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Abstract

The Chandler wobble is one of the elastic-gravitational normal
modes of the Earth. The eigenperiod is about 435 sidereal days,
larger than the other modes by a factor 104, which gives the Chan-
dler wobble an exotic status in the group of normal modes. The
quality factor of the Chandler wobble, Q,, plays a critically important
role in discussing the mantle rheology since the frequency dependence
of the mantle @ is affected more seriously by the low frequency
Chandler @, than by the other seismic @’s.

A problem should be resolved in advance so as to estimate @,
safely from the spectral analysis of the polar motion. Namely, signi-
ficance of the variable Chandler period hypothesis. We test the
hypothesis in two ways. First, we reexamine throughly the observa-
tional grounds of the hypothesis by applying the same scheme as
employed by the proponents of the hypothesis to synthetic polar
motion of a constant Chandler period. It is revealed that most of
the evidence for the hypothesis is not definitive and it is also ex-
plained by the invariant Chandler period model as well. Next, we
trace the time variation of the spectral structure of the Chandler
wobble. For this purpose, we extend the high-resolution Instantaneous
Frequency Analysis to be applicable to a complex-valued time series.
Applying the technique to IPMS and BIH polar motion data, we find
that the result favors the time-invariant Chandler period model.

After confirming that there is no observational difficulty in the
time-invariant Chandler period model, we estimate Q. by critically
applying Maximum Entropy Spectral Analysis (MESA) to ILS and
IPMS data. It is found that @, lies in the range of 50=<Q, =100 and
Graber’s result of Q,.=600 is due to the erroneous choice of the
length of the prediction error filter.

Finally, we discuss the effect of the mantle anelasticity upon the
period and @ of the Chandler wobble. We calculate the complex
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Love number k for the realistic @ models by Rayleigh’s principle and
relate it to Q,. The ratio of Q, to lower mantle Q, is found to be
about 1.5 and it is shown to be consistent with the energy budget
arguments. If the Chandler wobble energy is totally dissipated in
the mantle, @, should be frequency-dependent to account for the
observed @, of 50~100. If the frequency dependence of @, is the
power law, the power exponent is found to be 0.1~0.2. Anelasticity
of the mantle is shown to lengthen the theoretical Chandler period
by 7~11 days due to physical dispersion. Adding 29.8 days of ocean
effect to the theoretical period of oceanless Earth yields 438~443
sidereal days as the Chandlerian period, in excellent agreement with
the observed one.

1. Introduction

The Chandler wobble is a free vibration of the Earth’s rotational axis
around the figure axis (MUNK & MACDONALD, 1960). Its geometrical
expression is given by the Poinsot representation (Fig. 1la, b). The
angular momentum axis H is fixed in space in the absence of external
torques. The Earth is attached to the outer cone (body cone), and its
figure axis x; rotates about the instantaneous rotation axis v with a nearly

diurnal period. As the body cone sw-

WOBBLE ings around the H axis keeping contact

with the inner cone (space cone), the

instantaneous rotation axis o oscillates

around the Earth’s figure axis (Fig. 1c,

d). This is the wobble and it is ob-

served astronomically as latitude varia-
tion.

The period and @ of the Chandler
wobble are two of the most fundamental

(a) (b)

parameters that constrain the elastic

and possibly anelastic properties of the
solid Earth. Realizing the geophysical
importance of these two parameters,
numerous investigators have tried to
determine those values as accurately as
possible (RUDNICK, 1956; JEFFREYS,
1968 ; CURRIE, 1974; OOE, 1978). Ac-
cording to these researchers, the Chan-
Fig. 1. (a), (b) Poinsot represen-  qgler period is about 435 sidereal days
t(z)t“"zd‘;f ;hztg"“;‘f;gru‘;;’géfs (ROCHESTER, 1973; LAMBECK, 1980),

; y s and it is quantitatively explained by

of the Earth corresponding to ) ) :
(a) and (b). applying the elastic-gravitational normal
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mode theory to realistic Earth models and assuming the equilibrium pole
tide (DAHLEN, 19’_76 ; SMITH, 1977 ; SASA0, OKUBO & SAITO, 1980 ; SMITH &
DAHLEN, 1981). However, there is a fierce controversy among researchers
whether the Chandler period is steady or variable in time (Table 1). Not
a few authors, including Chandler himself, postulated multiple or variable
period hypothesis (CHANDLER, 1892; MELCHIOR, 1957 ; SEKIGUCHI, 1972,
1976 ; GAPOSCHKIN, 1972; CARTER, 1981), but they are not yet confirmed
because of the dubious nature of the analytical technique. It is rather
astonishing that the hypothesis has survived nearly 90 years without
either being completly rejected or confirmed. One of the objects of this
study is to draw conclusion on this problem.

Table 1. History of the controversy on the variable/multiple Chandler period.

variable/multiple invariant/single
Chandler (1892) Newcomb (1892)
Kimura (1918)
Hattori (1949)
Melchior (1957) Munk & MacDonald (1960)

Colombo & Shapiro (1968)

Gaposchkin (1972) Pedersen & Rochester (1972)
Sekiguchi (1976) Ooe (1978)
Carter (1981)

Contrary to the agreement on the estimates of the Chandler period
(except for the time-variable period hypothesis), there is no consensus
about the Chandler wobble @ (hereafter denoted by Q.) (Table 2). Esti-
mated values range from 25 to a high of 600. RUDNICK (1956) estimated
Q=25 from the periodgram analysis of International Latitude Service
(ILS) data of 54.4 years long. CURRIE (1974) gave Q=72 from Maximum
Entropy Spectral Analysis (MESA) of ILS data of 73 year duration.
GRABER (1976) also applied MESA to International Polar Motion Service
(IPMS) data of 15 year long and obtained Q,=600. Differences of the
adopted technique and the length of analyzed data affect the estimate for
Q. considerably as shown above. The matter becomes more complicated
if the time-variable Chandler period hypothesis is the case. It is expected
that the ordinary harmonic analysis of the polar motion with a variable
period and higher Q. (Q4w>100) would yield apparently lower Q. value
(Qw<100). Since the frequency dependence of the mantle @ (hereafter
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Table 2. Previous estimates of the Chandler wobble Q.

Qw<30 50<Qw<100 Qw>500
Rudnick (1956) Jeffreys (1968) Graber (1976)
Walker & Young Claerbout (1969)

(1957)
Currie (1974)
Munk & MacDonald Wilson & Haubrich
(1960) (1976)
Ooe (1978)

Spectrum of Free Oscillations
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Fig. 2. Schematic line spectrum of the Earth’s elastic-gravitational
normal modes.
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denoted by Q..) is often discussed based upon the estimate of ., an ac-
curate determination of Q. is critically important (ANDERSON & MINSTER,
1979) (Fig. 2).

In summary, models of the Chandler wobble can be classified into
three groups.

(1) Multiple or variable Chandler period with a high Q. (Qw>100).
(2) Single Chandler period with a high Q. (Q.>100).
(8) Single Chandler period with a low Q. (Qw<100).

In this paper, we will test all the evidence which seems to support the
variable period hypothesis and show that it is also explained by the model
(8). In order to test the hypothesis more directly, we trace the time-
variation of the spectral structure of the polar motion. For this purpose,
we extend the Instantaneous Irequency Analysis to be applicable to a com-
plex-valued time series, The result does not reveal significant fluctuation
of the Chandlerian period and favors the invariant period model.




Q of the Chandler Wobble 5

After confirming that there is no observational obstacle to the invari-
ant Chandler period model, we can safely estimate @, from the spectral
analysis of the polar motion. The most favorable value is found to be
50=Qw=100 from the simulation approach of MESA. We will also eluci-
date the cause of the wide discrepancy between the estimated Q's by the
previous authors.

If the wobble energy is totally dissipated within the mantle, some
relation should hold between Q,, and Q, at the Chandler frequency. Q.
and @, are defined as

Qw=2zE,[AE

Qu=2zE]dE

where FE\, and Es are the total energy of the wobble and the strain energy,
respectively. 4E is the amount of energy dissipated in one cycle of the
oscillation. [E, is larger than FE; since FE, includes the kinetic, the gra- .
vitational and the strain energies. Hence Q,, is smaller than Q,. Most
of the earlier investigators supposed E,=10-E. from the kinematical
arguments and obtained Q,=10-Q. (STACEY, 1969, 1977 ; MERRIAM & LAM-
BECK, 1979). However, we find that

E,/E, is at most 2 and Qu/Q. is also PROBLEHS

1~2 from the more rigorous treatment. CHANDLER WOBBLE EARTH SCIENCE
We confirm the result by computing ELASTICITY
the complex Chandler frequency for the '\ _/--=-- Eg‘ég g\l{ﬁims
realistic Earth models with complex
elastic moduli by Rayleigh’s principle.
Using the relation between Q. and Q.
and the observed @, value, the fre-
quency dependence of the mantle @ will
be discussed.

Anelasticity of the mantle induces
what is called physical dispersion. Hence
the elastic moduli (real part) at the EARTHQUAKE
Chandler frequency is diﬁ'er.ent‘ from 3 ‘—"‘ ﬁ%ggigg&
those appropriate for the seismic fre- GEOMAGNETISM
quency range. We will assess the effect ] o
of physical dispersion on the Chandler T ¢ 3 Schematic diagram on the

problems concerning the Chan-
period and show that the Chandler dler wobble. * denotes the aim
period is lengthend by about 7~11 days. in this study.

*

Q, (0
ANELASTICITY
MANTLE RHEOLOGY

2. Formulation of the Earth’s rotation

§ 1. Derivation of the basic wobble equation
The rotation of the Earth is a complicated problem owing to its
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radially inhomogeneous structure and the presence of the fluid outer core.
We shall briefly review the formulation of the rotation dynamics of the
oceanless, slightly elliptical, realistic Earth after SASAO, OKUBO & SAITO
(1980).

(1) Basic state

We use a reference frame fixed to the mean principal axes of the
mantle rotating with an angular velocity @.

6-_—.9(’”?/1, M, 1+’m3)

We take %, 2, and 7, as the basis vectors in this frame. The hydrostatic
equilibrium state in the fluid core is expressed as

VP, =POV¢0

where P, p and ¢ denote the pressure, the mass density and the gravita-
tional potential (including centrifugal potential), respectively. Subsecript 0
designates the basic state. We assume the coincidence of the equipotential
and equidensity surfaces in the basic state. The distance from the origin
to the surface, 7, is given by

ro=1(1—(2[3) -e(r) - Py(cos 6))

where 7 and ¢ are the distance parameter and the colatitude, respectively.
e(r) is the geometrical ellipticity of the equipotential surface and P, is the
Legendre function of degree 2.

¢(r) is given by integrating the Clairaut equation.

d 6 87:Gp0<de € >=0

._-I—__
dr r

dr? e 7o

where g, is given by

go(r)=47rG5: po(b)B? dbjr

The boundary conditions for e(r) are

7'—3’%—!—25=(5/2) 2°r/g, at r=a
de
dr at r

(2) Velocity field in the fluid core
The velocity field in the fluid core is assumed to be composed of a
uniform rotation and a small correcting term 7.

"f=475f><7'+?7
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@¢=2(m,", m.t, myf)

where @; denotes the angular velocity of the fluid core. The hydrodynamic
equations of motion and continuity for the perturbed state are given by

%‘;l + oV Vg +V¢- Vpy=0 | (2-1)
1

where the subscript 1 designates the perturbed state. The Poisson equa-
tion is
Vi =—4zGp,

The perturbed potential is composed of three terms.

$1= P+ Pm+Pa

pe=(2°[3)7° Re [3Y']

dm=—(2°/3)r* Re [m Y]

Vipa=—4rGp,

where Y,' is the spherical surface harmonic of degree 2, order 1. ¢, is
the external tidal potential and ¢, is the pole tide potential. ¢4 is the
gravitational potential arising from the elastic deformation of the Earth.
m designates the complex representation of the wobble and is defined as

M=m,+1Mm,
Introducing new quantities -
de=—(2°/3)r* Re [1n; Y,']1= — Q¥ m, xz -+ m. yz)
mf:m1f+im;

(2-1) is rewritten as

@+ @)

%Jr 400 55 +205 X0+ O} 8) P =—TP—RTr,  (2-2)
P:P1/Po’—¢1"‘¢f

R:Pl(dpo/dro)/{?%‘—Pl(d¢0/d7'o)/¢o .

Multiplying (2-2) by p.# vectorically and integrating the product over the
whole core, we obtain




8 S. OxuBO

+ S(Pdpoldro— oo R)FXVrdV
Hf = A&+ @¢) -+ (Ct —Af).Q;;;’i' C;f;l.Q’zl
oL S o X DAV (2-3)

where A; and C; are the least and the greatest principal moments of
inertia and —¢f; and —cf, are the products of inertia of the fluid core.

We may choose @; so that Spo?xi}dV vanishes without loss of generality.

SASAO, OKUBO & SAITO showed that P and R are of the order of £2[7]
and the integrals on the right hand side of (2-3) are negligible since P
and R are further multiplied by factors of order &(r). Thus we obtain

S — B X He=0 (2-4)

(3) Basic wobble equations
The Liouville equation of the whole Earth is

—Cld—?—*i‘@'Xﬁ:E (2-5)
H=Ad+(C— A)Qis+ Ac@e-+ e+ 5221,
E:S o X TpedV

Equations (2-4) and (2-5) give
Ad D+ (D+i(1+ e) Q)ing]-+ Désf =0
A(D—ieR)--(D+1Q2) (A -+ ;) = —1AeR¢ (2-6)

where D stands for d/dt. e and e; are the dynamical flattenings of the
Whole Earth and the fluid core, respectively.

e=(C—A)|A

ef‘:(ci'—Af)/Af
&; and &f are defined as

SASAO, OKUBO & SAITO showed that & and &f arising from the elastic
deformation are given by
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53,e= '—A[E(‘g'—'ﬁl)"—émf]
&' e=— Ay (3 —m)— ping] 2-7

where , & f and 7y are the physical constants characteristic of each Earth
model.

Substituting (2-7) into (2-6) yields

( 1+7)D , (1+,8)D+i(1+ef)9>(m> (&1>
LR D+ilr—e)2, (AfA+ED+i2) \imi) \§

<¢71) ()"Dgg'—Dé';;/f/Af )
= (2-8)
3] \eDF—ieQd—(D+iQ)e/|A

where &’ and &/f are given by

Now we can derive eigenfrequencies of the free motion by solving
the secular equation. Since «, & 8 and y are of order 107* or less, a first
approximation for the secular equation is

o , o+ Q2 0
ot (r—0)2, (AJA)o+2)
(0+Q)o— Ale—r) Q] A) =0 2-9)

where ¢ denotes angular frequency. An is the least principal moment of
inertia of the mantle and it is given by

Am:A'_Af .

The roots of the equation (2-9) correspond to the angular frequencies of
the Chandler wobble and the free core nutation (nearly diurnal wobble).
The Chandlerian angular frequency for the oceanless, perfectly elastic

Earth is given by
oe=(A[An)-(e—r)2 (2-10)

Now we shall assess the effect of oceans upon the rotation dynamics.
Mobility of oceans induces variation of cj; and ¢}, synchronous to wobble
due to the pole tide.

6;.0':0;3,0_}‘7:6’23,0:(UI/Q)Am’m (2-11)

where subscript o refers to the effect of oceans. ¢’ is a physical constant.
Substituting (2-11) into (2-8) and solving the secular equation, we obtain
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0c=0.—0" (2-12)

Equation (2-12) implies the lengthening of the Chandler period. Numerical
analysis showed that the Chandler period is lengthened by about 29.8 days
(DAHLEN, 1976 with correction by SMITH & DAHLEN, 1981).

Finally, we shall take the mantle anelasticity into account by assum-
ing complex elastic moduli. Since « is related to the Earth’s elasticity
through the static Love number k by

r=ka’2*/(83GA)

complex elastic moduli make x complex as well as k. Hence, the Chandler
angular frequency given by (2-12) also becomes complex.

=(A]An)e—ka’2(3GA)2—0o’ (2-13)

where ~ stands for a complex value.
The Chandler wobble @, is derived from the imaginary part of g..

Quw=—(An/A)BGCA]a*P)s[(2 Im [£]) (2-14)

g.=Re[d.].

§ 2. Solution to the basic wobble equations
The solution to the wobble equation (2-8) is most easily obtained in
the frequency domain. A Fourier transform of (2-8) allowing for (2-11)
and (2-13) yields
M(o)=9(0)/(c—5.)

D (o) =(4As/ A) (o) — Pulo) (2-15)

If @(s) has a white spectrum, Q, can be estimated from the spectrum of
m(t) by
Quw=0.[Ac (2-16)

where Ag is the full half width ‘of | M(e)]%
|M(o.+=A0[2)]P=|M(cJ)l*[2 .

Random excitation of the Chandler wobble is not a bad approximation as
shown by SEKIGUCHI (1976). Furthermore, the flatness of @(o) just around
o. is sufficient in order to estimate Q. from (2-16). Most investigators
so far have assumed the whiteness of @ and presented estimates for Quw.
We will also take this view and estimate Q. in Chapter 5.
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3. Test of the variable Chandler period hypothesis

§1. The variable Chandler period hypothesis

Numerous authors suggested that the Chandler period is variable in
time since the discovery of the Chandler wobble in the late 19-th century
(CHANDLER, 1892 ; KIMURA, 1918 ; MELCHIOR, 1954, 1957 ; SEKIGUCHI, 1972,
1976 ; GAPOSCHKIN, 1972 ; CARTER, 1981). The hypothesis is characterized
by the following empirical laws (MELCHIOR, 1957).

(1) The period of the Chandler wobble fluctuates. The maximum
departure from the mean value is approximately 4%.

(2) Period and amplitude of the Chandler motion are proportional.
The correlation coefficient is more than 0.8.

(3) A long Chandler period is correlated with a small amplitude of
the annual motion.

If the Chandler motion is indeed variable, its intrinsic @ can never
be estimated from the ratio of the spectral half width to the Chandler
frequency. This is because the variable Chandler frequency inevitably
broadens the width of the originally sharp line spectrum. Let the fre-
quency be modulated by a fraction «. Ordinary harmonic analysis of this
frequency-modulated time series is expected to yield a relatively broad
peak in the frequency band of f(l—a)<f<f(l-+a) where f. denotes the
Chandler frequency. In this case, @ may be judged to be Qupp=1/a. If a
is 0.04 as suggested from the Melchior’s first law, Q,,, becomes 25, which
has nothing to do with the intrinsic Q. value.

The above argument makes the hypothesis very attractive, since it
offers the explanation of an anomalously low @ of the wobble derived
from the spectral analysis. However, the hypothesis has been suffering
from serious defects, theoretically as well as observationally. The theo-
retical difficulty is that no physically plausible mechanism is presented
which can cause the fluctuation of the Chandler period (NEWCOMB, 1892,
MUNK & MACDONALD, 1960). Although a nonequilibrium pole tide is
postulated as a possible cause, the theory still remains kinematical (DICK-
MAN, 1979 ;. CARTER, 1981). From the observational point of view, it
seems to us that the hypothesis is constructed on rather shaky grounds.
In particular, the feasibility of the analyses indicating the variable period
have not yet been fully tested. Hence, it is very probable that they may
yield spurious “laws” described above even when they are applied to a
synthetic polar motion with a invariant Chandler period and a finite Q.

We believe it is decisively important to test the observational “evi-
dence” of the hypothesis at this stage because the mantle @, at the
Chandler frequency is seriously affected by the reality of the variable
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period. The above consideration leads us to testing the hypothesis by
applying the same technique employed by the variable period hypothesis
to synthetic polar motion. Tested are the following methods.

(1) Running Harmonic Analysis

(2) Revolution Angle Analysis

(3) Autocorrelation Approach

(4) Beat Period Analysis

(5) Running Maximum Entropy Spectral Analysis

The above methods represent most of the earlier analytical techniques
although they may not be complete. If they do not reveal spurious time-
variability for the invariant Chandler frequency model, they are con-
sidered to pass the test and vice versa. Before applying these methods,
we shall describe in the next section how to generate synthetic polar

motions.

§ 2. Generation of synthetic polar motion
As is well-known, the polar motion is composed of three parts. They

are

(1) The Chandler wobble, the excitation mechanism of which is not
yet resolved. The mean amplitude is about 0.”15.

(2) The annual wobble, which is most probably excited by seasonal
change of atmospheric and hydrological effects (WILSON & HAUBRICH,
1976a). Its mean amplitude is 0.”10.

(3) Secular drift of the order of 0.7003/yr in the direction of 70°W.

In order to generate synthetic polar motion assuming an invariant fre-
quency and a finite Qy, excitation function @ should be specified (see eq.
(2-15)). Since the frequency component just around the Chandler fre-
quency dominates the behavior of the excited wobble as seen from (2-15),
purely random excitation is sufficient for the present purpose. The am-
plitude and phase of the excitation spectrum, A(f) and 0(f), are defined as

A(f)=A,=const.
6(f)=uniformly random in the range of 0=60<2=r,
The excitation spectrum @(f) is given by
O(f)=A(f) exp (- 0(/))
= A, exp (- 6(f))

A, should be taken as a scaling factor for the moment. The Fourier
spectrum of the synthesized Chandler wobble is then computed from (2-15)
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M(f)=0(f)]@zi(f~]o)
fe=dc(27).
In practice, M(f) and @(f) can be computed only at discrete frequencies f.
fe=EkAS; =0,1,---, N—1.

The sampling interval Af is related to the duration of the time series T
by
Af=1/T=1/(N-At)

where At corresponds to the observational sampling interval and N is the
number of observations.

A discrete inverse Fourier transform of M(f:) is carried out to pro-
duce a discrete time series of synthetic Chandler wobble, #.(t,).

My=M(-Af)
N-1
Me, j== Me(j- Al)= Eﬁ M,-exp CrikAf-7At); 7=0,1,+--,N—1.

We set N to 2" to utilize the Fast Fourier Transform (FFT). We take
1/12 and 1/20 year for At since actual polar motion is given at these
intervals. Total length of the synthesized record, 7, is either 10922 or
6553 year. Af is thus less than 1.5X10°* cpy (cycle per year). The ratio
of the spectral half width Afy, to the frequency interval Af is calculated
by

Afu[Af=F]/Qu-AS).

The ratio is more than 5 even in the case of Q,=1000 which seems to
be the upper bound for the Chandler wobble @. The above argument
implies that the discrete time series thus generated does not significantly
lose the original spectral character. Synthesized Chandler wobbles with
various Qy's are presented in Fig. 4 where mean amplitudes are scaled to
0.”15 by adjusting the factor A,.

Synthesized wobble for each @ value shows characteristic beat pheno-
menon. If might seem queer at first sight that the single Chandler fre-
quency model yields beat phenomenon characteristic of the multiple periods
model. The finite @, however, necessarily brings about beat and we will
show the reason below.

We may roughly approximate the continuous Chandler wobble spec-
trum by a line spectrum composed of three spikes.

M(f)=Alo(f—f)+0(F+Afn— T2+ 0(f—Afu—1D)[2]

where ¢ is the Dirac’s delta function. We assume here that three com-




14 S. OxuBo
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Fig. 4. Synthetic Chandler wobble of (a) ILS type (b) IPMS type.

ponents are in phase for simplicity.
Applying the inverse Fourier transform to the above expression and tak-
ing its real part, we obtain

my(t)=mqcos (2rfet)+cos (2n(fe—Afn)t)[2+cos Cr(fet+Afn)t)[2]
=2m, cos*(zA frt) - cos 2rfet) .

Similar expression can be derived for m.. It is obvious that m; and m,
reveal beat phenomenon. The beat period, 7'y, is given by

Tb’:l/Afh :Qw/fc

Q. value of 50 implies the beat period of about 60 years as observed in
Fig. 4.

We generate synthetic polar motion by adding a stationary annual
term of amplitude 0.”1 and random observational noise with standard
deviation of 0.703 or 0.701 to the synthesized Chandler wobble. The
standard deviations of 0.703 and 0.”01 correspond to the observational
errors for ILS and IPMS/BIH data, respectively (YUMI, 1970 ; LAMBECK,
1980). We will call the synthetic data of sampling interval 1/12 year and
observation noise 0.703 ILS-type. That data of sampling interval 1/20
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Q,<1000

; :; :{ Q,,=500 ] : : : : : :
] Q=100 ] N L

m, A . L mi . [

0 10 20 30 40 50 60 70 0 5 10 15
(yr) (yr)
(a) (b)

Fig. 5. Synthetic polar motion of (a) ILS type (b) IPMS type.
year and noise 0.”701 will be called IPMS-type hereafter (Fig. 5).

§ 8. Multiple period hypothesis

COLOMBO & SHAPIRO (1968) suggested the existence of two components
of the Chandler period, each separated by about 10 days. Their argument
is entirely based upon beat phenomenon observed in this century. Beat
phenomenon in itself, however, can never be taken as evidence for multiple
Chandler periods. As is shown by O’CONNELL & DZIEWONSKI (1976),
wobble excited by large earthquakes for the model of single Chandler
frequency and a finite Q, does show beat phenomenon. We have already
elucidated the reason completely in the preceding section.

COLOMBO & SHAPIRO speculated that the two component Chandler
periods arise from mechanical interaction between the upper mantle and
the remainder. However, recent theoretical investigation allowing for
the low-Q layer in the upper mantle does not reveal the splitting of the
Chandler frequency (SMITH & DAHLEN, 1981).

GAPOSCHKIN (1972) treated pole position data of 125 year duration
and subjected the data to the spectral analysis. The spectrum showed the
double-peak structure in the Chandler frequency band and he concluded
the reality of two eigenperiods of the Chandler wobble (Fig. 6). The
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Gaposchkin (1972)

o
3
R
a
0-8 09 1.0
Synthetic (Qw=50)
1 1 1
o
205
o
0 . T T
0-8 09 1.0
f (cpy)

Fig. 6. Periodgram of the polar motion. (top) Gaposchkin’s result
(bottom) result for synthetic polar motion.

analytical procedure was as follows.

(1) Reduce observations into a discrete time series of a constant
sampling interval (18 days).
(2) Apply a data window, wj; to the discrete time series. w; is
defined as
w;=(1—cos (2z5/1))/2; §=0,1,.--, M—1

where I is the number of ohservations.
3) Apply FFT to the windowed data and compute the power spectrum.

We synthesize polar motions of various @, values with a sampling
interval of 18 days in the same way as described in the preceding section.
M is set to 2600 (128 years). The result is shown in Fig. 6. The spectra
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for Q=50 and 100 show the characteristic double-peak structure in the
Chandler frequency band. The double-peak is most probably a product of
the statistical fluctuation of the time series as discussed by PEDERSEN &
ROCHESTER (1972). Thus the multiple-peak spectrum presented by
GAPOSCHKIN cannot be regarded as significant.

The above arguments lead to the conclusion that there is no need at
all to suppose multiple Chandler periods.

§4. Running Harmonic Analysis

If the Chandler frequency f. varies in time while the seasonal excita-
tion function remains constant, the magnitude of the excited annual wob-
ble is expected to change due to the resonance effect. Let the excitation

function be .
D.= A exp 2rif.t).

Then, forced annual oscillation 7, is derived from equation (2-15) as
.= A exp @rifit)[(fo—f2)

where f, denotes 1 cpy.

The closer the Chandler frequency approaches the annual frequency, the
more the annual wobble would be excited. This is the Melchior’s third
law described in § 1.

MELCHIOR (1954, 1957) observed the expected relation between the
annual wobble amplitude and the instantaneous Chandler frequency. The
result is reproduced in Fig. 7a. He estimated the instantaneous frequency
from ILS data for succesive intervals of one beat period (5~9 years).
Since any frequency analysis (except for Maximum Entropy Method) from
such short duration record should yield highly unstable results, Melchior’s
analysis is also likely to be affected by the stochastic fluctuation of the
time series. Furthermore, Melchior's argument is based upon the assump-
tion of a constant seasonal excitation function, which seems to us doubtful.
In fact, the atmospheric excitation function calculated by WILSON &
HAUBRICH (1976b) does show significant yearly variation.

We decided to test the feasibility of the Running Harmonic Analysis
by applying it to the ILS-type synthetic data. We estimated the Chandler
frequency and the annual components amplitude by the following scheme.

Preliminary annual components amplitude are calculated by

mt =1t -exp (—2rxifit,)[IN
™= m(t,) - exp Cxifaty)/N.

After removing these annual terms from the original data, we compute
its Fourier transform.
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Fig. 7. Running Harmonic Analysis of the polar motion. ma and mp
denote the lengths of semi-major and semi-minor axes of the an-

nual ellipse. (a) after Melchior (1957) (b) result for ILS type
synthetic polar motion.

W (te) =Mty — it - exp (2zifit) — W™ -exp (—27ifats)
lW'(f): S/ (ty) - exp (_27?iftk) .

Searching for f. which maximize [M'(f)]’, we obtain an estimate for the
Chandler frequency for the specific interval. M'(f) is computed at every
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0.001 cpy from 0.81 to 0.90 cpy. The Chandler amplitude 7. is calculated
by
Me= M (t,)-exp (—2mif )N .

Annual term amplitudes are recalculated from the time series w”(t).
W (te) =1 (ty) — it eXp (2mif ots)
m* =2 m"(ts)-exp (—2rifyt) N
m- =MW" (ts) exp (2xifit,)/N.

Melchior regarded only results which satisfy the following commensura-
bility as reliable.

T=T.T.[(T—T.) (3-1)

where T denotes the duration of the analyzed interval. 7. and T, are
the Chandlerian and annual periods, respectively. We followed this cri-
terion and only the results satisfying (8-1) within 1% error are adopted.
The lengths of the major and the minor axes of the annual ellipse are
presented together with the estimated Chandler period (Fig. 7b). The
length of the semi-major axis is estimated to be 0.”71020.702, fairly large
fluctuation although data is originally synthesized from the constant an-
nual amplitude model. The Chandler period also shows apparent scatter-
ing (1.13~1.22 years), although data is synthesized from a constant Chan-
dler period model. The magnitudes of the fluctuations of the estimates
for (m*,m) and T. are comparable to those reported by MELCHIOR (Fig.
7). Hence, we may conclude that the fluctuation of the Chandler period
and the annual term amplitude are more apparent than real.

We can see the apparent negative correlation between the annual
term amplitude and the Chandler period in Fig. 7b (especially for the
case Qy=50), although it is not so clear as observed in Fig. 7a. The
third law of Melchior is thus explained by the constant Chandler period
model.

§ 5. Revolution Angle Analysis
SEKIGUCHI (1976) proposed Revolution Angle Analysis to trace the
temporal variation of the Chandler period. Let m{ and m$ be the Chandler
components of m, and m, respectively. The revolution number, R(t), is
defined as
R(t)=arctan (m:(t)/mi(t))/(2x). (8-2)

The instantaneous Chandler frequency at time 7', is related to R(t) by

_d
J(Ty) = gt R(t)|i=r,.
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In practice, R(t) can be computed at only discrete time, ¢;, at a sampling
interval At. SEKIGUCHI approximated the discrete time series R(t;) for
the succesive intervals of two years by a straight line

R ~an+fT) t;; To—(J—DALZt; < Ty+JAL

a, and fo(T, were determined by the least squares method. The standard
deviation of the estimated f.(T,) is calculated by

rn=(2e0)" 13 {@N)t,— (e )1 [{DEe]—2)"

where ¢,; and D are given by
Enj:R(tj)_an”‘fc(Tn)tj
D=2J Xt —(Zty)".

The fluctuation of the Chandler frequency thus determined is reproduced
in Fig. 8a. He also computed a function F which corresponds to the
probability density function of the Chandler frequency.

F(f)=3 exp[—(f—fT))I@2r:)])[kn .
SEKIGUCHI reported the multiple-peak structure of F (Fig. 8b). He

Telyr)
ILS (Sekiguchi 1976 ) 12 70 1

0.
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Fig. 8. (a) Temporal variation of the estimated Chandler frequency
fe by the Revolution Angle Analysis. (b) probability density
function of the Chandler frequency fe.
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interpreted these results as evidence for the variable Chandler period.

The analysis appears convincing at first sight. There remains, how-
ever, a suspicion that the revolution number estimated by (3-2) may be
severely distorted by the observational error, especially when the radius
of the Chandler wobble diminished (around 1930s). Furthermore, there is
a possibility that random excitation of the Chandler wobble may account
for the characteristics discovered by SEKIGUCHI. Hence, it is natural to
test the reliability of Revolution Angle Analysis by applying it to the
synthesized polar motions described in §2. At and J are set to 1/12 year
and 12, respectively. The total number of sampling points is 840, corre-
sponding to 70 years observation. The annual wobble, secular drift and
observational error are excluded in this'case. In order to definitely claim
the variable Chandler period, Revolution Angle Analysis should yield a
single fixed Chandler period when applied to the synthetic data.

The results are shown in Fig. 8 The apparent variation pattern of
the estimated Chandler frequency is similar to that revealed by SEKI-
GUCHI, especially for Q,=100. The probability density functions show
multiple-peak structure for all @ values. The spacing of the peaks are
from 0.01 to 0.02 cpy, comparable to that reported by SEKIGUCHI (Af=
0.025 cpy).

Since the Chandler wobble synthesized from the single period model
is shown to yield the observational “evidence”, there is no need to sup-
pose the variable Chandler period. Although SEKIGUCHI's interpretation
of Fig. 8 is not supported, the results will be found valuable in discussing
the Chandler wobble @ in a later Chapter.

§ 6. Autocorrelation Approach

SEKIGUCHI (1972) related the autocorrelation of the Chandler wobble
to the damping coefficient and the Chandler frequency, assuming the
randomness of the excitation process.

C(z)~exp (—x7)-[A cos (2rf.r)+ B sin (2zf.7)] (3-3)

where £ and f. denote the damping coeflicient and the Chandler frequency.
The autocorrelation, C(z), is calculated at discrete points by

Clr=nAt)= 2 [ms (kAt)ms ((k+ n)At) + ms (kAt)yms (k+n)At) | (N—n)

where At and N are the sampling interval and the number of observations.
The four parameters, {x, f, A, B}, are determined to closely fit the expres-
sion (3-3), but the specific way is not described by SEKIGUCHI. We re-
produce the results in Fig. 9 which shows fluctuating Chandler frequency.
He also pointed out correlations between r and (2zf.) and between » and
C(0) (Fig. 9b, c). He interpreted these results as supporting evidence
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Fig. 9. (a) Variation of the Chandler period T. estimated by the
Autocorrelation approach. (b) Apparent correlation between the
damping coefficient « and the Chandlerian angular frequency we.
(¢) Apparent correlation between the damping coefficient « and
the squared amplitude of the Chandler wobble C(0).

for the time-variable Chandler period model proposed by him (SEKIGUCHI,
1961).

We apply the scheme after SEKIGUCHI to synthetic polar motions in
order to test the fidelity of this approach. In practice, autocorrelations
are calculated up to 30 lags (r=25 year) and we approximate them by
(3-3). The sampling interval is 1/12 year. Synthetic wobbles do not in-
clude the annual term, secular drift or observational noise. The total
number of observations is set at 840, corresponding to 70 years observa-
tion. We determine the four parameters so as to minimize the function
defined as

Fk, f., A, B)= = [C(z)—exp (—r7){A cos (2nf.t)+ B sin Crfeo)} T
=X [C(nAt)

—exp (—neAt){A cos 2rf.nAt)+ B sin CrfonAt) ] .

The estimation process for the unknowns becomes necessarily iterative on
account of the nonlinearity of F. We adopt the POWELL’s optimization
procedure to find the most favorable values (POWELL, 1970). We present
the results in Fig. 9. x assumes negative values in some instances. How-
ever, the absolute values of the negative r’s are an order of magnitude
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less than those of positive ones. Hence, we interpret negative #’s as im-
plying virtually vanishing and neglect them in the following discussion.

The behavior of the fluctuations of # and f. closely resembles that
found by SEKIGUCHI (Fig. 9a, b). We can also recognize apparent cor-
relations between £ and f. and between x and C(0) (Fig. 9b, ¢). The
results described above imply that it is not necessary to suppose the

variable Chandler period in order to explain the observed fluctuation of
fe and k.

§ 7. Beat Period Analysis

CARTER (1981) suggested the time-variability of the Chandler wobble
induced by the variable Chandlerian amplitude. His argument is based
upon the fluctuation of the beat period of the polar motion. Beat pheno-
menon is induced from the closeness of the periods of the Chandlerian
and the annual motions. The beat period is given by

Ty=T, Ta/( Te— Ta)

where T, and T, are the periods of the Chandlerian and the seasonal
wobbles, respectively.

Inspection of the actual polar motion since 1900 reveals fluctuation of
the beat period (Fig. 4). Carter interpreted the fluctuation as a product
of the wvariable Cnandler period. He pointed out a correlation between
the beat period and the mean magnitude of the polar motion, corre-
sponding to the Melchior’s second law. The result is reproduced in Fig.
10a.

0’3 o ILS(Carter | 0’3l Synthetic (Qw=1oo),
1981 )

O gl N N SN

RN o2

~ oo .
" o\ S " ° \\ °
01t ° ~ ' 01y ~ |
5 6 7 8 9 5 6 7 8 9
Beat Period (yr) Beat Period (yr)

(a) (b)

Fig. 10. Apparent correlation between the beat period and mean
magnitude of the polar motion.

The above analysis is, as Carter admitted, very simplistic and is based
upon a questionable assumption that the magnitudes of the two kinds of
wobble remain constant, at least within a cycle of beat phenomenon (5~
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9 years). Since the amplitude of the atmospheric excitation fluctuates
considerably year by year as shown by WILSON & HAUBRICH (1976Db), the
above assumption is inadequate. Even if the annual term amplitude re-
mains constant, variation of the Chandler amplitude can cause the appar-
ent fluctuation of the beat period. We will show it by examining the
beat periods and the mean magnitude for the synthetic polar motions.
The data is ILS-type of 70 years duration with the secular drift and ob-
servational noise excluded. This is a highly idealized situation. The result
for @,=100 is presented in Fig. 10b. The apparent variations of the
beat period and the mean magnitude are comparable to those reported by
CARTER (Fig. 10a). Thus we can conclude that Beat Period Analysis
has by no means the fidelity to contend the variable Chandler period.

§ 8. Running Maximum Entropy Specral Analysis

Burg’s Maximum Entropy Method (MESA) has a high resolution and
an ability to detect periodic components even from short duration records
(less than one period) (ULRYCH & BISHOP, 1975). GRABER (1976) applied
the technique to IPMS polar motion data for the overlapping intervals of
2.85 years each. He showed the apparent variations of the Chandler fre-
quency and Q, (Fig. 11). GRABER himself interpreted the results caused
by a succession of sudden phase shifts, corresponding to random excitation.
CARTER (1981) reinterpreted the result as supporting evidence for the
time-variable Chandler frequency model. We will test below whether the

(€PY)) IPMS (Graber 1976 ) (day) | [pMS (Graber1976)
c ATy
090 ; ¢
b 20
L]
* .
10 .
0.80 i1 } .
» .
1962 70 7% 0 10 20 30 40
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fe aTy
090 } 20
} .
3} 1
H 10
} . B
0-80 ...o o
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(Tc-432 ) day
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Fig. 11. (a) Time-variation of the Chandler frequency fc
estimated by Running MESA. (b) Apparent correla-
tion between the departure from the mean period and
full-half width period 4Th.
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reinterpretation is adequate or not by applying GRABER’s scheme to IPMS-
type synthetic data. The procedure is as follows.

(1) Compute the prediction error filter of length 160 for the 15 years
interval and extrapolate the data by predicting both in the forward and
backward directions (SMYLIE, CLARKE & ULRYCH, 1973) until 2"=2048
points have been generated. Then apply the Fourier transform to the
extended data and subtract the two annual components of frequencies 0.996
and 1.006 cpy from the original data.

(2) Divide the 15 years observation data into 9 overlapping segments
of 2.85 years each. Then apply MESA to each interval to compute the
instantaneous power spectrum. Since filter length is not specified by
GRABER, we tried three cases for filter length L. Namely, L=10, 20
and 30.

The results is found to be insensitive to the choice of L. We show
only the result for L=20 in Fig. 11a. The estimated Chandler frequency
fluctuates considerably (=0.03 cpy), comparable to the fluctuation reported
by GRABER (=£0.05 cpy). It is interesting to note that the same corre-
lation as presented by GRABER is found for the synthetic data between
the departure from the mean frequency and @ (Fig. 11b). Furthermore,
the fluctuation pattern of the estimated Chandler frequency resembles
closely that given by GRABER (Fig. 11a).

The above observation indicates that the fluctuating Chandler frequency
is likely to be more apparent than real. The variation is probably caused
by random phase shifts as proposed by GRABER. There is no need to
suppose the time-variable Chandler frequency from the results of Running
Maximum Entropy Spectral Analysis.

4. Tracing of the instantaneous spectrum of the

Chandler wobble

§ 1. Formulation of the instantaneous frequency analysis

We have shown in the preceding chapter that most of the earlier
techniques are not qualified to claim to have detected observational evi-
dence for the variable Chandler period. We shall present below a better
and more reliable technique for tracing the spectral structure of a non-
stationary time series.

The algorithm for tracing the time-varying spectrum of a real-valued
time series is already derived by WIDROW & HOFF (1960) and reviewed
by GRIFFITHS (1975). Since the polar motion is conveniently expressed
in a complex form, we derive below an algorithm extended for a complex-
valued time series.
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A discrete stationary time series, X, can be deconvolved into a white
noise such that
Db X(k—m)=1w(k) (4-1)

where h, denotes a prediction error filter coefficient and w is a white
noise with zero mean.

A non-stationary time series, Y, is expressed in the same form as (4-1)
if we allow for the temporal variation of the prediction error filter.

2 gnlk) Y(k—m)=w(k) . (4-2)

The local prediction error filter at time k&, {gn(k), m=0~M}, is determined
so as to minimize the variance of the noise. The variance of w at time
k is defined as

Vilgy, 9o+, 92)=E[| %gm(k)- Y(le—m)|*]

where E does not imply a time average but an ensemble average. g,(k)
is fixed to unity without loss of generality. Note that V, is not analytical
with respect to g.(k). However, the “gradient” of V, with respect to
gx(k) is constructed by the formal differentiation of V, with respect to
the complex conjugate of gn(k).

oV,

Ogm*

=2E[Y*(k—m) - X g.(k) Y(k—n)]
~ 2Y*(k—m) -2 g.(B)Y(k—mn)

where * designates complex conjugate.
Starting with an initial guess, ¢g.(k), we can obtain g,*(k), an improved
estimate for g¢.,(k), by the steepest descent procedure.

In' (k)= gn’(k)—2p Y *(—m) - Z g."(k)- Y(k—n)

where
p=al(M-C)
C=E[Y(k)—E[Y ()]
0<a<l.

When non-stationarity is relatively weak and the filter coefficients
remain nearly constant within the characteristic time of the stochastic
process, gm(k—1) may be substituted for g¢.°(k) in the above expression.
Then we obtain

In(k)=gn(k—1)—2p Y *(l—m)- % g (k—1D)Y(k—mn). (4-3)
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We may replace the ensemble average operation for the computation of
C by time averaging in this case because a rough estimate is sufficient
for the determination of . If « lies in the range 0.0-1.0, it can be proved
by an analogous scheme to GRIFFITHS's (1975) that the successive updat-
ing by (4-3) yields the desired filter after some transient time. Noticing
the whiteness of w(k) in (4-2), the relative instantaneous power spectrum
at time k is computed by

P(f5 k) =11 Z gu(k) - exp (2ri fuat)]? (4-4)

where At is the sampling interval.
Numerical examples are presented below to show the excellent per-
formance of this method.

(1) Sinusoidally frequency-modulated Chandler wobble
Synthetic sample data, 2(t), is constructed by the following formula
(Fig. 12a, b).

dz .
— =27 Z« t .
dt 271 ( ) z

F(t)=f1+ A sin (2xt[T.,))
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Fig. 12. (a) (b) Synthetic frequency-modulated Chandler wobble. (c) (d) Synthetic
frequency-modulated polar motion.
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2(0)=0.15 - exp( 21| F(0)dt)

where F(t) is the instantaneous frequency with a mean value of fc=0.845
cpy. The modulation factor A is set to either 0 or 0.04 and the modula-
tion period T, is 6.45 years as suggested by CARTER (1981). The sampl-
ing interval is 0.05 year and the number of data points is 360, correspond-
ing to IPMS/BIH data (Fig. 12a, b). Before the application of the in-
stantaneous frequency analysis, we must specify three parameters in
advance. They are the initial guess for {g.(k); m=1,2,---, M—1}, filter
length M and the convergence factor a. It has been found from our ex-
perience of group velocity analysis of seismic surface wave by this method
that M should be as long as the characteristic time of the data (OKUBO
& TSUBOI, 1982). The characteristic time in this case is the Chandler
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(yr) +3.7% /) 4% FM

+ 3%
|
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T " 0 Z
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Fig. 13. Evolution of the instantaneous Fig. 14. Evolution of the instantaneous
power spectrum of data given in Fig. power spectrum of data given in Fig.
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period of about 1.2 years, implying M=Z25. We take M=30 (1.5 years) as
the filter length. The initial guess for the prediction error filter is ob-
tained from the preliminary application of this method to the backward
extrapolated time series of 150 data points. The initial guess for the
preliminary analysis is ¢,°(1)=6, where § is the Kronecker’s delta. There
is no objective criterion for determining «. After several trials and
errors, we find a=0.2 gives the most favorable result (Fig. 13). We see
from Fig. 13 that the technique does not yield spurious fluctuation of the
instantaneous frequency for the unmodulated data. The result for the 4%
frequency-modulated data reveals expected magnitudes both for A and T..
The excellence of the performance of this method is thus clearly exhibited.

(2) Frequency-modulated Chandler wobble together with the annual term
and observational noise.

In practice, it is impossible to directly observe the Chandler wobble.
Observed polar motion is in the form of

u(t)=z(t)+0."1 exp (2rifut) +w(t)

where f, denotes 1 cpy and w(t) is the white noise with a standard devia-
tion of 0.”01, corresponding to IPMS/BIH observation (Fig. 12¢, d). Since
we are interested in the wvariation of F(¢), removal of the annual com-
ponent is desirable to enhance the performance of this method. For this
purpose, we apply a recursive low-pass filter with a cutoff frequency of
1/380 day~' (SAITO, 1978). In order to reduce the end effect of the recur-
sive filtering, we extrapolate the original data until 1000 points have been
generated. The low-pass filter is applied to the extended data first in the
forward direction of the time axis, next in the backward direction to
compensate the phase shift induced by the forward filtering. The result
of the instantaneous frequency analysis to the filtered data is given in
Fig. 14. Although a slight fluctuation of the estimated instantaneous fre-
quency is observed for the unmodulated data, we can judge the fluctuation
insignificant without difficulty. The results for the 4% frequency-modu-
lated data are almost the same as the results of (1), except for the slight
diminution of the estimated modulation factor A.

The above observation ensures the method’s detecting power of the
variable Chandler period from the actual data if it really exists at all.

(3) Confidence interval

The instantaneous frequency analysis of the randomly excited polar
motion is useful in estimating the confidence interval of the detected
fluctuation of the period. We apply the technique to IPMS-type synthetic
polar motions after the preprocessing described in (2). The parameters
needed in the analysis are determined in the same manner as in (2). The
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Fig. 156. Instantaneous power spectra for the time-invariant
Chandler period model.

results are presented in Fig. 15. We observe a =1~2% fluctuation of
the instantaneous frequency from Fig. 15, although the data was syn-
thesized from constant Chandler period models. Hence, we should not
regard a +1~22 change in the instantaneous frequency as significant.

One may argue from the results that the instantaneous frequency
analysis does not yield reasonable estimates because we obtain fluctuating
instantaneous frequency from the time-invariant period models. The criti-
cism, however, is inadequate since the apparent instantaneous frequency
does fluctuate due to the random excitation.

§ 2. Instantaneous Frequency Analysis of IPMS and BIH data

Two data sets on the polar motion from 1962.0 to 1980.0 are subjected
to the Instantaneous Frequency Analysis. Internatihnal Polar Motion
Service (IPMS) publishes the pole positions referred to the Conventional
International Origin since 1962.0 (YUMI, 1980). The sampling interval is
0.05 year. The Bureau International de I’'Heure (BIH) also deduces pole
path since late 1955. The BIH adopted a “mean pole of epoch” as origin
until 1968.0. The results since 1962.0 were reduced to the CIO reference
by the BIH. We use the “BIH Global Solution” with a minor correction
to conform to the 1979 BIH system (BIH, 1979). The sampling interval
is 0.05 year.

We remove the annual term from the polar motion in the same way
as described in (2) of §1. The instantaneous frequencies from 1963.55 to
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Fig. 16. Evolution of the instantaneous power spectrum for IPMS
and BIH data.

1980 are shown in Fig. 16. The variation patterns of the instantaneous
Chandler frequency from the two data sets are similar to each other in
spite of the difference of the data reduction processes by the two agencies.
The maximum departure of the instantaneous Chandler frequency is
+1.4%, much smaller than those suggested by Carter for IPMS data
(x£7%) and by Melchior for ILS data (=-49). The fluctuation of the
Chandler frequency can be judged to be insignificant since the significance
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level of the variable Chandler frequency is about +1~2% (Q=100) as
shown in the preceding section. Thus we cannot find supporting evidence
for the variable Chandler period from either IPMS or BIH data.

We applied the Instantaneous Frequency Analysis to ILS data of
much longer record than IPMS and BIH. The results since 1963.55 are
quite different from those obtained from IPMS and BIH data, most pro-
bably due to the higher noise level. Hence, we abandoned the idea of
subjecting the earlier polar motion data of ILS to the Instantaneous Fre-
quency Analysis.

5. Estimation of the Chandler wobble Q(Q.)

§1. Difficulties in estimating @, by the spectral analyses.

Now that most of the observational evidence for the variable Chandler
period is found to be doubtful and since it is also explained by the con-
stant Chandler period model, we will proceed to estimate @, by assuming
a time-invariant Chandler period. Q. is most easily derived from the
spectral half width using equation (2-16). There are three kinds of spectral
analyses. We will discuss below the fundamental difficulties for each of
them when applied to actual data in order to estimate Q.

(1) Periodgram approach

The Fast Fourier Transform makes this method attractive, especially
when we have to handle a large quantity of data. However, the frequency
resolution of the resultant spectrum is limited to the inverse of the total
duration of the time series. Since the power spectrum estimated by this
method is, in general, very ragged, we must smooth it by applying a suit-
able window to enhance the statistical stability. Hence, the sharp line
spectrum as that of the polar motion will be inevitably blurred at the
expence of the increased reliability (PEDERSEN & ROCHESTER, 1972).
Furthermore, O’CONNELL and DZIEWONSKI (1976) showed that the period-
gram yields an apparent Q,,, =100 even when it is applied to synthetic
polar motion with an intrinsic Q,=10000. The above argument implies
that the periodgram approach gives only the lower bound for Q.

(2) Blackman-Tukey’s method

This technique suffers from the same difficulty as that of periodgram.
Power spectrum is estimated from the Fourier transform of the auto-
correlation of the time series, followed by a smoothing by some spectral
window (BLACKMAN & TUKEY, 1958). The detail of the spectral structure
around the sharp peak is inevitably blurred. So we must keep in mind
that the method also gives only a lower bound for Q..
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(3) Burg’s Maximum Entropy Spectral Analysis (MESA)

This technique is clearly superior to the conventional methods (Period-
gram and Autocorrelation approaches) in detecting periodic components
BURG, 1967, 1968 ; LACOSS, 1971). MESA is shown to be efficient for an-
alyzing a short duration record (ULRYCH, 1972).

As is well-known, the most serious defect of MESA is the lack of an
objective criterion for determining the optimum length of the prediction
error filter. Although a general criterion called FPE is proposed (AKAIKE,
1969, 1970; ULRYCH & BISHOP, 1975), it does not always work well. In
fact, FPE criterion fails to yield the annual peak in the polar motion
spectrum of 15 years duration (GRABER, 1976). Until a reasonable criterion
is found, estimates of @, from MESA should not be trusted.

In order to find a reliable estimate of Q., we proceed as follows.

(1) Apply MESA to the synthesized polar motions of various Qs
described in Chapter 3 and observe the variation of the apparent Q.p, as
a function of the filter length L.

(2) Apply MESA to the actual polar motion and compute Q.pp, for
various L'’s.

(3) Compare the results from (1) and (2) and find the intrinsic Q.

The above procedure may appear too simplistic and naive at first, but we
believe it is the most efficient and statistically reliable method for esti-
mating Qw. In other words, the above method (hereafter called simulation
approach) refines the first approximation of the polar motion spectrum
parameters derived by previous investigations (f.=0.85 cpy and Q.=10~
1000).

Since MESA is the nonlinear estimation technique, the resultant spec-
trum is expected to depend on several factors such as the sampling interval,
total observation duration, observational noise magnitude and so on. We
will apply MESA to the actual data and synthetic data corresponding to
those analyzed by CURRIE (1974) and by GRABER (1976).

§2. Analysis of ILS data

CURRIE (1974) applied MESA to ILS data of 70 years observation. He
determined the filter length empirically so that the spectrum does not
show highly ragged features. He averaged several estimates for Q. ob-
tained from various filter lengths. The above procedure is ad hoc and
averaging lends no support for the adequacy of the estimated Q..

We investigate the variation of the apparent Q.,, as a function of
the filter length L. The behavior of Q.pp(L) is quite complex and is very
sensitive to L (Fig. 17a). Calculated Q.,,(L) for the actual ILS data
shows similar feature to those for the synthetic data (Fig. 17a). The
above observation suggests that the variation pattern of Q,,,(L) is indeed
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useful for the identification of the intrinsic @, value. We find from Fig.
17 that the curves of Q.pp(L) of natural Q,=50~100 well fit the observed
variation pattern of Q.pp(L) for the actual ILS data.

As was discussed in §8 of Chapter 3, removal of the annual term
from the observation is expected to improve the estmimation of Q.. We
extrapolate the time series with a prediction filter of L=50 until 212=4096
points have been generated. Then we apply the Fourier transform to the
extended data and subtract annual components of frequencies between
0.993<f<1.005 cpy from the original data. We apply MESA to this pre-
processed data. The results are presented in Fig. 17b. As is expected, fluc-
tuation of Q.pp(L) diminishes compared with the raw analysis (Fig. 17a).
Comparing the behavior of Qupp(L) for the actual data with those for the
synthetic data of various intrinsic Q,’s, we arrive at the conclusion that
50<Q,<100 is the most probable estimate for ILS data.

§ 3. Analysis of IPMS data

GRABER (1976) contended Q,=600 from the MESA spectrum of IPMS
data of 15 years duration. The value is significantly larger than that
obtained in the preceding section. The difference in the two data sets are

(1) sampling interval

(2) total observation length

(8) magnitude of observational noise
We think (2) is the principal cause of the widely different estimates of
Q. from ILS and IPMS data. Recall the time-domain feature of the
synthesized polar motions with various natural Q.’s (Figs. 4b, 5b). Note
the visual similarity of the time-domain features between the synthetic
Chandler wobbles of various Qu.'s (Fig. 4b). As was discussed in §3 of
Chapter 3, more than 50 years data is required to observe the effect of
Q. in time domain.

GRABER assumed that the optimum filter length corresponds to 53%
of the total observation period. The adopted filter length is L=160 while
the total number of observations is 298. The filter length seems to us
much longer than the optimum length. In order to test whether the
filter length used by GRABER is adequate or not, we apply MESA after
GRABER to IPMS-type data. The data is preprocessed as described in §7
(1) of Chapter 3. The behavior of the calculated Q.,p for the syntheitic
data of various natural Q.,’s is compared with that for the actual data as
a function of the filter length L (Fig. 17¢). We find in Fig. 17c that Qapp
exceeds Q, over a wide range of L. In particular, Qapp(L=160) is 2 to
10 times larger than the intrinsic Q.. One may argue that Qapp(L=160)
happens to be equal to the natural @, when @,=500. The behavior of
Qapp(L) of Qu=500, however, clearly differs from that reported by GRABER
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Fig. 17. Apparent @ derived by MESA as a function of filter length L. (a) OO
designates the Qapp of ILS data. (b) result from the preprocessed data. (c)

result for preprocessed IPMS and IPMS-type data. [0 designates the result
from GrRABER (1976).

(Fig. 17c). On the other hand, we see that Q,,,(L) of natural Q,=50 well
fits the variation pattern of Q.,,(L) for the actual data. Hence, we may
conclude that the intrinsic @, lies between 50 and 100 from the above
discussions. GRABER’s estimate of Q,=600 is most likely to be due to
his inappropriate choice of L.

6. Effects of the mantle anelasticity upon the Chandler wobble

§ 1. Theoretical calculation of @,

We present below a theory which is the extension of the theory for
the perfectly elastic Earth by SASAO, OKUBO & SAITO (1980). As is dis-
cussed in Chapter 2, the Chandlerian angular frequency for the elastic,
oceanless Earth is given by

oe=(A[An)(e—r)2
r=ka*D*(3GA) .

Anelasticity of the mantle is expressed by complex elastic moduli, X and
Z. The bulk and shear Q’'s are given by
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Q«'=Im [K)/Re K]
Q. '=Im[)/Re[7].

Complex elastic moduli lead to complex k& and # The resultant complex
Chandler angular frequency allowing for the equilibrium pole tide is
given by

6'c=(A/Am)(e_E)Q—0'

Oc=0e—0'
Quw="—(An/A)BGAIa’P)s/2 Im [k]) . (2-14)

We utilize Rayleigh’s principle in order to calculate the imaginary part
of k, arising from the small imaginary elastic moduli. Variational form
for the tidal deformation of the Earth is similar to that for the free
oscillation (TAKEUCHI & SAITO, 1972). The only difference between the
two is the treatment of the boundary condition and the angular frequency.
It is described by using the y-notation after TAKEUCHI & SAITO as

aTyﬂb%—n(n4—1hhyr+(4nG)”yﬁnL=a=S17@u,y;,podw
F(yj, 95 0:)=Q@+20)7°y 2+ 2009, Y+ A+ ) Y?
+nln4+Dry(rys+y—ys) +nn*—1) (n+2) pys*
+2(n+1)oryys—2n(n+1) pry:ys
—2097Y Y+ (42G) '’y ; (6-1)
j=1,8,5:1=1,2

Y =2y,—n(n-+1)y,
2=K—(2/[3)u
n=K, m=p

(") designates dfdr. = is the degree of spherical harmonic and it is 2 in

this case.
Let the perturbation of p, and the resultant variations of ; and 9,

be dp;, dy; and &7, respectively. Variation of (6-1) is

a*[4,0Y2+ Y201+ n(n+1) (Y0, Y10Ys) + (4=G) ™ (Y05t YedYs) o

_(aoF 5 g[ﬂ—_d’<5F>:|5 dr OF s 1 6-2
-551% 5pzd7'+( oy, dr\ady; i 07 Yil,. (6-2)
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Since y.(@) =y.(a) =6y.(a) =y.(a) =6ya)=0 and ys(a)=(2n-+1)/a when y, is
the response to the unit external potential, the left hand side of (6-2)
reduces to

LHS=a(4zG)'(2n+1)-dys(a) . (6-3)

The integrand of the second term on the right hand side of (6-2) vanishes
since the term in the bracket is the Euler equation itself. The third
terms are given by

or

=21y,
oy, O
OF — onn+1)0y, (6-4)
0%
O o=q)-1ry,.
075
Substituting (6-3) and (6-4) into (6-2) yields
o 4=G S or
B . ap.dr . 6-
0ys(a) @ntDa ) op, o0 (6-5)

Since Love number k is given by ys{a)—1, we obtain the variation of
from (6-5) by

0=~ @en+1a Jop;
0pi(r) =6K(r)=1Q 'K (r)
Ops(r)=3dp(r)=iQ, ' p(r) .

Since Qx is supposed to be several orders of magnitude larger than Q, in
most Earth models, we will neglect Q4 and investigate the effect of Q,
alone.

o

‘;f: = (4/3)[rys— BK Y21+ 212+ nn-+ 1) (ryy )°

' —1)(n-+2)y,°. (6-7)

(6-6) and (6-7) give the desired imaginary part of the Love number
k. We present the Fréchet kernel in Fig. 18 for the model 1066A (GIL-
BERT & DZIEWONSKI, 1975) and the isotropic PREM (DZIEWONSKI &
ANDERSON, 1981). Surface ocean layers in the model PREM are replaced
by solid layers of small shear velocity (V,=0.1 km/sec). We assume Q,
to be infinite except in the mantle and it is not a bad approximation
since the Chandler wobble is almost free from the inner core motion.
Calculated Q.'s are presented in Table 3 as Qw®, the expected @, when
the mantle @y is independent of frequency. Q. is about 1.5 times larger
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Fig. 18. Fréchet kernel of the Love number k for the two Earth models.

Table 3. Theoretical parameters of the Chandler wobble.

1066A PREM

Lower mantle Q

at 200 sec 00 312
QoD
Qw 573 481

Chandler period for

s anelastic, oceanless

Earth 408.9 v 412.8 days 409.6 ~ 413.7 days

: anelastic Earth

with oceans 438.7 ~ 442.6 days 439.4 ~ 443,5 days

Qéo) designates theoretical Qw for the frequency-independent QU model.

than the lower mantle Q.
If @, depends on frequency in the form of

Qm(0) =Qulo) - (ao0)*,
then @, is expected to be modified from Q. to
Qu=Qyw® (s a0)" .
The frequency dependence exponent « is given by

a:hl (QW/QW(O))lln (Uc/ao) .
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We have discussed the observed Q. in Chapter 5 and the result is
50<Qw<100. (6-9)
Combination of (6-8) and (6-9) yields

In (50/Qw®) <a In (ocfoe) <In (100/Qw) . (6-10)

Substituting Q«®'s from Table 3, 2z/o.=435 sidereal days and 2z/c,=200
sec into (6-10), we obtain

0.143<a<0.201 for the model 1066A
0.129<a<0.186 for the model PREM.

§2. Effect of physical dispersion

Anelasticity induces what is called physical dispersion and we must
modify the real part of rigidity by the following formula (ANDERSON &
MINSTER, 1979 with correction by SMITH & DAHLEN, 1981).

(o) (o) =1—cot (ax/2)[(0o/0)* —1][Qum(o0) .

Thus the real part of Love number k is slightly modified and the Chandler
period is lengthend by about 7~11 days (Table 3). Adding 29.8 days of
ocean effect to this period explains the observed Chandler period of about
435 sidereal days very well (Table 3).

§3. Relation between Q, and the lower mantle Qn - energy budget
argument
Not a few investigators so far have deduced the relation between Q.
and Q. from the arguments of energy budgetsa (STACEY, 1977 ; MERRIAM
& LAMBECK, 1978). Q. and @ are defined as
Qw=2E,/AE
(6-11)
Qm=2E/AE
where FE, is the wobble energy which includes the kinetic, the strain and
the gravitational energies. FE is the strain energy. AL is the amount
of energy dissipated in one cycle. We should define the kinetic wobble
energy E, as the difference between the kinetic energy in the wobble
state and that in the uniform rotation state when the wobble is com-
pletely damped.

E,=E"—E"
= (1/2) E Iij\\'wiwij_ (1/2) E L_juwiuwju (6—12)
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where superscript w and u designate the wobble state and the uniform
rotation state, respectively. I;; is the moment of inertia tensor.

—»

Angular velocity vector @ in each state is given by

@" = Q(m,, ms, 14 my)
(6-13)
8"'=£(0,0,1).

Note the difference of reference frames in the two states. MacCullargh’s
formula gives I;; as

LY =16+ (ka’[3G) (@ w ;" —|&"[6,,) (6-14)
Iiju =Iijw(ml =m,=my;=0)

where I=([;+ I.+1I;)/3 is the inertia of the sphere in the absence of
rotational deformation. G and a are the gravitational constant and the
Earth’s radius, respectively.

Conservation of angular momentum relates m; to m,; and m, through

(2 =2 (= L;;" - 0,). (6-15)

Observed m, and m, are of order 07.2~10"° and we assume m;~(m,’-+m,)
~107%, which is to be confirmed a posteriori. If we neglect terms much
less than 107%2, substituting (6-13) and (6-14) into (6-15) yields

M= — (m12+ mzﬁ)/z . (6—16)

We can now calculate E, by combining (6-12) through (6-16) and the
result is
Ek=0

which means E,/(J2% is much less than 107%
B, ~(I2*2):~10%erg (6-17)

with ¢ of order 107*® or less.
The above expression is at least 107° times smaller than that given by
MERRIAM & LAMBECK (1979). This is because they failed to appreciate
the significant difference between I;;¥ and I;;".

The strain and the gravitational energies due to the deformation of
the mantle by the solid pole tide are calculated by the following formula
(KOVACH & ANDERSON, 1967 ; TAKEUCHI & SAITO, 1972).

E, :BS [y (A-+2p) +6(ryy) 1+ (82+2p) Y+ 24 py *ldr

' Eg=Bg [—20g7y, Y+ 3prys(y:—2ys) — pr’y ysldr
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where
B=(3/5)(£2%/3)*- (m*-+ mJ?)

Y=2y,—6y,

y; are normalized functions to the unit tidal potential. Performing the
integrals for the models 1066A and PREM, we get

E.=7.0xX10"(m -+ m,") erg~10" erg
(6-18)
E, =7.7X10"%m+mJ) erg~10" erg .

Substituting (6-17) and (6-18) into (6-11), we obtain
Quw=(EW/E)Qm
=21 Qn

Qw/@m is nearly equal to the value of 1.5 derived in §1 from the more
rigorous argument and the result is satisfying since we have ignored the
minor effect of the core in the above discussion. An earlier estimate of
Qw/Qm~10 is most likely to be due to the overestimate of E, by 10%

7. Discussion and conclusions

We have resolved three principal problems about the Chandler wobble.
The first is the time-variability of the Chandler period. We have tested
most of the observational grounds of the variable period hypothesis and
found none of them to be definitive. We have shown that “evidence” for
the variable period hypothesis is also explained by the model of a invari-
ant Chandler period with a low Qw. Hence, there is no positive evidence
for the variable period model. Although it is impossible to reject the
hypothesis in this way, principle of parsimony tells us that the time-
invariant Chandler period model is superior to the variable one. The
matter becomes obvious if one counts the number of parameters needed
to specify each model. The invariant period model requires two param-
eters (period and @.) while the variable period model needs at least an-
other two. They are the modulation magnitude and the modulation period
if the Chandler motion is sinusoidally frequency-modulated. More general
variable period models require more than four parameters. Since we see
no advantage in the variable period model, the model with less parameters
is preferred. We believe that the apparent variability of the Chandler
period originates in ignorance of stationarity of a time series. As was
discussed in §2 of Chapter 2, we must have records longer than about 50
years in order to secure the stationarity of the time series. However,
most of the advocates of the variable period hypothesis drew conclusions
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from observations of less than 10 years.

In order to test the hypothesis more directly, we traced the temporal
variation of the instantaneous power spectrum of the Chandler wobble.
We extended the instantaneous frequency analysis to be applicable to a
complex-valued time series for this purpose. We showed that the method
has a high resolution and fidelity to trace the evolution of the spectral
structure of the polar motion. When applied to IPMS and BIH data for
18 years observation, we did not find any significant fluctuation of the
Chandler period. Thus we still support the time-invariant Chandler period
model.

The second problem on the Chandler wobble is the wide discrepancy
between the earlier estimates of Q. (Table 2). Now that we saw no ob-
servational difficulty in the time-invariant Chandler period model, we may
safely estimate Q, from the Maximum Entropy Spectral Analysis (MESA).
We treated the spectrum obtained by MESA from quite a different point
of view. We positively exploited the apparent defect of MESA of de-
pendence of the estimated Q.p, on the prediction error filter length L.
First, we observed the behavior of Q.pp(L) for synthetic polar motion with
various Q.’s. Next we compared the result with that obtained from the
actual polar motion data. The procedure may appear too simplistic but
it yielded the most reliable estimate of Qv by MESA. A natural Q, of
50~100 was found to explain the observed behavior of Q.,,(L) both for
1L.S and IPMS data. In the estimation process, we found the result by
GRABER (1976) of Q=600 is a product of erroneous choice of L. Our
conclusion of 50<Q,, <100 supported the results of JEFFREYS (1968), WIL-
SON & HAUBRICH (1976a) and OOE (1978).

What is interesting to us is that 50<Q.<100 also explains the apparent
variable Chandler period very well. The multiple Chandler period detected
by GAPOSCHKIN (1972) is explained by the model of 50<Q,<100 (Fig. 6).
Fluctuation of the Chandler frequency reported by SEKIGUCHI (1972, 1976)
is also well explained by the model of Q,=100 (Figs. 8, 9). Variation of
the Chandler period presented by GRABER (1976) is explained by Qw=50
(Fig. 11). Thus @, of 50~100 explains almost all the “evidence” for the
variable Chandler period excellently.

The third problem is the relation between the mantle @, and the
wobble Q.. We succeeded in deriving the theoretical @, for the realistic
Q., structure by slightly modifying the theory of SASAO, OKUBO & SAITO
(1980). In practice, we compute the complex Chandler frequency from the
complex Love number arising from the anelasticity of the mantle. We
used Rayleigh’s principle in order to calculate the small variation of
I due to the small imaginary part of elastic moduli. Theoretical Q. for
the frequency-independent Q. model was found to be about 1.5 times larger
than the lower mantle Q.. The result disagreed with the earlier estimate
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of Qw/@m~10 derived from the energetic arguments (STACEY, 1969, 1977;
MERRIAM & LAMBECK, 1979). We showed that previous authors over-
estimated the kinetic wobble energy by a factor more than 10°. We ar-
rived at the conclusion that Q./Qm is at most 2 from the careful argu-
ment of the energy budget.

If the wobble energy is totally dissipated in the mantle, we must
assume the frequency dependence of Q. in order to explain the observed
Qw of 50~100. If we assume the power law as the frequency dependence,
the power exponent « is found to be in the range of

0.143<a<0.201 for the model 1066A
0.129 < <0.186 for the model isotropic PREM.

Physical dispersion due to the anelasticity of the mantle lengthens the
theoretical Chandler period of about 402 days (oceanless, perfectly elastic
Earth) by 7~11 days. Adding 29.8 days of the ocean effect to this period,
we obtain the theoretical Chandler period of 438~443 sidereal days, which
agrees with the observed one.

We have neglected the effect of the ocean pole tide on the Chandler
wobble in most of the above discussions. However, the ocean effect is
clearly important as kinematically suggested by DICKMAN (1979). We
should focus our attention on the pole tide in the open sea in the near
future.
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