and location of source regions with
similar focal mechanisms may be discussed for the smaller extent. In this
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chapter spatial variation of individual fault-plane solutions will be
studied by classifying them into several types of faulting. Fault-plane
solutions are here classified systematically on the basis of dip angles
and azimuths of pressure and tension axes and null vector.

Fig. 18 shows seven types of fault-plane solutions of earthquakes
with depths from 0 to 200 km. Open and solid circles denote axes of
maximum compression and tension, and crosses denote null vector, re-
spectively. The reverse faults with steeply dipping axes of maximum
tension (6,=45°) are divided into two groups with the NW-SE (n=
147) and NE-SW (n=113) compression (top). The normal faults with
steeply dipping axes of maximum pressure (9,=45°) are also divided
into two groups with the NW-SE (#=33) and NE-SW (#n=37) ex-
tension (second). The third line shows two kinds of strike-slip with
steeply dipping null vectors (6y=45°) of NW-SE (n=5T7) and NE-SW
(n=>50) compression. Seventeen solutions are left in the final classi-
fication (bottom). ; )

The epicenter distribution of crustal earthquakes (h=0—40km)
classified by fault types is shown in Fig. 19a. The reverse faults,
whose epicenters are shown by solid symbols, are predominant in the
northern region, and the strike-slip and normal fault, shown by open
and cross symbols, are frequently observed in the southern region of
the Kanto Distriect and vicinity. Earthquakes located east off the
Boso Peninsula and south off the Kanto District undergo the exten-
sional stress. The geographical distribution of faulting types is shown
in Fig. 19b for subcrustal earthquakes (h=40—100km). Earthquakes
in the coastal region on the Pacific side show the reverse fault as
same as the crustal earthquakes. The reverse faults are also seen
for earthquakes located east off the Hachijojima Island. Earthquakes
with the horizontal extension are observed near the trench and south
off the Kanto district.

The normal faults with the E-W extension were seen for earth-
quakes located beyond the Japan Trench on Aug. 25, 1974 (M 5.8) and
and June 15, 1975 (M 5.9), and on the western side of the Japan
Trench on Sep. 10, 1971 (M 5.2), Mar. 27, 1973 (M 5.0) and Aug. 12,
1979 (M 5.7). Earthquakes located directly beneath the Japan Trench
showed the normal fault with the N-S extension on Oct. 29, 1968 (M
5.4) and Mar. 19, 1972 (M 5.7), and the vertical slip with the western
side downgoing on Apr. 22, 1966 (A 5.8) and June 18, 1968 (M 6.0).
The strike-slip is seen for earthquakes located around the Boso triple
junction on Mar. 1, 1964 (M 5.5) and Aug. 10, 1973 (M 5.4). A few
different focal mechanisms other than the reverse fault are observed,
such as the normal fault of an earthquake on Jan. 27, 1965 (M 5.6)
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Fig. 18. Seven types of fault-plane solutions for crust and mantle earthquakes with
depths of 0 to 200km. Axes of maximum pressure and tension are denoted by open
and solid circles, and null vectors by crosses. (1) RNWC: reverse fault with NW-
SE compression, (2) RNEC: reverse fault with NE-SW compression, (3) NNWT:
normal fault with NW-SE extension, (4) NNET: normal fault with NE-SW exten-
sion, (5) SNWC: strike-slip with NW-SE compression, (6) SNEC: strike-slip with
NE-SW compression, (7) O: others.
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Fig. 19. Geographical distribution of fault types of suberustal earthquakes (n=196
solutions), classified into seven types as seen in Fig. 18.

and the strike-slip on Mar. 19, 1967 (M 5.5).

Depth variations of fault types along the E-W section of the 60
km width on both sides are shown in Fig. 20 (a to f). Locations
of the trench axis are shown by thick arrowheads. In general earth-
quakes along the lower plane of the double seismic zone tend to show

621
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Fig. 20. Depth distribution of fault types of earthquakes along the E-W sections of
the 60km width on both sides between the following two points (thin arrows),
(a) (188.5°E, 38.5°N) and (144.5°E, 88.5°N), (b) (188.5°E, 87.5°N) and (144.5°E, 37.5°N),
(¢) (137.5°E, 36.5°N) and (144.0°E, 36.5°N), (d) (137.5°E, 35.5°N) and (144.0°E, 35.5°N),
(e) (137.0°E, 34.5°N) and (143.0°E, 34.5°N), and (f) (137.0°E, 33.5°N) and (143.0°E,
33.5°N). Locations of the trench and trough axes are shown by thick arrowheads.

the normal fault or strike-slip. HKarthquakes located south off the
Kanto District have a variety of focal mechanisms. Shallow earth-
quakes in this region show the normal fault and strike-slip.

A significant contrast in the seismicity and focal mechanisms along
the plate boundary is recognized between the northern and southern
regions along the Japan Trench as indicated by KANAMORI (1977) and
UveEDA and KANAMORI (1979). In the coastal region on the Pacific side
from Northeast Japan to the Boso Peninsula, earthquakes with the
reverse fault are distinctively observed along the boundary of the
Pacific and Eurasian Plates. Such a zone of reverse faults indicates
the strong coupling of the descending and overriding plates. On the
other hand the scattered hypocenters in the depth distribution and
infrequent reverse faults along the upper boundary of the inclined
seismic zone in the Izu-Bonin region suggest the decoupling of the
Pacific and Philippine Sea Plates.
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6. Discussion and conclusion

Fault-plane solutions and their confidence regions were obtained
by the new numerical method for 454 ‘earthquakes (M=5.0), which
occurred in and around the Kanto District during 17 years from 1963
to 1979. For five earthquakes useful solutions with scores of 95% or
more cannot be obtained. The fault-plane solutions in the present
study are considered to be determined by a completely objective
method. TUnique solutions are obtained for many earthquakes, but
for some earthquakes multiple solutions are possible. These fault-
plane solutions suggest spatial variations of earthquake-generating
stress or complicated patterns of the tectonic process in and around
the Kanto Distriect. Earthquakes in the Kanto District are located at
a variety of relative locations, as along the plate boundaries and
within the descending and overriding plates.

According to individual fault-plane solutions of 388 larger earth-
quakes with magnitudes of 6.0 or more, average fault-plane solutions
and faulting types, focal mechanisms of earthquakes in and around
the Kanto Districh are summarized into three types, namely (1)
reverse faulting with the vertical extension and horizontal compres-
sion, (2) strike-slip with the N-S and E-W compression, and (3) normal
faulting with the horizontal E-W extension. The first type is predomi-
nant for-earthquakes in the entire region, especially on the Pacific
side. The second type is observed for shallow earthquakes near the
Izu Peninsula and Izu Oshima Island and in the inland region. The
third type is observed for earthquakes located south and southeast
off the Kanto District.

Regional variations are derived by summarizing and averaging
fault-plane solutions of earthquakes within specific regions. Average
fault-plane solutions were obtained by the arithmetic means of direc-
tion cosines of axes of maximum pressure and tension and by com-
putational loeation of other axes. By preliminary restraining of
solutions several representative focal mechanisms could be obtained.

For earthquakes with focal depths down to 100 km, the reverse
fault of the vertical extension with the horizontal E-W compression
are predominant for all the regions, although the axes of maximum
compression are variable. The horizontal E-W extension is observed
for shallow earthquakes in the southwestern quarter, where a strike-
slip with the N-S compression or a normal fault. Earthquakes in the
inland region show the strike-slip with the E-W compression. A
systematic variation of tension axes is observed for the reverse faults
along the E-W section of latitude from 38° and 89°N. Sizes of the
source region with regular focal mechanisms are variable from the
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northern and southern Kanto District.. The horizontal E-W extension
is also observed for some subecrustal earthquakes on' the Pacific side.
This type of focal mechanism means the “‘down-dip extension’’ along
the lower plane of the double seismic zone. - The mantle earthquakes
with focal depths from 400 to 600 km show the down-dip compression
along the inclined seismic zone. :

Source regions with regular focal mechamsms ‘were derlved from
the geographical distribution of faulting types which are classified
systematically by dip angles and azimuths of P, T and N axes. - Thrust
faults are predominant along the plate. boundary between the Pacific
and Eurasian Plates below the Pacific coast of Miyagi, Fukushima,
Ibaraki and Chiba Prefectures. . Thrust faults are also' found for
crustal earthquakes on the Japan Sea side in' Niigata Prefecture, and
for deeper earthquakes in the 1972 Hachijojima Earthquake region. -

The inclined ‘seismic zone observed in' Northeast Japan is not seen
for earthquakes occurred in the Izu-Bonin Islands. Strike-slip and
normal fault are seen for crustal and suberustal earthquakes in this
region. Most of the deep-focus earthquakés below the Kanto District
and Izu-Bonin Islands show the down-dip compression along the inclin-
ed seismic zone (ISACKS and MOLNAR,.1971). - The down-dip extension
along the inclined seismic zone is also observed for. earthquakes locat-
ed on the lower side of the seismic zone. - P

The Kanto District is also located at the transition zone of differ-
ent types of the trench-arc systems. Different processes of the
tectonics between Northeast Japan and the Izu Bonin Island are sys-
‘tems have heen pointed out by KANAMORI (1971b, 1977) and inter-
preted by the existence of bathymetric rises or seamounts (KELLEHER
and McCANN, 1976). For regions accompanied by the bathymetric rises,
the absence of large low-angle thrust earthquakes, infrequent large
earthquakes and hypocenter gaps in the intermediate-depth are com-
‘monly observed in a global survey (KELLEHER and MCCANN, 1976).
UvepA and KANAMORI (1979) showed the existence of two types of
trench-arc system classified according to the difference in coupling
between descending and overriding plates, namely (1) the Chilean
‘type with the strong coupling, and (2) the Mariana type with the de-
coupling boundary. They also mentioned the tensional stress in the
back-are region for the Mariana type. Mechanisms of these types are
interpreted by the differences in the evolutional stage (KANAMORI,
1971b, 1977), the anchored slab (UYEDA and KANAMORI, 1979), or the
intercept of subduction due to the bathymetric rises (KELLEHER and
McCANN, 1976). Earthquake mechanisms of the thrust faulting in the
Kanto District and Northeast Japan are produced by the descent of
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the Pacific Plate underneath the Eurasian Plate. On the other hand
earthquakes in the Izu-Bonin region are produced by the stress-free
state or extensional stress due to the decoupling of the Philippine Sea
Plate with the Pacific Plate.

Great normal faults have been observed for the 1933 Sanriku
Earthquake (KANAMORI, 1971a), the 1965 Rat Island Earthquakes
(STAUDER, 1968; ABE, 1972) and the 1969 Christmas Day Earthquakes
(STEIN et al., 1982). The normal faults occurring near the trench were
interpreted by the failure (detachment) due to the weight of the de-
scending slab (KANAMORI, 1971a, b, 1977) and bending (flexture) of
the downgoing slabs (CHEN and FORSYTH, 1978; CHAPPLE and FORSYTH,
1979). Earthquakes in the upper part of the downgoing slabs are
commonly expected as the tensional faulting in both models, but those
in the deeper part might be helpful to discriminate the two models
(STEIN et al., 1982). Earthquakes with tensional stresses below the
Japan Trench off the Kanto Distriect and Northeast Japan are located
not only near the surface but also near the bottom of the descending
slab. Then these tensional events cannot be interpreted only by the
near-surface bending.

Intermediate-depth earthquakes along the double-planed seismic
zone show two types of focal mechanisms, namely the down-dip com-
pression along the upper plane and the down-dip extension along the
lower plane (UMINO and HASEGAWA, 1975, 1982; ISACKS and BARAZANGI,
1977; HASEGAWA et al., 1978a, b). In the Kanto District such a double
seismic zone was first found by TSUMURA (1973). The double seismic
zone with such opposite stresses has been interpreted by the unbend-
ing of the downgoing slab (ENGDAHL and ScHOLZ, 1977) and the sagg-
ing of the slab (SLEEP, 1977). Focal mechanisms of intermediate-
depth earthquakes, along the lower plane of the double seismic zone
below the Kanto District, show not only the ‘“down-dip extension’’ but
also the strike-slip or lower-angle extension. More complicated pat-
terns of earthquake-generating stress should be taken into considera-
tion for the unbending or sagging model. Some intermediate-depth
earthquakes show some different types of focal mechanisms. ISACKS
and BARAZANGI (1977) showed a possible segmentation of descending
slab in the intermediate-depths, or a contortion, off-set and tear of
the slabs. STEIN et al., (1982) showed the reactivation of the fossil
faulting in the deeper part in the Lesser Antilles Arc. The regional
variations of focal mechanisms with relation to the slab configuration
were presented by STAUDER (1973, 1975), FORSYTH (1975), CARDWELL
and ISACKS (1978) and PASCAL et al., (1978). Difficulties in interpret-
ing -some focal mechanisms in Chile and Peru were mentioned. by
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STAUDER (1978, 1975).

A variety of focal mechanisms are observed in the Kanto District
and vicinity. Here earthquakes are located at various relative loca-
tions as along the plate boundaries of the Pacific Plate with the Eur-
asian and Philippine Sea Plates, along the lower plane of the double
seismic zone of the Pacific Plate and near the trench. Smaller earth-
quakes may be produced by the local stress rather than the tectonic
stress for large earthquakes. Analyses of focal mechanisms for more
earthquakes by a unified and objective method are required for de-
tailed studies of earthquake-generating stress, together with the
precise locations of hypocenters.
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Appendix

Equal-area projection of probable fault-plane solutions on the lower
focal hemisphere (on the left-hand side) and first-motion data, and
the most probable fault-plane solution (on the right-hand side). When
useful scores of 95% or greater are not obtained in the first run,
fault-plane solutions are determined after discarding apparently incon-
sistent first-motion data. Axes of maximum pressure and tension and
null vector are denoted by “P’’, “T’’ ard “N’’. Solutions with scores
of 99% or greater are denoted by asterisks (‘“‘+’’), and “P”’, ““T"’ and
“N’’ denote the ones with scores from 95% to 99%. Poles of nodal
planes are shown by “A’ and “B”’: Open and solid circles denote
dilatation and compression of first-motion, respectively. Numbers of
observed first-motion data are given by N. For saving the space
the presentation is made for only the earthquakes mentioned in the
text.
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