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Abstract

In Section II, we discuss from a viewpoint of ray theory the fre-
quency equations of the spheroidal oscillations of the Earth consisting
of a uniform solid mantle and a uniform liquid core. It is shown
that the equations which yield discrete eigenfrequencies are derived
from a certain interference condition of body waves traveling in the
Earth. The equations are expressed in different forms corresponding
to different ray situations in the Earth and they are proved to be
identical with the asymptotic frequency equations obtained in terms
of the normal mode theory. The interference condition thus proved
to be valid then enables us to interpret the free oscillation in terms
of ray theory.

It is shown that the wave conversion of P to Sor S to P at a
boundary in the Earth induces the solotone effect in the distribution
of eigenfrequencies of the modes for a fixed phase velocity.

In Section III, discussion is extended to the Earth in which wave
velocities change continuously as functions of the radius in the mantle
and in the core respectively. We then formally get frequency equa-
tions identical to those for the above homo./homo. case. The validity
of the equations is confirmed by the numerical computation for a
realistic Earth model. Employing these equations, we can easily
evaluate the approximate eigenfrequencies of high radial modes of
spheroidal oscillations of a radially heterogeneous Earth.

I. Introduction

In the past few years some theoretical investigations have been made

on asymptotic properties of free oscillations of the Earth at high frequency
and large angular order [SATO and LAPWOOD (1977a, b), KENNETT and
WOODHOUSE (1978), KENNETT and NOLET (1979), ODAKA (1980b)]. These
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investigations were mainly made on the basis of the normal mode theory.
The principal terms in the asymptotic frequency equations obtained there
should be derived (or interpreted) in terms of ray theory because the
equations are gained under high-frequency approximations. However,
the ray-theoretical approach to the frequency equation of free oscillations
of the spherical Earth has not yet been completely established.

Such attempts for the normal modes of plane stratified media were
made by OFFICER (1951) and TOLSTOY and USDIN (1953). BRUNE (1966)
applied their method to the spheroidal oscillations of a homogeneous spher-
ical Earth. ODAKA (1978) made a similar attempt and he furcher treated
the radial oscillations of two layered Earth. The ray-theoretical method
employed by Odaka is in principle applicable to other more complicated
cases such as the spheroidal oscillations of the Karth consisting of a
homogeneous solid mantle and a homogeneous liquid core (homo./homo.
model). The asymptotic frequency equations for this case have recently
been obtained by ODAKA (1980b) on the basis of the normal mode theory.
They are expressed in different forms corresponding to different ray
situations in the Earth and are denoted in terms of reflection coefficients
and intercept times of relevant P and S rays.

In Section II of this paper we try to construct the frequency equa-
tions for the spheroidal oscillations of the above-mentioned homo./homo.
Tarth in terms of ray theory. Then, the results can directly be com-
pared with the formulas obtained by ODAKA (1980b), which leads to con-
firmation of the validity of the method developed here. This attempt will
serve to make clear the physical meaning of the asymptotic frequency
equations and to interpret free oscillations in terms of the ray theory.
Asymptotic properties of the distribution of eigenfrequencies will be dis-
cussed on the basis of reduced simple frequency equations.

In Section III we try to extend the method developed in Sec. II to a
radially heterogeneous Earth and perform numerical computations to con-
firm the validity of the formulas thus obtained.

II. Frequency equations for the Earth with

uniform mantle and core

2.1. Ray parameter and phase velocity

We define the angles of incidence of P and S rays as 4; and f; re-
spectively as shown in Fig. 1 (subscript ¢=0 referring to the free surface,
i=2 and 1 to the two sides of the mantle/core boundary). Then we have
the following relation connecting Snell’s law (ray parameter; p) and




Ray-Theoretical Approach to Frequency Equations 279

Fig. 1. Angles of incidence of P-ray (solid line) and S-ray (dashed
line) on the free surface and the mantle-core boundary (both
media are assumed homogeneous).

[
Jean’s formula (inverse phase velocity of mormal modes ; 1/e,) as employed
by ODAKA (1980b).

v(=n+1/2)/o=alc,=p=(a/a,) sin 1,=(a/B,) sin f,=b/c
= (bja;) sin 1,=(b/B,) sin fo=(b/a;) sin 4, . (1.1)

Here o is the angular eigenfrequency of a spheroidal mode associated
with the colatitudinal (angular) order number =, @ and b the radii of the
Earth and the core respectively, ¢ the apparent velocity along the mantle-
core boundary, and «;, 8; the P- and S-wave velocities in the i-th medium
(¢==1 and 2 referring to the core and the mantle respectively).
According to whether each of the angles of incidence, 4, f, etc. is
defined as real or complex quantity, we have different ray geometry in
the Earth. We will discuss each case separately in the following sections.

2.2. Case when the angles %, %, %, f; and f, are real

Imagine a ray situation where both P and S rays in the mantle with
a given ray parameter reach the core and they are reflected back or
refracted into the core (only as P rays). In such a case, all the angles
of incidence of the rays in Eq. (1.1) are defined as real quantities.

Extending the idea of ODAKA (1978), we can formulate the inter-
ference condition of body waves equivalent to the steady vibration of the
Barth. The situation is schematically illustrated in Fig. 2. Should the
Earth be subject to free vibration with an angular frequency w, then the
motion at any given point R in the Earth can be expressed as exp (twt)
by taking the amplitude there as unity. If we limit ourselves to a
spherically symmetrical Earth, the amplitude of the vibration at any
point with the same radius and azimuth as the point R can identically
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Fig. 2. Schematic illustration of the interference condition of body
waves in the Earth with uniform solid mantle and liquid core
when all the angles of incidence of the waves, 1y, %1, 73, fo
and f, are real.

be denoted as unity, excluding the dependence on the colatifudinal angle
0. In this sense, all these points are equivalent to the point K. When
we regard the free vibration as the superposition of two traveling waves
propagating in opposite directions (£6) to each other along <he surface
of the Earth, this colatitudinal dependence is simply denoted Ly the mul-
tiplication of the two effects, the amplitude change caused by the geomet-
rical spreading of waves and the phase shift due to the propagation. In
the following discussion, we are only concerned with the disturbance
traveling in a clockwise direction (+6) in the Earth, There will be no
need to take into account the effect of the geometrical spreading factor in
our problem because the effect is common for both types of wave propaga-
tion, the surface-wave type and body-wave type, on the spherical Earth.

Now, denote any point on a P-ray as A and set the amplitude of the
disturbance associated with the P wave at its point as « (the positive
direction of the displacement is defined by an arrow in Fig. 2). Then,
all the points such as A, A, A, that are located at the same radial dis-
tance as point A are equivalent to A and thus the amplitude of the dis-
turbance there can be set in common as . In a similar manner, we put
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the amplitude of an S wave at any given point B as unity (the positive
direction is defined by an arrow in the figure). This standardization of
amplitude is made only for convenience’ sake. Then, at any point such
as By, B, B; equivalent to the point B, the amplitude of the S waves is
given in common as unity. These amplitudes, » and 1, of course result
from the interference of all body-wave phases that contribute to them.
Here, it is convenient for obtaining the amplitudes of the disturbance at
A and B to set the initial points of these interfering waves at those
points that are equivalent to 4 and B. Then, we can formally denote
the amplitudes there as follows, employing the notations similar to the
conventional ones used for body-wave phases read on seismograms (cf.
BULLEN ; 1963).

u=u[pPcP+pPKP+pPKKP+pPKKKP+ -]
+[sPcP+sPKP+sPKKP+sPKKKP -]
+u[pScP+pSKP+ pSKKP+pSKKKP+ -]
+[8SeP+sSKP+sSKKP+sSKKKP-+ -],

1=[sScS+sSKS+sSKKS+sSKKKS+ -]
+u[pScS+ pSKS+pSKKS+pSKKKS-+ «-+]
~+[sPecS+sPKS+sPKKS-+sPKKKS+ -]
+u[pPcS+pPKS+pPKKS+pPKKKS+ -] (2.1)

In the upper formula which denotes the amplitude at A, the first series
represents the contributions from the waves that pass through the points
Ay as P rays, and the second, third and fourth series describe the con-
tributions from the waves that cross the points B,; as S rays, Ay, as P
and B, as S respectively, ¢ being the integers, 1, 2, 3 ete. In the second
formula which is concerned with the amplitude at B, each series denotes
the contributions from the waves of which the initial positions are set at
Byi_y, Ay, By and Ay (1=1, 2, --+) respectively.

. Bquation (2.1) is the formal representation of the interference condi-
tion of body waves equivalent to the steady vibration of the Earth. On
the other hand, that Eq. (2.1) is satisfied by body waves traveling in the
Earth ensures their persistent and steady propagation in it, and thus the
situation is in conformity with the state of free vibration.

It will be easily found that the contributions from the phases con-
tained in Eq. (2.1) are independent of one another and the contributions
from the other phases are all included in them. The simple way of find-
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ing these independent rays is to pick up all the rays that cross only at
their initial points the spherical surface with the same racius as the
reference point A or B (in a given direction). This selectior. criterion
will be valid for other ray situations.

The formal expression (2.1) can be translated into an explicit expres-
sion by considering the effect of reflection and transmission of the waves
at the free surface and the mantle-core boundary and the phase shift due
to the wave propagation. For the sake of simplifying numerical expres-
sions, we imagine the extreme situation that the reference points A4 and
B (and other points A;, B, 4., B, etc. as well) are taken sufficiently close
to the free surface. Then, we get

%"‘uR%Pe_m&P[R »+T5 Tzipe_m_)c"l" Tng;pT;pe'“P‘—l— -]

+R0 e-ZiBP[ ” ]
sp
A RGO RE 4 T2 T 0™ e T2 R, T e et o]
+R236_i(6p+5é)[ ” l ,
1= R0 O R+ T3 The et TRy, Thse™ et «0]
+uR%e77¢] ” ]

+ R,e PO RE 4 T2, T o™ et T2, RY, Thoe™ et «o0]
+uRj e OO ” 1, (2.2)

Here the symbols R, and T, stand for the reflection and trensmission
coefficients respectively and are specified in the Appendix. The phase
terms are given by

=w{(l}/a)—(ad}[c)} ,
0Q=w{(l¥[B)—(adf[c))}, (2.3)
2pc=(l){(lc/a1)_(adc/co)} '_(7[/2) s

where the symbols 1%(=a cos 4—b cos i), I¥(=a cos fy—b cos f), l.(=2b cos %,)
and 43, 4%, 4, denote the length of each ray segment and the correspond-
ing angular distance respectively (see Fig. 2). The first term in each
braces of the above formulas means the phase delay due to the traveling
of a corresponding body-wave phase. The second term means the phase
shift attributable to the difference in colatitudinal coordinates, and the
constant term, z/2 is caused by the passage of the deepest point of a ray
[SHIMAMURA and SATO (1965)].

The infinite series that appears in common in each bracket of Eq
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(2.2) can be evaluated as
1+R},pe'“’_’ch(R}Jpe‘“PC)?—l—(R},pe‘zi’SC)3+
Z(I—R}pe_%‘ﬁc)"l . (2.4)

Then, employing the following symbols

épze—iaﬁ, Es=e'i5@, e, = e—m’ﬁc,
- . (2.5)
0:8—21Pc(1_R1ppe—21Pc)—1 ,
we can simplify Eq. (2.2) as
w= ey (uRS,+ RN RS+ 0T 5, Tp) -+ 8 s(uRs+ RSN RS+ 0 T3, T5,)
(2.6)

1=% RS-+ u RS (R 40 T3, Th) -+ péo( R+ uRy)(Rys+0 T35, Tps) .

Eliminating the parameter » from these equations and using some rela-
tions in Egs. (A.1) and (A.3), we get

(1 - ecR;Jp) -+ éiég(R;)p" ec) - é%R%p(R%p'— ecRgs) 'ﬁ égRgs(Rgx - ecRg)p)
—pi(1—e )Ry Rep+ Ry, R3)=0. (2.7)

The above formulation is made in situations where the reference points
A and B are set very close to the free surface. In another case as shown
in Fig. 2, some additional phase terms appear in the equations. These
terms, however, cancel each other in the process of eliminating the pa-
rameter u and we attain to the same equation as (2.7). Alternatively, we
will be able to set a reference point on a P ray in the core. Then, we
will get one equation from the first instead of the two equations in Egq.
(2.1) or (2.2).
Rewriting Eq. (2.7) by use of Eq. (2.5), we gain

(1@ 2@P+IRPOY | P (o-2GP+0®)_ g=2iPc)
+R%pRES{e"Zi(‘SP‘LP&—e“mé}+R%,,R%,p{e“Zi("Q‘ch)-—e“?i‘sp}
+ (R R+ Rng"I’,s){e““"F*aQ*“—’c)—e'“‘”s"‘s@)}:0 ) (2.8)

This equation is identical to the asymptotic frequency equation of the
spheroidal oscillations of the Earth derived by ODAKA [1980b; Egs. (8.5),
(8.6)] on the basis of the normal mode theory. The agreement of the two
equations ensures the validity of the ray-theoretical method (or the ray-
theoretical interpretation of the free oscillations) developed in this article.

It is convenient for the numerical computation to express Egq. (2.8)
in a form of a real function. This is easily done by multiplying by
exp {i{(6P+6Q~+P,)} and we get
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sin (6P+6Q+P,)— R.,, sin (3P+ 6@ — P,)— R}, R, sin (6P —6Q - P.)
+ R, R3, sin (6P—6Q —P,)—(RyR2,+ R}, R},) sin P.=0. (2.9)

Note that all the reflection coefficients in the above equation take real
values under the present ray situation. This equation yields discrete
eigenfrequencies for a given ray parameter p (or phase velocity co).

It will be an interesting problem to get an equation valid for the
extreme case when ¢,—co. In this case, from Eq. (1.1), we have the ap-
proximations

’ioz 0:@'2: 2:7;1:0 ’ (210)

indicating the radial propagation of all the waves.
Then, the following quantities appearing in Eq. (2.9) are approximated

Lli~a—b=d, 1.~2b,

Arx=4¥>~0, 4. ==,

0P>=h.d, 06Q=k.d, 2P, ~2hb—(n+1)x, (2.11)

0 . 0 ~ 2 1 2
RS, =Ry=R;~—1, R,~=—R},=R{,

0 0 2 2
Rps:Rsp:Rps:Rsp:O »

where h; and k; are the wave numbers of the P and S waves, ¢=1 and
2 referring to the core and mantle respectively. Then, Eq. (2.9) is re-
duced to

sin kod[sin (hody+hid—nz(2)+ R sin (hods— hib+nz[2)]=0. (2.12)

This yields two independent equations and is equivalent to the Eq. (3.15)
of ODAKA (1980a), who derived it by means of an asymptotic expansion
(valid for relatively small angular order n) of an exact frequency egqua-
tion. This fact implies that Eq. (2.9) holds for any values of n (originally
it is expected to be valid for the large value of n).

Here, imagine the ray situation suggested by Eq. (2.10). Then, in
Fig. 2, the points Ay-.s (¢=1, 2, 3,---) and A converge into a common
single point and the points A,’s into the spherically symmetrical point to
it. As for the S rays, the two points B and B, are reduced to one. All
other points become meaningless because the conversion of the waves
from P to S or vice versa does not occur at the core boundary and at
the free surface [see the last relation of Eq. (2.11)]. It is found from
Eqs. (2.9) and (2.11) that the dependence of Eq. (2.12) on the angular
order n comes from the term P, which is related to the phase shift
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caused by the traveling of the P rays across the core.

2.3. Case when the angles 1, 7, f, and f; are real

Imagine the ray situation that the P rays in the mantle do not
reach the core and thus the angle 4, is not defined as a real quantity
(see Fig. 3).

Fig. 3. Schematic illustration of the interference condition of body
waves in the Earth when the angles of incidence of the waves,
%0, %1, Jo and f, are real.

Like in the preceding case, we set the amplitude of the P wave at
any given point A on the P ray as w and that of the S wave at other
given point B as unity. The points A/s and B/s (1=1, 2, 3,--+) in Fig. 3
are taken at the same depth as the reference points A and B and thus
are equivalent to A and B respectively. It will be easily found that, by
help of the selection criterion for independent rays explained in the pre-
ceding section, the interference condition of the body waves can be for-
mally denoted as '

u=u[pP ]+[sP],
1=[sScS+sSKS+sSKKS-+sSKKKS+ -+-] (3.1)
+u[pSeS+ pSKS+pSKKS+pSKKKS+ -],

The first simple relation comes from the fact that there are only two
phases that contribute to the P wave at point A (see Fig. 3).
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Assuming, for sake of convenience, the extreme situation that the
two reference points A and B are taken sufficiently close to the surface of
the Earth, we can readily transform Eq. (8.1) into an explicit form that

u=c"*Fa[uRy,+RS,],
1= Ry P RE o T2, Thie > et TE Ry The™ et -]
+uR%e*Y[ ” 1, (3.2)

where the phases 6@ and 2P, are defined in Eq. (2.3) and P, is given by

2P = w{(lp/a) —a(dyleot —(x[2) , (3.3)

Here the symbols ,(=2a cosi,) and 4, mean the length of a P-ray seg-
ment in the mantle and a corresponding angular distance. The physical
meaning of each term is similar to that explained in the preceding section.

The infinite series in Eq. (3.2) can be simplified with the help of Eq.
(2.4). Then, eliminating the parameter u, we get

{1— epR%p_ e.Rpp+ epecR%pRlpp} —&(Ryp—ep) {Ris—e Ry 3 — THT5:1=0,

(3.4)

where
ep:e—QiPa . (3.5)

Other symbols & and e, are defined in Eq. (2.5). Further manipulation
with the use of some relations in Egs. (A.1) and (A.3) yields

1——R%pe"2”’a—R},pe‘2“°C+Rise‘z“P“sQ)“Ri,pe'z“”a*”““w)

— R, RYemH0 4 RY, R0 e PO RY R 07 P 0= 0., (36)

s

This is identical to the Eq. (9.5) of ODAKA (1 980b), the asymptotic frequency
equation obtained in terms of the normal mode theory. This success
again proves the validity of the present ray-theorstical approach to the
frequency equation of the free oscillations of the Earth.

It is found from Fig. 3 that there exist no actual rays corresponding
to the reflection coefficient Rj, in Eq. (3.6). This originally eppears in
Eq. (3.4) in the form of RL,Ri—T:Ths [see Eq. (A.3)]. Then we have
actual rays corresponding to each of these coefficients.

In the present case, all reflection coefficients except for Rj;(= R
take complex values and thus, for the convenience of numerical computa-
tion, we define their real parts and imaginary parts separately as given
in Appendix (A4). Then, multiplying Eq. (3.6) by exp {i(Pe+tP.+3Q)},
we get
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Ricos 1, (I3 R3) sin X, — R} cos X,— (R2— R2) sin %,
+ Ry R cos X;— R, (R3— RY) sin 1;— RY, R} cos X+ RS (R3+ R sin X,=0,

8.7
where

(3.8)

2.4. Case when the angles 4, f; and f; are real

Imagine the ray situation where no P rays are seen in the mantle
for a given ray parameter as shown in Fig. 4. Then, the angles 4, and
1, are defined as complex quantities and the P waves in the mantle are
permitted to exist only as inhomogenecous waves (BREKHOVSKIKH ; 1960),

which contribute nothing to the formation of other body-wave phases in
the ray theory.

Fig. 4. Schematic illustration of the interference condition of body
waves in the Earth when the angles of incidence, 41, fo and f»

are real. The points B, B;, B, etc. are set at the same depth
in the mantle.

Set the reference point B on a S ray in the mantle where the ampli-

tude of the S wave is standardized as unity. Then, the interference con-
dition is formally denoted as

1=[sSeS+sSKS+sSKKS-+sSKKKS+ ---]. (4.1)
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This is readily translated into

1:Rgse‘2iaé[R§s+ ngp T}lme—ﬁiﬁc_,_ Tssz;op ngse_“pc—*— "'] . (42)

Further reduction is possible with the aid of Egs. (2.4) and (A.3), and
we get
1—R;‘Upe'ziﬁc—RgsRise'mQ+R23R2ppe'2i(f"+5@)=0 . (4.3)

This is identical to the Eq. (10.3) of ODAKA (1980b). The coeflicient R2,
in Eq. (4.3) arises from the same circumstances as mentioned in the pre-.
ceding section.

In Fig. 4, we set the reference point B on the S ray in the mantle.
Alternatively, we can set it on the P ray in the core. Then, correspond-
ing to Egs. (4.1) and (4.2), we get equations different in appearance. But
the final equation is shown to be equivalent to Eq. (4.3).

It will be convenient for numerical computation to express Eq. (4.3)
in the form

{RIRI— Ry R3-+ R3)} cos (P .+ 6Q)+ {RYR3+ R+ RIRY sin (P, +6Q)
— {RIRi— Ry Ri— R} cos (Pc— Q)+ {RY(R3— RY)-+ RIRS) sin (P.— Q) =0,

(4.4)
where the coefficients R}, R} etc. are defined in Eq. (A.4).

2.5. Case when the angles %, %, f, and f, are real
Imagine the ray situation that both P and S rays in the mantle with
a given ray parameter strike the core boundary but are totally reflected
there (see Fig. 5). This is the special case of Sec. 2.2 in appearance.
Because of the simple ray-geometry, we ecasily find that there are

Fig. 5. Schematic illustration of the interference condition of body
waves in the Earth when the angles of incidence, 7o, %2, fo and
f2 are real.
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only four kinds of independent rays that contribute to the interference

condition of body waves. Then, we get the formal equation
u=u[pPcP+pScP]+[sPcP+sScP], 61)
' 5.1
1=[sScS+sPcS1+u[pSeS+pPcS].

The right-hand sides of the above equations consist of the first terms in
the brackets of Eq. (2.1) and thus, following the similar steps to (2.2)
through (2.8), we get

1= (R, By pe ™7 + Ry, R0 907 — (RY, R, 9%+ R, R0 7)™ 00
(R p B — R R, (RS, R — R}, RE o 0F +00 = (5.2)
which, with the aid of Eq. (A.3), is further reduced to
14 Ry ,e 20PH0O ) p2 o-200P _ p0 P o-2i0Q
—(RpsR3p+ Ry, R, )e ™' 90F 1@ =0 (5.3)

This equation is identical to the Eq. (11.5) of ODAKA (1980b) [combined
with Eq. (8.6)]. The reflection coefficient R}, in Eq. (5.3), to which we

do not have any corresponding rays, comes from the substitution of it for
R}, Ry — Ry R:, in Eq. (5.2) [see Eg. (A.3)].
A further reduction of Eq. (5.3) yields

(Ri+ RY) cos (0P+Q)— B3 sin (3P +6@)+ RY,(Ri— R3) cos (6P —5Q)
— R}, Risin (6P—6Q)+ (1/2)(Ry, Ri— R, R) =0, (5.4)

where all the coefficients are defined as real quantities.

2.6. Case when the angles 1, f, and f, are real

Imagine the ray situation where P rays in the mantle do not reach
the core boundary while the corresponding S rays do and are totally re-
flected there (see Fig. 6). This is the special case of Sec. 2.3 in appear-
ance, and we immediately obtain the formal equation as

u=u[pP]+[sP], (6.1)
1=[sSeS]+u[pSeS].
Then, by following the same steps from Egq. (3.1) to Eq. (3.6), we get
e R i - R ] (6.2)

This is identical to Eg. (12.2) of ODAKA (1980Db).
Further simplification is possible by agrecing that [R|=1 and



Fig. 6. Schematic illustration of the interference condition of body
waves in the Earth when the angles of incidence, %o, fo and f»
are real.

9o(=RS;) is real, and we attain
€08 (Po+0Q+¢e)— RS, cos (P— 3@ —e,) =0, (6.3)

where the phase e, is defined by
R%,={Ri—U(R}-+ RV {Ri+-i(Ri+ i)} =e "2 (6.4)

The coefficients R?, RI etc. are given in Appendix (A. 4).

Equation (6.3) is similar in form to the one of Eq. (2.12). The asymp-
totic behavier of eigenvalues in this form of equation has been inves-
tigated in detail by ODAKA (1980a), which shows the systematic variation
called the “solotone effect”. Hence, we can readily conclude that the roots
(eigenfrequencies) of Eq. (6.3) show the same kind of systematic variasion
in their distribution for a fixed ray parameter. The solotone effect in the
case of Eq. (2.12) is caused by the existence of the internal discontinuity
surface, that is, the core boundary where the transmission and reflection
of the P waves, in other words the wave division, occurs. In the present
case, a similar phenomenon does not occur at the core boundary but the
wave conversion of P to S or S to P arises at the free surface, which
induces the solotone effect.

2.7. Case when the angles f; and f, are real.

Imagine a very simple ray situation as shown in Fig. 7, which cor-
responds to the case where the S rays in the mantle in Fig. 4 (Seec. 2.4)
are totally reflected at the core boundary. Then we get the formal ex-
pression of the interference condition as

1=[sSeS]. (7.1)

This is explicitly denoted as
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Fig. 7. Schematic illustration of the interference condition of body
waves in the Earth when the angles of incidence f, and f, are
real.

1= R, Rie™%2, (72)

which is identical to the Eq. (18.2) of ODAKA (1980Db).
Now that |Rl]=1 and |R%|=1 in the present case, Eq. (7.2) can be
reduced to

coS (5@"50"’“82):0 » (7.3)
where the phase &, is defined by Eq. (6.4) and & by
R};=—(R{+iR)[(RI—iRy) = —e" , (7.4)

From Egs. (2.3) and (7.3), we can directly obtain the ray-theoretical (or
asymptotic) eigenfrequencies as

SFi= Q205+ 1[2)+ (e—e) [} {15 p2) — (ad[co)} (7.5)

where 7 is the integer. These frequencies are distributed with equal in-
tervals for a given ray parameter (or phase velocity). Unlike the preced-
ing case (Sec. 2.6) the wave conversion does not occur at the free surface
in this case, and thus the solotone effect is not induced in their distri-
bution.

2.8a. Case when the angles i, and f; are real

Imagine the ray situation shown in Fig. 8A. In this case (and in
the next case as well), the core is ray-theoretically not concerned with
the problem at all. Hence we have no differences between the present
model and the homogencous Earth model.

It is easy from Fig. 8A to formulate the interference condition for-
mally as
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Fig. 8. Schematic illustration of the interference condition of body waves in the
Earth when the angles of incidence 7, and fy are real (case A) and tke angle f,
is real (case B). A solid line denotes a P-ray and a dashed line an S-ray. The
points A and A; are associated with the P-ray and B and B; with the S-ray.
The two points in each group are set at the same depth in the mantle.

w=u[pP]+[sP],
1=[sS]+u[pS].

(8.1)

Imagine, for simplicity’s sake, the limiting case where the reference
points A and B tend to the surface of the Earth. Then, Eq. (8.1) can
be translated into

u=[uRy,+Rle™ e,
- (8.2)
1=[R};-+uRjJe e,
where the phase term P, is given in Eq. (3.3) and Q. by
2Q .= 0{(ls/B)—(ad.[co)} —(=[2) . (8.3)
By eliminating the parameter « from Eq. (8.2), we get
1—R°we“2“f’a~R§se““@a+e'”"3a+éa)=0 . _ (8.4)

This is identical to the Eq. (14.4) of ODAKA (1980b) and to the asymptotic
frequency equation for the uniform Earth as well.
Multiplying Eq. (8.4) by exp {i(P.+®Q.)}, we get

c0s (Po+Q4)— RS, cos (P,—@Q0)=0, (8.5)

where the reflection coefficient Rj, is a real quantity. This equation is
similar in form to Egq. (6.3), and thus we can expect the solotone effect
in the distribution of its solutions (eigenfrequencies) for a given ray
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parameter. In this case it is caused by the conversion of the P and S
waves at the free surface of the Earth like in the case of Sec. 2.6.

Here we will give some comments on the parameter . This is
generally defined as the amplitude of a P wave when that of an S wave
is standardized as unity. A ray-theoretical frequency equation is obtained
by eliminating % from two simultaneous equations denoting the inter-
ference condition of body waves. Each solution (eigenfrequency) of that
equation in turn assigns the value of u through either of these two equa-
tions. This fact indicates that each mormal mode is connected with the
P and S waves with a specific amplitude ratio and apparent velocity (in
addition there of cource are modes with which only S waves are con-
cerned). Then, it is natural to consider from the viewpoint of ray theory
that the radial dependence of a normal mode vibration (radial eigenfunc-
tion) results from the interference between the upgoing and downgoing
components of these specific body waves. In fact, ODAKA and USAMI
(1978) confirmed the close agreement between the surface displacements
calculated for the incidence on the free surface of plane P and S waves
with the specific amplitude ratio and angle of incidence and the surface
values of the radial eigenfunctions (displacement) for the spheroidal oscil-
lations of a homogeneous Earth.

2.8b. Case when the angle f; is real
The ray situation is shown in Fig. 8B, and we immediately get the
formal equation as
1=[sS], (8.6)

which is explicitly represented as
1:Rgse-2iéa, , (8.7)

where the phase term @, is defined in Eq. (8.3). This equation is iden-
tical to the Eq. (15.2) of ODAKA (1980b). Noting that |Ri|=1, we can
reduce Eq. (8.7) to

cos (Q,—e)=0, (8.8)

where the phase ¢, is defined in Eq. (7.4).
The solutions (eigenfrequencies) for the above equation can directly
be obtained as

Fi={d— 1[4+ (/o [{/B)— (ad[cr)} (8.9)

where j is the integer. Hence the frequencies are equally spaced for a
given ray parameter and thus, unlike in the preceding case, we cannot
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expect the solotone effect in their distribution. This is because no con-
version of the waves occurs at the free surface.

2.9a. Case when the angles %, 7, and f; are real
2.9b. Case when the angles 7, and f; are real

2.9c. Case when the angle 4, is real

Let us suppose that the P-wave velocity in the core is lower than
the S-wave velocity in the mantle. This Earth model is unrealistic but
possible theoretically and experimentally. Then there exist another three
cases as shown in Fig. 9(A), (B) and (C) respectively. In the first two
cases, we have the ray propagation in the mantle and in the core inde-
pendently for a given ray parameter and, in the third case, we have only
the P wave propagation in the core.

The ray geometries in the mantle of the cases (A) and (B) have
already been met in Sec. 2.8a and 2.8b respectively and they were dis-
cussed there. As for the P-wave propagation in the core, which is
similar to the S-wave propagation in the mantle treated in Sec. 2.8b, we
get the same form of equation as Eq. (8.7), that is,

1— R e %Pe=0, (9.1)

where the phase term P, is the same as that defined in Eq. (2.3). This
equation is identical to the one of Eg. (16.8) of ODAKA (1980b) who derived
it on the basis of normal mode theory.

Noting that |R},/=1 and putting

R, ={(Ri—R})-+iR3}[{(Ri— R)—iRg=c"", (9.2)

we can simplify Eq. (9.1) as

Fig. 9. Schematic illustration of the interference condition of body waves in the
Earth when the angles of incidence %o, o and 4, are real (case A), the angles
fo and 4, are real (case B) and the angle 7, is real (case C).
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sin (P,—¢)=0. 9.3)
Hence, its solutions (eigenfrequencies) are given by

Fi={3+ Q)+ e/ [{(Lefa)—(adc[co)} (9.4)

where j is the integer. These frequencies are distributed with equal
spacing for a given ray parameter. In the present case, the waves are
totally reflected at the boundary and, moreover no conversion of the
waves occurs there like in the previous cases (Sections 2.7, 2.8b).

The solution (9.4) yields the approximate eigenfrequencies of the
spheroidal oscillations of the Earth that are attributable to multiple total
reflections of the P waves in the liquid core. We will be able to find
similar wave propagation in low velocity zones in the upper mantle and
in the ocean where the trapping of the elastic waves is expected to occur.

2.10. Numerical computation of eigenfrequencies

It has been proved in previous sections that a certain interference
condition of body waves reflected multiply in the Earth leads to the ray-
theoretical frequency equations that are identical to the asymptotic forms
of the exact frequency equation of the free oscillation of the Earth.
There is no doubt that those equations generally yield good approxima-
tions to true eigenfrequencies when they are applied to the modes of
very high frequency and large order numbers. It is, however, difficult
to estimate their accuracy over a wide range of the modes. The easy
way to do this is to compare the two kinds of solutions, the exact and
approximate ones, by numerical computation.

Here we assume an Earth model employed by SATO and USAMI (1964),
which is defined by the constants

a=6370km, b=3470km, o./p,=2.2,
a;=10.0, a,=11.55, p,=6.667 (km/sec).

The procedure for computing ray-theoretical (or asymptotic) eigenfre-
quencies is as follows. First, we set the value of f, the angle of in-
cidence of an S wave on the surface of the Earth. Then, other angles
of incidence, 7, %, ete., ray parameter and phase velocity are reduced to
known quantities through Eq. (1.1). Then according to whether each of
these angles of incidence is real or mnot, we can determine which ray-
theoretical equation is available for the present ray situation among Egs.
(2.9), (8.7), (4.4) etc. Solving this equation numerically, we get a sequence
of discrete eigenfrequencies for a fixed wvalue of f; (or ray parameter p).
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The corresponding order numbers are in turn determined from Egq. (1.1),
which do not generally take integral values. We repeat this procedure
for a new value of f;, When an increment 4f, is taken sufficiently small,
we get a nearly continuously varying frequency-order number curve for
each radial mode.

The solid curves in Fig. 10 show the eigenfrequencies thus obtained
as plotted against the fractional order number n and joined by solid lines.
It is found that these frequencies all pertain to radial higher modes (1=2),
1=1 denoting the fundamental modes after SATO and USAMI (1964). Cir-
cles mean the solutions of the exact frequency equation [IIq. (2.4) of
ODAKA (1980b)] computed for the order number n=1, 2, 5(5)30, 40. As
for the modes 7=1 and 1/, computation is made for every =, where =1,
means the modes associated with boundary waves between the mantle
and the core [SATO and USAMI (1964)]. The solutions for these modes can
not be obtained in terms of the ray-theorctical method as leng as we
consider only realistic rays. This does not mean that the ray-theoretical

Q
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EIGEN-FREQUENCY

Spheroidal Oscillation
a Homogeneous Mantie and Core

0 et I 1 1 1 —1 1
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Fig. 10. Eigenfrequencies obtained from ray-theoretical frequency equations (solid
curves) and from the exact frequency equation (circles, only for a limited
number of angular orders). The symbol 7 means the radial mode number,
2=1 being the fundamental modes. A dashed line denotes a line of a constant
phase velocity.
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interpretation of these modes is impossible. This kind of problem will
not occur in the case of torsional oscillations.

It is found from the figure that the agreement between the exact
solutions and approximate solutions is, in general, very good over the
whole range of ¢ and n exhibited here (except for the modes ¢=1 and 1’).
The excellent agreement observed for small order numbers (n=1, 2, 5 etc.)
proves the validity of Eq. (2.9) for such modes, as suggested in Sec. 2.2.

Discontinuities in the frequency-order number (f-n) curves (solid
lines) occur when they cross the dashed lines which represent the lines
of certain constant phase velocities (the values of the corresponding in-
cidence angle, f, are given in the figure) and separate the different ray
situations in the f-n space. These five regions from upper left to lower
right correspond to those shown in Figs. 2, 3, 6, 8A and 8B respectively.
The above discontinuities result from the fact that the different equa-
tions are employed in the calculation of the frequencies in respective
regions, and thus we can state that the ray-theoretical frequency equa-
tions do not, in general, give good approximations for nearly critical ray
situations (any one of the incidence angles, 1, 1, etc., approaches the graz-
ing angle, 90°).

III. Frequency equations for a radially heterogeneous Earth

3.1. Frequency equations

In Sec. II, we investigated in detail the ray-theorctical approach to
the frequency equation of the spheroidal oscillations of the Earth with a
uniform solid mantle and a uniform liquid core. The method developed
there is entirely available for a more realistic Earth in which P- and S-
wave velocities vary continuously with the radius.

Figure 11 illustrates schematically the interference condition of P and

Fig. 11. Schematic illustration of the interference condition of body waves in the
Earth with a continuously varying veloeity structure with the radius. Case A is

where the angles of incidence 7, and Jo are real and Case B is where the angle f,
is real.
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S waves traveling in a radially heterogeneous Earth. Here the two points
A and A, which are taken at the same depths on the P rays are equiv-
alent to each other as explained in Sec. 2.2. The points B and B; on
the S rays are in a similar situation. Then, the discussion made in Sec.
2.2 still applies to the present case, and we get the following formal
equations for Case (A),

u=u[pPl+[sP],

1=[sS]+u[pS],

(1.1)

and for Case (B),
1=[sS]. (1.2)

These equations are the same as Egs. (II. 8.1) and (I1. 8.6) respectively
and are, like in the previous case, transformed into

u=[uR},+ Rip] g %Fa

1=[R%+uR%] e %,

(1.3)

for Case (A), and
1=R%e "Q“ (1.4)

for Case (B). The reflection coefficients at the free surface can be defined
in a similar manner to the homogeneous case. The phase terms P, and
Q. are also given in similar forms to Egs. (IL. 3.3) and (IL. &.3) respec-
tively. However, in the present case, the rays do not, in general, make
straight lines, and thus the terms related to the intercept timsz (the first
two terms in these equations) have to be defined in integral forms along
the curved P and S rays respectively, which can further be transformed
into integrals with respect to the radius ». Consequently, we get

op _20)8 (1)) (s = p i dr— (x[2) |
(L5)
2@a=2w§ (1) Boi— P 2 — (z[2)

where a)(r) and By(r) mean the P- and S-wave velocities in the Earth
rospectively, and 7, and 7, the radial distances from the center of the
Earth to the deepest points (turning points) of the P and S rays specified
by a given ray parameter p respectively.

The same manipulation as developed in Sec. 2.8 leads to

c0s (Po+Q4)— RS, cos (Po—Q4)= (1.6)
for Cose (A), and
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cos (@,—e)=0, (1.7)

for Case (B), where &, is defind in the same relationship as in Eq. (IL
7.4). KENNETT and WOODHOUSE (1978) have obtained an equation equiv-
alent to Eq. (1.6) on the basis of the asymptotic theory for the free
oscillations of the Earth. It is of interest to point out the fact that in
our theory, when the parameter u is given (for a fixed value of the ray
parameter), the phases P, and @, are reduced to known quantities,
whereas in their theory, when the mode solution U(a)/V(a), the ratio of
radial to tangential surface displacements, is given, their functions cor-
responding to P, and @, are reduced to known quantities. This fact
reveals a close connection between the two quantities, » and Ula)/V(a),
as discussed in Sec. 2.8a.

The solutions of Eq. (1.7) can explicitly be obtained as, corresponding
to Eq. (II. 8.9),

Si={G— 1) +(eo/m)}/(21) (1.8)

where 5 is the integer and X, is given by

n=\" apelpr—pyar. (1.9)

In the above discussion, we have presupposed an Earth without a
discontinuity. Next, we assume an Earth consisting of a non-uniform
solid mantle and a non-uniform liquid core, in each of which the wave
velocities vary continuously with the radius. The above equations are
still applicable to a ray situation in which neither the P or S rays in the
mantle reach the core boundary. In other cases we have to develop the
same discussions as in Sec. 2.2 through 2.7. Then, we are sure to be led
to formally identical frequency equations to those obtained there. The
only difference is that the phase terms in the equations have to be defined
in integral forms as, corresponding to Eq. (II. 2.3),

oP=a\ (Ar){(rjay—p)edr,
0G0\ (1r)(rpr—pyedr, (110)

2P, =20\ (Lr){(rfar)— v} dr—(z[2),

where a,(r) and a.r) are the P-wave velocities in the core and mantle
respectively as functions of the radius, B.(r) the S-wave velocity in the
mantle, ¢ and b the radii of the Earth and the core and ». is the radial
distance from the center of the Earth to the deepest point (turning point)
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of the P ray in the core.

Once the phase terms are provided in the integral forms as in Egs.
(1.5) and (1.10), all the frequency equations that are obtained in Sec. II
become applicable for the Earth with a radially heterogeneous mantle
and core.

3.2. Numerical computation of eigenfrequencies

For the ray-theoretical approach to be valid for the wave propagation
in a non-uniform elastic medium, it is required that the relative change
of the elastic parameters is very small over a wavelength. Then we can
transform the general equation of motion in the elastic medium into the
so-called wave equation [e.g., BEN-MENAHEM (1960)], which will be further
reduced to the eikonal equation yielding the fundamentals of ray theory
[e. g., OFFICER (1958)]. From a practical point of view, however, it is
convenient to execute a numerical computation for rough estimations of
the accuracy of the ray-theoretical frequency equations. Here we do the
computation for two Earth models with realistic mantle structures by
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Fig. 12. Eigenfrequencies obtained from the ray-theoretical frequency equations
(solid curves). The velocity structure of the Earth is given in the irset where
the uniform solid core is assumed. Circles denote the mode solutions computed
by means of the matrix method. A dashed line means a line of z constant
phase velocity.
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restricting our interest to the modes in a relatively low frequency range.

Figure 12 exhibits the frequency-order number curves for the Earth
consisting of a solid mantle of Model 1066A [GILBERT and DZIEWONSKI
(1975), with a slight modification] and a solid uniform core. The velocity
structure is shown in the inset. This model is designed so that it con-
tains mno first order discontinuity. Hence we can compute all the ray-
theoretical frequencies on the basis of the two simple equations, (1.6) and
(1.7). 'Then, following the procedure similar to that mentioned in Sec.
2.10, we get the solid curves in the figure. For reference, the lines of
some constant phase velocities are denoted by the straight dashed lines
(the values of the corresponding incidence angle, f;, are given in the
figure). Equations (1.6) or (1.7) are employed according to whether or not
fo is smaller than 38.4°. The symbol 4 signifies the radial mode number,
4=2 being the first higher modes. As in the previous case (Fig. 10), the
curve for the fundamental modes is missing.

Circles denote the eigenfrequencies computed in terms of the matrix
method [ODAKA (1980a)]. Then the model was approximated by the stack
of 92 uniform spherical layers in welded contact. These solutions stand
for the exact eigenfrequencies and are obtained only for a limited number
of modes. Generally speaking, the agreement between the two kinds of
solutions is very good and, in most cases, the differences are within 1.5
percent.

An attempt to obtain eigenfrequencies on the basis of an asymptotic
frequency equation has already been made by PEKERIS (1965) for the
torsional oscillations of the Earth.

Here it should be noted that the ray-theoretical method requires only
the velocity distribution in the Earth while the method based on the
normal mode theory requires both velocity and density distributions (in
the above case, we assumed the density distribution analogous to that of
Model 1066A). This point has been brought out by PEKERIS (1965) and
NOLET and KENNETT (1978) as the asymptotic property of the normal
modes.

The next numerical example is concerned with a more realistic Earth
in which the velocity structure is given by the Gutenberg model [see the
inset in Fig. 13 or in more detail USAMI et ol. (1965)]. The computation
is made on the basis of the equations derived in Sec. II [Egs. (II. 2.9),
(I1. 38.7), (II. 4.4) etc.]. The phases are evaluated in terms of Egs. (1.5)
and (1.10). We then overlook the effect of the reflection of waves at the
Moho discontinuity and the inner core (liquid) boundary. The density
ratio at the mantle-core boundary is taken from the Bullen A’ model,
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Fig. 13. Eigenfrequenéies obtained from the ray-theoretical frequency equations
(solid curves). The velocity structure of the Earth is given in the inset.
Circles denote the mode solutions computed by means of the matrix method.
A dashed line means a line of a constant phase velocity.

which is required for the computation of the reflection coefficients there.
The eigenfrequencies thus obtained are shown by solid curves in Fig. 13,
where 7 is the radial mode number (:=2 being the first higher modes).
Dashed lines denote the lines of certain constant phase velocities (the
values of the corresponding incidence angle, f;, are given in tke figure),
which separate the different ray situations in the f-n (frequency-order
number) space. The five regions from upper left to lower right corre-
spond to those shown in Figs. 2, 3, 6, 8A and 8B respectively. Discon-
tinuities in the solid curves on both sides of the dashed lines suggest the
invalidity of the ray-theoretical frequency equations for nearly critical
ray situations.

Circles represent the mode solutions computed in terms of the matrix
method. In applying it, we have substituted the mantle and the core by
43 and 27 homogeneous spherical layers respectively and assumed the
Bullen A’ model as the density distribution in the Earth. They are
obtained only for a limited number of modes. But the agreement between
the ray-theoretical solutions and mode solutions are, in general, very good
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and the differences are in most cases within 1.5 percent.

In view of the satisfactory result attained in the above two numerical
examples, we can positively state that the ray-theoretical frequency equa-
tions are applicable for a radially heterogeneous Earth. These equations
are very simple to express, and thus it is quite easy to obtain approximate
spheroidal eigenfrequencies of a realistic Earth. Equations (II. 2.9) and
(II. 3.7) are especially applicable with comparatively high accuracy, because
these equations are concerned with high radial modes with high phase
velocities and the effect of Moho discontinuity is small while the effect
of the mantle-core boundary is rather great. As for relatively low radial
modes with large order numbers, the effect of the Moho discontinuity will
not be very small and thus the equations obtained in this paper will not
be so effective. Hence it is desirable for such modes to construct ray-
theoretical frequency equations anew by allowing for the effect of a
solid-solid interface.

IV. Summary

The derivation of frequency equations in terms of ray theory has
been accomplished for the spheroidal oscillations of the Earth consisting
of a uniform solid mantle and a uniform liquid core. The formulation
was made on the basis of a certain interference condition of body waves
subjected to multiple reflections in the Earth and it is shown that the
equations thus obtained are identical to the asymptotic frequency equa-
tions derived in terms of the normal mode theory. Then, by virtue of
the interference condition thus proved to be valid, we can interpret a
free oscillation (eigenvibration) of the Earth from the viewpoint of ray
theory as; it is a state in which the amplitudes of P and S waves in-
herent in respective modes are kept constant at any given depth in the
Earth, and the numerical formulation of this situation (or the condition
which ensures this situation) is nothing but a frequency equation.

The wave conversion of P to S or S to P at a boundary in the Earth
induces the solotone effect in the distribution of eigenfrequencies of the
modes for a fixed phase velocity.

The ray-theoretical method developed above is also available for the
Farth of which elastic parameters vary continuously as functions of the
radius in the mantle and in the core respectively. Then we get formally
identical frequency equations to those for the previous homo./homo. case.
The validity of the equations is confirmed by the numerical computation
for a realistic Earth model. Employing those equations, we can evaluate
with great ease the approximate eigenfrequencies of the spheroidal oscil-
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lations of a radially heterogeneous Earth. The equations then will be
more effective for high radial modes with small angular orders.

In view of the present satisfactory results, we can state that the
ray-theoretical approach to the frequency equations of free oscillations of
a spherical Earth has in principle been established in this paper. This
method will be applicable more easily to torsional oscillations because only
S waves are concerned with the problem and no conversion of the waves
occurs at boundaries in the Earth.

Recently, some attempts have been made to apply the asymptotic
frequency equations of free oscillations to the inversion problem to infer
the velocity structure of the Earth from free oscillation (or dispersion)
data [KENNETT and WOODHOUSE (1978), BRODSKII and LEVSHIN (1979)].
We will make a similar attempt in a future paper on the torsional oscil-
lations by taking into account the effect of Mono discontinuity.
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Appendix
Reflection and transmission coefficients

If we suppose that a plane P or S wave is incident on a plane bound-
ary between two homogeneous media, then we can get the amplitudes
of reflected and refracted waves with ease by use of the conventional
method [e. g., EWING et al. (1957)]. Here we are interested in a free solid
boundary (the free surface of the Earth) and a solid-liquid interface (the
mantle-core boundary).

Reflection and transmission coefficients are defined as the amplitudes
of displacement of reflected and refracted waves as against the unit am-
plitude (in displacement) of an incident P or S wave on a boundary. In
Fig. A are shown the notations of the coefficients by R, (reflection) and
T3, (transmission) and the positive directions of displacement of respective
waves are defined by bold arrows. Solid and dashed lines denote P and
S rays respectively. The two media, 1 and 2, correspond to the core and
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Medium 2
(solid)

Tig. A. Reflection and transmission coefficients defined for plane P-
and S-wave incidence on the plane boundaries, free surface and
mantle-core boundary, which are shown by curved surfaces for
convenience of comparison with the spherical Earth.

the mantle respectively and, for sake of convenience, those boundaries are
delineated as curved surfaces. The numerical superscripts, 0, 1 and 2,
associated with the coefficients refer to the waves incident upon the free
surface and upon the mantle-core boundary from inside the core (medium
1) and from inside the mantle (medium 2) respecsively. Angles of in-
cidence (reflection, refraction) are written as 4, (subscript ¢=0, 1, 2) for
the P waves and f; (1=0, 2) for the S waves. :
The density, rigidity, P- and S-wave velocities are noted as pi, fi, @
and B; respectively (¢=1 and 2 referring to the medium 1 (core) and the
medium 2 (mantle) respectively). Then we get the following formulas.

R} p= R, =[—{(co/ B —2F+4€,l/ 45,

R = —(as/B:)-4&o{(co/ B — 2} 4y

RSy = (Bofats) - dpo{lcof Bo)*— 2 45 ,

dy={(cof Bl — 28+ 4&a10

Ry = {po[—{(c] o) — 2 -+ 4Em:l + i’ o)} 4
R = {pof [ — {(c]Bo)*— 22+ 4&ms)— p.£A S’ B} 4s
R}, = { [ {(c]Bof— 21+ 4&amp] — p:Ealc*[ B2} 4
R = (as] Bo) - Ao Eal(c] BV — 2}/ s,

R = —(Bafats) - 4o mad(c] B — 2}/ 4,
T2,=(arfa,) - 2p:E L] B {(c/ B — 2}/ 4,
T=(Bofe)- 4pfmle] o[ s,
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Tpp= (“1/“2) : 2‘015102{(0/.32)2—2}/4’2 s
Tpe=— (allﬁz) . 4.01515202/42 ’

dy= {ﬁ2$l[{(0/482)2_2}2+ 452%]’*‘!7152(02/,82)2} s (A-l)
where

§=Viafa)—1, &=v(ay—1, &=+(c/a)—1,
no=V{c/BF—1 , p=~{c[B)—1, (A.2)
Co=a,/sin 4= B,/sin f;,
c=a,[sin i,= Byfsin fi=ay/sin 1, .
The coefficients in Eq. (A.1) are related to one another with the relations,
(Ryp)'— Ry, R5p=1,
Ry Rio— Ry RSp= Ry
Ry Tos— R Tip="Tjs
R Top— Ry Th=—"Th»,
Rop Ry — T3 T =R, (A.3)
Ry Ry — T35, T =13, ,
Ry Rip— T Thp=R3p,
RopRos— T5p Ths=Ris
TopTo0— Tos T3=(1+ Rpp)(1—Rj}y) .

The coefficients in Eq. (A.1) are not always defined in a real domain
when anyZoneTof the angles of incidence 4, 7, etc. takes a complex value.
Hence we factor them into several terms and define the following coeffi-
cients which take real values.

Ri={(co/poy'—2}*, Ri=4l&m,

Ri=wlé{(c[g)—2, Ri=4p.lé&my,

Ri=p/|&l(c]B.), (A.4)
Ri=(as/fa)- 4 1:l6:6{(c/ o) — 2},

Ri=(Bola) - 4 al€mal{(c/ By —2} .
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