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Fast Combinatorial Optimization with Parallel Digital
Computers

Hideki Kakeya and Yoichi Okabe, Member, IEEE

Abstract—This paper presents an algorithm which realizes fast
search for the solutions of combinatorial optimization problems
with parallel digital computers. With the standard weight matrices
designed for combinatorial optimization, many iterations are re-
quired before convergence to a quasioptimal solution even when
many digital processors can be used in parallel. By removing the
components of the eingenvectors with eminent negative eigenvalues
of the weight matrix, the proposed algorithm avoids oscillation and
realizes energy reduction under synchronous discrete dynamics,
which enables parallel digital computers to obtain quasi-optimal
solutions with much less time than the conventional algorithm.

Index Terms—Combinatorial optimization, eigenspace, eigen-
value, eigenvector, geometry, Hopfield network, partition
problem, traveling salesman problem (TSP).

I. INTRODUCTION

NEURAL networks have been used as a method to obtain
quasi-optimal solutions in various combinatorial opti-

mization problems. In the neural optimization algorithms the
weights of the network are made so that the optimal solutions
may be located in the low energy area of the state space. As a
result quasioptimal solutions are obtained as the state transition
of the network proceeds.

The first neural algorithm for combinatorial optimization was
the simulated annealing method [6]. In this algorithm one of the
neurons is selected randomly and the state of the selected neuron
is updated to reduce the energy of the network. Therefore the
state transitions of the system must be operated serially though
the network itself has parallel architecture.

Hopfield and Tank used analog neurons and continuous dy-
namics for energy reduction [2]. In their method it is possible to
operate calculation in parallel. To simulate continuous dynamics
with digital computers, however, many iterations are required
before reaching low energy states.

Kindo and Kakeya have introduced geometrical approach
to study associative memory [5]. This study suggests that
the eigenspace analysis of the weight matrix gives major
information to explain the global feature of the dynamics. In
this paper the authors analyze the eigenspace of the weight
matrices which are designed to solve the combinatorial opti-
mization problems. Based on this analysis the authors propose
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a new algorithm which enables fast search for quasioptimal
solutions with parallel digital computers, and show that the
proposed algorithm works for the partition problem and the
traveling salesman problem (TSP), each of which represents
the combinatorial optimization problems expressed by
neurons and neurons, respectively.

In order to accomplish fast calculation with parallel and dig-
ital computers, the algorithm is required to operate in a syn-
chronous and discrete way. When synchronous and discrete dy-
namics are applied to the standard network designed for com-
binatorial optimization problems, however, the system becomes
oscillatory and the search fails completely. Eigenspace analysis
of the weight matrix suggests that the oscillation is caused by the
eminent negative eigenvalues. In the algorithm presented in this
paper the weight matrix is modified to suppress oscillation and
to reach quasioptimal solutions swiftly even when the system is
updated in a parallel and synchronous manner.

This paper is organized as follows. In Section II the con-
ventional neural algorithms to solve combinatorial optimization
problems are reviewed. In Section III parallel and synchronous
algorithm for partition problems is proposed based on the ge-
ometrical study. In Section IV parallel and synchronous algo-
rithm for TSP is presented. In Section V detail of the proposed
algorithm for practical use is discussed.

II. CONVENTIONAL NEURAL ALGORITHMS FOR

COMBINATORIAL OPTIMIZATION

A. Design of Weight Matrix

Combinatorial optimization problems have two factors. One
is the cost and the other is the constraint. The goal is to find
the minimum cost solution which satisfies the constraints. The
neural networks with the standard types of dynamics have the
energy function given by

(1)

where
state of the th neuron;
threshold of theth neuron;
weight of the connection from theth neuron to theth
neuron .

Energy decreases as the state transition of the network
proceeds.

In the neural algorithms for combinatorial optimization, a
candidate of the solutions is represented by one of the state
vectors . If the cost and the penalty for
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breaking the constraint can be expressed in a quadratic form of
the state vector , the weight of the network can be designed so
that good solutions may be located in the low energy states. For
example, if the cost of the solutionis given by

(2)

and if the penalty of the solution for breaking the constraint
is written in the form

(3)

the states which have low values of the energy function

(4)

represent good solutions of the combinatorial optimization
problem. Among them the best solution is represented by the
state with the lowest energy. Therefore the network which
has the threshold and the weight
approaches the state representing good solutions as the state
transition proceeds.

B. Dynamics for Energy Reduction

Once the weight of the network is designed, the next problem
is how to reduce the energy of the network. Here we review two
well-known methods to reduce energy.

The first method is the simulated annealing [6]. In this al-
gorithm, one of the neurons is selected randomly and the state
of the selected neuron is updated according to the probability
written in the form

(5)

(6)

(7)

where in the neuron model and
in the neuron model. This is a very familiar

method in the neural optimization. In this method, however, only
one neuron can change its state at one time and the search cannot
be operated in parallel.

The second method is the analog neural network [2]. This
algorithm uses analog neurons and continuous dynamics given
by

(8)

where

(9)

in the neuron model and

(10)

in the neuron model.
These dynamics enable parallel state transitions of the

system. Therefore fast search is realized if an analog computer
is available. When a digital computer, which is more robust
and general, is used, however, the calculation of the above dif-
ferential equation must be converted to the difference equation
written in the form

(11)

If time difference is small, the search can be carried out
successfully though it requires many iterations before reaching
good solutions. It is expected that the number of iterations can
be reduced when larger is used. When is large, however,
the network designed to solve combinatorial optimization prob-
lems becomes oscillatory and the search fails completely.

The above discussion has shown that the use of parallel and
synchronous digital computers cannot quicken convergence to
a quasioptimal solution whether simulated annealing or analog
neural network is adopted to the search. In the following sec-
tions we give two examples of combinatorial optimization and
propose a new algorithm which overcomes the above dilemma.
In Section III we take up partition problems and in Section IV
we take up TSP. In each section the eigenspace of the weight
matrix is analyzed in the beginning. Based on the eigenspace
analysis the cause of oscillation is investigated. Then fast par-
allel and synchronous search algorithm for each problem is pre-
sented in the end of each section.

III. FAST ALGORITHM FOR PARTITION PROBLEM

A. Formulation

Here we give a brief description of the partition problem [6]
and review how it is solved by the neural networks. In the simple
partition problem it is required to divide the units which are
mutually connected with certain numbers of links into two boxes
with limited capacity so that the interconnection between the
two boxes may be minimized. Let the number of units be
and the number of links between theth and the th units be

. Here we prepare neurons, each of which corresponds to
one of the units. Each neuron takes the values 1 or, which
represents which box the unit is supposed to be put in. Here the
th neuron represents the state of theth unit.
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We denote the value of theth neuron representing the state
of the th unit as . Then the number of connections between
the two boxes is written in the form

(12)

This equation is rewritten in the form

(13)

Since the second term of the above equation is constant, the rela-
tive cost can be represented by the first term, which is expressed
in a quadratic form of .

The penalty for breaking the constraint that each box has a
limited capacity is expressed by

(14)

for this value becomes minimum when the units are divided
equally into the two boxes. This penalty function is also ex-
pressed in a quadratic form of. Hence the weight of the net-
work to solve the partition problem

(15)

is obtained. Here for all .

B. Eigenspace Analysis of Weight Matrices

Eigenspace analysis of the weight matrix of Hopfield network
was first introduced by Aiyeret al. [1]. In the framework of the
autocorrelational associative memory, Kindo and Kakeya have
extended the eigenspace analysis to explain the existence of ca-
pacity limit, the emergence of spurious memories, and the var-
ious phenomena caused by the nonmonotonic neurons [3]–[5].

We give a short review of the geometrical explanation on
neural dynamics by Kindo and Kakeya. For simplicity

and are assumed. Then holds,
for the state vector has or as its components. There-
fore is always on the surface of the hypersphere with
radius as shown in Fig. 1. The neural dynamics given by
(10) and (11) are divided into two phases. In the first phase
the state vector is transfered to the vector

linearly . In the second phase the
vector is quantized to the nearest state vector which requires the
least angle rotation. Therefore, from the hyperspherical view-
point, linear transformation gives the major driving force of dy-
namics, while nonlinear transformation generates the terminal
points of dynamics where the flow of linear transformation is
slow. This suggests that the eigenspace analysis of the weight
matrix gives major information to explain the global feature
of the dynamics. Here we apply this approach and analyze the
weight of the network which is designed to solve the combina-
torial optimization problems.

As an example of partition problems, here we consider the
case where takes an integer between 50 and 150 with the
same probability. Below we use instead of to

Fig. 1. Geometry of neural dynamics.

Fig. 2. Eigenvalue distribution of weight matrix designed to solve partition
problem.

normalize the cost term so that holds. As the con-
straint term we use , which is large enough to keep the
number of exciting neurons around . The eigenvalue dis-
tribution of the weight matrix in this case is shown in Fig. 2

. As shown in the figure, it has an eigenvector whose
eigenvalue is by far the smallest. This eigenvalue derives from
the penalty term . Therefore the corre-
sponding eigenvector spans the space where the constraint is not
satisfied.

As stated above, good solutions are located in the low energy
area of the state space. The low energy state of the network cor-
responds to the state which is composed mainly of the eigenvec-
tors with large eigenvalues. Therefore good solutions have large
components of eigenvectors with large eigenvalues and almost
no components of eigenvectors with negative eigenvalues.

Though the asynchronous discrete dynamics and the contin-
uous dynamics realize state transitions toward the low energy
states, the synchronous discrete dynamics with large time dif-
ference do not always work in the same way. We illustrate
the simple mechanism of this difference in Fig. 3. Here the ef-
fect of nonlinear transformation is neglected for simplicity and
the dynamics given by are
illustrated. As shown in the figure, when is small, the state
vector converges to the eigenvector ofwith the largest posi-
tive eigenvalue, which spans the low energy states. Whenis
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large, however, the state vector is attracted to the eigenvector of
whose eigenvalue has the largest absolute value. This means

that the state vector stays in the high energy states when a neg-
ative eigenvalue has larger absolute value than the maximum
positive eigenvalue. In this case has to be kept small to en-
sure convergence to a low energy state though largerleads to
faster convergence when positive eigenvalues are dominant.

C. Fast Search with Parallel and Synchronous Computers

From the above discussion it is expected that the synchronous
and discrete state transitions with largeproceed toward the
low energy states if the effect of the minimum eigenvalue is
canceled. In this case the component of the eigenvector with the
minimum eigenvalue is eliminated easily, because its absolute
value is by far the largest of all the eigenvalues. Therefore, by
carrying out a few steps of state transitions given by

(16)

from a random vector , (16) soon converges to the state
where

(17)

holds and the minimum eigenvalue and its eigenvector
are obtained. Here is the coefficient which normal-

izes the length of the vector to one.
The component of the eigenvector with the minimum eigen-

value is reduced from the weight matrix by calculating

(18)

where is a positive constant. When , the minimum eigen-
value component is eliminated completely.

If the weight matrix and large time difference are
used, it is expected that the state vector converges to a quasiop-
timal solution quickly and stably. In the next section we confirm
this prediction by numerical experiments.

D. Simulation and Result

Behavior of Hopfield network depends not only on the weight
matrix and the time difference we have focused on so far, but
also on the temperature parameterand the initial conditions.
In the numerical experiments we use various combinations of
temperature and initial conditions to confirm that the algorithm
we propose is effective in general.

To prove the superiority of the algorithm shown in the pre-
vious subsection, we compare the proposed algorithm using the
matrix and large time difference with the conventional al-
gorithm using the standard weight matrix and small under
various parameter sets of temperature and initial conditions. In
the experiments shown here, the behavior of a parallel com-
puter is simulated by a serial computer. One step of iteration
corresponds to one step of calculation in the parallel computer,
though serial computers have to work times for each itera-
tion. As the initial conditions we give randomly
and .

Fig. 4 shows the result of the numerical experiments given
by the conventional algorithm and Fig. 5 shows the result given

Fig. 3. Convergence of dynamics given by difference equations with large and
small time differences�. Here effect of nonlinear transformation is neglected
for simplicity.

Fig. 4. Energy reduction process of conventional algorithm to solve partition
problem. Each line (a,b,c) shows the process under� = a; T = b; andR = c.

by the proposed algorithm. (Note that the scale of the-axis
differs in Figs. 4 and 5.) Dynamical behaviors under various
temperature conditions are shown in both figures. As for the
initial condition, the parameter which gives the best result in
each temperature is selected to be shown in both figures. (Note
that makes no difference to the results whenis near one.)

In Fig. 4, when is large, the search dynamics become os-
cillatory and do not reach a state with lower energy. On the
contrary, when is small, the search dynamics freeze around

. In the other cases better solutions in the lower
energy area are obtained. Nevertheless it takes about 500 or
more iterations until solutions which satisfy are
obtained. On the other hand, in Fig. 5 it takes only about ten it-
erations until becomes less than and also it
takes only about 50 iterations before the solutions near the op-
timum are obtained.

From these figures it is clear that the proposed algorithm re-
alizes much faster convergence to a quasioptimal solution than
the conventional algorithm in general, including under the best
condition.
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Fig. 5. Energy reduction process of conventional algorithm to solve partition
problem. Each line (a,b,c,d) shows the process under� = a; T = b; R = c

and� = d. (the line with� = 0 is from the conventional model for comparison.
Note that the scale here is different from that in Fig. 4.

IV. FAST ALGORITHM FOR TSP

A. Formulation

Here we give a brief review of the TSP and the conventional
algorithm to solve it by the neural networks [2]. In the simple
TSP it is required to find the shortest round tour which covers
all the cities the salesman is supposed to visit. Let the number
of cities be and the distance between cityand city be .
Here we prepare neurons, each of which outputs the
value . The output means that city is visited in
the th trip, while the output means that city is not
visited in the th trip. Then the whole distance of the travel path
is given by

(19)

Here again the constraints which must be satisfied to be a solu-
tion of the problem exist. First only one city can be visited at the
same time. Second each city is visited only once. Finally every
city must be visited during the tour. The penalty for breaking
these constraints can be written in the form

(20)

By taking the above cost and penalty into account, the energy
function of the network

(21)

can be designed. From this energy function the weight matrix

(22)

and the threshold

(23)

for the network to solve TSP are derived.
The network with the above weight, however, has a tendency

to give solutions which do not cover all the cities. This ten-
dency comes from the fact that the weights representing the cost
term are all negative. This re-
sults in the decrease of firing rate of neurons. In the paper by
Hopfield and Tank [2], the penalty term

was replaced by to in-
crease the firing rate. In this paper, the weight for cost

is introduced instead of
changing the penalty term in order to keep the proper firing rate,
which enables the network to converge to a solution which sat-
isfies the constraint in a more natural way. Note that this change
does not affect the convergence speed, on which the present
paper focuses. It only facilitates the parameter selection, for the
above discussion suggests thatnear the average of cancels
the influence of the cost term on the firing rate, while no hints
are available to find proper.

The dynamics of analog neural networks to solve TSP are
given by

(24)

(25)

(26)

Thus the analog neural network to solve TSP is obtained.

B. Eigenspace Analysis and Fast Search Algorithm

Here we take up an example of TSP in the paper by Hopfield
and Tank [2], analyze the eigenspace structure of the weight
matrix and present an algorithm which enables fast search when
parallel and synchronous computers are available.

As an example of TSP, we pick up ten cities randomly from
the area as Hopfield and Tank did, and try to find
the shortest round tour. The parameters are chosen
as , which are the
same values that Hopfield and Tank adopted. As for the pa-
rameter is used. The eigenvalue distribution of the
weight matrix obtained in this way is shown in Fig. 6. As shown
in the figure, the weight matrix of TSP also has an extremely
small eigenvalue, which derives from the penalty term. There-
fore search dynamics become oscillatory whenis large.

From the discussion on the partition problems, it is predicted
that the weight matrix without the outstanding minimum eigen-
value

(27)

realizes search under large. Simple adoption of this weight
matrix, however, fails in this case because reduction of small
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Fig. 6. Eigenvalue distribution of weight matrix designed to solve TSP.

eigenvalues increases the firing rate of the network. As a result
the network converges to a solution which does not satisfy the
constraints.

To adjust the firing rate so that the network converges to a
solution which satisfies the constraints, the threshold should be
raised in accordance with the increase of the average weight.
Since the threshold is always active while the firing rate of neu-
rons in the feasible solutions is , the effect of the threshold
is times larger than that of the neurons. Therefore it is ex-
pected that the threshold

(28)

is suitable to keep the firing rate to the proper level.
In the next section the ability of the algorithm presented here

is tested in the numerical experiments.

C. Simulation and Result

As written in the previous section, behavior of Hopfield net-
work depends not only on the weight matrix and the time dif-
ference, but also on the temperature and the initial conditions.
To prove the superiority of the algorithm shown in the previous
section, we compare the proposed algorithm using matrix,
threshold , and large time difference with the conventional
algorithm using standard weight matrix , threshold , and
small under various conditions. The initial conditions of the
internal state of each neuronis set so that it obeys the uniform
distribution , and various sets of and are tried for
each algorithm.

The results of the numerical experiments are shown in
Figs. 7 and 8. Fig. 7 shows the dynamical behavior of the
conventional algorithm and Fig. 8 shows that of the proposed
algorithm. In both figures behaviors under various temperature
and initial conditions are shown. These figures show that
proposed algorithm realizes fast convergence in general, yet
under low temperature and large the conventical algorithm
gives as fast convergence as the proposed algorithm.

Fig. 9 and 10 show the quality of the solutions obtained under
the parameter sets used in the numerical experiments in Figs. 7
and 8. As shown in the figures the solutions obtained by the
proposed algorithm are better than those obtained by the con-
ventional algorithm in general. These figures also show that the

Fig. 7. Energy reduction process of conventional algorithm to solve TSP under
various temperature and initial contidions. The line with (a,b,c) shows the search
process under� = a; T = b; andR = c: (r = 0:9; A = B = D =
500;C = 200).

Fig. 8. Energy reduction process of proposed algorithm to solve TSP
(� = 0:7) under various temperature and initial contidions. The line
with (a,b,c) shows the search process under� = a; T = b; and
R = c: (r = 0:9;A = B = D = 500;C = 200).

dynamics with small and large , which realizes fast con-
vergence in Figs. 7 and 8, tend to converge to a solution which
is far from the optimal solution. This is because these condi-
tions freeze the state vectors strongly and are apt to trap them
at a high energy state. To avoid convergence to rather high en-
ergy states and realize convergence to low energy states, larger

and smaller should be selected though they tend to delay
the convergence.

Among the conditions in Figs. 7 and 8, only the conditions
which lead to convergence to rather lower energy states are
picked up and shown in Figs. 11 and 12. These figures show that
the proposed algorithm with weight matrix and threshold
realizes faster convergence under the conditions which lead to
relatively good solutions, while the conventional algorithm re-
quires much more iterations before convergence.

V. DISCUSSION

A. Emergence and Removal of Outstanding Negative
Eigenvalues

In the examples discussed above, there exists only one out-
standing negative eigenvalue, which facilitates removal of the
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Fig. 9. Average snd variance of energy (solution quality) after convergence obtained by conventional algorithm under parameter sets used in Fig. 7. (Lower energy
means better solution.)

Fig. 10. Average and variance of energy (solution quality) after convergence obtained by proposed algorithm under parameter sets used in Fig. 8. (Lower energy
means better solution.)

Fig. 11. Energy reduction process of conventional algorithm to solve TSP.
Only the data which made good scores in Fig. 9 are extracted from Fig. 7 and
shown here.

corresponding eigenvector. For the practical use of the presented
algorithm, however, it must be confirmed whether this is true
generally. If not, it is necessary to establish the algorithm which
copes with the case where multiple outstanding eigenvalues ap-
pear.

In the partition problem only one negative eigenvalue
emerges because the constraint space has only one dimension.
In TSP many constraints exist, which generate many negative
eigenvalues. Nevertheless one constraint is by far the strongest,
which results in emergence of an eminent eigenvalue. These are
not rare cases since the whole constraint or the main constraint
are often given by a single equation in the combinatorial
optimization.

Yet it is not assured that all the combinatorial optimization
problems always have only one eminent negative eigenvalue.
When a group of eminent negative eigenvalues exists, however,



1330 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 6, NOVEMBER 2000

Fig. 12. Energy reduction process of proposed algorithm to solve TSP. Only
the data which made good scores in Fig. 10 are extracted from Fig. 8 and shown
here.

the corresponding space can be suppressed in the same way as
discussed in the above examples.

For example, assume there existseminent negative eigen-
values , where

and
. Let the eigenvectors cor-

responding be and the weight matrix be . To extract
the minimum eigenvalue component , many iterations of
(18) are required in this case. Nevertheless here the goal is to re-
move all the eigenvector components .
To achieve it, the following procedure is sufficient.

First repeat (18) a few times, then the state

(29)

(30)

appears, where for all and . Next remove the
component of from , then the matrix written in the form

(31)

(32)

(33)

is obtained. Here the components of the eigenvectors
are diminished. Therefore if this

process is repeated until becomes small (about times),
the components of all the eminent eigenvalues can be weakened
and the stable search is enabled with the obtained weight
matrix.

Including this procedure, the whole process of the proposed
algorithm can be summarized as follows.

1) Analyze and grasp the feature of the eigenspace with
a problem of a smaller size. Find suitable parameters

for this problem.
2) Repeat the process denoted in this section and remove the

eminent negative eigenvalues.

3) Carry out the search dynamics using the weight matrix
from which eminent negative eigenvalue components are
removed.

B. Implementation on Parallel Computers

In the present paper parallel computation have been simulated
on digital computers. When one carries outs the algorithm pre-
sented here with a parallel computer, one has to take the fol-
lowing two points into consideration.

One point is the size of the parallel computer. If the parallel
computer used for the calculation has the same or more pro-
cessors than the size of the combinatorial optimization prob-
lems (the number of neurons required for calculation), the
present algorithm can be implemented directly on the computer.
When , one step of dynamics has to be divided into
pieces so that the computer can execute the required calculation.
Simulation by a digital computer corresponds to the case where

. Even when , the solutions can be obtained
times faster than the serial computation.

The other point is the format of the parallel computers.
So far we have assumed that the operation of the search
dynamics is synchronous. Recently, however, the possibility of
asynchronous parallel computers is attracting attention. In the
present case, it may seem that asynchronous parallel computers
can accomplish fast search without the modification of weight
and threshold we have discussed so far.

If the interval between each processing occupies most of the
calculation time, the system operates like a serial calculator
eventually and modification of weight and threshold is not nec-
essary. Nevertheless this can be regarded as the case where the
system is not designed efficiently. If the calculation of each pro-
cessor (neuron), communications among processors, and update
of the output of each processor take most of the time, the system
operates almost in the same manner as the synchronous dy-
namics we have simulated in this paper. Therefore asynchronous
computing alone cannot avoid the problem of oscillation, and
modification of weight and threshold we have discussed above
is still effective and useful.

VI. CONCLUSION

In this paper an algorithm which enables parallel digital com-
puters to realize fast search for quasioptimal solutions of the
combinatorial optimization problems has been proposed. The
proposed computational method avoids oscillation by removing
the component of the eigenvector with the eminent negative
eigenvalues of the weight matrix, which enables energy reduc-
tion under the synchronous discrete dynamics. In the simulation
of the partition problem and the traveling salesman problem,
it has been shown that the proposed algorithm requires much
fewer iterations than the conventional algorithm before reaching
quasioptimal solutions.
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