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Abstract

An attempt is made of deriving asymptotic frequency equations
valid for the modes of very high frequency and finite phase velocity.
The method is based on expanding an exact frequency equation into its
asymptotic form by the use of the asymptotic formulas for the
spherical Bessel functions and spherical Neumann functions which
appear in it. An Earth is assumed to consist of a uniform solid
mantle and a uniform liquid core. The equations are expressed in
different forms corresponding to the different ray geometries in the
Earth and are denoted in terms of reflection and transmission coeffi-
cients and intercept times of relevant P and S rays.

1. Introduction

SATO and LAPWOOD (1977a, b) have obtained asymptotic frequency
equations of torsional oscillations of layered spherical shells valid for the
modes of very high phase velocity and finite phase velocity respectively.
The equations are expressed as functions of frequency and ray param-
eter including reflection coefficients of SH waves at internal discontinu-
ities and times of transit of the waves through the layers.

As for spheroidal oscillations, ODAKA (1978) has derived asymptotic
formulas of the frequency equation of a uniform Earth in terms of both
normal mode theory and ray theory. Investigation into spheroidal modes
of a layered Earth has been made by ODAKA (1980a), who has obtained
frequency equations valid at very high phase velocity. Then he has
shown that the exact frequency equation is decoupled corresponding to
the decoupling of P and S waves in the Earth which occurs for the
radial propagation of the waves in it.

As the next stage of investigation, we will try to get spheroidal
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frequency equations valid for the modes of very high frequency and
finite phase velocity. In this case, not only pure P and S waves but also
waves converted from one wave type to another at boundaries in the
medium are concerned with the formation of the equations. This will
make the problem quite complicated when we try to express them in
terms of ray-geometrical parameters. Hence, in this paper, discussion
will be made on the simplest model, that is, an Earth with a uniform
solid mantle and liquid core. However, once a procedure is established,
its extension to a model with one or two discontinuities in the mantle
will be possible.

2. Frequency equation

We assume a spherically symmetric two-layered Earth consisting of
a uniform solid mantle and a uniform liquid core. Then, a frequency
equation of spheroidal oscillations of the Earth which determines their
eigenfrequencies is obtained from the requirements that the radial and
tangential stresses on the surface of the Earth and the tangential stress
on the mantle-core boundary vanish and that the radial displacement
and stress are continuous across the mantle-core boundary.

Following ODAKA (1980a), who formulated spheroidal frequency equa-
tions for multi-layered elastic spheres in terms of the matrix method,
we can readily obtain the formal frequency equation relevant to the
present case:

eh(d) —eh(b) —eh(d) —el(d) —elid)
eh(d) —eh(d) —efd) —eh(d) —ellb)

F=| 0 eh(b)  eh(b)  eh(d)  elu(b) | =0, (2.1)
0 eqa)  ehla)  ehla)  ella)
0 ei(a)  eila) eisla)  elya)

~where el (1), ei(r), eii(r), (k=1,2,3,4) are the functions with radial de-
pendence associated with the radial displacement, radial and tangential
stresses respectively, which are defined below. Superseripts ¢=1 and 2
refer to the core and mantle, and @ and b refer to the radii of the Earth
and the core respectively. The radial functions in Eq. (2.1) are expressed
in terms of the spherical Bessel and spherical Neumann functions, Fa(2)
and n.(z), as follows.
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en(M=hpj(hyr),  en(r)=—2hr)j.(hir),
(eu(r), k=1, 2,3, 4) =(horjalhsr), N} (ksr), harni(har), Nn, (k) ,
(e3x(r), £=1,2,3, ) =(11:9(fn, hoar), paN°f G, o), 129 (M, hs), poN*f (0, lcgr))(,2'2)
(efu(r), k=1, 2,3, ) =(pf(Gn, ha?), poh (G, Fesr), poSf(n, b)), palt(n, Kisr))

where h; and k; are the wavenumbers of P and S waves, 2; and y; the
Lamé elastic parameters, t=1 and 2 referring to the core and mantle
respectively, and n denotes the order of the spherical Bessel function
(equivalent to the colatitudinal order number). Other notations are
defined by ‘

N=n(n+1), 2z.(Lr)=dz.({n)][dCr),

S(2a, ) =20r22(Lr) —22,(Ci7)
9(zn, {ir) = — 4Lz (Cir) — {(kyr)’ — 2Nz, (Lir)
h(zn, k:v)=f(20, kir)+9(25, ki) .

(2.3)

Equation (2.1) is rather formal and therefore, we rewrite it in a form con-
venient for further expansion:

% ={enBi—euA (b))} Ayla) —{e3 B~ end ()} Asla)
+ {5 Byy— e A14(b)} An(a) +{e5 By — e An(b)} Awla)
—{e3 Ba— €11 40(b)} As(@) + {5 Byy— €1, A54(b)} A 1o(@) =0, (2.4)

where

en=en(d),  enx=eud),
ef;(b) elu(b)
ei;(b) efi(d)
Prior to the further reduction of Eq. (2.4) to its asymptotic forms, we

shall bring in the basic equation connecting the mode scheme with the
ray scheme, and some asymptotic formulas for j.(x) and n.(x).

e5(r)  eur)

Ajlr)= . (2.5)

3

ei{r) e

3. Modes and rays

BEN-MENAHEM (1964) found the equivalency relation between the ray
parameter (p) and the inverse phase velocity of normal modes (1/c,).
This relation will be expressed for our spheroidal case as follows:

v(=n+1/2)/o=alc,=p=(a]a) sin i,=(a/B.) sin fi=0blc
=(b/a,) sin 1,=(b/B,) sin fo=(b/a,) sin 4, , (3.1)
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where o is the angular eigenfrequency of any given mode with the
colatitudinal order m, ¢ the apparent velocity along the mantle-core
boundary, a;, f; the P- and S-wave velocities in the ¢-th medium (=1
and 2 referring to the core and mantle respectively), 4; and f; the angles
of incidence of the P and S rays on the free surface (subscript ¢=0), and
on the mantle-core boundary (¢=1 and 2 referring to the two sides of
the interface, the core and mantle sides respectively). In the following
discussion, we will use the relation (3.1) as the definition of connecting
p with v and o.
The five arguments which appear in Eq. (2.4) can be expressed as

ha=ve/as, hb=velas, hb=vc]a, ka=veffs, kb=vc/B,. (3.2)

Equations (3.1) and (3.2) are of great use for expressing asymptotic formulas
for mode solutions in terms of ray-geometrical parameters. Then, asymp-
totic equations of Eq. (2.4) are expressed in different forms correspond-
ing to different situations prescribed by relative magnitudes of the five
arguments in Eq. (3.2) and the order number % because the function
Ju(x) (similarly n.(x)) shows different asymptotic properties depending
on whether its argument is larger or smaller than its order.

4. Asymptotic formulas for j.(x), n,(x) etc. when x>n-+1/2>1

From the asymptotic approximations for the Bessel functions of the
first and the second kind in which the argument is larger than its order,
both being large and positive [e. g., WATSON (1952, p. 234)], we have

In(@)=(1/z) cos {X(x)}//sin y

_ - (4.1)
n(x)=(1/x) sin {X(z)}/ Vsin 7

where
x=vsccy (O<y<=/2, vy=n+1[2)
_ (4.2)
X(@)y=v(tan g—y)—=/4.
Then, for the functions in Eq. (2.3), we get
Fulx)=—(1/z) sin {X(2)}vsin 7,
na(2)>=(1/z) cos {X(x)}v/sin 7,
S 2)=—2sin {X(2)}Vsin 7,
B L (4.3)
g(Jr, w)=—{(x}—2N")/x} cos {X(x)}/Vsiny,
F(1n, 2)==2 cos {X(z)}Vsin 7,

gy, ©)~—{(x}—2N?/x} sin {X(x)}/vsin 7,



Asymptotic Frequency Equations for Spheroidal Oscillations 311

where & stands for {;r ({;=h; or k,;) and x, for k..

In accordance with Eq. (4.2), we define the following notations for
individual arguments.

hya=v sec D, hb=vsecd,, hb=yseccp,,

(4.4)
]Cz(l:l) Sec Jq, kabzv sec qq (O < Das Doy Pes o, G5 < ﬂ/2) s
and
X(hsa)=P,=v(tan po—p.) — /4, X(h.b)=P,=yv(tan p,—ps)—=/4,
X(hb)=DP,=y(tan p,—p.)—=n/4, (4.5)

X(kesa)=Q=v(tan §o—g.) —r/4, X(k:b)=Qp=n(tan §o— ) —=/4 .
Then, from Egs. (3.1), (3.2), (4.4) and (4.5), we can show

sin po= v1—(as/c,)* =cos 7y,
and
2P, =2v{tan (z/2—1) —(7/2— i)} — /2

= w{(2a/a.) cos 1,— alz —2iy)[e — =[2 .
Similar manipulations are possible for other guantities, which lead to
DPa=n[2—14, Po=n[2—1s De=7|2—1y, To=7|2—Ff0, To=7/2—F
$in P =(avs/ce)&, sin p,=(a/c)E, sin p.=(a;/c)&, (4.6)

sin qa:(ﬁz/co)ﬂm sing,= (}32/0)772 s

and
2P, =w{T,—ad,lc)—=[2, 2Q.=w{T,—adfc)}—=|2,
P.=w{T.—ad,[c}—=/2, 4.7
5P:pa—Pb=w{Tf—adﬁ/co}, 5@2611—@1,:(0{7‘?_“4:/00},
where
&=V (cfay—1, &=+(cla)—1, &=+(c/a)—1, “8)
No= ’\/(co/ﬁz)z—l s = \/(C/ﬁz)z—l 5
and
T,=(2afa) cos i, Ti=(2a/3,)cos fo, T.=(2bjas)cos 1,
T} =(acosi,—bcosi)a,, T¥=(acosfy—bcosfy)Be, (4.9)

dy=r—2iy, di=n—-2f, d.=a—24, di=t,—1, dMF=fi—f,.

T, T* 4 and 4* are the travel times and the angular distances associated
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Fig. 1. Schematical illustration of possible rays
in the Earth consisting of a uniform solid
mantle and liquid core.

with the ray segments shown in Fig. 1. Now we have real angles of
incidence corresponding to any arguments satisfying the present con-
straint, £ >v. When both 4, and 4, are defined as real quantities, we use
the term 6P. However, when 14, is real but 4, has to be defined as a
complex number, the term 2P, will become useful. For S rays, similar
situations occur and we will use two terms, 2Q, and 6Q, properly.

Allowing for the relation p=a/e,=dT[dd, we find that the quantity
T—adle, represents the intercept time of a tangent to a travel time curve
(T, 4). Hence, the quantities 2P,, 2Q, cte. in Eq. (4.7) are closely con-
nected with the intercept times for the corresponding rays.

5. Asymptotic formulas for j.(x), n,(x) etc. when n+1/2>x>1

From the asymptotic expansions of the Bessel functions of the first
and the second kind in which the argument is less than the order, both
being large and positive [e. g., WATSON (1952, p. 243)], we get

Fu(2)=(1/23) exp {X(x)}/v/sinh 7,

) o (5.1)
na(x)=~—(1/x) exp {— X(x)}/vsinh 7,

where
x=vpsechy (v=n+1/2),
. (5.2)
X(x)=v(tanh §—7) .

Then, we get the approximations
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Ja(@)=(1/22) exp {X(v)} vsinh 7,

ni(x)~=(1/z) exp {— X(x)}vsinh 7,

F(4n, w)=exp {X(x)} vsinh 7,

95y )= — {(23—2N?)/20} exp {X(w)}/ v/sinh 7,
S, 2)=2 exp {— X(x)} vsinh 7,

9(1n, 2)={(23—2N?)[z} exp {— X(x)}/v/sinh 7,

where z stands for o ({;=h; or k;) and x, for k.
In accordance with Eq. (5.2), we define
h.a=vsech Py, h.b=vsechp, hb=vsechs,,
(5.4)

ka=ysech §, kb=vsechd,,
and

X(haa)=P,=v(tanh po—pa)y X(heb)=Py,=s(tanh p,— D),
X(hyb)=P.=y(tanh p.— D) , (5.5)
R(ksa)=Qu=y(tanh Go—ds), X(esb)=Q=v(tanh do—ds) .
Then, from Egs. (3.1), (3.2) and (5.4), we have
sinh po= V(@ /e —1 =i(as/co)és,
where 1 is the imaginary unit. Similar manipulations lead us to

sinh po=i(asfc))é, sinh p,=i(as/c)&, sinh p. =i(aifc)é, 5:6)
sinh ¢, =1(B:/co)n0, Sinh §,=1(Bs/c)7
Now, the coefficients such as &, & defined by Eq. (4.8) become imaginary
numbers, and then we define them as

g=—ilgl (7=0,1,2), p,=—1yl (=0,2). (5.7)

The angles of incidence 4, f, etc. in Eq. (3.1) now have to be defined as
complex numbers, and thus the corresponding body waves have a prop-
erty of inhomogenecous plane waves [BREKHOVSKIKH (1960, p. 4)].

From the nature of the function

Sfly)=v(tanh y—1y)

which appears in Eq. (5.5), that is, it is a monotonically decreasing func-
tion with y and f(y)<0 for y>0, we get the following relations for
large v:

exp{—P)»1, exp{—Qu>1,

) ) (5.8)
exp{6P}>1, exp (0@} > 1,
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where

0P=P,—P,, Q=Q.—Q,. (5.9)
In later sections, the above relations become very helpful in selecting
the most predominant term in the frequency equation.

6. Asymptotic frequency equation

In expanding the frequency equation (2.4) into its asymptotic forms,
we need to use different forms of asymptotic approximations for the
functions 7.(%), n.(x), f(J., ) ete. depending on whether x is larger or
smaller than v(=n+1/2) as we studied in the previous two sections. We
then have a lot of cases that have to be treated separately, each of
which is specified by the relative magnitudes between the five argu-
ments, h.a, hd, b, k.a, kb, and the fractional order v. This makes the
problem rather troublesome. In order to avoid repeating tedious and
lengthy manipulations for each case, we are required to reduce Eq. (2.4)
to a form common to all cases as far as we can. To make this possible,
asymptotic formulas for each function, j.(x), n,(x) ete. have to be ex-
pressed in a common form for two cases, x>y and x<v. Hence, we
write those for j.(x), n.(x) and their derivatives in common in a form

@) =(1[2e) e +e ) V5y

. I (6.1)
gu(@)=(a/22){e"* —e "} Vs,
n(@)>={o/(o +o)x}e ™ +e "} Vsy,
with the convention that
for z>v, s=c=1 (imaginary unit), X=X, sy=siny, (6.2)
and
for x<v, o=1, t=0, X=X, ¢**=0, sy=sinh . (6.3)
Then, we get
F(Gny ¥)=0{e” —e ¥} /sy,
9(Jnr )= —{(wh—2N)[20}{e™ + e}/ Vsy,
Fnn, 2)={20/(0+ )} e + e} Vsy, (6.4)

9, ©)=—{(zF—2N) /(o +)ale™ —e "} Vsy,
Wz, 20)=0(24, %) (2,.=Jn OT M) .

It will be casily proved that the expressions (6.1) and (6.4) surely cover
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two different formulas, Eqgs. (4.1), (4.3) and Egs. (5.1), (5.3).

Further reduction of Eq. (2.4) will be made under these expressions,
and then the convention (6.2) and (6.3) will be applied to the resulting
equation to obtain asymptotic equations for individual cases prescribed by
relative magnitudes between v and h.a, kb etc.

In the following expressions, we use the notations

EloX+)=e +e ™, E(zX+t)=e¢Y+e "', (6.5)
where the upper and lower signs of both sides have a one to one corre-

spondence to each other.
Substitution of Egs. (6.1) and (6.4) into (2.5) leads to

Ag(@)=2{1/(0,+ o) (o0t )} {$ Bt Pa—) E(zaQo—) — 442 Bz P +) EzaQa+)},
An(a)=2EN* (o) — 2Nkt

An(a)=3{1/(oo+ ) —($:/2) E(zoPo—) E(0.Qa+) +2¢: B Pat) EloaQe—)} 5
A(@)=p{1](oi+ )} {($,/2) E(0oPat) E(tiQa—) — 262 E (0. Po—) E(zaQa+)} 5
A(a)=—2p3{(k.a)—2N%[h.a

Ap(@)=p3{($:/4) E(0,Po+) E(0iQa~+) — $:E(0,Pe— ) E(0:Qa—)} (6.6)

wherce
¢1={(ksa)*— 2N/ {hst s V'S5PaSqa } » o
Gs=N’0,04~SPaSqs - (6
P, stands for P, or P, and p, for P, or P, (both defined in Eg. (4.5) or
(5.5)) according to h,a>v or h.a<y. Similarly Q, stands for Q. or Q.
and ¢, for g, or §, according to k.a>v or ka<v. Hence, sp, is short
for sinp, or sinh P, and sq, for sing, or sinh §,. o, and z, are associated
with P, and ¢, and 7, with Q.. A pair (o, z,) takes a value (i,%) and
(1,0) corresponding to h.e>v and h.a <y respectively. o, and z. can be
defined in a similar way. The cocfficients 4;,(b)’s in Eq. (2.4) are readily
obtained by simply replacing all the subscripts ¢’s in Egs. (6.6) and (6.7)
by b’s and the radial distance a by b.
Similarly we have for the cocflicients Bj,’s

Bu~— (/)b - 0y B(0y Py—) E(04Qy+) V/5Po[500 »
Bu=—(us/2)leblo) (4 =)} B0, Po—) B2y Qo — ) V/$PofSTs
Bu=(2/2)ksd{0,/(05+ )} Bz, Py +) E(03Q0+) VSDo[500 5

By pto- kab{0,/(0s +73)(0 -+ =)} B Py +) E(23Q0 —) v/ SDol50s
Bis~B,=>0. (6.8)
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P, stands for P, or P,, p, for P, or p,, and sp, for sinp, or sinhp, ac-
cording to hb>v or hb<y. Similarly, Q, stands for @, or Q,, ¢, for 7,
or 4, and sq, for sing, or sinh g, according to kb>v or kb<v. (o4, 7s)
and (o}, 7};) are associated with P, and @, respectively and take the values
(¢,7) or (1,0) corresponding to two situations.

After substitution of the above formulas into Eq. (2.4) and some
manipulations, we can get the asymptotic frequency equation in a rather
lengthy form

F=Fo= (/D) { 00+ to)(0a+ 1)} {1 E(zaPa—) E(zeQa—)
— 44, E (1o Pyt ) E(7aQat))
A E(o . Pct+)E(0,Py—)E(0:Quv+)— 1 E(0 P —)E(0, Py +) E(0:Qy +)
+4¢.E(0,.P.—)E(0,Py—)E(0:Qs—)}

—{(0at o+ 7)) {1 E(roPo—) E(0:Qat) —4d: E (7o Pot) E(00Qa—)}
'{¢0E(UCP0+)E(0be—)E(Tng_)_¢1E(0cpc_)E(gbpb-*-)E(Tl,)Qb_)
+4¢E(0 Pe—)E(0,Py—)E(z,Qs+)}

—{(os+r)(oet )} P E(0uPat ) E(zeQa—) —4¢:E (0, Pa—) EzaQu+)}
AduB(0 P+)E(zy Py +)E(0:Qu+)— ¢ E(0.Pe—) E(z, P, — ) E(0:,Q5+)
+4¢,E (o, P,—)E(t, Py +)E(0:Q,—)}
+{(oy+ 1) (0h+70)} {1 E(0aPot) E(0aQe+) — 46 E (0, Po—) E(0,Q0—)}
AP0 Pe+)E(z, P +)E(2iQs—) — ¢1 (0. Pe—) E(7o Py —) E(7:Q —)
+4¢yE(0 Pe—)E(z, Py +) E(z,Qy+)}
—¢yE(o.P.—)]=0. (6.9)
where
o= (24/2)hib- kb~ 0, V/SD,[SDSS b 5

1=/ 2) (D) — 2N (b - ko:b) 0 e V'SP [SPsSCs
1= (p1:/2){(Fe=D) a / 610)

sz: (#2/2)N20'bac0:: '\/SpbspcSQb )
&3 =8 N¥{(Jeaa)* — 2N} {(F ) — 2N} {(Rot - Jeub) ™'+ (hob - ko) "o Vspe .

%, means the asymptotic formula of the exact frequency equation J.
P. stands for P, or P., p. for p. or p., and sp. for sinp. or sinhp. ac-
cording to hb>v or hb<y. Corresponding to this condition we have
either case, o.=t.,=1 or og.=1, 7,=0. Further simplification of Eq. (6.9)
will have to be made for individual cases which correspond to different
ray situations.
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7. Connection with reflection coefficients

Under the condition that both the arguments (or frequency) and the
order are large, we can show that certain combinations of the coefficients
¢, ¢, ete. defined by Eags. (6.7) and (6.10) are closely connected with
reflection coefficients of body waves incident on the free surface and the
mantle-core boundary.

Suppose that a plane P- or S-wave with a unit amplitude (in dis-
placement) impinges on a plane boundary between two homogeneous
media. Then we define reflection coefficients as amplitudes of displace-
ment of reflected waves (components are illustrated in Fig. 2). Follow-
ing the conventional method [e. g., EWING et al. (1957)], we get

RS, =Ra=[—{(co/ 82 — 2§+ 4&umol/ 4o

R, = —4(ats/ Bo)Eof(cof B — 2}/ 4o »

R, =4(Bofa)mol(co/ B — 2}/ 4o

R2p= ([ — {(c] Bo)*— 2+ 48 + 26 aso)} 4
={ [ — (/B — 2 +4Em,] — 26 o)} 4y 5
={E[{(c] B —2F +4Em,) — A6 B}/ 4,

R%s=4p2(a2/ﬁg)5152{(0/ﬂ2)2~ 2}/4,,

R2y=—4p(Bfa)émal(e] B.) — 2}/ 4,

Ao={(co/ B —2}*+4&m0 5

Ay = e e/ B — 21 +4&m. )+ 2,6, B.)’

where the mnumerical superscripts 0, 1 and 2 attached to the reflection
coefficients refer to the reflections at the free surface and at the mantle-
core boundary (incident from inside the core and inside the mantle)
respectively, and the coefficients &, 7 etc. are defined in Eq. (4.8).

Now we can approximate, by use of Eq. (3.2),

N=y*,
(lesa)* — 2N*==0*{(co/ Bo — 2} (7.2)
(Fe,b)* —2N=v*{(c/ B, —2} .
Moreover, allowing for Egs. (4.6), (5.6), (6.2) and (6.3), we can write
SPa- Ta=1(cts]C0)E0y SPo-Ts=1Uats[C)Es, SPc-ac=1ar[C)E1,

Sqa- oa=1Bolc)ne ST o =B C)7 - (7.3)
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Medium 2
(solid)

Medium 1
(liquid)

Fig. 2. Reflection and transmission coefficients defined for plane P-
and S-wave incidence on the plane boundaries, free surface
and mantle-core boundary, which are shown by curves for the
convenience of comparing with the spherical Earth.

Here, for simplicity of later numerical oxpressions, we introduce a
multiplicative factor K, defined by
Ko=hya-1ob-kya-leb(cla)v *vsp,sp,sp.sqasqs - (7.4)

Then, from Egs. (3.2), (6.7), (6.10) and above formulas, we get

2K$,9,~=1{(co/B.)° — 21 pg {(c] B — 2} =iR,,
2K by p, 048 - 4 ok e, =R,

8K ypy™=—1- 45y 2,6,(cY B, =—iR,,

8K o= —1-4&y- b {(c/B,)*—2)* =—1iRy, (71.5)

8Kypipy=—1-{(co/B.) — 2} 4 1, Ea1, =—iRy,

2K,¢,p~=i{(co/ B, — 2} 2,6, B,)° =1iR,,

2Kopy~1-32{(co/ . — 2} i€ {(c/Bo)' — 2} VEE oo a0r000y =i R,

Referring to Eg. (7.1), we will find that the coefficients R,, i, etec. de-
fined by Eq. (7.5) and the reflection coefficients consist of several common

terms such as {(¢,/B,)’—2)%, 44, In fact, those linear combinations can
be expressed in terms of the reflection coefficients, that is,

Ry + By Ryt By + Ryy+ Ry= o4, =R,
+ - + + = =44R, =R,,
+ — — — + =4ARLR: =R,,
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R+ Ry+R.— Ry —Ry— R,=4,4,R},R;, =R.,

- — — 4+ 4+ =—44R, =—R,,
- + — 4+ — =—AAR,R,=—R,,
~ &+ - 4+ =—AAR. =-—R,,
- — 4+ — - =—A4R, =-R,,
Ry=24,4,7 Ry, R 2R, 40,040, - (7.6)

The coefficients R,, R, etc. are written only for definition.

In the following sections, we will derive the asymptotic frequency
equation in an explicit form corresponding to each of all possible cases
that are prescribed by combinations of relative magnitudes between the
five arguments h,a, kb, hb, ka, kb and the order .

8. Asymptotic frequency equation when hb, hb>y

This condition maintains that the other three arguments Ia, ka and
kb are also larger than v, because k.,a>kb, ha>hb>v. Hence, from
Eq. (8.1), we have real angles of incidence for all i,’s and f/s; both P
and S rays in the mantle with a given ray parameter strike the core
and penetrate it (¢f. Fig. 3a).

Now the approximations Egs. (4.1) through (4.3) are available for all
the arguments. Hence we have, from Eq. (6.2),

00 =Ta =0, =Ty =0,=T,=0,=T,=0,=1,=1, (8.1)
and thus, from Eq. (6.5),
E(eX+)=E(X*)=E(@X+)=¢ +e ¥, (8.2)

where X stands for P, and @, (r=a,b,¢) and (s, 7) for (s,, 7,) and (o,, 7).
Then, we have another helpful relations between any two X’s, say,
X, and X,,

EGX,+)E(iX,+)— E(GX,—)E(iX,—)=2E{i(X,— X,)+}=2E(:6 X +) )
8.3

EGX,—)E(iX,+)-EGX,+)E(iX,—)=2E{(X,— X;)—}=2E({6X—),
where 6X=X —X, These relations will be readily confirmed by sub-
stitution of the exponential functions (8.2) into (8.3).

With the aid of Egs. (8.1) through (8.3), we can fairly simplify Eq.
(6.9) as
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— (8K, p)a= (R, + Ry E(iP.—)E(i6P—)E(i63—)
+R,E(iP.+)E(i6P—)E(i0Q + )+ (Ry+ Ry E(iP,— ) E(i6 P+ )E(i6Q +)
+ REGP.+)E(i6P+)E(i6Q —) — R,E(iP,—)=0, (84)
where 0P and 6@ are defined in Eq. (4.7) and R,, R,, etc. in (7.5). Multi-

plying by exp {—uP,+dP+dQ)}/4,4, and employing (7.6), we finally obtain
the asymptotic frequency equation:

{1_e—Si(Pc+615+BQ)}+R;p{e—2i(éﬁ+6é)_e—2iﬁc}
_l_Rnggs{e—zi(chﬁ)_e-zid()}+R;pRlzm{e-zi(ﬁch)_e—ziaﬁ}
+2Vm{e—i(2Pc+5P+BQ>_e-i(5F+6é)}:0 . (8.5)
Here 0P, 6@ and P, are the functions of frequency as shown in Eq. (4.7),
and thus the equation yields discrete eigenfrequencies for a given ray
parameter.
The last term of the above equation seems to be mot in harmony

with the other terms in its expression. However, further approximation
is possible for it, that is,

Fig. 8. 11 possible ray-geometries in the Earth consisting of a uniform mantle and
core, which depend on ray parameter and velocity structure.
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2+ Ry, RS, RER%, ~Ry.R%,+ R, R, . (8.6)
This is true if we have
2“/5077052772 =Emyt+Es (8.7)

because it is easily found from Eq. (7.1) that both conditions are identical.
By expanding &, given by (4.8) in a power series of (a,/c)’ where ¢>a,
and similarly &, etc, we will find that the approximation (8.7) is, in
general, valid except for the case when ¢>~a, When the phase velocity
¢ approaches a, the approximation (4.1) becomes unavailable, and thus
we have to discuss such a case separately.

Derivation of Eq. (8.5) in terms of ray theory and numerical calcula-
tion will be made in a future paper [ODAKA (1980b)].

9. Asymptotic frequency equation when h.a, k,b, h,b>v>hb

From Eq. (8.1), we will find that the angles 1, 4,, f, and f. are defined
as real numbers but 4, as a complex number. This means that P rays
in the mantle do not reach the core as is illustrated in Fig. 3b.

Approximations (4.1) through (4.3) are available for the arguments
larger than v, but Egs. (5.1) through (5.3) for k. Then, we can put,
from (6.2) and (6.3),

p b
o =Ty =0, =T, =0a=Ta=0,=Tp=1,

(9.1)
0[7:1} fb:(), 6“0}30:0.
Hence, we have, from Eq. (6.5),
E(o,P,£)=e’,  E(r,Pyx)=xe b (9.2)

Employing the above formulas and Eq. (8.3), we can simplify Eq. (6.9) as
— (8K 1) T =(e"*[2){ Ry E(iP,—)— RuE(iP,+ )} E(iP,—) E(i3Q —)
+{RyE(iP,+)— RyuE(iP,— )} E(iP,—)E(i6Q +)
—{R,E(iP,~)E(i6@+)+R,E(iP,—)E(i6Q — )} E(iP,+)]
+ie" P [{RyE(iP,+)+ RyE(iP,— )} E(iP,—)E(i0Q —)
+{RyE(iP,—)+ RyuE(iP,+ ) E(iP,—)E(i6Q+)
+{R,E(iP,—)E(i6Q +)+ R,E(iP,+)E(i6Q — )} E(P,+)]
—R,E(GP.—)=0, (9.3)

where P,, P, 6@ are defined in Egs. (4.5) and (4.7), D, in Eq. (5.5).
Further reduction with the aid of Egs. (8.2) and (7.6), and multi-
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plication by exp {—i(P.+ P,+4Q)} lead to
(eﬁblz)[_Rg+Rfe-2iﬁc+Ree—2iéé_Rde—zi(f’cw@)_Rce—zma
+R,,e“mpﬁpc)-}—Rae'mpﬂwé)-—Rxe"“’i(ija'*ﬁcwé)]
+ie PRy — Ree ¥ Pc— Rye 8L R g 2 Pct0® _ B o-2iF
+Ree—zi(Pa+Fc)+Rfe-2i<ﬁa+56)_Rge—mf’au"cw(?)]
_Ro[e—i<1“’a+5<§>_e—i<2F6+Fa+5Q)]__:O i (94)

From the relation (5.8), we find that the second term is predominant in
the equation. Hence, we finally obtain by use of Eq. (7.6)

1~Rgpe—2ipa—Rzl,pe"zipc—f-Rfse_gi(PaMQ)~R;p€_2i(1)“+l)c+5@)
+Rngllme—zi<Pa+pc>__Rgngse—ziﬁQ+RSSR§pe—2i(PC+5Q>:0 . (9.5)

In the last two terms, the coefficient R is employed instead of R, both
being identical as shown at the top of Eq. (7.1).

In the present case, we have no rays corresponding to the reflection
coefficient R%,, which appears in the above equation. However, introduec-
ing transmission coefficients, T}, and T'%, (¢f. Fig. 2), we can replace RZ,
by R),R:—T35Ts. Then, we have rays corresponding to each of these
coefficients. Ray-theoretical approach to Eq. (9.5) will elucidate this situa-
tion well [ODAKA (1980Db)].

10. Asymptotic frequency equation when k.b, h,b>v>h.a

We find from Eq. (3.1) that the angles 4, f, and f, are defined as
real numbers but ¢, and 4, as complex numbers. This means that S rays
incident on the free surface and on the mantle-core boundary are not
followed by ordinary reflected P rays; the ray geometry is illustrated
in Fig. 3c. '

Now we can put, from Egs. (6.2) and (6.3),

e =Te=00a=Ta=0p=Tp=1,

(10.1)

va=0,=1, To=1,=0, e*Tola=¢fs=0,

Then, following the similar procedurc as in the previous sections, we get
1" [Ry— Roe P — Rye70 4 R e 2 Pe+00)]
—ie P[R,— Rye ™ e— Roe 90 R ™% Fe 0]

—R[e710—¢ 1P HD] =0, (10.2)

where P, and 6@ are defined in Egs. (4.5) and (4.7), 6P in (5.9) and R.,
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R, ete. in (7.6).

From Eq. (5.8), contributions from the latter two terms are negligi-
ble compared with that from the first term, and thus we finally get, by
the use of Eq. (7.6) and the relation Rj,=RY,

1— R},e e — Ry R2 e~ 4 R R o™ Feti® =0, (10.3)

11. Asymptotic frequency equation when h,b>v>hb

From Eq. (3.1), we find that the angles 4, ., f, and f, are the real
numbers but 4, the complex number. This means that P and S waves
incident on the mantle-core boundary from inside the mantle are totally
reflected ; the ray geometry is shown in Fig. 3d.

Now, we can put, from Egs. (6.2) and (6.3),

—_ . A A
Ou =T =0y =Ty =0T, =0, =Tp=1,

(11.1)
o.=1, z.=0, e*Tefe=0.
Then from Eq. (6.5), we have
E(o.P.+)=E(o . P,—)=e"c. (11.2)

Referring to Eq. (6.9), we find that the above term can be put outside
the bracket. In consequence, we have only to replace E(iP.x) in Eq.
(8.4) by exp{P.}, and we immediately obtain

— (8 Ko/ 13)Fa =€’ [(Ry+ Ri) E(16P—) E(16Q —)
+ R,E(i6P—)E(i6Q+)+(Ry+ Ry E(i6P+)E(16Q +)

+RE(i6P+)E(16@ —)— R]=0. (11.3)

Further reduction in terms of Egs. (8.2) and (7.6) yields
L [R,ei 0P L R o i0P+0D __ R i0F-00_p p~i0P-30_R1—(. (11.4)

Hence, multiplying by exp {—i(6P+6Q)}, we finally attain

1+ R}, 0P+00 _ RY RZ 677 — RO, R0
— 2V RS, R% R, RE, e 1OP+® =, : (11.5)

where 0P and 6@ are defined in Eq. (4.7). Further approximation by
means of Eq. (8.6) is possible for the last term of the above equation.
There exists no rays which cause the reflection coefficient R},. How-
ever, we have the relation R},=R},R:i— Ri,R%. Then, we have real rays
corresponding to each coefficients in the right-hand side.
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12. Asymptotic frequency equation when h.a, kb>v>hb, hb

Equation (3.1) defines real angles for 4, f, and Jf+ and complex angles
for 4, and 7,, Ray geometry relevant to this situation is shown in Fig. 3e.

Reduction of Eq. (6.9) with the similar manipulations as developed
in the previous sections provides

_(eﬁb/z)[Rg_Ree-ziéé+Rce—2iFQ_Rae—2i<PG+a’Q)]
_l_ie—ﬁb[Rx_Rbe—ziaé_Rde—ziﬁa_}_Rfe—zu{“’aMQ;]
— Roe” a0 =0, (12.1)

Then, keeping only the leading term by means of Eq. (5.8) and employ-
ing the relations (7.6) and R%,=RY%, we get

1—Rf,pe'”ﬁa+R§se'2“Fa+5‘j)—R&Rée'm‘?=0 . (12.2)

13. Asymptotic frequency equation when k:b>v>hoa, b

Equation (3.1) defines real angles for f, and f;, and complex angles for
i, 1 and 7, Hence, there exists no ordinary P rays as shown in Fig. 38f.
Reduction of Eq. (6.9) leads to

—ie [ R.e"% — R, 199 — ™[ — R,e"%+ R0~ 9] — R,=0. (13.1)

In view of the relation (5.8), we find that the second term is predomi-
nant in the equation. Hence, we get by the use of the relations (7.6)
and R;,=RY,

1— R4 R%e™%=0 . (13.2)

14. Asymptotic frequency equation when h.,a>»> kb, hb

Equation (3.1) defines the angles 7, and f, as real numbers and the
angles 1;, %, and f, as complex numbers. Hence, P and S rays in the
mantle do not reach the mantle-core boundary, as is illustrated in Fig. 3g.

Now, we can reduce Eq. (6.9) to

— (8K 1) Fa =€ e[(1/4)ePv* @ { R, E(iP+Q+)+ R E(iP—Q+)}
+(i/2)ePr%(— R,E(iPTQ—)+ R EGP—Q—)}
—(i/2)e ** (R, E(iP+Q—)+ R,E(P—Q—)}
—e 2 %R, EGP+Q+)—R,E(GP—Q+)}—RJ=0, (14.1)

where

P+Q=P,+Q, (14.2)
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and thus
E(iP_-_i-_Qi-)=ei(Fa’60>i e-i(ﬁaiéa) . . . (14.3)

Then, we find from the relation (5.8) that the fourth term in the bracket

of Eq. (14.1) makes a predominant contribution to the equation. Hence
we get, with the aid of Egs. (7.6), (14.3) and the relation Rj,=Rs,

1— RSy %Pe— RYe™*0a 4 ¢ 2 Fat 0 =() (14.4)

15. Asymptotic frequency equation when k.a>v> kb, Iua, hib

From Eq. (3.1) we find that the angle f, is real but all other angles,
1, 1, 1, and f; are complex. Hence we have the simplest ray geometry

as shown in Fig. 3h.
Now, Eq. (6.9) can be reduced to

— (8K 1) Fu=e"<[(i/2)e P+ (R e %+ Roe™'%e)
—(§/2)e?2 (R e Ra+ Rye %} + 7P~ Q{ R 1% — R 0710}
— P 0(R 1% — R0~ %) — Ry]=0. (15.1)

It is found from Eq. (5.8) that the fourth t'ern.a in the bracket of Eq.
(15.1) makes a predominant contribution to the equation. Hence we get,
with the help of the relations (7.6) and Rj,=R,

1— R%e™Ra=(. ; (15.2)

16. Asymptotic frequency equation when h.a, hlb>u>vk2b

We find from Eq. (3.1) that real numbers are assigned to the angles
% 11, fo but complex numbers to the angles 4, and f,. Ray geometry cor-
responding to this situation is shown in Fig. 8i. The figure indicates
that P andfor S rays prescribed by any given ray parameter exist inde-
pendently in the mantle and in the core respectively. When the P-wave
velocity in the core is larger than the S-wave velocity in the mantle, as
is expected for realistic Earth models, P rays in the core are always
accompanied with converted S rays travéling into the mantle. Hence,
the present case is not realistic but theoretically possible. The same
can be said for the succeeding two cascs.
Now we can put, from Egs. (6.2) and (6.3),
e =Te=0,=T:=0a=Ta=1,
(16.1)

or=ay=1, ,=1,=0, e*Pr=g:0s=(,
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Substituting these relations into Eq. (6.9), we obtain
(S/ﬂg)%a:(1/4){¢1E(iP—-i-_Q+)+fI)gE(im+)}{waem‘—woe'ip“}ep“é”
—(i[2)( @ EGPTQ—)— 0. E(GP—Q— ) e Te—UaePejefr
— (/2O EGPTQ—)+ O, EGP—Q— WU Te— U 0 Feje Lot &
(0, BGPTQ+)— O E(GP—Q+ ) WetTe— Ve Feje Po=%
+8¢afeile—e e} =0, (16.2)

where the function E(GP+Q=+) is defined in Eq. (14.3) and
¢1=¢1_4¢2, ¢2=”_¢1_4¢2a
wo:2¢o+2¢1—8¢2 ) w1=2¢o—2¢1“ 8¢2 ) (16-3)
Uy=—2¢y—2¢1—8¢s, Uy=—2¢0+2¢—8¢;.

The coefficients ¢; and ¢, are defined in Egs. (6.7) and (6.10) respectively.
Here, we introduce two multiplicative factors K, and K, defined by

K,=hsa k.a v *vVsp.sqa,

(16.4)
Kb=h2b'k2b‘(0/al)' v'4\/spbspcsqb .
These factors are connected with K, in Eq. (7.4) by
K=K, -K,. (16.5)
Then we get, from Egs. (3.2), (7.1), (7.2) and (7.3),
I{a®1:A(), Ka@g»: AoR?;p )
(16.6)

KU,=id,, KV ,=id:R:,, K¥,=id.R:, K¥;=id.R};.
Substitution of these formulas into Eq. (16.2) leads to
— 8K/ 1) Fe=
2 AJ A EGPTQ+) + R0, EGP— Q-+ )} Rbpeilc— e~ Fejel v &
—({[2{EGPTQ—)— Ry, E(iP—Q— YHRZ,e' e — RiePejefo
—(i]2EGPFQ—) - R, E(GP—Q—)}{R4ei e — Rie~FejeFor &
—{BEGPTQ+)— Ry EGP=Q+)}HeTe— Rhye™ eje Pom )
—RyfeTe—e P} =0. (16.7)
Here, we find from Egq. (5.8) that the fourth term in the bracket makes

a predominant contribution to the equation. Hence, we approximately
have independent equations,
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1—R2pe'2ma—R?,e'2iéﬂ+e'2i(Pa+éﬂ)=0 ,
- (16.8)
1—R}ee=0,
where the relation R%,=RY is employed and the first equation is identical
with Eq. (14.4).

17. Asymptotic frequency equation when k.a, lib>v> h.a, kb

From Egq. (38.1), the angles 4, and f, are assigned as real numbers
and the angles 4y, i, and f; as complex numbers; the ray geometry is
illustrated in Fig. 3j.

Then we have, instead of Eq. (16.7),

— (8K 1)Fa= Ao (i[2) Ry ot ¢ 100} {RY e e — ™ Fefe™?P+
+{RY,e"% — ¢~} {RE,e'Pe— Rie™ el
—(i[2){e' %+ RS, e} {RieTe— Ri,e Fe)e? + &

—{e%e—R3,07 %) (oo Rpe~e)e? ]

.__Ro{eiPc—e_iPC} =0. (17.1)

Equation (5.8) is helpful in finding the most predominant term in the
equation. Then, the fourth term in the bracket provides two independent
equations,

1—R%e =0,

- (17.2)

1—R},e =0,
where RS, is replaced by R and then the first equation is identical
with Eq. (15.2).

18. Asymptotic frequency equation when ,b>v>k.a

Now the angle 1, is defined as a real number but all the other angles,
iy 1 fo and fi, as complex numbers, which means that there exists only
P rays in the core for a given ray parameter (see Fig. 3k).

Then we get

— (8 Ko/ p2)Fa=
AOAE[__{R;peiﬁc_e-if’c}e-ap-éé+Rgp{R§peiPc_Rie-iﬁc}e-aﬁwé
+R2P{R§56iﬁc—‘Rf,pe-“_‘c}eap_aé—{eipc—R;,pe—iP”}eaﬁ+aé]

.—.Ro{eii—,c——e_iPC}:O (18-1)
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Equation (5.8) indicates that the fourth term in the bracket is supe-
rior to other terms in their contributions to the equation. Hence, we have

1—Rl,e*Pe=0. (18.2)

This equation is identical with the second one of both Eq. (16.8) and Egq.
(17.2), and it represents the frequency equation of the spheroidal oscilla-
tions of the Earth attributable to multiple total-reflections of P rays in
the liqui'd core. Hence, disturbances associated with these modes are
restricted within the core and in the vicinity of its boundary in the

mantle.

19. Summary

Two kinds of the asymptotic formulas of the spherical Bessel func-
tions and spherical Neumann functions are successfully employed for
deriving asymptotic frequency equations of the spheroidal oscillations of
the Earth with a uniform mantle and core. Then, we have assumed
both frequency and angular order to be very large while keeping its

ratio (or phase velocity) finite.
The equations are expressed in different forms corresponding to dif-

ferent ray-gecometries in the Earth and are denoted in terms of the
reflection and transmission coefficients and the intercept times of rele-
vant P and S rays incident on the free surface and mantle-core boundary.
This fact surely proves the strong connection between high radial modes
of free oscillations and body waves.

Here it should be noted that it will be very difficult to expand the
asymptotic frequency equations of the spheroidal oscillations into ray
serics transmitted in the Earth unless we have certain information on
the ratio between the displacements associated with P and S waves.
This situation will be made clear in a future paper [ODAKA (1980b)], in
which the frequency equations are ‘derived in terms of ray theory under
a certain interference condition of body waves traveling in the Earth.
The paper will also give further reduction of the equations, discussion
on the distribution of their solutions (eigenfrequencies) and numerical

computations.
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