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Fast Combinatorial Optimization with Parallel Digital
Computers

Hideki Kakeya and Yoichi OkahéMlember, IEEE

Abstract—This paper presents an algorithm which realizes fast a new algorithm which enables fast search for quasioptimal
search for the solutions of combinatorial optimization problems  splutions with parallel digital computers, and show that the
with parallel digital computers. With the standard weight matrices proposed algorithm works for the partition problem and the

designed for combinatorial optimization, many iterations are re- t i | bl TSP h of which t
quired before convergence to a quasioptimal solution even when raveling salesman problem ( ), each of which represents

many digital processors can be used in parallel. By removing the the combinatorial optimization problems expressed-by, 1)
components of the eingenvectors with eminent negative eigenvaluesneurons ando, 1) neurons, respectively.

of the weight matrix, the proposed algorithm avoids oscillationand  |n order to accomplish fast calculation with parallel and dig-

realizes energy reduction under synchronous discrete dynamics, jia) computers, the algorithm is required to operate in a syn-

which enables parallel digital computers to obtain quasi-optimal . .

solutions with much less time than the conventional algorithm. Chropous and d|§crete way. When synchronous e}nd discrete dy-
. ) o ) . namics are applied to the standard network designed for com-

Index Terms—Combinatorial optimization, eigenspace, eigen- , . . S
value, eigenvector, geometry, Hopfield network, partition bmgtorlal optimization proble_ms, however, th_e system become_s
problem, traveling salesman problem (TSP). oscillatory and the search fails completely. Eigenspace analysis
of the weight matrix suggests that the oscillation is caused by the
eminent negative eigenvalues. In the algorithm presented in this
paper the weight matrix is modified to suppress oscillation and

EURAL networks have been used as a method to obtdimreach quasioptimal solutions swiftly even when the system is
quasi-optimal solutions in various combinatorial optiupdated in a parallel and synchronous manner.
mization problems. In the neural optimization algorithms the This paper is organized as follows. In Section Il the con-
weights of the network are made so that the optimal solutiosgntional neural algorithms to solve combinatorial optimization
may be located in the low energy area of the state space. Agrablems are reviewed. In Section Il parallel and synchronous
result quasioptimal solutions are obtained as the state transit@orithm for partition problems is proposed based on the ge-
of the network proceeds. ometrical study. In Section IV parallel and synchronous algo-

The first neural algorithm for combinatorial optimization wagithm for TSP is presented. In Section V detail of the proposed
the simulated annealing method [6]. In this algorithm one of tradgorithm for practical use is discussed.
neurons is selected randomly and the state of the selected neuron
is updated to reduce the energy of the network. Therefore the  1I. CONVENTIONAL NEURAL ALGORITHMS FOR
state transitions of the system must be operated serially though COMBINATORIAL OPTIMIZATION
the network itself has parallel architecture.

Hopfield and Tank used analog neurons and continuous
namics for energy reduction [2]. In their method it is possible to Combinatorial optimization problems have two factors. One
operate calculation in parallel. To simulate continuous dynamigsthe cost and the other is the constraint. The goal is to find
with digital computers, however, many iterations are requirdge minimum cost solution which satisfies the constraints. The
before reaching low energy states. neural networks with the standard types of dynamics have the

Kindo and Kakeya have introduced geometrical approa€hergy function given by
to study associative memory [5]. This study suggests that NN

N
the eigenspace analysis of the weight matrix gives major 1

. INTRODUCTION

dAy'- Design of Weight Matrix

information to explain the global feature of the dynamics. In

this paper the authors analyze the eigenspace of the weight
matrices which are designed to solve the combinatorial opfihere
mization problems. Based on this analysis the authors propose.,  state of theith neuron:

0; threshold of theth neuron;
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breaking the constraint can be expressed in a quadratic formadfere
the state vectax, the weight of the network can be designed so

that good solutions may be located in the low energy states. For z; = folu) = I S 9)
example, if the cost of the solutiaais given by 1+ exp(—u;/T)
LN N N in the (0, 1) neuron model and
E.(x)= -5 Z Z wfj)xzay + Z 6. z; 2)
i=1 j=1 i=1

wi = filu) = 1 —exp(—wi/T) (10)

and if the penalty of the solutior for breaking the constraint - 1+ exp(—w;/T)

is written in the form
in the (—1, 1) neuron model.

N N N . "

1 ) ) These dynamics enable parallel state transitions of the

Ep(x) = 9 Z Z Wiy Tikj o+ Z 0; xi ©) system. Therefore fast search is realized if an analog computer
=ly=l =t is available. When a digital computer, which is more robust

and general, is used, however, the calculation of the above dif-

the states which have low values of the energy function ; > i )
ferential equation must be converted to the difference equation

LN N written in the form
Ex)=—35 SN (wz(j) + wz(f)) Ty
i=1 j=1 N
N :
+ Z (95‘3) + 951’)) 7 ) w;(t+7A) = (1 — Ay (t) + A z:l wij(t) — 6;
i=1 =

11
represent good solutions of the combinatorial optimization -
problem. Among them the best solution is represented by thi&ime difference A is small, the search can be carried out
state with the lowest energy. Therefore the network whigfuccessfully though it requires many iterations before reaching
has the threshol@s’” + §%) and the weigh(ng) + wg»))) good solutions. It is expected that the number of iterations can
approaches the state representing good solutions as the disteeduced when largex is used. Whem\ is large, however,

transition proceeds. the network designed to solve combinatorial optimization prob-
lems becomes oscillatory and the search fails completely.
B. Dynamics for Energy Reduction The above discussion has shown that the use of parallel and

Once the weight of the network is designed, the next probkﬁ%nchronous digital computers cannot quicken convergence to

is how to reduce the energy of the network. Here we review tVgoquasioptimal solution whether simulated annealing or analog
well-known methods to reduce energy neural network is adopted to the search. In the following sec-

The first method is the simulated annealing [6]. In this aF_ions we give two examples of combinatorial optimization and

gorithm, one of the neurons is selected randomly and the stB[gPOS€ & new algorithm which overcomes the above dilemma.

of the selected neuron is updated according to the probabilk'fﬂlseCtion lll we take up partit?on probl_ems and in Section 'V
written in the form we take up TSP. In each section the eigenspace of the weight

matrix is analyzed in the beginning. Based on the eigenspace
N analysis the cause of oscillation is investigated. Then fast par-
Plai(t+1) = Xp) = f | D wijz,(t) - 6; (5) alleland synchronous search algorithm for each problem is pre-
j=1 sented in the end of each section.
Plz;(t+1)=X,)=1—P(z;(t+1) = Xy) (6)
1
fluw) = 1T ep(—a/T) @) [ll. FAST ALGORITHM FOR PARTITION PROBLEM

A. Formulation
whereX; = 1, X, = 0in the(0,1) neuron model an; =
1,X, = —1linthe(—1,1) neuron model. This is a very familiar . g .
method in the neural optimization. In this method, however, on dreview how itis solved by the neural networks. In the simple

one neuron can change its state at one time and the search ca ?ir(?[t'cir problerrt] '(; |s.trr]equ[[re.d to dgnde tfhlc_e ll(m.'t‘? V\t/h'cg are
be operated in parallel. mutually connected with certain numbers of links into two boxes

The second method is the analog neural network [2]. Th\{\élth limited capacity so that the interconnection between the

: : : . boxes may be minimized. Let the number of unitse
Igorithm nalog neurons an ntin nami |\5|9 . :
algorithm uses analog neurons and continuous dynamics g a\é\rlld the number of links between thth and thejth units be

by d;;. Here we preparé&v neurons, each of which corresponds to
N one of the units. Each neuron takes the values 4 yrwhich
Tdui = —u; + Z wijx; — 0; (8) represents which box the unit is supposed to be putin. Here the
dt J=1 1th neuron represents the state of ttieunit.

Here we give a brief description of the partition problem [6]
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We denote the value of th#h neuron representing the state Hypersphere
of the<th unit asz;. Then the number of connections between
the two boxes is written in the form

N N

Ec = i Z Z d“(l’Z — .’L’j)Q. (12)

i=1 j=1

This equation is rewritten in the form

Linear Flow
N N N N

1 1 /
=1 j=1 =1 j5=1
Since the second term of the above equation is constant, the rela- Linear Transformation =g
tive cost can be represented by the first term, which is expressed Nonlinear Transformation —— -

in a quadratic form ok.

The penalty for breaking the constraint that each box had'§ 1+ Geometry of neural dynamics.

limited capacity is expressed by 10
E,=3"S" 01 - 8i)mi;  (h>0) (14) Or
i=1 j=1 A0t
for this value becomes minimum when the units are divided %
equally into the two boxes. This penalty function is also ex- z -20
pressed in a quadratic form &f Hence the weight of the net- 5 .30
work to solve the partition problem w
-40
wij = dij — h(1 = 6;;) (15)
. . . 50 r |
is obtained. Herd; = 0 for all <. . . . . .
0 20 40 60 80 100

B. Eigenspace Analysis of Weight Matrices Eigenvector sorted by decreasing eigenvalue

Eigenspace analysis of the weight matrix of Hopfield networg. 2. Eigenvalue distribution of weight matrix designed to solve partition
was first introduced by Aiyeet al.[1]. In the framework of the problem.
autocorrelational associative memory, Kindo and Kakeya have
extended the eigenspace analysis to explain the existence ofrsarmalize the cost term so th&fm, ;] = 1.0 holds. As the con-
pacity limit, the emergence of spurious memories, and the vatraint term we usé = 1.5, which is large enough to keep the
ious phenomena caused by the nonmonotonic neurons [3]-[BUmber of exciting neurons aroudd/2. The eigenvalue dis-
We give a short review of the geometrical explanation dnibution of the weight matrix in this case is shown in Fig. 2

neural dynamics by Kindo and Kakeya. For simplicfiy(u) = (N = 100). As shown in the figure, it has an eigenvector whose
sen(u) andd; = 0(Vi) are assumed. The| = /N holds, eigenvalue is by far the smallest. This eigenvalue derives from
for the state vectok has+1 or —1 as its components. There-the penalty ternﬁwi(f)] = [-h(1 — &;)]. Therefore the corre-

fore x is always on the surface of the hypersph&fé—! with  sponding eigenvector spans the space where the constraint is not
radiusyv/N as shown in Fig. 1. The neural dynamics given bgatisfied.
(10) and (11) are divided into two phases. In the first phaseAs stated above, good solutions are located in the low energy
the state vectok(¢) is transfered to the vectar(t + A) = area of the state space. The low energy state of the network cor-
(1-A)u(t)+AWx(¢t) linearly (= = 1). Inthe second phase theresponds to the state which is composed mainly of the eigenvec-
vector is quantized to the nearest state vector which requires thies with large eigenvalues. Therefore good solutions have large
least angle rotation. Therefore, from the hyperspherical viewemponents of eigenvectors with large eigenvalues and almost
point, linear transformation gives the major driving force of dyro components of eigenvectors with negative eigenvalues.
namics, while nonlinear transformation generates the terminalThough the asynchronous discrete dynamics and the contin-
points of dynamics where the flow of linear transformation isous dynamics realize state transitions toward the low energy
slow. This suggests that the eigenspace analysis of the weigfattes, the synchronous discrete dynamics with large time dif-
matrix gives major information to explain the global featuréerenceA do not always work in the same way. We illustrate
of the dynamics. Here we apply this approach and analyze the simple mechanism of this difference in Fig. 3. Here the ef-
weight of the network which is designed to solve the combingect of nonlinear transformation is neglected for simplicity and
torial optimization problems. the dynamics given bw(t + A) = (1 — A)u(t) + AWu(t) are

As an example of partition problems, here we consider tlilistrated. As shown in the figure, wheh is small, the state
case wherel;; takes an integer between 50 and 150 with theector converges to the eigenvectotfwith the largest posi-
same probability. Below we use;; = 0.01d;; instead of;; to  tive eigenvalue, which spans the low energy states. Whés
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large, however, the state vector is attracted to the eigenvector of A=1 eigenvector I
W whose eigenvalue has the largest absolute value. This means (eigenvalue=1)
that the state vector stays in the high energy states when a neg-
ative eigenvalue has larger absolute value than the maximum
positive eigenvalue. In this cagk has to be kept small to en-
sure convergence to a low energy state though lalgkeads to

faster convergence when positive eigenvalues are dominant. I eigenvector II
(eigenvalue=-2)

C. Fast Search with Parallel and Synchronous Computers

From the above discussion it is expected that the synchronous A=0.5| eigenvectorI
and discrete state transitions with largeproceed toward the * (eigenvalue=1)
low energy states if the effect of the minimum eigenvalue is
canceled. In this case the component of the eigenvector with the
minimum eigenvalue is eliminated easily, because its absolute
value is by far the largest of all the eigenvalues. Therefore, by
carrying out a few steps of state transitions given by

eigenvector I1
(eigenvalue=-2)

e(t+1) = C,We(t) (16)
Fig. 3. Convergence of dynamics given by difference equations with large and

from a random vectoe(O), (16) soon converges to the statsmall time differences\. Here effect of nonlinear transformation is neglected

where for simplicity.
)\ t ~ 0 T T T
e( + 1) We(t) (17) (0.02,1.0, 10 ) ——
. . L 3 (0.02,3.0, 10 )
holds and the minimum eigenvalug,;, and its eigenvector 500 (0.02,5.0, 10 ) i
e(min) are obtained. Heré€, is the coefficient which normal- §8'3§’ o 110000))
izes the length of the vect¢e| to one. N _ o 1000 M | Y
The component of the eigenvector with the minimum eigen- &
value is reduced from the weight matfix; ;] by calculating 0 1500
vij = wij — /‘J)\minegmin)egmin) (18) 2000
wherex is a positive constant. When= 1, the minimum eigen-

value component is eliminated completely. 2500 00 1000 1500 2000

If the weight matriXxy” = [v;,;] and large time differencA are
used, it is expected that the state vector converges to a quasiop-

timal solution quickly and stably. In the next section we confirrfig. 4. Energy reduction process of conventional algorithm to solve partition
this prediction by numerical experiments. problem. Each line (a,b,c) shows the process uddet a, T = b, andR = c.

Time

D. Simulation and Result by the proposed algorithm. (Note that the scale of thaxis
Behavior of Hopfield network depends not only on the weigtdiffers in Figs. 4 and 5.) Dynamical behaviors under various
matrix and the time difference we have focused on so far, lleimperature conditions are shown in both figures. As for the
also on the temperature parameieand the initial conditions. initial condition, the parameteR which gives the best result in
In the numerical experiments we use various combinations edch temperature is selected to be shown in both figures. (Note
temperature and initial conditions to confirm that the algorithithat R makes no difference to the results whins near one.)
we propose is effective in general. In Fig. 4, whenT’ is large, the search dynamics become os-
To prove the superiority of the algorithm shown in the prezillatory and do not reach a state with lower energy. On the
vious subsection, we compare the proposed algorithm using twatrary, wherl” is small, the search dynamics freeze around
matrix V" and large time differencA with the conventional al- £ = —2000. In the other cases better solutions in the lower
gorithm using the standard weight matbix and smallA under energy area are obtained. Nevertheless it takes about 500 or
various parameter sets of temperature and initial conditions.rrore iterations until solutions which satisty < —2000 are
the experiments shown here, the behavior of a parallel coobtained. On the other hand, in Fig. 5 it takes only about ten it-
puter is simulated by a serial computer. One step of iteratienations untilE becomes less than2000(7" = 3) and also it
corresponds to one step of calculation in the parallel computtkes only about 50 iterations before the solutions near the op-
though serial computers have to wahkk times for each itera- timum are obtained.
tion. As the initial conditions we give,;(0) = £1 randomly From these figures it is clear that the proposed algorithm re-
andu;(0) = Rxz;(0). alizes much faster convergence to a quasioptimal solution than
Fig. 4 shows the result of the numerical experiments giveéhe conventional algorithm in general, including under the best
by the conventional algorithm and Fig. 5 shows the result giveondition.
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0 T T T (69,101,099 — can be designed. From this energy function the weight matrix
(0.9,3.0,1,099) N —6.) — B&:.(1 — -
_500 A ( 0.9 , 4_0’ 1Y 099) | walb] - Aéab(l 61]) Béz] (1 6(1()) C
: (0.9,6.0,1,099) ----~ — " L
; (0.02,3.0,10, 0 ) == Ddar(®jitr +8ji-1) (22)
= -1000 1 and the threshold
o
2 B, = —CN (23)

-1500

for the network to solve TSP are derived.

The network with the above weight, however, has a tendency
to give solutions which do not cover all th€ cities. This ten-
dency comes from the fact that the weights representing the cost
termw(®) = —Dd (8,41 + 6;4—1) are all negative. This re-
sults in the decrease of firing rate of neurons. In the paper by
Fig. 5. Energy reduction process of conventional algorithm to solve partitiddopfield and Tank [2], the penalty teri/2)(3", 3=, ®ai —
e i e et i o bgaraon ) WBS TEPIRGEC DIC/2)(32, 33, oy — (x> 1) o in-

Note that the scale here is different from that in Fig. 4. crease the firing rate. In this paper, the weight for eos? =
D(r — dgp)(6ji41 + 6;i—1)(r > 0) is introduced instead of

-2000 |

_2500 ) 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Time

IV. FAST ALGORITHM FOR TSP changing the penalty term in order to keep the proper firing rate,
) which enables the network to converge to a solution which sat-
A. Formulation isfies the constraint in a more natural way. Note that this change

Here we give a brief review of the TSP and the conventiondbes not affect the convergence speed, on which the present
algorithm to solve it by the neural networks [2]. In the simpl@aper focuses. It only facilitates the parameter selection, for the
TSP it is required to find the shortest round tour which coveebove discussion suggests thaiear the average of; cancels
all the cities the salesman is supposed to visit. Let the numlibe influence of the cost term on the firing rate, while no hints
of cities beN and the distance between citynd cityb bed,;,. are available to find propet.

Here we preparéV x N neurons, each of which outputs the The dynamics of analog neural networks to solve TSP are
valuez,;. The outputr,; = 1 means that city: is visited in given by

the ith trip, while the output,; = 0 means that city: is not N N

d ai
visited in theith trip. Then the whole distance of the travel path T Zt’ = —Ugi + Z Z WaibjToj — bai (24)
is given by b=1 j=1
D ai — ai 25
E.(x) = 5 Z Z Z dar®ai(Ty i1 +20i-1).  (19) * F i) 1 (25)
a bta i fuw) (26)

Here again the constraints which must be satisfied to be a solu- 1+ exp(—u/T) _ _
tion of the problem exist. First only one city can be visited at thEhus the analog neural network to solve TSP is obtained.

same time. Second each city is visited only once. Finally ev . . .
city must be visited during the tour. The penalty for breaki%Y Eigenspace Analysis and Fast Search Algorithm

these constraints can be written in the form Here we take up an example of TSP in the paper by Hopfield
A and Tank [2], analyze the eigenspace structure of the weight
Ep(x) = 2 Z Z Z Tailaj matrix and present an algorithm which enables fast search when
¢ A parallel and synchronous computers are available.
+ B Z Z Zxaixbi As an example of TSP, we pick up ten cities randomly from
24 b2a the ared0, 1] x [0, 1] as Hopfield and Tank did, and try to find
2 the shortest round tour. The parametérs3, C, D are chosen
+ ¢ <szm — N) ) (20) @sA = 500,B = 500,C" = 200,D = 500, which are the
2\ 75 same values that Hopfield and Tank adopted. As for the pa-
By taking the above cost and penalty into account, the enerigyneterr,» = 0.9 is used. The eigenvalue distribution of the
function of the network weight matrix obtained in this way is shown in Fig. 6. As shown
A in the figure, the weight matrix of TSP also has an extremely
Bx) =5 2. Z Zx“ix‘” small eigenvalue, which derives from the penalty term. There-
Ba S fore search dynamics become oscillatory wiers large.
+= Z Z Z ToiTbi From the discussion on the partition problems, it is predicted
254 bsta that the weight matrix without the outstanding minimum eigen-
o 2 value
T 2 <§a: 27:37‘“ N) Vaibj = Waibj — Ii)\mine,(;m)eg(,?lm) (27)

+ D Z Z Zdabwai(wb i1 +m; 1) (21) realizes search under large Simple adoption of this weight
25 bta i matrix, however, fails in this case because reduction of small



1328 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 6, NOVEMBER 2000

10000 I ' ' ’ 0 (0.02,10,1|0) b
L J (0.005,10,10)
5000 . -2000 (0.05,10,10) oo 1
0t 4 (0.02,1,10)
4000 ‘oomog —— 1

g -5000 f > 02,10,

2 o

2 2 ,(0.02,10,100) |

£ -10000 | g -6000 i

S w !

i -15000 | § -8000 P .
20000 1 -10000 = ]
-25000 t e L

-12000 - ; e
-30000 : : . . :
0 20 40 60 80 100 0 50 100 150 200
Eigenvector sorted by decreasing eigenvalue Time

Fig. 6. Eigenvalue distribution of weight matrix designed to solve TSP. Fig. 7. Energy reduction process of conventional algorithm to solve TSP under
various temperature and initial contidions. The line with (a,b,c) shows the search
. . . process undeA = «,7 = b,andR = c. (r = 09,4 = B =D =
eigenvalues increases the firing rate of the network. As a ressdt, ¢ = 200).

the network converges to a solution which does not satisfy the

constraints. 0 T T T .
To adijust the firing rate so that the network converges to a 01010 m
solution which satisfies the constraints, the threshold should be -2000 (0.05,10,10) ~
raised in accordance with the increase of the average weight. oraot) e ]

Since the threshold is always active while the firing rate of neu- > ©210.1)

rons in the feasible solutions 19V, the effect of the threshold $ 6000 (0210100

is IV times larger than that of the neurons. Therefore it is ex- W

pected that the threshold -8000 |
$ai = —CN + %mmm el e (28) 710000 4 | L 1

b, 12000 b i atanissia
is suitable to keep the firing rate to the proper level. 0 50 100 150 200
In the next section the ability of the algorithm presented here Time

is tested in the numerical experiments.
Fig. 8. Energy reduction process of proposed algorithm to solve TSP
i ; (k= 0.7) under various temperature and initial contidions. The line
C. Simulation and Result with (a,b,c) shows the search process under = «. 7 = b, and

As written in the previous section, behavior of Hopfield net? = ¢. (r = 0.9, 4 = B = D = 500,C = 200).
work depends not only on the weight matrix and the time dif-
ference, but also on the temperature and the initial conditiomnamics with smalll” and largeR, which realizes fast con-
To prove the superiority of the algorithm shown in the previougergence in Figs. 7 and 8, tend to converge to a solution which
section, we compare the proposed algorithm using mafix is far from the optimal solution. This is because these condi-
thresholdy, and large time differenca with the conventional tions freeze the state vectors strongly and are apt to trap them
algorithm using standard weight matri¥X’, thresholdd, and at a high energy state. To avoid convergence to rather high en-
small A under various conditions. The initial conditions of th%rgy states and realize convergence to low energy states, larger
internal state of each neurenis set so that it obeys the uniform7” and smalletk should be selected though they tend to delay
distribution[— R, R], and various sets &f and R are tried for the convergence.
each algorithm. Among the conditions in Figs. 7 and 8, only the conditions
The results of the numerical experiments are shown jphich lead to convergence to rather lower energy states are
Figs. 7 and 8. Fig. 7 shows the dynamical behavior of thficked up and shown in Figs. 11 and 12. These figures show that
conventional algorithm and Fig. 8 shows that of the proposege proposed algorithm with weight matri% and thresholdp
algorithm. In both figures behaviors under various temperatuigalizes faster convergence under the conditions which lead to
and initial conditions are shown. These figures show thadlatively good solutions, while the conventional algorithm re-
proposed algorithm realizes fast convergence in general, ygiires much more iterations before convergence.
under low temperature and largethe conventical algorithm
gives as fast convergence as the proposed algorithm. V. DISCUSSION
Fig. 9 and 10 show the quality of the solutions obtained under . )
the parameter sets used in the numerical experiments in Figs::7Emergence and Removal of Outstanding Negative
and 8. As shown in the figures the solutions obtained by tfdgenvalues
proposed algorithm are better than those obtained by the conk the examples discussed above, there exists only one out-
ventional algorithm in general. These figures also show that teanding negative eigenvalue, which facilitates removal of the
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-11600 . T . . .
11700 F ] .
-11800 | .
-11900 | .
Energy
-12000 |- .
-12100 |- - .
-12200 |- .
-12300 ' ' ' : L L :
A=002 0005 005 002 002 002 0.02
T=10 10 10 1 50 10 10
R=10 10 10 10 10 1 100
Condition

Fig. 9. Average snd variance of energy (solution quality) after convergence obtained by conventional algorithm under parameter sets usedweFien&rdy
means better solution.)

-11660 T T T

-11700 T

-11800

-11900
Energy
-12000

T
—
=

-12100

-12200

12300 1 ] 1 1 i I I
A=02 0.01 0.05 0.2 0.2 0.2 0.2

T=10 10 10 1 50 10 10
R=10 10 10 10 10 1 100
Condition

Fig. 10. Average and variance of energy (solution quality) after convergence obtained by proposed algorithm under parameter sets used ireFign&rdj.ow
means better solution.)

0 - “—L'*' (0.05,10,10) -~ 1 corresponding eigenvector. For the practical use of the presented
! b | (002580,10) —m algorithm, however, it must be confirmed whether this is true
-2000 - % b } 7 it i i i
; i i generally. If not, it is necessary to establish the algorithm which
4000 - v | copes with the case where multiple outstanding eigenvalues ap-
= L 1 pear.

g -6000 - 7 In the partiton problem only one negative eigenvalue
w C i emerges because the constraint space has only one dimension.
-8000 - | o . . . X .

| : In TSP many constraints exist, which generate many negative

-10000 + i eigenvalues. Nevertheless one constraint is by far the strongest,

R N N _ which results in emergence of an eminent eigenvalue. These are

-12000 ) Lo i 3 not rare cases since the whole constraint or the main constraint
0 50 100 150 200 are often given by a single equation in the combinatorial

Time optimization.

_ _ _ _ Yet it is not assured that all the combinatorial optimization
Fig. 11. Energy reduction process of conventional algorithm to solve TSP, bl | h | . . . |
Only the data which made good scores in Fig. 9 are extracted from Fig. 7 AP0IeMs always have only one eminent negative eigenvalue.
shown here. When a group of eminent negative eigenvalues exists, however,
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0 F 025010 ———— . 3) Carry out the search dynamics using the weight matrix
2000 | 2101 1 from which eminent negative eigenvalue components are
removed.
-4000 | .
3 6000 B. Implementation on Parallel Computers
E In the present paper parallel computation have been simulated
-8000 . on digital computers. When one carries outs the algorithm pre-
10000 L i sen_ted here vyith a paraIIeI_ computer, one has to take the fol-
lowing two points into consideration.
-12000 , - One point is the size of the parallel computer. If the parallel
0 100 150 200 computer used for the calculation has the same or more pro-
Time cessorg’ than the size of the combinatorial optimization prob-

lems N (the number of neurons required for calculation), the
Fig. 12. Energy reduction process of proposed algorithm to solve TSP. O ; ; ;
the data which made good scores in Fig. 10 are extracted from Fig. 8 and sh Yesent algorlthm can be |mplem_ented d|rectly_o_n the.comDUter'
here. henP < N, one step of dynamics has to be divided inipP
pieces so that the computer can execute the required calculation.
Simulation by a digital computer corresponds to the case where

the corresponding space can be suppressed in the same Wa¥ 8S | Even whenP < N. the solutions can be obtaingl
discussed in the above examples. y '

E I h Afseminent i _ times faster than the serial computation.
or example, assume there existseminent Negative €19en- e other point is the format of the parallel computers.
valuesAn _nr41, AN—pM42,+ s AN—1, AN, WhereAn _p41

3 \ i\ g\ \ So far we have assumed that the operation of the search
)\N*M” B o= NSl = )\N ?_ntthl > Az > t"' > dynamics is synchronous. Recently, however, the possibility of

N-—M 2 AN-M+1 > = > An. LELING @IGENVECIONS COr- ooy opronous parallel computers is attracting attention. In the
responding\; bee(® and the weight matrix b& . To extract

L . N) . ; present case, it may seem that asynchronous parallel computers
the minimum eigenvalue componesit¥), many iterations of

I .~ can accomplish fast search without the modification of weight
(18) are required in this case. Nevertheless here the goal is to P 9

4ffd threshold we have discussed so far
eM ei N—M+1) (N) _ Al )
move a.” th ; elgenvegtor componend_é I A If the interval between each processing occupies most of the
To achieve it, the following procedure is sufficient.

First t (18) a few ti then the stat calculation time, the system operates like a serial calculator
irst repeat (18) a few times, then the state eventually and modification of weight and threshold is not nec-

de(t) = We(t — 1) (29) essary. Nevertheless this can be regarded as the case where the
N system is not designed efficiently. If the calculation of each pro-
e(t) ~ Z c;el® (30) cessor (neuron), communications among processors, and update
I=N—M+1 of the output of each processor take most of the time, the system

operates almost in the same manner as the synchronous dy-
namics we have simulated in this paper. Therefore asynchronous
computing alone cannot avoid the problem of oscillation, and

appears, wherke(#)| = 1 for all t and A < 0. Next remove the
component o&(¢) from W, then the matrix written in the form

Woew = W — S\e(t)e(t)T (31) modification of weight and threshold we have discussed above
N is still effective and useful.
=W -2 < > c§e<i>e<i>T> (32)
i=N—M+1 VI. CONCLUSION
_ Nifw NeMe®T | zj\: \o 5\c2) ROROLY In this paper an algorithm which enal_)Ies_paraIIeI d?gital com-
- ‘ i * g puters to realize fast search for quasioptimal solutions of the
= =N — +

(33) combinatorial optimization problems has been proposed. The
proposed computational method avoids oscillation by removing
is obtained. Here the components of the eigenvectdhe component of the eigenvector with the eminent negative
eWN=M+1) — oN) are diminished. Therefore if this eigenvalues of the weight matrix, which enables energy reduc-
process is repeated until| becomes small (about/ times), tion under the synchronous discrete dynamics. In the simulation
the components of all the eminent eigenvalues can be weakefé¢he partition problem and the traveling salesman problem,
and the stable search is enabled with the obtained weidihbas been shown that the proposed algorithm requires much
matrix. fewer iterations than the conventional algorithm before reaching
Including this procedure, the whole process of the proposédasioptimal solutions.
algorithm can be summarized as follows.
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