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Abstract

Steady-state convection currents of an incompressible New-
tonian fluid of very high viscosity in a non-rotating spherical-
shell model of the earth’s asthenosphere are solved, using the
spherical surface harmonic representations of the temperature
and fluid velocity fields. The gravity anomaly related to the con-
vection-induced density change is also expressed in a spherical
surface harmonic series. The gravity anomaly thus calculated is
compared with the gravity data obtained from satellite orbit
analyses so as to maximize the mutual correlation coefficient be-
tween the two gravity anomalies.

As a result, the gravity anomaly calculated with a uniform
viscosity of 8.5x10 N.s.m™2 for an asthenosphere model having a
thickness of 300km or 1.5x10* N.s. m~? for one having a thickness
of 400km is found to be consistent with the satellite-derived gra-
vity data. It is demonstrated that both gravity anomalies match
each other up to some detailed features, for example, the positive
anomaly on the Mid-Atlantic Ridge, the negative one widely
located in the Mid-Asian continent and the Indian Ocean, ete.

1. Introduction

The theory of convection currents with its application to two-dimen-
sional fluid mantle models has been investigated by many authors for
the purpose of explaining the geophysical facts observed along mid-ocean
ridges and deep-sea trenches. For example, McKENZIE ef al. (1974) have
shown that, based on results of two-dimensional numerical experiments,
the gravity-heat flow relationship obtained in the Mid-Atlantic regions is
explainable by considering the contribution from the deformed surface.



654 Y. HAGIWARA P

Recently, KONO et al. (1979) have investigated the time-dependent be-
haviors of two-dimensional fluid models with variable viscosity in rela-
tion to the heat flow profile observed near the East-Pacific Rise.

The two-dimensional approach, however, is essentially inappropriate
for understanding the global geophysical phenomena in the spherical
earth. The model to be adopted for investigating convection in the earth’s
asthenosphere is a spherical shell, because it can be well approximated
to the shape of the real asthenosphere, except for the equatorial bulge
and the boundary undulation. In this case, the convecting fluid behavior
can be described in mathematical expressions of fluid dynamical equations
using spherical surface harmonic functions.

Similarly to the ideas of CHANDRASEKHAR (1961) and RUNCORN (1964),
this paper treats steady-state convection currents of an incompressible
Newtonian fluid of very high viscosity in a non-rotating spherical shell.
Despite the simplifications, the mathematical treatment is still so com-
plicated that numerical computations using finite difference methods
sometimes result in unstable solutions. In order to overcome such a
difficulty, this paper treats the derivations of analytical solutions in some
justifiable mathematical approximations which would mnot affect the
qualitative features of the anticipated convection currents. The simplified
formulation is comsidered to retain the significant global features of
mantle convection without loss of essential generality.

The first attempt in this paper is to establish a one-to-one mathe-
matical relationship between outside gravity field and terrestrial heat
flow. This relationship is based on an idea similar to the two-dimensional
analytical method previously proposed by the author (HAGIWARA, 1980).
Secondly, a gravity anomaly calculated from the global heat flow data
(CHAPMAN and POLLACK, 1975) is compared with that determined by the
satellite orbit analyses (GAPOSCHKIN, 1973). The coincidence between the
observed gravity anomaly and the calculated one may confirm the pre-
supposed theoretical simplifications and physical properties of the con-
vection model, and further may provide us with the knowledge of what
properties act effectively on convection patterns under given boundary
conditions. In this sense, our discussion will concentrate on how to
obtain the convection model most suitable to the observed gravity field.

2. Formulation of Convection

The thermal convection of incompressible viscous fluid is deseribed in
the Stokes and Boussinesq approximations of equations of fluid motion,
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continuity, thermal conduction, and state. The non-linear terms in these
equations are eliminated by the perturbation method, assuming that all
second and higher order terms in the perturbation variables (called
“anomaly” hereafter in this paper) are negligibly small as compared with
the static solution. Then, the linear steady-state perturbation equation
are expressed as

wVv=grad p+pg, oy
EP*T=vegrad T, (2)
p=—ap,T, (3)

with the equation of continuity
divv=0. (4)

In the above notations, x is the coefficient of viscosity, v the fluid velo-
city vector, p the pressure anomaly, p the density anomaly, p, the mean
density, g the gravity vector acting in the spherocentric direction, & the
thermal diffusivity, 7' the temperature anomaly, T the static tempera-
ture and « the coefficient of thermal expansion.

For applying these equations to the thermal convection model of the
earth’s asthenosphere, the radial variations in gravity and static tem-
perature are first assumed as follows:

gr:g()'z— b] (5)
T="T,+ ph*—r?, (6)

where b, g, and T, are the outer radius of the asthenosphere, the mean
gravity and the mean temperature at r=b, respectively, and 8 is taken
to be constant. The gravity field (5) is realized if the convecting layer
has a uniform density, but is somewhat different from the real internal
gravity field (e.g., HADDON and BULLEN, 1969). The radial temperature
distribution in the real mantle is also different from (6) (e.g., RIKITAKE,
1952). However, since the problem is treated in a thin spherical shell,
such simplifications can not essentially affect the qualitative features of
the postulated convection flows.

The velocity field is assumed to be expressed by a scalar function
W and the radial vector r as follows:

v=curl (grad Wxr),

which satisfies (4). The components of v in the spherical coordinates
(r, 0, 9) are
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where L is the differential operator with respect to 6 and ¢:

_ 1 0 < . 0 ) 1 0 }
L= — .
sinﬁ{ 00 sin 0 00 * sin @ 0¢* ®)

Taking the curl of (1), and taking (5) and (7) into consideration, the
differential equation of W is obtained as

174W=~—'Z°b p. €)

Meanwhile, eliminating 7' from (2) and (8), and taking (6) and (7) into
consideration, the differential equation of p is obtained as

Po= ilfpo_vw. (10)

Then, substitution of (9) into (10) gives

6, 2afgo 12
Po=——10 "L, (11)
where
y=_H (12)
Qo

is the kinematic coefficient of viscosity. The solution of (11) determines
the density anomaly, and then the -velocity field is evaluated by sub-
stituting the obtained value of p into (9).

3. Analytical Solutions

Suppose the density anomaly is expressed in a summation of spherical
surface harmonic terms:

o= 3 0u1)Y.(6, ¢) (13)

with an arbitrary radial function p, of degree n. Here, it is assumed
that the summation does not include both the zeroth and the first degree
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terms. The physical meaning of this assumption is that the mean den-
sity anomaly of the asthenosphere is zero and its gravity center is loc-
ated at the origin of the coordinates.

The spherical surface harmonic function Y, has a relation

LY, =n(n+1)Y,, (14)
so that (11) is rewritten as
(D%+2%p,=0, (15)

where D is the differential operator with respect to », which is defined
by

. a2 2 d n(n+1) 6
D = - e . 1
d»*  » dr 7? (16)

In the expression of (15), 2 is defined by

1

A= ?{R w(n+1)}e, a7

where

R _2aBgdb® (18)
ky

corresponds to the Rayleigh number. The parameter A having the di-
mension of a reciprocal length is used instead of R in this study.
The solution of (15) is easily obtained in the form:

00 =Cih,P(27) + Coh,® (A1) 4+ Csh, P (w A7)
+Cihn®(wir) + CshyP(0*27) + Ceh , P (A7) (19)

using spherical Hankel functions of the first and the second kind with
six coefficients to be determined by boundary conditions. ® and o® are
solutions of a cubic equation z*—1=0, 7.e.

_ —1++v3% o —1—+'31

@ 2 @ 2

(20)

Similarly to (13), W is expressed in a spherical surface harmonic
series with the exception of the zeroth and first degree terms:

W= 3 Wil Yal0, 0), (21)

together with
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W= — ﬂ%} —{ChP Q)+ Ch,®(Ar) + 0*Coh,P(war)

+ @’ Cih,®(w A7)+ wCsh (@0’ 27) + wCoh, P (A7)} . (22)
The velocity field is described by using W, as

v, n(n+1) W.Y,
7
_ | (aw, W,,)aYn
v =2 ( ar T ) a0 : (23)
dw, , W\ 0Y,
Ye (dr+ r / sinfdp .

The density anomaly and the velocity field can be evaluated respectively
by (19) and (23) after the six coefficients C; (i=1,2,::-,6) are determined
by the boundary conditions.

4. Boundary Conditions

The upper mantle consists of a lithosphere about 100-km thick, under-
laid by an asthenosphere having a thickness of 200 to 800-km. Based on
the observational fact of S-wave attenuation and the existence of a low-
velocity layer, the asthenosphere is considered to be partially melted,
i.e., “fluid” in a general sense. The bottom of the asthenosphere is
not sharp, probably because of the gradual transition to the mesosphere
due to partial mineralogical phase changes.

In our model, the temperature anomaly distribution in the lithosphere
is characterized by the thermal conduction, and in the asthenosphere, is
characterized by the thermal transportation due to convection flows.

The equation of thermal conduction

rTr=0 (24)

governs the thermal state in the lithosphere, while the equations of
thermal convection are satisfied in the underlying asthenosphere. The
horizontal motion of the lithospheric plate can be neglected in our case
because the crossterms of the horizontal velocity and the horizontal
gradient of static temperature are considered to be small as compared
with the conduction terms.

4.1 Lathosphere
If the solution of (24) is described in a form similar to (18) or (21):
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T= §2 T (1) Y0, o), (25)

the radial function has the foliowing form:
Tu(r)=Ar"+Br "1, (26)

where A and B are coefficients to be determined by the boundary con-
ditions. The summation in (25) does mnot include the zeroth and first
degree terms in accordance with the temperature anomaly in the astheno-
sphere.

The outer and the inner radii of the lithosphere are denoted by a
and b, respectively. The boundary conditions of the lithosphere are that
the temperature anomaly is zero and that the terrestrial heat flow
anomaly is given on the earth’s surface, 4. e., the outer surface of the litho-
sphere. Both values are continuous to those in the asthenosphere on
the lower boundary surface.

The boundary conditions on the earth’s surface are described as

T.(a)=0,
[ dr, } __ Fya) J (27)
d’r T=a K1 ’

where K, is the thermal conductivity of the lithospheric material and
F.(a) is a determinable quantity from the heat flow data F(6, ¢) ob-
served on the earth’s suiface, <.e.,

F(0, )= 3 Fu(@) Va0, 0). (28)

Similarly to (25), the summation excludes the zeroth and first degree
terms.

The boundary conditions (27) determine A and B, and then the radial
temperature function becomes

e BB

The heat flow in the radial direction on an arbitrary interface in the
lithosphere is obtained from (29) as

Fo AL o)) w

T.(b) and F,(b) are continuous to the related values of the convection
solutions on the lithosphere-asthenosphere boundary.
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4.2 Asthenosphere

At the boundary between the lithosphere and the asthenosphere, the
radial fluid velocity and the deviatoric shear stress are assumed to be
zero, and the temperature anomaly and the heat flow anomaly are as-
sumed to be continuous. On the other hand, the asthenosphere-mesosphere
boundary conditions assume the radial and horizontal fluid velocities to
be zero. These are described respectively as

W.(b)=0
d"’PV:|

n_ =0
[ dr* dr=s

pn(h) = —ap,T(D)

- (31)
dpn J — Q0
L odr Jres K F.(b)
Walc)=0
dw, ]
n =0
L dr Jdr=c

where the inner radius of the asthenosphere is denoted by ¢, and K is the
conductivity of the asthenosphere.

In the above, the shear stress condition is derived as follows. The
shear stress with respect to » and @ is written by a spherical surface
harmonic series:

— (v _ e _1_%>
oo ﬂ( or r+¢ 00

e d*W, (n—1)(n+2) Y,
E{ dr? + 7 W"} 00

=y

n=2

It can be easily seen that the condition z,,=0 at »=b becomes [d*W./dr*],-,
=0 because of W,(b)=0. The shear stress with respect to » and ¢

avga v‘z’ 1 v )
o= pr S E e O
Fre #< or r rsind dp

arrives at a similar condition.
For determining the six coefficients from the boundary conditions
(31), we rewrite them as follows:
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X+ o' Y+ wZ=0

X+wY+a)2Z—~72b—(X'+ Y+ Z)=0

\T ! n+1
rersa- (8 -(3)°

b
(32)
WX+ Y+2Z)—-20(X'+ oY +o’Z’)
~x &) ()
P+o’Q+owR=0
P'+Q+R'=0
where, for simplicity, we put
X Ciho(2b) + Cyh (D)
Y Csh, (@ Ab) + Cih P (w D)
Z Csh(@*2b) + Coh ™ (0*2b)
X’ Cil 11/ P(2b) -+ Cohy s P(2b)
Y’ Cslrn 11 (@2b) + Cilrn 11 (w0 2b)
A _ K@n+1) Ciln i1 P(@20) + Coltr 1 (0 2Ab) (38)
P | apal(@) | Ch,®(ae)+Cha®(2e)
Q Csh,P(wic)+ Cih,P(wac)
R Csh,P(w*2¢) + Csh P (w*Ac)
P’ Cilns1(2¢) + Colin 1 ®(20)
Q Cshns1®(@2¢)+ Cilinsy®(wAc)
R Cshps:P(@26) + Colin (0’ 2c)

Eliminating the six coefficients from (33), we obtain

21,2
P=2"(B,Xx—4,X)
21

2927.2
Q= “’22%.” (B,Y—A,Y")

21.2
R— w;@.b (B.Z— AZ")
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272
P=2Y (4 X—B/X) (34)

2

29272
@=Ly —B/Y)

21

219

RI: culb (AZ’Z—BQ/Z/)

21

where
Ay=H, (b, Zc)
BO’:HnH,n(Zb; ZC)
Ao/:I{nH,nﬂ(;{b; Ac)
BO":HH,THJ(Zby XC)
A,=H, (w2b, wic)
BIZHn+1,n(w2b; a)lc)
(35)
A/ =H,1 ns(02D, w2c)
Bl/:Hn,n+1(wlb, (I)ZC)
A2=Hn,n(a)2lb, wzlc)
B2=Hn+1,n(w22br a)2/ZC)
A)=H 1, n41(0°2b, ®*2c)
B2/=Hn.n+l(wzlb, (1)220)
by defining

H, (2, 2)=h2(2) (@) — P (2)hn®(2) «
It can be shown that, for an arbitrary spherical Hankel function of
degree m, the following relation holds
Hn+1,n(z; z)=_2%2—'3
z

which is used for deriving (34).
Finally, the solutions of (32) are obtained as

__Q 2 ’ ’ 4
X=Z+350 (X'+Y'+2)

D 20% 5 o
Y—§-+—32b (X'+Y'+Z)




Steady-State Thermal Convection Currents

D 'V

7 ~—+W(X +Y'+2Z)
X'= Ll N @ T~ NE)— (4= o N @I —
/=L Vo - LB~ (N L)~ 1/ B)]

I

{ (M—oL)I'— L'E)—(M'—wL/)(I— LE) }

-()-(5)"

B ) ()

1
a

where

I— §(30+w31+w2B2)
=54+ A+ w0 Ad)

L:AO_W(BO—F B1+ Bf;)

M:a)Al'—??g(Bo'f‘ B1+B2)

]\/YZCU2 2 %(BO’I_BI B2)

L Bg '——g‘ig(AQ +(t)A1 +0)2A /)

r_ 2P 247
M'=w®B, i?)lb (A) +wA/+o'4))

’_ r 2 ’ ’ 24 7
N'=wB, e (A0’+wA, +w’Ay)

d=(M—wL)(N'—

@’L")—(N—&’L){M'—oL’)

N’E’)}

663

(36)

(37)

Substitutions of (37) into (36) give X, Y, Z, X, Y" and Z’, and then P, Q,
Instead of the

R, P, @ and R’ arc determined by the relations (34).

six coefficients C; (1=1,2, -

,6), these twelve quantities provide the
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boundary values. The density anomaly and the velocity field in the
asthenosphere are represented as

— apl'ab’Fi(a) _x
pn 2'L.K1(27l+1) {XHnJr!,n(Zb) '27') X Hn,n(Zb; 2/)")

+ @Y Hyy1 (w2, wir)— oY’ H,, (02b, @ 27)

F0ZHp1,0(0®2b, 0*27) —wZ' H, (0*2b, 0*27)} (38)
and

—— @b gy (b, ) — XH
Wn 2@{1221{1(2%—{—1) { n+1,n( ’ M‘) n.n()*b) 27‘)

+wYHypylwdb, wdr)—wY H, (wb, wr)
+ 0" ZH 11, (02D, 0°27)— 0*Z' H,, (02b, 0*27)} . (39)

It can be casily demonstrated that both (38) and (39) satisfy the boundary
conditions (31).
By the way, the horizontal fluid velocity components are obtained
from
aw, W. _ nt+1 apabgo (@)
+ = .
dr r r W 2tp2K,(2n+1)

* {XHn+1.n+1(2b; ZT)'—X/ n,n+l('Zb; Z’I”)
+ 'Y Hyypne(0dD, 027)—0*Y ' H, (0D, w27)
F0ZH i1, 001(0°2, @*27)—wZ' H, (02D, 0*27)} . (40)

Especially on the upper boundary, it becomes

dw, Wn] _ a’,ooagoF n(a) 1 ’ ’
W = SJee mAB) (% .
[ & Tr T ks X Y )

This value is proved to be real.

5. Convection-Induced Gravity Field

The gravity disturbing potential outside the earth induced by con-
vection currents is expressed as the integration of the density anomaly
over the entire volume of the asthenosphere. That is

on rz 14 ropro 7
U=G\"dg'\ sino'ao'| Mwmw (41)
0 ] c

where G is Newton’s gravitational constant and ! is the distance between
the attracted point (», 6, ¢) and a mass element (+/, §’, ¢’). The reciprocal
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of 1 is given in a Legendre polynomial series
1-1% (T—>"Pn(cos ) (42)
l r a=o\ 7
for »>', where ¢, the angle between the attracted point and the mass
element, is defined by the cosine law of a spherical triangle:
cos ¢=cos 6 cos &'+sin 0 sin ¢’ cos (¢—¢’) .

Substitutions of (13) and (42) into (41) give the potential field in the
form of a spherical harmonic expansion:

— 4TCG - Yn Sb ’ <_"i " 72 a? 43
u r Z, 2n-+1 cp,,(r) 7'>T ar’. (43)

The spherical Hankel function has the adv.antage that the integral in
(48) can be analytically evaluated by using the solutions:

b
S R '™ Ay = %{b"”hmm(zb)—c””hw‘”uc)} .
and a similar solution for A,®(1r"). If the potential field is defined as
U=3 (%) Ui, 0) (44)

for r>a, the weight function U,(e) has the form :

Ula)= MM {(_b_>n+2(X’+ Y +wZ’)

K2(2n+1) a
-—<%>n+2(P’+ wZQ’+wR')} . (45)

U.(a) is proved to take a real value. Thus the convection-induced gravity
potential outside the earth can be calculated from the known values of
XY, Z,P,Q and R

The related gravity anomaly is then calculated by differentiating the
potential with respect to » and putting r=a, 1. e.

dg=— [—%%La é 49.,(a)Y (0, @)

il

3 (4 DUA@)Yo(0, ¢ (46)

I
Q|+~

For verifying the existence of convection flows in the earth’s astheno-
sphere, the gravity anomaly calculated for a postulated convection model
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is compared with the actually observed gravity anomaly such as the
gravity anomaly derived from the satellite orbit analyses. The gravity
anomaly defined by (46), however, does not correspond to “gravity anomaly”
defined in physical geodesy but to “gravity disturbance” (HEISKANEN and
MORITZ, 1967). The satellite-derived gravity anomaly, which is reduced
to the undulated surface of the geoid, includes a free-air gravity effect
of the geoidal height. In the strict sense, the gravity anomaly calculated
by (46) is preferably compared with the satellite-derived gravity distur-
bance but not with the satellite-derived gravity anomaly, although
differences between these two geodetic quantities are practically ingigni-
ficant.

6. Actual Calculations

6.1 Heat Flow and Gravity Data

The global heat flow data is presented by CHAPMAN and POLLACK
(1975) in the form of spherical surface harmonic series with the fully-
normalized Legendre function P,.{cos@) up to n=12 degrees. The co-
efficients A,, and B,, of series expansion

Fo@)Yol0, 9)= 3 (Ayn 008 Mo+ B Sin mg) Prnlcos 0)  (47)

are used for our calculations. Fig. 1 shows the world heat flow chart
obtained by summing up the series, except for the zeroth and first degree
terms. Hence, Fig. 1 is somewhat different from CHAPMAN and POLLACK’S
original chart.

As can be seen in this chart, high heat flow zones (stippled areas in
Fig. 1) coincide with the East-Pacific Rise, the Mid-Atlantic Ridge, the
Mid-Indian Ocean Ridge, etc., which are known as convection sources by
geophysical observations. The Far-East and Indonesian island-arcs form
the western side of the circum-Pacific belt of high heat flow. The heat
flow lows expected there along the ocean trenches are swallowed up by
the relatively extensive heat flow highs predominantly occupying the
marginal seas. The heat flow highs also match the tectonic features
even up to the small details such as the Red Sea, the Hawaiian hot-spots,
and the Caribbean island-arcs.

Fig. 2a shows the satellite-derived gravity disturbance corresponding
to the 1973 Smithsonian Standard Earth III (GAPOSCHKIN, 1973). The
stippled areas in this map indicate positive gravity disturbance with a
contour interval of 0.2 mm-s™ The original set consists of spherical sur-
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180 150 120 S0 60 Hﬁ 0 30 60 90 120 150 180

Fig. 1. Global heat flow (after CuapmaN and PoLLACK, 1975). Stippled areas
represent high heat flow anomalies. Contour interval is 10 mW-m™2,

face harmonic coefficients up to n=36 for zonal terms and n=24 for non-
zonal terms, but in Fig. 2a the degree terms higher than n=12 are trun-
cated for comparing with the gravity anomaly calculated from the Chap-
man and Pollack heat flow data.

As seen in this map, the amplitude of the gravity disturbance is about
0.5 mm-s-? at maximum. If an isostatic balance should not exist in the
crust-mantle system, the effect of topographic masses on the gravity field
would amount to several mm-s~% 1. e., ten times larger than the amplitude
of the real gravity disturbance field. In fact, the gravity disturbance is
not correlated with the topographic effect on gravity of Fig. 2b, which
is evaluated from the spherical surface harmonic coefficients of the earth’s
topographic elevation (LEE and KAULA, 1967). This implies that most of
the topographic effect is isostatically compensated and the satellite orbit
can not be largely affected by both the topographic irregularities and the
undulation of the Mohorovicic discontinuity. Accordingly, the satellite-
derived gravity disturbance is a deviation from the isostatic balance and
can possibly represent the upper mantle structure.

The dominating high gravity disturbance in Fig. 2a are clearly located
along the Far-East and Indonesian island-arcs and the Andes of South
America. The geophysical implications of these gravity highs may be
dense fluid materials of down-going convection currents around the ocean
trenches. On the other hand, the low gravity disturbance zones coincide
with the East-Pacific Rise and the Mid-Indian Ocean Ridge. Such coin-
cidences can be explained by the distribution of low density materials
over the convection sources.

In contrast to the East-Pacific Rise, the Mid-Atlantic Ridge obviously
has a positive gravity disturbance. In the Mid-Atlantic regions, there
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Fig. 2a. Satellite-derived gravity disturbance related to the 1973 Smith-
sonian Standard Earth III (after Gaposcukin, 1973). Stippled areas
represent positive disturbances. Contour interval is 0.2mm-s™2 (20
mgal).

120

Fig. 2b. Topographic effect on the gravity fleld. Stippled areas represent
positive anomalies. Contour interval is 2mm-s2 (200 mgal).

exists nowhere negative contours which may result from an up-coming
convection source. This is an unexpected result from a geophysical view-
point in that the gravity disturbance should be negative over hot rising
regions. An especially large positive disturbance around Iceland is ex-
plained by KAULA (1969) that the gravitational attraction of extensive
basaltic flows dominates convection-induced gravity disturbances. McKENZIE
et al. (1974) proposed the case by numerical experiments that the gravity
anomaly is positive over a hot rising region. Although many authors
have discussed the comparison between the East-Pacific Rise and the
Mid-Atlantic Ridge on the basis of topographical and geophysical obser-
vations, the fundamental difference has not yet been completely clarified.



Steady-State Thermal Convection Currents 669

6.2 Root Mean Square Anomalies

The asthénosphere is presumed to be a spherical shell having a thick-
ness of 200 to 300 km lying below a lithospheric shell having a thickness
of about 100 km. In the model structure used in this study, the thickness
of the lithosphere is fixed at 100 km throughout our calculations but that
of the asthenosphere is taken as a variable ranging from 200 to 400 km.
The other parameters chosen are a=2x10"2deg™, f=2x 107" deg-cm™ p,=
35g-cm™ k=2x10"%cm? s and K,=K=2%x10"%cal-cm™-s"'-deg™" (8.4 W-
m~!-deg™!). The coefficient of viscosity is uncertain but considered to play
an important role in determining the convection behavior. Based on the
vertical crustal motion due to the glacio-isostatic rebound, sz is chosen to
be of an order of 10® to 10* N-s-m~? for the present study.

Fig. 3a shows 4g.(a)/F.(a), the weight function of convection-induced
gravity anomaly per heat flow anomaly, against degrees of spherical sur-
face harmonics for a 300-km thick asthenosphere model. Another weight
function of horizontal fluid velocity on the upper boundary surface of
the 800-km thick model, [dW,/dr],—,/F.(a) is shown in Fig. 3b. As seen
in these figures, the magnitudes of the weight functions become large for
low degrees but rapidly converge to zero with an increasing n. This
implies that both the calculated gravity anomaly and horizontal fluid
velocity may be much affected by low-degree terms of heat flow anomaly.

In order to estimate the average size of the convection-induced gravity
anomaly, the mean squares of 4g is considered:

244\ g sim a0

a5
J 4z )

Il

I

oo 12 n
BB B A B

Four low-degree terms, 4. e., Ay, Ay, By and Ay, are omitted from the
above summation for the purpose of & comparison with the satellite-
derived gravity disturbance which does not include these four terms.
The two terms, A, and By, are proportional to the earth’s products of
inertia with respect to the ¥ and « axes, respectively. They are essentially
assumed to be zero because of the parallelism of the earth’s rotation axis
to the z axis. The other two terms, Ay, and Ay, are defined as quantities
determining the shape of an ellipsoid out of relation tc the gravity dis-
turbance field. ‘

Similarly, the mean squares of horizontal fluid velocities on the
upper boundary surface of the convection layer are estimated as
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Furthermore, the mean squarcs of temperature anomaly on the lower
boundary surface are also estimated as

B _ 1 -~ < Pn(C) 22 2 2
TO=—ts 220 (A B

In these two cases, the summations include the above-mentioned four
terms. ‘

It can be shown that the variance of temperature anomaly on the
upper boundary surface of the convection layer takes a constant value
of about 140°C for our model. Substituting »=>b into (88), we obtain

_ old) _ aFya)
7 0)=— 0 oSO Y 42)
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- S -()
K(@2n+1) \a b ’
which is independent of the viscosity and the thickness of the convection

layer. If the thickness of the lithosphere is denoted by 9, approximately
we have

b

(-5 e

because §,<a, so that

T,0) _ 5
Fr(a) K, )

As 6,=100km and K,=2x10%cal-s'-deg '(8.4 W-m™'-deg™") are chosen
and A,, and B,. given by CHAPMAN and POLLACK (1975) are used for
our model, this weight function can be evaluated to be independently
constant of n as follows:

T(b) - 100

@) 7371—4_712 deg/(mW -m™?).

The root mean square anomaly is a very useful measure of the
average size of gravity anomaly. Fig. 4a represents v ZE_Z against the
viscosity with parameters of the thickness of the asthenosphere. Ascan
be seen in Fig. 2a, the satellite-derived gravity disturbance has the am-
plitude of 0.1 to 0.5 mm-s™% Judging from this fact, a plausible convec-
tion model is 300-km thick with a viscosity less than 5X10°N-s-m™*
(5% 10% poise) or 400-km thick with a viscosity less than 2x10* N-s-m™
(210" poise). These orders of viscosity are consistent with those esti-
mated from the glacio-isostatic vertical movement of the crust.

The horizontal fluid velocity on the upper boundary surface of the
asthenosphere may be of the same order as that of the ocean-floor spread-
ing, which is estimated to be a few cm/year according to the observed
geomagnetic lineations. On the other hand, Fig. 4b shows the root mean
squares of the calculated horizontal fluid velocity. This figure may sug-
gest that a 200 to 400-km thick asthenosphere model with a viscosity less
than 10® N-s-m~? would indicate a fluid velocity comparable with that
of the ocean-floor spreading.

The root mean squares of temperature anomaly on the lower boundary
surface of the convection layer are shown in Fig. 4c. Temperature ano-
malies of several hundred degrees centigrade can be realized in a lower
part of the earth’s real asthenosphere.
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6.3 Best-fitting Convection Model

The question whether or not the gravity anomaly calculated from
the heat flow data matches the gravity disturbance derived from satellite
orbit analyses is of great importance for examining the postulated con-
vection hypothesis. A cenvection model may be valid only when the
calculated gravity anomaly is consistent with the satellite-derived gravity
disturbance. The best-fitting model should be selected so as to maximize
the correlation coefficient between the calculated gravity anomaly and
the satellite-derived gravity disturbance.

As previously described, the gravity anomaly calculated from the
heat flow data is expressed as
4g.(a) 3

Y. (a) 2 (A €OS M-+ By, S m@) Pan(cos 0)

M=

Ag=

n

by using the spherical surface harmonic coefficients A,, and B,, of degree
7 less than N.
Meanwhile, the satellite-derived gravity disturbance has the form:

N n
dg=g, 22 (n+1) Z_‘,O(Cnm €08 M+ Sy, sin me) Pyn(cos 0) ,

where ¢, is the mean gravity value observed on the earth’s surface
(HEISKANEN and MORITZ, 1967). Then the correlation coefficient between
dg and dog is

¥ (n+1)4dg.(a) =
Ez W mg) (Anmcnm+ Bnmsnm)

V5 A8 % (4,08, 5017 B (oS00
n=2 | F(a) ) m=0 nm e meo i
If 4dg and dg are positively correlated, both the heat flow and the gravity
anomaly are possibly related to a common generating source. If they
are not correlated, the presupposed convection model may be inappropriate
for a system connecting both the geophysical observation data.

Fig. 5 shows changes in the thus-obtained correlation coefficient with
viscosity of asthenospheric materials. For example, in the case of a
300-km thick convection layer, the correlation coefficient has a maximum
for a viscosity of 3.5x10° N-s-m~% If the thickness of the asthenosphere
is assumed to be 300km, the related viscosity is lower by an order of
magnitude than those obtained from the uplift of Fennoscandia and Lake
Bonneville. As a matter of fact, the viscosity is not accurately deter-

mined by geophysical observations and could be in error by an order of
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magnitude.

It is interesting to see in Fig. 5 that the curve for a thickness of 400-
km has a form quite similar to that for a thickness of 300-km, but the
maximum correlation point shifts from 8.5X10® N-s.m=? to 1.5X10%
N-s-m™ with a ratio of (4/3)°. This fact can be explained by the
same Rayleigh number.

0.4 r-

Fig. 5. Changes in correlation coefficient between the
observed gravity anomaly and one calculated from
global heat flow data.

6.4 Calculated Gravity Anomaly and Related Convection

The gravity anomaly calculated from the heat flow data assuming
convection flows with a viscosity of 2xX10"¥ N-s-m™? is shown in Fig. 6a.
For a comparison with the satellite-derived gravity disturbance, Ay, A,
By and A, are mot taken into account in the calculations. It is clear
that there exists an identical correlation between the major features of
this map and those of the satellite-derived gravity map. It will be de-
monstrated that the calculated gravity anomalies match the observed
ones, even up to some small details.

A first point to be noticed in our results is the fact that in Fig. 6a
a positive anomaly zone occupies the Mid-Atlantic region. From a theo-
retical standpoint, a mnegative gravity anomaly is expected over a high
heat flow region due to the thermal expansion of convecting materials.
Nevertheless, as seen in Fig. 2a, the positive contours actually cover the
high heat flow region in the mnorthern part of the Atlantic Ocean. It
should be reconsidered that this contradiction has not yet been explained
properly, except for the numerical experimental results reported by
McKENZIE et al. (1974). However, the contradiction is now solved by our
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calculations, which result in a positive anomaly zone well consistent with
that observed in the Mid-Atlantic regions. A similar consistency can
also be pointed out for the negative zone located in the midst of the
Asian continent and the Indian Ocean. Furthermore, the highly positive
anomalies along the Far-East and Indonesian island-arcs satisfactorily
match each other in both Figs. 2a and 6a. The completeness of the cal-
culated gravity anomaly is evidenced by a good coincidence with detailed
features of the observed gravity disturbance; for example, a highly
positive anomaly centering in Iceland, an isolated positive one covering
the Arabian peninsula, and a negative one widely located in the midst
of the African continent.

On the other hand, in the East-Pacific Rise and its adjacent regions,
the gravity anomalies in Fig. 6a seem to be rather inversely correlated
with those in Fig. 2a. This may evidence that the physical properties
of the asthenospheric materials under the East Pacific regions are dif-
ferent from those used throughout our calculations. One of the possi-
bilities of this local difference is a thermal change in viscosity due to
the comparatively high temperature under this region. The convection
model calculation with a temperature-dependent viscosity, however, is
beyond the scope of our present study.

Fig. 6b shows the temperature anomaly on the lithosphere-astheno-
sphere boundary surface. The pattern of this map closely resembles that
of the heat flow map (Fig. 1). The maximum temperature anomaly is
as high as 600°C at the heat flow crest in the East-Pacific Rise. The
horizontal flows on the boundary surface are illustrated in Fig. 6¢c, where
an arrow indicates the direction of fluid velocity and the length of the
arrow is proportional to its magnitude. Sources and sinks of the con-
vection current can be recognized as divergent and convergent flow vec-
tors, respectively. Flow speed amounting to 6 cm/year or higher is com-
parable with the flow speed estimated from geophysical observation results.
This implies that the convection model structure and the physical pro-
perties postulated in this paper are plausible.

According to the current theory of plate tectonics, the plate subduc-
tion along the Far-East deep-sea trenches is supposed to be driven by
the westward convection currents spreading away from the East-Pacific
Rise. Our calculation results, however, indicate oppositely directed con-
vection currents along these trenches, as shown in Fig. 6¢c. This incom-
patibility is dependent on lack of heat flow lows along the trenches 'in
the Chapman and Pollack global chart, in which the related lows are
swallowed up by the highs which predominantly occupy the marginal
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Fig. 6a. Gravity anomaly calculated from global heat flow data. Stippled
areas represent positive anomalies. Contour interval is 0.2 mm-s~2
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Fig. 6b. Temperature anomaly on the lithosphere-asthenosphere boundary
surface. Stippled areas represent positive anomalies. Contour interval
is 200°C.
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Fig. 6c. Horizontal currents on the lithosphere-asthenosphere boundary
surface.
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seas. Generally, the small-scaled anomalies can be neglected in the

spherical surface harmonic representation of degrees as small as 12. With
a higher-degree heat flow chart sufficiently expressing such a small-scaled
heat flow anomaly, our calculation method can produce results compara-
ble with the local problem of plate tectonics.

In order to see the vertical structure of convection, the temperature
anomaly (Fig. 7a) and the currents (Fig. 7b) are illustrated in sections
through the equator. If viewed from the -earth’s surface, each tempera-
ture anomaly, high or low, can be considered as a convection source or
sink, respectively. Thermally driven convection currents go up to the
source at the upper boundary of the layer, move horizontally away from
the source to an adjacent sink, and then return downward.

As can be seen in these sections, the high temperature anomaly under
the East-Pacific Rise seems to continue downwards to the bottom of the
convection layer and the .related convection currents rise from the bot-
tom to the top. A megacell of convection stirs the fluid throughout the
total depth of the asthenosphere. In contrast to the East-Pacific Rise,

EAST PACIFIC AMERICA ATLANTIC  AFRICA  INDIAN  WEST PACIFIC
w180 150 120 90 60 30 0 30 60 90 120 150 ISOEO

100

' — 1400
MESOSPHERE km
Fig. 7a. Vertical distribution of temperature anomaly on the egquatorial
section. Stippled areas represent positive anomalies. Contour interval
is 200°C.
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Fig. 7b. Fluid velocity on the equatorial section.
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the Mid-Atlantic anomaly has no root with a pair of minor convection
cells rolling near the surface. The wide distribution of low temperature
and high density anomalies surrounding the Mid-Atlantic anomaly causes
a positive gravity anomaly there. The effect of the near-surface Mid-
Atlantic density low on gravity is overshadowed by the widely surround-
ing density highs. This is our explanation of the facts observed on the
Mid-Atlantic Ridge, which seems contrary to the general belief that the
gravity anomaly should be negative over the hot rising regions.

7. Conclusion

The preceding sections have concentrated on the analytical derivation
of steady-state solutions of thermal convection currents in the earth’s
asthenosphere from the world heat flow data provided by CHAPMAN and
POLLACK (1975). In order to test how the calculated gravity anomaly
matches the gravity field obtained from the satellite orbit analyses and
combined with the surface gravimetric results (GAPOSCHKIN, 1973), the
correlation between both the gravity anomalies has been considered. If
well correlated, the presupposed theoretical simplifications and physical
properties of the convection model are justifiable. In fact, both gravity
anomalies fit each other even in some models. For example, in Fig. 6a,
the gravity anomaly calculated with a uniform viscosity of 2x10"* N-s-m™
in a 300-km thick asthenosphere model is closely consistent with the
satellite-derived gravity data, even to some small details (Fig. 2a).

Contrary to the positive gravity anomaly distributed over the Mid-
Atlantic Ridge, there has existed the argument that the gravity anomaly
should be negative over such hot rising regions because their density is
relatively low. Nevertheless, the geophysical investigations have never
properly explained this contradiction with the exception of McKenzie et
al.’s idea of the contribution from the deformed surface. However, with-
out any consideration of the surface relief, the present model calculations
have completely solved the contradiction by the dominant contribution
from the deeper structure. Furthermore, some consistencies between the
observed and calculated gravity anomalies in the Mid-Asian continent,
the Indian Ocean, the Far-East and Indonesian island-arcs, etc., are noted.
Although our calculations are restricted to the simple convection models
of a uniformly viscous fluid with some theoretical simplifications, such
consistencies possibly confirm the completeness of the theoretical approach
method and models used in this paper, and moreover evidence the exist-
ence of thermally driven convection currents in the earth’s asthenosphere.
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