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Summary

A Green function method is developed for calculating the piezo-
magnetic field associated with various tectonic models. The model
earth considered is the simplest in its elastic and magnetic properties;
i.e. a homogeneous and isotropic semi-infinite elastic body having a
uniformly magnetized top layer with a constant stress sensitivity.
The experimentally as well as theoretically established law of the
reversible piezomagnetic effect of rocks under uniaxial stresses is
extended to include any arbitrary three-dimensional stress state. This
generalized piezomagnetic law is combined with Volterra’s formula in
the elasticity theory of dislocations to yield a surface integral repre-
sentation of the tectonomagnetic field for any dislocation models.
The elementary piezomagnetic potentials, or Green’s kernels in the
integral formula, can be constructed by means of the Fourier trans-
form method. As an applied example of the present theory, analytical
solutions of the seismomagnetic effect due to purely vertical trans-
current faults are presented for the uniform and linear slip of an
infinitely long fault as well as the uniform slip of a rectangular fault.
Finally, a formal expression of the piezomagnetic potential is derived
in terms of the given displacements within a strained body. In the
uniform piezomagnetic medium of infinite extent, the potential is
identical with the displacement itself multiplied by material constants
of the medium. Hence, the tectonomagnetic total field change at the
earth’s surface represents, for the most part, the extension at that
point in the geomagnetic field direction.

1. Introduction

Geomagnetic changes in association with tectonic events have some-
times been reported in such cases as strong earthquakes (RIKITAKE 1968),
volcanic eruptions (JOHNSTON and STACEY 1969) and so on. Especially in
recent years, this kind of field work has been intensively carried out in
the seismically active regions with special reference to the earthquake
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prediction study (SMITH and JOHNSTON 1976, SUMITOMO 1977, SHAPIRO
and ABDULLABEKOV 1978). This particular branch of geophysics was
named “Tectonomagnetism” by NAGATA (1969). Tectonomagnetism is
based upon the piezomagnetic effect of magnetized rocks. Among a
variety of piezomagnetic phenomena (NAGATA 1970a), the most dominant
is the reversible change against applied stresses, which is best established
experimentally (KALASHNIKOV and KAPITZA 1952, OHNAKA and KINOSHITA
1968) as well as theoretically (NAGATA 1970b, STACEY and JOHNSTON
1972).

Several tectonomagnetic models have been constructed on the basis
of reversible piezomagnetic effect. STACEY (1964), a forerunner of such
a study, calculated possible coseismic magnetic changes due to a hypo-
thetical distribution of the released stress by a vertical transcurrent
fault. YUKUTAKE and TACHINAKA (1968) estimated geomagnetic changes
associated with a dilating cylinder horizontally stretched within the
earth, while DAVIS (1976) calculated the piezomagnetic field by a hydro-
statically pumpéd sphere.

Since STEKETEE’s (1958a, b) pioneer work, the elasticity theory of
dislocations have provided us with a powerful means to clarify the dis-
placement and stress field around an earthquake fault. The application
of the theory to tectonomagnetic modelling was first carried out by
SHAMSI and STACEY (1969), who calculated the magnetic field produced
by vertical strike-slip and dip-slip faults with infinite length. '

A vertical strike-slip fault with semi-infinite length was investigated
by TALWANI and KOVACH (1972) in order to estimate possible magnetic
changes caused by stress concentration near the fault edge. More recently,
JOHNSTON (1978) interpreted some tectonomagnetic events observed along
the San Andreas fault with the aid of piezomagnetic model calculations
of a rectangular strike-slip fault. .

All these model calculations require elaborate computer work, be-
cause two- or three-dimensional convolution integrals should be computed
numerically. Most of these models have singularities along the edge of
dislocation surface. The complicated, sometimes divergent, stress distri-
bution near singular points prevents us from exact understanding of
the fault edge effect with the limited resolution of coarce numerical grid.

SASAT (1979) presented an analytical solution of the piezomagnetic
field produced by a center of dilatation within a semi-infinite solid. The
algorithm is based upon the Fourier transform of convolution integrals.
The method is applicable to various types of strain nuclei, and hence to
dislocation models, because such models can be viewed as a distribution
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of some particular nuclei of strain (what are called elementary disloca-
tions) on the dislocation surface. It will be shown in this paper that
the piezomagnetic field associated with any dislocation models can be
expressed by surface integrals of some potential functions. These func-
tions might be called the élementary piezomagnetic potentials, which
represent the piezomagnetic field produced by elementary dislocations.
Once the eclementary potentials are known, the surface integration can
be achieved analytically for some simple distribution of dislocations. If
it were not the case, numerical procedure would be greatly simplified,
because the 3-dimensional convolution integral over a semi-infinite medium
reduces to a 2-dimensional surface integral over a finite dislocation sur-
face.

The main purpose of this paper is to construct the above-mentioned
clementary piezomagnetic potential functions. The elastic properties of
the semi-infinite medium are assumed to be homogeneous and isotropic,
the uppermost layer of the medium being uniformly magnetized from
the plane boundary to a depth of Currie point isotherm.

The stress-induced magnetization under any 3-dimensional stress state
will be formulated as a linear combination of stress components. The
stress-magnetization relationship and Volterra’s formula for the disloca-
tion stress field will be combined to give a general expression for the
piezomagnetic anomaly field associated with any dislocation models. We
can obtain the kernels in the integral formula, or the piezomagnetic field
potentials due to elementary dislocations, by means of the Fourier trans-
form method.

In order to show the applicability of the present theory, we will
derive analytical solutions for the piezomagnetic field produced by some
vertical strike-slip faults. A simple case such as an infinitely long fault
will be investigated for the uniform and linear slip model, which will
be compared with results obtained by SHAMSI and STACEY (1969). The
piezomagnetic field due to a vertical rectangular strike-slip fault will be
presented, exhibiting a remarkable fault edge effect. All these model
studies cast a new light upon the seismomagnetic effect, which will be
discussed briefly.

In the last section the tectonomagnetic fiecld will be treated in a
most general way.  We connect the Gaussian law for the magnetic field
and the equation of elastic equilibrium through the generalized piezo-
magnetic formula. With the help of the potential theory, we will obtain
a formal representation of the piczomagnetic field as a function of the
given displacement. Especially, the total field change will be shown
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approximately proportional to the crustal extension at the observation
site measured in the geomagnetic field direction.

2. Stress-induced Magnetization

We begin with the well-established empirical law of the reversible
piezomagnetic effect under uniaxial compression and tension (NAGATA
1970a, STACEY and BANERJEE 1974):

" __ 6, ~ T7(1__
A= =T po) ]
, 2-1)
AJ*:~J—1°—;J;(1+%50> J
1—=fo
2

where superscripts » and L denote the magnetization component (induced
plus hard remanence) parallel and perpendicular to the applied stress
respectively, while the subscript 0 indicates the unstressed state. The
compressive force is taken to be positive. Since the stress sensitivity g
has an order of magnitude of 107* in units of bar~!, the linear relation-
ship on the right-hand side of eq. (2-1) is approximately valid within the
stress range up to several hundred bars.

Egs. (2-1) were extended to the general three dimensional stress state
by STACEY, BARR and ROBSON (1965). We may resolve the magnetiza-
tion J, into orthogonal three components (J;, Jo, J5)* in directions of principal
stresses and apply the relations (2-1) to each component. The stress-
induced magnetization in the ¢-th principal axis direction can be repre-
sented by (STACEY et al. 1965)

AJiei:ﬁJi<£j-12_O'k —‘0'1;>ei ('i, j, IC-:l, 2, 3. 7:#_7.# k) ‘L (2‘2)

where J; and 4J; are the magnetization and its increment in the 4-th
principal axis direction, while e; indicates a unit vector diriction of the
principal stress ¢;. In the tectonomagnetic modelling hitherto made, eq.
(2-2) has been directly applied; we have to work out values of principal
stresses as well as their direction cosines at every point in the mag-
netized region. For the general three dimensional stress state, this is
not an easy matter. The present writer obtained a linear relation among
the magnetization change and stress components for the axially symmetric
problem with respect to z axis (SASAI 1969). A similar relation for any
arbitrary stress distribution will be derived here.

Let us put the stress tensor T in the Cartesian coordinates as fol-
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lows:

Tzxr Tzy Tzz

T=\ 7.y vy 7Ty |- (2-3)
Tzz Tyz Tz

This symmetric matrix can be transformed into a diagonal one by a
modal matrix P:

g, 0 0
P'TP=|0 o, 0 |. (2-4)
0 0 g3

Column vectors of P consist of cigen vectors of T corresponding to prin-
cipal stresses oy, 0, and ¢;. We may write P as

21 22 23
P=|m p |- (2-5)
Vi Vo V3

Since the modal matrix P is normalized and orthogonal, these components
must satisfy the following conditions:

BABAB=1, it =1 vl = 06
2-6
21#1"*‘22#2'}‘23/13:0, A+ 2wyt A =0, ﬂ1”1+ﬂ2”2+ﬂsv3=0
The components of any arbitrary vector expressed in the principal
axis coordinates (e, ¢y, ¢;)° are related to those in the original Cartesian
coordinates (¢, ¢y, ¢;)* in the following way:

Cy Cr A HUr Y1 Cz
Cq :P_l' Cy = Zg Ha VYo |° Cy . (2'7)
Cs C; A3 Hs V3 C;

This involves the transformation relationship among orthonormal bases
of both coordinates:

6122191+ﬂ1€y+vlez i
e,=2.e.+ e, +ve, . (2-8)
33=23e;+ﬂ29y+1}3€z J

Let us first consider the magnetization changes which the horizontal
magnetization in x direction suffers. Substituting (J,, J,, J5)'=P*-(J,, 0, 0)*
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into the fundamental equation (2-2), wec obtain each component of the
magnetization change:
AJlelzﬁ/lelJ_rel

AJ292:ﬂ22T2Jxez (29)

AJgeg zﬁlngnges
where

1, 3
T=Lo-3,,
59757

('I;zl, 2, 3) . (2'10)

@=01+0'2+03 J

With the aid of relations (2-8), the total increment of the magnetization
can be given as

AMI ZAJ191+ AJ302+ AJseg
(2-11)
:ﬁJx(Sxxez+Sxyey+szez)
where
Sxa::'z%Tl_]_/ngz’*" ZETS
va;21ﬂ1T1+22#2T2+ Aapts T . (2-12)
Szz:21v1T1+22V2T2+23U3T3 J

In quite the same manner, changes in the magnetization 0, J,, 0)
and (0, 0,.J.), denoted by 4M, and 4M, respectively, can be obtained :

AMy :ﬁJy(Syxer+ Syyey + Syzez)
(2-13)
AMz=ﬂJz(Szxex+Szyey+Szzez)
where
Sye=8Szy
Syy:#fT1+#§7'2+#§T3
Syz =#1”1T1 -+ #392T2+ flsvsTs
(2-14)
SZI:S$Z
S.,=S,.

S,. ZV%T1+”§T2+U§T3

Next, we will investigate expressions for S.., S:, and so on in terms
of stress components. Since the trace of a matrix is invariant with
respect to the orthogonal transformation, the following relation holds
good :



Application of the Elasticity Theory of Dislocations 393

O=0,+0sF03="Tzz+TyytTss (2-15)
Eq. (2-4) can be rewritten as
g 0 0
T-P=P-|0 g, 0][. (2-16)
0 0 o,

The first row of this matrix equation is equivalent to the following
equations:
11sz+#1fxy+v1‘ru=2101

Zngx+ﬂQTxy+szx;:X20'2 (2.17)
23Txx+/1372y+1)371221303 J

Substitutions of (2-15) and (2-17) into (2-12) lead us to the following
formulae :

Sew= g (R4 22+ 2)0 — 2ot Zhowt Zi)
= %-(Tyy + Tzz) —Tzz

Szyz_;.(zlﬂl+lgyg+ 23p3)9~%(21y101+22,u202+ A3tts03)

=Ty

2

Szz = %(211)1 + Awpt 23”3)6 - %(211)101 + Ao+ 231’303)

=—Ty

2

in which the orthonormal conditions (2:6) are used. By making use of
the second and third row of eq. (2:16), we obtain

1
Suy:—(fxr'*_fzz)—fyy

2

1 \
Szz - —2‘(7“: - Tyy) T2z

These results can be summarized in the following compact form :




oyt Te _3 _3
2 Trxs 9 Tzxys D) Tzz J:c (2 18)
3 Trzt T2 3
=B —"é'frya - 2 “Tyys —'gfyz |y
3 3 Tzat Tyy
2 Txzs 2 Tyzy 2 T2z Jz

The linear relationship (2-18) between the magnetization change and .
stress components holds even when g and J differ from place to place.
However, it should be kept in mind that the formula is applicable only
in a relatively low stress range of up to several hundred bars.

The generalized linear piezomagnetic formula (2-18) is equivalent to
STACEY, BARR and ROBSON’s (1965) formulation of eq. (2-2), which is
based upon the assumption that the principle of superposition applies to
the reversible piezomagnetic effect. Eq. (2-18) is convenient for tectono-
magnetic model studies, because we no longer need to estimate principal
stresses and principal axis directions.

This type of formulation was first proposed by RIKITAKE (1966), who
suggested the following relation among magnetization changes and strain
components to be obtained by experimental studies:

Ay =028z QyyCyyF Qo8 Q20,00 pysry
AJy = bxxe.rx + byyeyy + bzzezz + byzeyz + bzxeza: + bryezy
4], =282zt Cyylyy oz Cyalyst CozlintCoylsy -

If we replace stress components r,,’s in eq. (2-18) with strain components
en.’s through Hooke’s law, we will find that the generalized piezomagnetic
law (2-18) is nothing but a concrete form of Rikitake’s expression.

The formula (2-18) should be examined from an experiment as well
as from a more microscopic viewpoint. This might be derived from the
basic concept of the reversible piczomagnetic effect, namely the rotation
of the spontaneous magnetization of rock-forming minerals, as employed
by NAGATA (1970b) and STACEY and JOHNSTON (1972). It should also be
noticed that Rikitake’s expression allows of the anisotropic piezomagnetic
change against applied stresses. Recent experiments brought to light
some anisotropic piezomagnetic behavior of compressed rocks (HENYEY,
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PIKE and PALMOR 1978). We deal with, however, very macroscopic
models in tectonomagnetism, and we might expect that such anisotropy
vanishes as a whole in averaging randomly-oriented small scale inhomo-
geneities within the crust.

The piezomagnetic field potential at a point (x, y, 2) outside a stressed
body can be given by the dipole law of force in the following way:

Wola, v, )=\ | (8ISl 82, U -8, U)o dyf 02!

W,(x, ¥, z):S SﬁJy(Sy,U;+SyyU§+SyzU£)d:v’dy’dz’ (2-19)

™ Wl

Wz(x, Y, Z) == S S,BJz(Szx Uéc + Szy Ué + Szz Ui)dx’dyldzl

where
Us=(w—a")lr"
r=—y)" 1
Ut=(z—2")r" }
r=v{e—aY+y—y)y+E-—2)

(2-20)

3. Volterra’s formula for the piezomagnetic field potential

STEKETEE (1958a, b) introduced the elasticity theory of dislocations
into geophysics. A dislocation surface, which is a surface of discontinuity
in displacement within an eclastic medium, can be regarded as a distri-
bution of ‘nuclei of strain’ (LOVE 1944). There exist six sets of strain
nuclei to describe any type of dislocations. STEKETEE developed a Green’s
function method to include the effect of a stress-free plane boundary,
and formulated displacement and stress field caused by a dislocation sur-
face placed in a semi-infinite elastic medium. The analytical expressions
for all these Green’s functions were obtained by MARUYAMA (1964).
PRESS (1965) showed that the same results are derivable from combina-
tions of MINDLIN and CHENG’s (1950) solutions for various strain nuclei
in the semi-infinite solid. In this paper, only relevant results will be
quoted, mainly from MARUYAMA’s (1964) work. The derivation of funda-
mental formulae and their physical meaning should be referred to these
authors (i. e. STEKETEE 19582, b, MARUYAMA 1964, PRESS 1965).

We take the Cartesian coordinates (zy, %, ®;) as shown in Fig. 1. A
semi-infinite elastic body occupies #;>0. The elastic properties are iso-
tropic and homogeneous throughout the body. It is also assumed that



Fig. 1. The coordinate system and a dislocation
surface X with its outward normal .

the top layer from the plane surface boundary #,=0 to a depth of Currie
point isotherm x,=H is uniformly magnetized, the stress sensitivity B
being constant within the layer.

Let us consider a dislocation surface Y in the semi-infinite elastic
medium. A Somigliana dislocation is defined as a discontinuity in dis-
placements across the surface Y, du,=u{—uz, which may have any form
as long as the forces to maintain the dislocation satisfy continuity con-
ditions across 2': tiy;—7iv;=0. A point on the dislocation surface is
designated by P(¢,, &, &). The stress field produced by the dislocation
4u,(P) at an arbitrary point Q(z, w,, »,) in the elastic medium can be
presented by the following Volterra’s formula : .

e @=\{ dus(PYHEu(PY 2
b3 (3-1

(k,1=1,2,8. m,n=x2,y,z.)

where v,(P) denotes a component of the outward normal to the surface
element d2. The summation convention applies with respect to % and I
in the above. A fourth rank tensor H7" indicates stress component of a
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certain strain nucleus, which is called an elementary dislocation. k and
! specify the type and orientation of the clementary dislocation. Strain
nuclei with k=[ represent displacements normal to the dislocation sur-
face Y, while those with k=l describe parallel ones along X. STEKETEE
(1958b) called the former A nuclei and the latter B nuclei. These can
be expressed by combinations of double forces as shown schematically in
Fig. 2.

3 3 3
I 4
|
o C g
‘ P -
() (22) (33)

\\
=%
\:ﬁ%_
!

/

(23) (3n (12)

Fig. 2. A schematic representation of elementary dislocations (after Maruvama
1964). The A nuclei, (11), (22) and (33), correspond to the crack-forming
movement, represented by the center of dilatation (circle) and the double force
without moment (arrows). The B nuclei, (23), (31) and (12), can describe the
shearing offset of the dislocation surface, represented by two co-planar, mutu-
ally perpendicular double forces with moment.

We substitute the stress components (3:1) into the general formula of
piezomagnetic potential (2-19). Interchanging the order of integration
with respect to P and @, we obtain

W, = ﬁngSAuk(P)wflvl(P)dE

o

W,=8J, Sduk(P)w’ém(P)dE ‘ (3-2)

W, :BJZSSAuk(P)sz(P)dZ'

o
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Wwhere
H
w;,:go dx3gg [SiFUL+SH UL+ S5 U dw,des
H
win=\"do,(\” 11U+ s001+ S8 Utlda dn, (3-3)
H o
10;1:80 dx3gg_ [ Ux'*‘SwUz/‘l‘Sk[U]d’Ulde
and
pr=Lg, Hii—3H
2 mn
or 17 = (HYY+ Hip)— i, p=—2mm, p=—2ay [ G0

ete.
Ur=(x—a)[p"®, Ui=(y—u)lp”, Ul=(z—u,)/o"

3:5
=+(x— @)+ (y—a) '+ (z— %35)° ( )

Since egs. (3-2) have the same form as eq. (3-1), we may call each
of egs. (3-2) Volterra’s formula for the piezomagnetic field potential. wi,
wy, and wj are piezomagnetic potential due to an elementary dislocation
of the type (kl). We will call them the elementary piezomagnetic poten-
tials. Analytical expressions for these Green’s functions will be derived
in the next section.

4. Elementary piezomagnetic potential

We assume that the elementary dislocation is located at (0, 0, &).
Replacing « and ¥ by (x—¢&) and (y—&) in the final expressions, we
can arrive at corresponding results for any arbitrary point P(&,, &, &5).
We will evaluate following convolution integrals with respect to 2, and
x, in egs. (3-3):

I

oi=\\" 18- UL+ 87 UL+ Sk Ullddo,

Sg LSk -UL+Sy-Ul+Si-Ullde,dz, (4-1)

X4
Dy

wz,zggw (S UL+ S5 Ul-+-S5- Uldwdz,

These can be solved analytically with the aid of the Fourier trans-
form theorem of convolution integrals, which results in
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1 - =
gai‘lzsﬁt'Ux'{-Sily' Uy-}_Slflz'Uz

o @h=8} - U:+81-U,+84- U, (4-2)

oo a=8 Ut §1-U,+ 54 .
where the bar above each function implies that it is a Fourier integral trans-
form. SI™s can be obtained by combining HZ" through eqgs. (3-4). What
we really need in calculating (4-1) is, therefore, not the stress components
themselves, but their Fourier transforms. Instead of directly transform-
ing Hj", we will apply the operational rules to these stress components
as expressed in terms of appropriate Galerkin vector stress functions.

The displacement and stress field due to an elementary dislocation,
or a particular nucleus of strain, can be derived from a Galerkin vector
(I, I',, I';). The Galerkin vector satisfies the biharmonic equation Fp*r
=0, which is equivalent to the equation of elastic equilibrium when
there is no body force. The displacement is defined as

u=P*—agrad-div)l’
where
Atp (4-3)
“T A ou J

while components of the stress tensor are related to the elastic displace-
ment through Hooke’s law :

mn=A0my div u+p( gu"‘ + gu" ) (m,n=x,, 2) . (4-4)
Substituting .. into egs. (3-4) in place of Hy", we get the following
expressions for S7” in terms of the Galerkin vector:

1 0 } . ( o'y or'%, )
—‘L_l kL —[(1 a')amnV +3aa% E A 17 aﬂ?n -+ axm

where P e ar (4-5)
kl kl kl
Ak,——dlv I, = e o + a’Lq + 8’173 .
We will employ the following definition for the Fourier transform
of a function f(x,, #,) and its inverse as

P, k):%SS Flay, w)em i ey 4o, ]
o (4-6)
Fly 2)=5 AN 7y, ket i, J



400 Y. Sasal

Under proper conditions of derivatives of f(x, x,) when =z, x, approaches
infinity, we get

(S5

()t ()
J (4 * 7)

)77 (r=32)

The operational rules (4-7) are then applied to egs. (4-5), yielding the
Fourier transforms of S§”:

; m =[{(1 @bl =2 Em, m, 1)}(p?—/cf—k;)+3aD(m,n)ikl]ﬁ;l

+|:{(1—a)5mnilcz—i;’-E(m, n, 2)}(p2—k§—k§)+3aD(m,n)ik2:|f,€[ (4-8)

+[{(1—a)5m,,p——g—E(m, n, 3)}(1)2~lc2 k%) +3aD(m, %)pJsz

where
D(/m',' n) = 5m15n1k§ - 511115712’51]52'— amzaanE

F 0105ty D + OmaOrnsieoD + O myfra
E(m) n, j) :6ij/(n)+5njE,(m)
E'(1) =611k~ 0151k s+ 0150

-
|

From symmetry considerations, some of the results in the following
may be ecasily obtained by interchanging coordinates =, and z, and cor-
respondingly %, and k.. We will calculate, however, all the combinations
of (kl) and (mn) independently in order to check for errors.

STEKETEE (1958a, b) showed that the displacement and stress field in
the infinite medium due to an elementary dislocation of the type (kl) at
(&, &, &) can be derived from a Galerkin vector:

sxgmz—za“a%— ,u[ e ;’: L gxk]

4-10
where ( )

1= V(3= &)+ (2= &)+ (5 — &)

The Galerkin vector in the semi-infinite medium due to a dislocation (kl)
at P(0,0, &) consists of three parts corresponding to:
(i) double force (k) at P(0,0, &),
(ii) double force (kl) at a mirror point P(0,0, —&,) with equal inten-
sity, of which a sign should be selected so as to cancel the
tangential shear stress due to (i) at the surface boundary z,=0,
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(iii) normal load on the plane x;=0, which nullifies the resultant
normal stress due to (i) plus (ii).
We can readily construct (i) plus (ii) from the fundamental Galerkin
vector in the infinite medium (4-10). These are as follows:

1/2+2 x 1 (2% , 2
ne-(42)58)  frue- L)
! 8n )7 R+S I 8z \ R+S
e L(2)(z22) = L (25 2
" 8T\ p R+S I 8T\ p R+S
3=.__1_/_'2_)<K_5_3 M) 3 - 1 (2 <’va 3 xa+53>
It 8r\p/\ R + S I 8n< ) R S
1/ 2\(2, | @
ne-dBE [
. 8w \ 1 R+S =0
) 1 /Z)(mg ib’z) 2 1 <x3_$a x3+§3> .
2=t [ AN T2 %o = — 4-11)
» 8\ p R+S ® 8\ R S (
s 1//2‘*‘2/1)(903"‘53 xs‘}‘&) 3 1 (w, xz)
I3 L 3. =—_= (%2 %2
A B S 27 8 <R S
1=_L<x3—52_903+&> 1=_L<’U_2_ ,Pi>
T 8z\ R S M=y IS
ra=—21(%-o) =0
where
R=~ut+ai+(@,—&), S=vValtait(w+&), (4-12)

The third part (iii) can be obtained by solving the Boussinesq prob-
lem. The solution is expressed by a Galerkin vector of the form (0, 0, I'.).
The problem was actually solved by the Fourier transform method
(STEKETEE 1958a), so that I",’s have already been worked out by MARU-
YAMA (1964). His results for I'}’s are entirely available for the present
purpose (MARUYAMA, 1964, p. 315):

—1[(g 1)\ <_L>2’i§ _< ~L> 1kt
At 271[(2 a>k4+2 a l;*_*_{ z « Es-H%JII{:S
2
+<2_%>x3%_53 3]”:]

= (2 LY (o L) (5 L)
L 27:[(2 a>k4+2 1+2 =
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. /w] .

l) s+ mg}—l—-i-fgocg]e‘“?
@ k

Lt {e- Do -2

402
R i G R
44
A _ 1o _1\1 _
P a_@ >k2+{<2
Pa= £ {(- 1) s
5 7 B k k —Blo
P (2= ) 5 gt e
-2
s 2n L <2 a 1
klkq . 3101702} —kCa
where Lo=&;+2;

(4-13)

We are now in a position to obtain the Fourier transforms of I}
However, we run into a difficulty here; the Fourier transform of a func-
tion f(ay, @)=,/(x?+x3+c")"* cannot be defined in the ordinary sense,
because this function is not absolutely integrable in the domain (—oco <z,

< -+ o0).

Fourier transforms of such functions (what are called slowly

increasing functions) should be considered in the meaning of distribution,

or generalized functions (VLADIMIROV, 1971).

We find, however, that the

“distribution” term disappears in the final expression owing to the odd-

Table 1.

Fourier transforms.
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ness of f(x, ;). We will clarify the circumstances in Appendix A by
actually deriving f(w, z,) (after MARUYAMA 1980 ; personal communica-

tion).

Table 2. Inverse Fourier transforms.

Sz, v
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Thus Fourier transforms (in the sense of distribution) of I'};, I';, and
I'}, are obtained by the formulae in Table 1. We may conduct opera-
tional calculus by substituting 7'}, '}, and (I'},+7,) into egs. (4-8) to
yield Sp". They are summarized in Appendix Bl.

On the other hand, Fourier transforms of U,, U, and U, are defined as

(7-2:_%6—14, ﬁy_:__ 'IZ:'Q e-kC’ [_]—z: —e K ]

where J
(=x,—2

(4-14)

Combining results in Appendix Bl and (4-14) through egs. (4-2), we have
@y, @n and @i, as shown in Appendix B2. Integrating those with respect
to x; from 0 to H, we obtain @§, @}, and Wi, which will be found in
Appendix B3. Finally, by making use of the inverse Fourier transform
formulae in Table 2, we arrive at analytical expressions for the elemen-
tary piezomagnetic potential :
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Lf (o, )i=1(ps, c)—S(pj. ¢)) (4-21)

and
p=Vatytel, =&z

0=V T+ +cl, co=2H—&,—2, (4-22)
p3=\/x2—l—y9+c§, c;=2H+&—z.

According to the general theory of multipoles (STRATTON 1941), all
these elementary piezomagnetic potentials can be viewed as a set of multi-
poles placed at (0,0, &;), (0,0,2H—¢&,) and (0, 0, 2H+&;), together with lines
of multipoles connecting these points. This feature is similar to the
piczomagnetic field of the Mogi model (SASAI 1979). We can construct
the solution for the Mogi model, which is essentially a point force source
of the center of dilatation, by summing up wi, w. and w, in the above.
This simple nature of the elementary potential is of much help for phy-
sically understanding the piezomagnetic changes associated with disloca-
tion models. The magnetic field is equivalent to that produced by the
distribution of multipoles along the dislocation surface plus its mirror
image magnets below the Currie depth.

5. The Piezomagnetic Field Associated with a Vertical
Strike-slip Fault—Application of the Theory

Let us now apply the present theory to a simple tectonic model, i.e.
a vertical rectangular strike-slip fault. The displacement and stress field
of this type of fault was investigated in detail by CHINNERY (1961, 1963).
The fault geometry is illustrated in Fig. 3. The piezomagnetic field
potential at a point (z,w,z) in this case reduces to

L
' L
!
! X1
< 1
X2 = 1
~> 'd 1
|
W H
[
D
\:
v
X3

Fig. 8. The geometry of a vertical rectangula:
strike-slip fault.
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Wx=—12—#ﬁJISLS:Au(&, EJwi(w—&, v, 2, £)dE,dE,

d
w, :%”ﬁ‘]”s:)g:du(&’ E)wi(e—&,, Y, 2, &)d&dE; (5-1)
wo=tus {7 e, eowta—e, v, 2 e0dedey

in which 4u(&, &) indicates the dislocation along the fault as a function
of position.

Infinitely Long Fault

When the fault length is much greater than its width and when we
observe the magnetic field near its center, we may regard it as a two-
dimensional one with infinite length. Such a fault was investigated by
SHAMSI and STACEY (1969) in order to estimate the possible seismo-
magnetic effect accompaying the 1906 San Francisco earthquake. They
proposed three kinds of fault slip distributions, namely (a) uniform, (b)
linear and (c) sinusoidal slip models as shown in Fig. 4. Although
SHAMSI and STACEY conducted numerical integrations for the linear slip
model, we will present here analytical solutions for the first two models.
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Fig. 4. Sections of three types of the fault slippage along an infinitely long vertical
strike-slip fault as proposed by Suamst and STacey (1969) : (a) uniform slip,
(b) linear slip and (c¢) sinusoidal slip model respectively.

Since the dislocation slip at a given depth (&, 0, &) is uniform in the
&, direction, we can obtain the piczomagmnetic potential due to a line of

screw dislocation as follows:

® 2y | 2y
wy=\ whdf§=—— L
S—w T (G —2) PP (2H A E—2)
0 (&> H)
i 2 (&<H)

Tt (G—2) P (QH—E—2) (5-2)

=)

Wy= S wl,dé,=0

w2=gw wi,d&,=0
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In case of such a simplified fault geometry, only the horizontal magneti-
zation parallel to the fault strike produces the observable magnetic field.
The non-zero component w, consists of lines of magnetic dipoles polarized
in the y direction, at depths z=§&, 2H-&; and 2H—&;.

The slip distribution function 4du might be given as follows;

(a) uniform slip model:

du=U, (d=&=D)

(5-3a)
(Uy,=const.),
(b) linear slip model:
du=U,P=5  (az£2D)
D—d (5-3b)
(U,: the maximum displacement at the fault top),
(c) sinusoidal slip model :
du= (”.,_D:&) d<&=<D
u="U, sin 5 Dd (d=&=D) (5-30)

(U, : the maximum displacement at the fault top).

The piezomagnetic field potential of these models will be shown as

Ww=L 87 SDAu-w de (5-4)
- 2 HPJ a 2US3 .

The physical pictures of the magnetic field represented by eq. (5-4) would
be easily imagined as shown schematically in Fig. 5: they are equivalent
to the magnetic field produced by infinitely long plate magnets placed
along the fault plane polarized perpendicularly to the fault surface plus
some mirror image magnets with opposite polarity, their magnetic inten-
sity being proportional to the slip discontinuity Ju.

The integration of eq. (5-4) can be achieved without any difficulty
for the uniform and linear slip model, results of which will be found in
Appendix C. The integral for the sinusoidal slip model is no longer
expressible by elementary functions. However, numerical calculations of
eq. (5-4) for the sinusoidal slip model would be less laborious than the
9-dimensional convolution integrals as carried out by SHAMSI and STACEY
(1969).

The surface magnetic components due to the uniform and linear slip
models are computed along the intersection perpendicular to the fault
trace, as shown in Fig. 6(a). All the model parameters are the same as
those given by SHAMSI and STACEY (1969), i.e. d=0km, D=5km, U=
—5m (right lateral), average magnetic dip [,=60°, fault strike ¢=45°



Fig. 5. The vertical cross section of equivalent plate magnets which produce the
surface magnetic fleld by (a) uniform, (b) linear and (e) sinusoidal slip model
respectively. The shadowed and hollow magnets have opposite polarity with
each other. The thickness of each plate magnet is proportional to the inten-
sity of magnetization. ’

west of magnetic north, Currie depth H=20km, stress sensitivity f=
1.0xX10"*bar™!, average magnetization J,=1.0xX10°emu and the rigidity
¢ is assumed here to be 3.5X10" ¢gs.

The magnetic field just on the surface trace of the fault becomes
infinite in the present calculation. This result is unlike that of SHAMSI
and STACEY. They fixed the upper limit of stress change near the sin-
gular fault edge up to 100 bars in numerically calculating the piezo-
magnetic field. It should be emphasized, however, that the magnetic
field singularity is not brought about by the anomalous stress field around
the fault top itsclf. As we have scen in the derivation process of eq.
(5-4), the stress-induced magnetization change throughout the magnetized
crust contributes to such a divergent magnetic ficld along the dislocation
surface. As long as the fault top with a finite amount of slip discon-
tinuity lies at the earth’s surface, there is always a singularity in the
magnetic field along the fault line.

For the burried fault, the field no longer diverges. An example for
the case of d=0.5km is shown in Fig. 6(b). This figure resembles fairly
well the results of SHAMSI and STACEY, except for the total force com-
ponent. (See Fig. 6 in their paper.) The resultant F' component in their
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%
20 D= 0km
W= 5
- H= 5
F10
—4H -

Fig. 6(@). The surface magnetic field along a line perpendicular to the fault accom-
panying the uniform (left) and linear slip model (right) repectively, when the
fault top d=0km.

r » { A

7
F20 D =05 km 20 D = 05 km

Fig. 6(b). The surface magnetic field along a line perpendicular to the fault accom-
panying the uniform (left) and linear slip model (right) respectively, when
the fault top d=0.5km.
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figure seems too small in comparison with the H and Z component. This
might come from simply mistaking the sign of the Z component in com-
posing the total field.

The solution for the uniform slip model may be, from another view-
point, regarded as a combination of stationary line currents flowing in
the «x direction at depths z=d, D, 2H=+=d and 2H=+D. The surface
magnetic field is produced for the most part by the “equivalent line cur-
rent” at z=d. This explains why observable magnetic changes are found
merely in a very narrow area above the fault top in Fig. 6.

The position as well as the polarity of the “equivalent plate magnets”
vary with the spatial configuration of the underground fault against the
Currie depth H, as schematically depicted in Fig. 7. In any case the

I I I

«— LTL—
SSsg ¢
| —— AW
EXXSISTY

L S T

Fig. 7. The vertical cross section of equivalent plate magnets for three representa-
tive spatial configurations of the fault and the Currie depth.

coseismic magnetic change would be hardly detectable at teleseismic dis-
tances (say, several to ten times as far as the Currie depth H), because
the equivalent magnets and their negative images are so closely situated
that their magnetic field would cancel each other at these distances.
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Rectangular Fault

When the fault slip 4w is uniform over a rectangular fault, integrals
in eq. (5-1) can be evaluated analytically. This may be achieved effici-
ently with the aid of the formulae in Table 2, because the primitive
function of each integrand would be found in the table by taking into
account the operational rules (4-7). The results arc summarized in Ap-
pendix D. Expressions for the magnetic field components are so lengthy
that only those for the piezomagnetic potential are given.

When we normalize the fault dimension with the fault width W, the

overall intensity of the seismomagnetic effect is determined by a parame-
ter

C=2pJple . (5-5)

This expression is reasonable in view of the fact that the stress drop
along a fault is proportional to p4U/W (KNOPOFF 1958). Since the seismo-
metrically determined stress drop is roughly the same for a number of
earthquakes within a wide range of magnitude, the seismomagnetic co-
efficient C does not depend so much on the earthquake magnitude. Apart
from the regional variety of average magnetization J,, a governing fac-
tor of the seismomagnetic effect is the depth of fault top d/W, as we
have already seen in the 2-dimensional fault.

An example of the seismomagnetic effect will be shown for three
representative fault orientations: magnetic North-South fault in Fig.
8(a)-(d), mag. NW-SE fault in Fig. 9(a)-(d), and mag. E-W fault in Fig.
10(a)-(d) respectively. Fault parameters as well as magnetic constants
are listed in Table 3. According to an empirical relation between the
seismic moment and earthquake magnitude (OHNAKA 1976), such a fault
movement corresponds approximately to a magnitude 6.3 earthquake.
Although these figures show results for the left-lateral movement, we

Table 3. Parameters of a vertical rectangular strike-slip fault.

fault length 2L 10 km
fault width w 5km
depth of burial d 0.5km
disloeation (left-lateral) 4U 1m
rigidity o 3.5x 10" cgs
average magnetization Jo 1.0x107% emu/ce
stress sensitivity B 1.0x10"* bar™!
average mag. dip I, 45 deg.

Currie depth H 15km
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(c) (G
Fig. 8. The magnetic field accompanying the magnetic North-South fault: (a)
the H, (b) the D, (¢) the Z and (d) the F component respectively, in units
of gammas.

may simply exchange signs for the right-lateral one.

In the two dimensional case, only the dipole term with respect to a
horizontal magnetization in the fault-strike direction, J,, contributes to
the surface magnetic field. As for the three dimensional fault, multipole
terms as well as two other magnetization components J, and J, play a
significant role. The most outstanding feature is the fault edge effect.
Especially, the surface points just upon the fault edge become many-
valued and singular. This arises from inappropriate modelling of the
slip termination at fault edges for the sake of mathematical simplicity.
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(e) ()
Fig. 9. The magnetic field accompanying the magnetic NW-SE fault: (a) the H,
(b) the D, (¢) the Z and (d) the F component respectively, in units of gammas.

A more realistic model with the gradual fade-out of slip discontinuity
might enable us to avoid these singularities.

A comparison will be made here between STACEY’s (1964) mode! and
the present dislocation fault. Typical examples of the Stacey model are
given in Fig. 11(a), (b) and (c), illustrating the coseismic F component
changes after STACEY (1964). Patterns of piezomagnetic changes on the
basis of the dislocation theory are very different from Stacey’s model.
Discrepancies are as follows:

(a) Magnetic changes due to the Stacey model are monotonous and

wide-spread, while those of the dislocation model are much more local-



(c) @

Fig. 10. The magnetic field accompanying the magnetic East-West fault: (a) the
H, (b) the D, (c) the Z and (d) the F component respectively, in units of
gammas.

jzed mnear the fault. Stacey dealt with the coseismic stress release
of the r,, component, i.e. the shearing stress in a plane parallel to
the fault surface, and neglected other stress components. According
to CHINNERY (1963), the major stress change associated with a dis-
location fault model is likewisc the z,, component. However, inten-
sive changes in the z,, component are confined to around the dis-
location fault and not so extended away from the fault as Stacey’s
hypothetical stress distribution.

(b) The Stacey model lacks the fault edge effect.
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(e)

Fig. 11. The F component changes associated with the Stacey model with fault
orientations of ‘(a) magnetic N-S, (b) mag. NW-SE and (¢) mag. E-W direc-
tion respectively (after STACEY 1964).

(¢) No change occurs in the vertical magnetization J, in the case of
Stacey’s model, in contrast to the substantial contribution from the
J, component in the dislocation fault. The discrepancy is attributed
to the ignorance of other stress components except for the major
shear stress z,, in the Stacey model.
In these respects, the Stacey model might nowadays be regarded as
rather classical, although its proposal was the most important starting
point in tectonomagnetic studies.
Much effort has been made to observe the seismomagnetic effect in
the context of the earthquake prediction study. Results in this section
tell us that the seismomagnetic effect is expected only in the epicentral
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region and that its detectability is highly dependent on whether the top
of the seismic fault is shallow or not.

6. Tectonomagnetism as a tool for monitoring
crustal strain changes

Looking back to the piezomagnetic field potential for the uniform
slip model of a vertical strike-slip fault with infinite length, we see that
its functional form is quite similar to the displacement field of the same
model as obtained by CHINNERY (1961), except for additional terms involv-
ing the effect of Currie depth H in the tectonomagnetic model. We also
find that the elementary piezomagnetic potential contains some identical
functions as compared with MARUYAMA’s (1964) solutions for the displace-
ment due to each elementary dislocation, although they do not completely
coincide with each other. This suggests a close relationship between the
piezomagnetic potential and the displacement field, and hence between
their spatial derivatives, namely the magnetic field and the strain com-
ponent. To make this clear, we will develop here a formal representa-
tion of the piezomagnetic potential in terms of displacements, and will
investigate its physical meaning with the aid of the theory of Newtonian
potential (KELLOGG 1929, VLADIMILOV 1971).

We start from the generalized linear piezomagnetic formula (2-18).
Bach component of the matrix S in eq. (2-18) can be rewritten in terms
of displacements through Hooke’s law as

Smnzéamn@—%frnn ]
(6-1)
S PR TR T J
—y{omn 2\ 0z, + 0%
where
O=t+7yy+ 7.,
(6-2)
d=divu

We denote the incremental magnetization 4M, in the J, component as
Jl‘[k:ﬁS'Jk (6'3)

where J, implies (J;, 0,0)' and the like.
Then we obtain



Application of the Elasticity Theory of Dislocations 421

. __ 104 35
ﬁJk,udWAﬂIk— 5 du. 2Vuk 1

204y, J
34+2u

(6-4)

The last expression in eq. (6-4) comes from the equation of equilibrium
to be satisfied by the homogencous and isotropic elastic body when there
acts no body force:

(6-5)

In the previous sections, we have considered the magnetic potential
only in the free space as expressed by eq. (2-19). The magnetic potential
can be defined, however, even within the magnetized body, because there
exists no conduction current. Then W, should satisfy the following
Poisson’s equation :

477.' diV Aﬂ[k = —47:Ckl72uk(r) (r = V)
VWr) = (6-6)
0 rev)
where

Ck——ﬁJk ~H—iﬁ (6-7)

We assume that u(r) is already known by solving the equation (6-5).
The problem reduces to represent Wiu(r) in terms of the given wu,(r).
By making use of a Green function which satisfies

7*G(r,¥)=—d(r—r'), (6-8)

the solution of eq. (6-6) can be given as
W) =4xCs| Glr, 1PV

G(r,7') is actually a well-known function, i. e.
"= 1 1

dxlr—r| 4z . (6-10)
p=V@—a)V+y—yV+(z—2

G(r,r

With the aid of Green’s theorem together with eq. (6-8), we obtain the
following expression:

Wr)=—4=zCu,(r)0(rsV)

+4:zC,ZSSHalS’=_7(JJ)]G(,., ) — ()} BG(r 7 )JdS’ (6-11)



where

(6-12)

1 (rev)
0(re V)=[ ]

0 rev)

The first term in (6-11) appears only when the observation point is
located within the magnetic body, and represents the contribution from
the magnetization immediately at that point. The latter convolution
integral implies the influence of the boundary of magnetic body. If we
can neglect the boundary effect and/or when we consider the piezomagnetic
potential in an infinite medium, the potential can be simply given as

Wr)=—4rnCur) . (6-13)

The basic concept of the elastic dislocation has sometimes been inter-
preted in analogy with the double layer in the potential theory. The
double layer, which is a surface distribution of dipoles, can be viewed as
a gap in the potential value across the surface. Similarly, the discon-
tinuity in displacements across a surface is equivalent to the distribution
of some particular force sources in the elasticity theory of dislocations,
where the displacement corresponds to the potential. Eq. (6-13) tells us
that the correspondence is most straightforward within the ideal (which
means linear and reversible) piezomagnetic body : the magnetic potential is
idontical to the displacement itself multiplied by some material constants.

Let us examine the boundary effect on the righthand side of (6-11).
The former convolution integral represents a single layer potential with
the surface density {0u.(r')/on'}s, while the latter a double layer having
a density distribution of {u,(r)}s. Across the boundary surface of mag-
netic body, it appears as if a gap in the potential value 4zC,{u,(r)} might
occur owing to the vanishment of the first term in eq. (6-11) outside the
body. This is completely compensated for by a jump in the potential
across the double layer, of which the amount is equal to its intensity
—47Cu(r) (KELLOGG 1929). Hence the magnetic potential W, is con-
tinuous at the boundary surface.

Applying the formula (6-11) to the simple geometry hitherto con-
sidered, namely a magnetic layer bounded by 2z=0 and 2=H, we obtain
the piezomagnetic potential in the free space (2<0):

el [ A e ] ]
(50 i (2] awar
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Especially when r approaches the plane surface z=0, the double layer
term in the former integral of (6-14) becomes

EIE) C’kSS:[{uk(rl)}aiz,(—:)—)l:”dx’dy’= —27C ()} 2= w0 (6-15)

This explains why we come across identical functions in the piezomagnetic
potential at z=-—0 and the displacement field at z=-+0 of any static
dislocation models. Moreover, in the case of the two-dimensional fault,
the single layer term at the earth’s surface vanishes owing to traction-
free boundary conditions, so that the surface magnetic potential is com-
pletely coincidental with the displacement at that surface point, as stated
in the beginning of this section.

The formula (6-14) implies that the piezomagnetic potential in the
free space can be determined solely by the displacement field at the
earth’s surface and that at the Currie point isotherm, any other knowledge
is not required on displacements within the magnetic crust. We are
now led to an ecasier way of evaluating the elementary piezomagnetic
potential. Displacements duc to the elementary dislocation at any depth
have been obtained by MARUYAMA (1964). Thus it will suffice to apply
the Fourier transform theorem of convolution integrals to eq. (6-14) and
then to take its inverse. The formula (6-14) was, however, figured out
by the present writer at the final stage of this study. Although the
procedure developed in section 4 is rather unrefined and laborious, results
given in Appendices Bl, B2 and B3 might be useful for further studies
of tectonomagnetic models in cases where the magnetic property of the
crust varies with depth.

Let us now investigate the magnetic field at the earth’s surface.
We will recall here a useful theorem for derivatives of the surface layer
potential when a point approaches the source layer. Under proper con-
ditions for the smoothness of the surface density distribution o(p), the
normal derivative of a single layer potential U on the positive and
negative side of the layer can be given by (KELLOGG 1929)

o =—2m(p)+sgsa(p') 9 <%)d8’ l

on., on'

(6-16)
oU®

- o (2 |
U~ 2ro(p)- {), ot o ()35
while the tangential derivatives are continuous on both sides of the layer.

Similar relations hold good for the double layer. In this case, tangential
derivatives of a double layer potential U with a surface moment den-
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sity p(p) become discontinuous across the layer as shown by

a@:~2n@3@+ggs#(1)'> 2 (l>ds/
‘O

~ at, ot oton’ 617
U _ 2n@u@+gg ()0 <L>ds'
at- ot P ot \

Normal derivatives are continuous at the double layer. (The formula
(6-17) is not explicitly described in KELLOGG (1929). However, this can
be verified in the same manner as the proof of the continuity of normal
derivatives under the assumptions that the double layer is sufficiently
smooth and that p(p) has continuous partial derivatives of second order
on S.) In case that the source layer geometry is simply a plane, integral
terms in eqs. (6:16) and (6-17) vanish, which represent the curvature
offects.

We may take the z axis in the magnetic north direction without
loss of gemerality. Applying these formulae to derivatives of the piezo-
magnetic potential (6-14), we obtain formal expressions of the tectono-
magnetic field in terms of displacements :

4H(zx, y, 0) :2ﬂ{ ou, } . ou| _ ow

Cy 0% 0o 0% |z=0 X |2=0
4D(w, y,0) _, { ouy } ou| _ow )
Co i ay z=+0+ ay z=0 ay z2=0 (6 18)
AZ(:U, Y, O) :271.{ auf } _7aK _,M_
CO 02 Jz=+0 az 2=0 0z |z=0
where
us =12, cos Iy+u, sin I, (6-19)
o=} [()2] v
-0 az’ p z2'=+0
r=({" [{uf}i(lﬂ da'dy (6-20)
- 0z’ o/ Je=u+e
_ e o, }l___ 0 <_:_[_>:I W
W_SS—«:I:{ 7' ) p t) 0z' \p z»=uda' dy
and
—1gy, 34t2p .
Co= 5 ﬁJo,»! 2_*_# (6 21)

u;, as defined by (6-19), is nothing but a projection of the displacement
veetor u on the direction of the earth’s magnetic field.
In the current tectonomagnetic field work, reliable results have been



Application of the Elasticity Theory of Dislocations 425

brought out mostly by the total intensity measurements. The resultant
total field change 4F can be expressed by

AF(x,9,0) _o_[0u, <8_U_ _ovV . ) _ow
C, 27r{ oF }z=+0+ . cos I, % sin I, o Bf

in which the differential sign with respect to the geomagnetic field direc-
tion is written as

(6-22)

z2=0

e, V= 9 yging 0
E?—ef V =cos Io ax +SlnIo 2z (6.23)

e;=(cos I, 0, sin Iy

Eq. (6-22) tells us that the tectonomagnetic total field change is a
close indication of the simple extension or contraction just at the obser-
vation site in the direction of the geomagnetic field. This is particularly
so in the source region of tectonic events, as we have already seen in
the case of the seismomagnetic effect. We can then roughly estimate the
detectability of crustal strain changes through the magnetic method. In
consideration of only the first term in eq. (6-22), a unit change in the
total fleld corresponds to a strain change of (2zCy)~'. For a model earth
with parameters f=1.0x10"*bar™!, J,=1.0X107* emu/cc and 2= p=3.5X10"
c¢gs, this amounts to 3.6X107° per gammas.

Thus a proton precession magnetometer, a familiar tool in tectono-
magnetic studies, might be regarded as a sort of extensometer stretched
along the direction of the main geomagnetic field. The proton magneto-
meter as a “strain gauge” has a rather poor resolution, and can measure
only one strain component in a particular direction. However, the use of
this instrument would have merits as compared with the ordinary crustal
strain measurement systems, because of its excellent drift-free charac-
teristics. All these discussed in this section might be useful for qualita-
tively understanding tectonomagnetic changes, if any, so long as they
were ascribable to the reversible piezomagnetic effect.

In conclusion, Volterra’s formula for the piezomagnetic field (3-2)
makes it possible to estimate magnetic changes associated with any static
dislocation models, such as an inclined fault, the dike formation by intru-
sive magmas and so on. At the present stage of the tectonomagnetic
study, it might be useful to increase a stock of knowledge on various
types of tectonomagnetic models even if magnetic and eclastic properties
of the model earth under consideration are simplified too much.
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Appendix A. The Fourier transform of ,/(x?-+x%+c%)"? (¢>0).
We write the Fourier transform of a function Sz, x,) as

F[f(x,, )] :f(kly kz):“%ggoj Sz, xz)e—i(klxl+k2z2)dx1dxz (A-1)

Differentiating both sides of (A-1) with respect to &, under the integral
sign, we obtain the following formula :

Flz.f(z, m]:ig;f(kl, ) . (A-2)

In the ordinary Fourier transform theory, this formula is applicable only
to a severely restricted class of functions: the function f(x, z.) as well
as x,f(x;, x,) should be absolutely integrable in (—oo <z, x,<-+o0). By
introducing the concept of the distribution, we can consider the Fourier
transform of a morc general class of functions, i. e. the slowly increasing
Suction (the s.i. function) which is everywhere differentiable by any
number of times and such that it and all its derivatives are O(jx|™) as
|g]—oo for some N. Since the function x,/(z}-+xi+c)"? is an s.i. func-
tion, we will investigate here its Fourier transform in the sense of dis-
tribution, following VLADIMILOV (1971).

The Fourier transform of a distribution f(z, x,) can be defined on
the basis of the good function ¢(x,, x.) (or the testing fumction which is
finite and any times differentiable) as

(f, ©)=(f, §) (A-3)

which implies
" Frrie, raete, kadid=\\" s, 2)Flo)e, eadnda..  (A-4)

Substituting ®,f(x,, #,) for f(x, %,) in eq. (A-4) and integrating by part,
we get



Application of the Elasticity Theory of Dislocations 427

—— of ) .
(Flof1, 9)=—3( P17 22 )= (i 30, (4-5)
We may write this relation symbolically as follows:
o Flemg O 5
Fla, f1=1 o, (A-5')

which is apparently quite the same as eq. (A-2). However, the distri-
butional differential sign on the right of (A-5') is no longer coincident
exactly with that in the classical meaning.

When f(k, k,) in eq. (A-5) has a discontinuity along a line s, the
distributional differentiation can be represented in the following way:

< g;; >_SS{ aal{,} dkldkg+8[f]s cos (n, k) pds (A-6)

where {0f/0k,} denotes the ordinary derivative, [f], the gap in the value
of f across s outward from inside, while n the outward normal to s.
(A-6) might be written symbolically as

of _ [ of .
o, { o, }+[f]s cos (n, k)0 (A7)

3, indicates a distribution called “single layer”, corresponding to an ex-
tension of & function along the line s. 4, is defined to satisfy the rela-
tion:

(165, @:SS ()85 es, Feo)dlerdlley = S ()pls)ds (A-8)

Now we put f(z;, x)=1/(z?+a3+c)"". The ordinary Fourier trans-
form of f(z, x,) becomes '

T, 702)2716—9‘” . kx0  (k=VEID) (A-9)

Let us take a region G={(k,, k.}; e<k <K} as shown in Fig. A-1. In the
region K<k for sufficiently large K, we may put ¢k, k.)=0. We assume
that f(ky, ko) is zero within a circle L.={(k,, k.); k=¢}. Putting (A-9) into
(A-6), and making integrations on the right hand side of (A-6) over the
region G, we seek to obtain

(%J; o)=tim|{{ {gl]c%}odhldk ), L7 cos m, Boeds|  (A+10)

Taking into account that

(/1= ——?e “ee cos(m, k)=—cosd and ds=edd,



Fig. A-1.

we sece the contour integral in (A-6), i.e.

SL [f1; cos (n, lc,)gpds:szﬂe'“go(lci, k,) cos 0do

g
approaches ¢(0, O)I:S cos (9d¢9]=0 as e—-0. Thus eq. (A-10) is led to
0

oL o) =2 parar~([-2 ). o |
(akl’g’ [ o, }9” i, = { i }»@) (A-11)
Going back to (A-5), we arrive at the final result:
’ xlﬁﬁr - = — ] ck i
F[fowswj ”(ki* i >“1€ (A-12)

which agrees with the one to be obtainable through the formal applica-
tion of the formula (A-2).

The Fourier transform in the sense of distribution is introduced in
this paper mercly for the sake of mathematical convenience so as to
apply the operational rules. In fact, we could do without this concept,
if we dare to evaluate all the sets of Fourier transforms of H?". As we
have seen in (4-11), I'%™s are composed of only two kinds of functions:
ie. wmf(xi+ai+c)"” (=1,2) and cf(ei-+23+¢)". Hence eq. (A-9) and
(A-12) are sufficient to derive S;” through the formulac in Table 1.
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Appendix B1: Fourier transforms of Si"s.
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Appendix C: Piezomagnetic field potential accompanying a vertical
strike-slip fault with infinite length.

(a) uniform slip model
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(b) linear slip model
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Appendix D: Piezomagnetic field potential accompanying a vertical
rectangular strike-slip fault.

(a) horizontal magnetization in the x direction
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