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Abstract

Derivation of a frequency equation is made in terms of the
matrix formulation for spheroidal oscillations of a multi-layered
spherical Earth. Then, it is shown that the equation splits at very
high frequency into three independent equations corresponding to
three body-wave types, PKIKP, (ScS), and J respectively.

The result is used to obtain asymptotic frequency equations in
explicit forms for simple Earth models consisting of a homogeneous
liquid core and a one- to three-layered mantle. Comparison of those
formulas leads to the conclusion that the equation for PKP-type and
that for (SeS),-type are similar in form to each other when the
number of internal discontinuities effective to respective body waves
are the same. The fundamental difference in their forms is that the
former equation depends on the evenness and oddness of the Legendre
order while the latter one does not. It is proved through numerical
computations that the solutions of the above equations to the first

. order approximation are useful for explaining asymptotic patterns of
distribution of eigenfrequencies.

Further computations are made for two Earth models with re-
alistic mantle structure, one with two distinct discontinuities in the
upper mantle and the other with a continuously varying structure.
Then, it is proved that in general there exists a remarkable differ-
ence between the two patterns of distribution of their eigenfre-
quencies. However the difference falls off at low frequencies because
the whole upper-mantles, where elastic parameters change sharply
with depth, act as the same scale of discontinuities on long-period free
oscillations. Their patterns of oscillatory features are explainable in
terms of an additive effect of the individual ‘‘solotone effect’” associ-
ated with each discontinuity in the Earth.

1. Introduction

Since 1974, many investigations have been made on asymptotic
behavior of eigenfrequencies of free oscillations of the Earth (e.g.,
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ANDERSSEN and CLEARY, 1974; LAPWOOD, 1975; WANG et al., 1977; SATO
and LAPWOOD, 1977 a, b). These researches are mainly concerned with
torsional oscillations and few papers refer to spheroidal oscillations
(e.9., ANDERSSEN et al., 1975; GILBERT, 1975). There, especially, seems
to be no quantitative discussion concerning spheroidal modes on the
effect of discontinuities in the Earth on the distribution of the eigen-
frequencies.

In this paper, we first derive a frequency equation for the sphe-
roidal oscillations of a multi-layered spherical Earth in terms of the
matrix method. Then, its asymptotic formula, valid at high frequency
limit, is derived. Asymptotic frequency equations for simple Earth
models are obtained in explicit forms and their solutions to the zero
order and first order approximations are derived. Finally, numerical
computation is made for two kinds of models, one with a very simple
structure and the other with a rather realistic mantle structure, in
order to confirm the validity of the above mentioned approximate solu-
tions and to examine by experiments the effect of the discontinuities
on the asymptotic patterns of the distribution of the eigenfrequencies.

The matrix method is equivalent to the so-called Thomson-Haskell
method applied primarily to wave propagation in a plane stratified
medium. Its principle is now familiar to us and we can find some
applications to spherically stratified media (GILBERT and MACDONALD,
1960; BEN-MENAHEM, 1964b; PHINNEY and ALEXANDER, 1966; BHATTA-
CHARYA, 1976). However, no expression of a spheroidal frequency
equation for an Earth with a solid inner core seems to be directly
available. Here, we will develop independent formulation to obtain
the formal frequency equation in a form convenient for our present
purpose. The effect of gravity is ignored since it is expected to be
small for higher modes.

2. Frequency Equation for a Multi-Layered Earth

We assume that an Earth is formed of the crust/mantle, the liquid
outer core and the solid inner core, each medium consisting of the
stack of uniform spherical layers in welded contact. A realistic Earth
model is obtained by increasing the number of uniform layers. The
numbering of the layers and boundaries are shown in Fig. 1, where
the numbers 1 through K refer to the inner core, K+1 through L to
the outer core and L+1 through M to the mantle/crust respectively.

We denote radial factors of displacements and stresses for the
spheroidal modes in a vector form as

y(r)=@Ufr), rV(r), S(), 2 Ty(r)” (7'i~137'§7'i) 2.1)
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Fig. 1. Multi-layered Earth model consisting of the solid inner core (K
layers), liquid outer core (L— K layers) and mantle/crust (M—L layers).

where U, and V, are the radial and tangential displacement compo-
nents in the i-th layer, S; and 7, the radial and tangential stress
components acting on the plane normal to the radial direction. » means
the radial distance and », that of the 4-th interface. By the super-
seript T (transpose) we define y,(r) as a column vector, which is, in
a homogeneous and isotropic medium, given by

yr=Er)}c, @ <rr), 2.2)
where
Ei(qo):(e§k> (.7, k=1, 2, 3; 4) ’

2.3
c¢,=(A, B, C, D)" . (2-8)

E,; is the 4x 4 matrix and its elements ¢}, () are, referring to the solu-
tions of equations of motion obtained by SEzAawaA (1932), given by

(€5) =
hin(ha) NZ2j,. (k) hann(hr) N, (k)
Fulhr) kognka)+3.(ka) N, (h1) konn(ka)+n, (k)
)uig(j'n,hi/r) )uisz(jn,ki"') #ig('nn,hi'r) #isz(’n,,’kﬂ‘)
1 (Gn i) 1h (g, o) teef (g hoir) th(n, k)

(2.4)

where j5,7) and %) are the spherical Bessel and the spherical
Neumann function of the order = respectively, h, and %, the wave
numbers of P and S waves in the i-th layer, g, the rigidity, and
Ni=n(n+1), =z, =dz,(Cn)/d») (i=h, or k),
S(@a, Er)=28r20(0) — 22,C7)
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92, Cr)= — 4Lz (L) —{(kr)* —2N%z, ()

h’(z'm ki"') :f(z'm ki/")_l—g(z'm ,I(}i’)') . (2'5)
The elements of the vector ¢, are unknown constants in the <-th layer,
which are to be determined from boundary conditions and source
conditions.

From the physical requirement that displacement components have
to be finite at the center of the Earth, we put, for the innermost
layer, all the terms that the spherical Neumann function is concerned
with to be zero. Hence, we have

eh=e;,=0 (=12 38,4),
C,=D,=0.
In the liquid medium, the rigidity is zero and a shear stress vanishes.
Hence we put, for i=K-+1, K+2, --., L,

Bi:Di:0 ’

e,=e5=0 (5=1,2,8,4), ;=0 (k=L,3), 2.7

es=—N(h) 3 (hr) ,  ehs=—N(ha)Yn (), (1 <r<r) .

(2.6)

¢t, and ¢!, are rewritten by use of )\, (Lamé elastic parameter). Here
we introduce the following notations

i i i i
€1 €42 €js €44

. N 3;1 els
Efm={. 7, EMm=, |,
€k1 €r2 €3 €y €31 €23
5 i i i i A Ai
Ej(r)=(e},, €5, €5, €51) C;= cl’
Then, the boundary conditions that displacement and stress components
are continuous at each interface lead to

(2.8)

E(r)e;=E;(r)ciy, (1=1,2, .-+, K—1, L+1, L+2, ---, M—1),

E(r)e,=E. ()60, (i=K+1, K+2, -+, L—1),

E¥(rg)cx=Ex (rg)Cxsy » Ei(rg)ex=0,

EL(7'L)6L:Ei?:l—1(7'L)cL+1 ’ E£+1(7'L)CL+1:O . (29)
With the aid of the first relation of Eq. (2.9), it is possible to connect

the vector ¢, with ¢;+, and the vector ¢y with ¢,. Then, putting
stress components on the free surface (»r=7,=a) to be zero, we get

y.(a)=(U,(a), aV,(a), 0, 0)' =F,c,, , (2.10)
where
FM = DMDM—l """ DL+2EL+1("'L+1) ’ (2- 11)
and



Asymptotic Behavior of Spheroidal Eigenfrequencies 5

D;=E(r)E'(r:-) . (2.12)

E;' is the inverse matrix of E,. The other relation is

cK:FKcl » (213)
where
Fy=Eg(rg_)Dx Dx o+ D.E (7)) . (2.14)
In a similar manner, from the second relation of Eq. (2.9), we get
¢r=Frexs, (2.15)
where
ﬁL:E21(7'L—1)DL~1BL~z """ ﬁKﬂEKﬂ("'Kﬂ) . (2.16)

A matrix with 2 hat means a 2x2 matrix. From the latter four
equations of Eq. (2.9) and Eqgs. (2.10), (2.13), (2.15), we obtain

Ei(rg)Fre,=0, ER(rgF 1(01"E'K+1<7'I£>61f+1=6 ’

EL("'L)FLaKﬂ‘"E},S—H(')'L)cLﬂ:O , El,(rp)e =0,

Fie ., =0, (2.17)
where 0 denotes the zero vector in two dimensions, and F' is the
2x 4 matrix consisting of the third and fourth rows of the matrix F,,

defined in a similar manner as Ei* in Eq. (2.8). These equations can
be arranged in one equational form as

Ac=0 (2.18)
where
A:(ajk) (J’ kzl, 2’ ) 8) ’

2.19
C=(A1, Bu AK+1, CK—H, AL+1, BL+1, CL+1, -DL-I—J)T ( )

and 0 means the zero vector in eight dimensions. The elements of the
matrix A are given by

— By (15)

Ay @ .
(@, aw, 0, 0)=Ex(rx)Fx , ( . 24) =

Qg3 Ay

gy Gyp 0 0 Qg3 Qyy - 2
( — E2r)Fy, —B,r)F,
Gy Qs 00 Q53 Ay
Qg5 Qyg Ayr Mgy
— 1B (. T4 (e
( =—EP ), (Qu Qg Gy 0)=Ei, (1)
Q55 Qgs Qg7 Ags

Qs Qg Qg Qg .
( =F3}. (2.20)
Qg Agg Qg7 Ugg
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Other elements are all identically zero.

Hence, the frequency equation of the spheroidal oscillations of the
spherically symmetric, multi-layered (solid-liquid-solid) Earth is formally
given as

det A=0. (2.21)

Among 8x8 elements of the matrix A, thirty components are identi-
cally zero and thus it is easy to reduce its dimension to a lower one,
say, 4x4.

In obtaining the eigenfunctions, U(r), V(r), we have to get values
of the constants ¢, for all layers. This can be done as follows. If
we standardize, in a conventional way, the radial component of sur-
face displacements to be unity, that is, U,(a)=1, we get another
equation, from Eq. (2.10),

F}ICL+1 =a , (222)

where Fj is the row vector consisting of the first row of the matrix
F,. Then we can solve the equations, (2.18) and (2.22), for c,, €54, and
€.+, and subsequently Eq. (2.9) for all ¢;. Hence, from Eq. (2.2), we
can obtain the eigenfunction y(») for the whole space in the Earth.

A similar treatment is possible for the problem of excitation of
free oscillations of the Earth due to an external force (say, a double
couple point source) in it. Then, we introduce an equivalent source
function (USAMI et al., 1970), which is defined as a discontinuity of
Y.(r) across the source surface (r=7,) situated in the m-th layer. This
imposes another boundary condition on y,(») besides Eq. (2.9). Hence,
the problem has to be solved so that y,(») may have a jump by an
amount oy, (equivalent source function) at =, in the m-th layer.
Then, it is found that Eq. (2.10) is modified to

(aUy(a), aVy(a), 0, 0)'=F\c,,+F,E; (v,)dy, , (2.23)
where
F,=D,D,_, --- D, . E,(,) . (2.24)

If we put the source term as

F.E .\ r)oy,=F=(f3, £, [5, /", (2.25)
we get, in place of the last relation of Eq. (2.17),
Fiicpov=—(f5, D7, (2.26)

and thus, in place of Eq. (2.18),



Asymptotic Behavior of Spheroidal Eigenfrequencies 7

AC=(O, O, 0, 0: 0, 0, ——f?, '_fi)T . (227)

By solving these simultaneous linear equations we can get the constants
¢, Cxy, and cyy,. Hence, the formal solution for surface displacements
is readily obtained from Eq. (2.23).

"When an Earth consists of solid (crust/mantle) and liquid (core)
media, we have only to remove the inner solid layers from the pre-
ceding model. Then, the (K+1)st layer is shifted to the lowest layer
which includes the center of the Earth, and we put eXt'=eit'=0,
Cx+;,=0 in the same manner as Eq. (2.6). Slight modification of the
preceding formulation leads, instead of Eq. (2.18), to

Qy3 Qg5 Qg Qgy Qg Agiy 0
g Qss Qg Ay Qs Ay 0
0 g Qo5 Qor s B, |=| 0 (2.28)
0 ar aranag Crn 0
0 Qg Gy Qe Qss D, 0

where the elements a;, are the same as those defined in Eq. (2.20).
The frequency equation is given by the determinant of the above
matrix 2, that is,

detA =0, (2.29)
where
N j=4,5,---,8>
A=(a. ) 2.30
@) (a2 e (2.30)

When an Earth is constructed by only solid layers, we remove
the liquid and inner solid layers from the first model. Then, the
(L+1)st layer is shifted to the lowest one and we have to put ej'=
el'=0 (7=1,2,8,4), C,1,=D,;;,=0. In this case, the last equation of

(2.17) can be rewritten as
)=o) @31
S/ \Bru 0,
where f% is an element of the matrix F,. Hence, the frequency equa-

tion is simply given as

FAFE—Fifi=0 . (2:32)

3. Asymptotic Frequency Equation

When an argument of the spherical Bessel (or Neumann) function
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is very large compared with its order, j,(z) and %,(z) are asymptoti-
cally approximated as (Watson 1952, p. 199)

7.(2)=1/2)sin(z—nx/2) , n,(2)=~—(1/2)cos(z—nw/2) .

Hence, if we assume hg>n (r>7, 1=1,2, ---, M), we have the follow-
ing approximations for the functions in E(r)

7.()=Q/2)sin Z , n,(z)=—(1/z)cos Z ,

inZ)=1/z)cos Z , nn(z)=(1/z)sin Z , (8.1)

fGa, 2)=2c08 Z , g(j., 2)=—(2i[z)sinZ , h(J,, 2)=—2,sin Z, ,

fln,, z)=2sin Z, g(n,, 2)=(@%/z)cos Z , h(n,, 2,)=z,cos Z, ,
where

2=hay or kpr, z.=kpr, Z=z—nzw/2, Z,=z,—nxw/2.
Substituting the above formulas into Eq. (2.4), and keeping the most
predominant terms, we get

cos Hf 0 sin H; 0
E()= 0 cos K} 0 sin K} (3.2)
—wp,an sin Hj 0 wp,a;r cos HY 0
0 —wp,B sin K 0 0,87 cos K}
where
Hi=har—nz/2, Ki=kr—nx/2, (3.3)

and p;, ; and B3; mean the density, P and S wave velocities in the
i-th layer respectively, and @ the angular frequency. During reduc-
tion, the relations (k)Y (hr)=0wpo., tkr=wp,R;r are employed.
Thus, the matrix E/ r) is reduced to a very simple form, and its
inverse matrix is immediately obtained as

cos H; 0 —(1/wp,ar)sin H; 0
E-\(r)~ 0 cos K} 0 —(/wp,;B)sin K} (3.4)
sin H; 0 (Y/wp,r)cos H; 0
0 sin K} 0 (1/wp:B:r)cos Ki

Hence, we have, from Eq. (2.12),

cos h.d; 0 (l/wp. 0 .—)sin h.d; 0
D~ 0 cos k.d, 0 (1/wp:B:r:-)sin kd,
—wpan;sin h,d, 0 (rs/r.—)cos h,d; 0
0 —wp;B:7; sin k.d, 0 (ryfr;-)ecos k.d;

(3.95)
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where d,=v,—7,—, (thickness of the i-th layer).
If we write a term associated with P wave as “P” and that with
S wave as “S”, we find that E,, E;* and D, are all denoted formally as

POPO
0S0S
P OPO
0S0S
Then, it is readily proved that F, and Fy also retain a similar matrix
form as (3.6). All the elements of IA«’L are naturally identified as “P”.

In the result, each element a;. in Eq. (2.20) is expressed in its asymp-
totic form as

(3.6)

a,, =0, alZZS{{) a21:P1K, ‘12%:0; a31:P2Ky a5, =0, Ay =Pf, a,,= P},

ay=Pf, ay =P}, ay~Pf, ay=Pf, ay~P/, ay=Py ,

=P, 0,5=0, ay=P), a,5,=0, a;= P, a;=0, ay=P), az=0,

, a5 =0, a=8", 04;=0, ax=S,", a=P;", a;,~0, a, =P, a5=0,

0550, ag=S;", az=0, agz=S;" , (3.7
where the symbols “P” and “S” mean that an element is connected
with P and S waves respectively and the superscripts K, L and M
discriminate elements which are associated with the inner core, outer
core and crust/mantle respectively. The numerical subscripts are

merely put in order of appearance.
Now, Eq. (2.21) is formally reduced to

0 S50 0

PX 0 P PP 0
PX 0 Pf P} ’

0 0P*P:EPY0 PYO

detl o o prprpro Pro [0 (3.8)
0 S¥0 S
0 P¥0 P¥ O
0 S0 S

Further reduction yields three independent equations,
PX¥ PFP-0 0
PE PFPF O 0
>=0 , det| 0 P& PF P” P)l=0. 3.9)
0 PF PFs P PX
0 0 0 PY PN

S)I S M
1 2

SE=0, det(Sg’ g
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The first, second and third equations give eigenfrequencies for shear
oscillations of the inner solid sphere (inner core), shear oscillations of
the outer solid shell (crust/mantle) and compressional oscillations of
the whole Earth respectively. These three modes are called J, (SeS),
and PKIKP type respectively, corresponding to three different body-
wave types (ANDERRSEN et al., 1975; GILBERT, 1975). This decoupling
of the rays is possible only for their radial propagation in the Earth
because no conversion of wave types occurs at a boundary in the Earth
for their normal incidence on it and they behave independently there.
In view of the mode-ray duality (BEN-MENAHEM, 1964a), it is found
that the basic assumption in this section that hg»n (i.e., the phase
velocity is very high) just fits this ray-geometrical condition.

For the Earth consisting of solid (crust/mantle) and liquid (core)
media, Eq. (2.29) is available instead of (2.21). Hence, the asymptotic
frequency equation (8.9) reduces to

Pr pj* 24
)zO , det| P/ P} P¥|=0. (3.10)
0 P pr

SJI S MmN
1 2

det
) <S s

GILBERT (1975) has proved the decoupling of a frequency equation
at high frequency directly from decomposition of basic differential
equations for elastic material. His paper does not, however, include
investigation on the effect of discontinuities in the medium on eigenfre-
quencies. In the following part, we ‘derive the asymptotic frequency
equations in explicit forms for simple Earth models, consisting of a
uniform liquid core and a small number of solid spherical layers over-
lying it. Hereafter, we will call the (S¢S), type modes simply as
“ScS-type” and PKIKP type as “PKP-type” (due to nonexistence of
inner core phase), corresponding to the two equations of Eq. (3.10)
respectively.

Since we assume the uniform liquid core, the L-th layer in Fig. 1
is reduced to the first layer. Hence, we put L=1 in the previous
equations. Then, the layer 1 and », indicate the uniform liquid core
and its radius. Each element in Eq. (3.10) is obtained from Eqgs.
(2.15), (2.16), (2.20), (3.2) and (3.7), so we have

ag=e}(r)~cos H,=PF,

a5 =e35,(1) =~ —wp,.r, sin H, =P},
ay=—ei\ (1)~ —cos H;, =P/,

Q= —eh(r) =~ —sin H;,=P;)" ,

ag = —ei,(1) = wp,a,r, sin H, =P} ,
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Q= —e3(1,) = — WP, 7, cos H =P},

Aoy =€3(11) == — P, 3,1, sin K7, =87,
g =e3,(1,) = wp,B,7, cos K2 =8}, (3.11)
where
Hi,=hg;—nw/2, Ki=kr;—ur/2 (j=1 or i—1) (8.12)

These elements are common to any. model with a uniform liquid core.
The other elements, P, P, Sy, S¥, are obtained from an asymptotic
formula for F3, which depends on the number of layers overlying the
core. For brevity’s sake, we introduce the notations

Rf:(pi+1ai+1_(Oiai)/(pi+1ai+1+piai) ’
R;?:((Oi+16i+l_piﬂi)/([oi+lﬁi+l+[oiﬁi) ’

which are the reflection coefficients for normal incidence of P and S
waves on the ¢-th interface respectively.

(i) Two-Layered Model (a homogeneous mantle and liquid core)
From Egs. (2.11), (2.20), (3.2) and (3.7), we get

(3.13)

M

Qg5 =€3,(7) = — WO0Ty sin H;,=P;",
A =e3(1,) = wP,a,7, cos Hiy =P,
Qg = 5(1) = — W0,B.7, sin K2 =S8,
Qs =€34(1,) = @0,G,7, cos K, =S) .

(3.14)

Inserting Egs. (3.11) and (3.14) into (3.10) and arranging it, we get

sin k,d,=0 ,
sin (h.d,+h,7,—nx/2)+ R sin(h,d,— h,2", +n7/2)=0 . (3.15)
The first equation is the asymptotic frequency equation for the ScS-
type modes and the second one is for the PKP-type modes.
(ii) Three-Layered Model (a two-layered mantle and a liquid core)
From Eq. (2.11), we have
Eu:DsEz("'z) . (316)
Then, with the aid of Egs. (2.20), (3.2), (3.5) and (8.7), we obtain

Oy = — @O,0,75 SIN Ryd, cos HZ, + (,/2,)(P3Y); cos h,d, = P;'
Q7 = — W47 SIN hgdy SIn HZy+ (175/7,)(Py"); €08 hody,= Py,
Q5= — WO,357s Sin koydy cos K2, + (15/7,)(SY); cos k,d, =S¥ ,
Qg™ — WP,LB575 Sin kyd, sin K2, - (1,/7,)(SY); cos k. d, =S,

where (P));, (P);, (S); and (S);, are the coefficients defined for the
preceding case and are identical with P, P}, S and Sy in Eq. (3.14)

(3.17)
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respectively.
Substitution of Egs. (3.11) and (3.17) into (8.10) leads to, cor-
responding to the SeS-type and PKP-type respectively,

sin (fo,dy+ k.d,) + R sin(k,d;—k.d,) =0 ,

sin(hqd,;+ hod, + by, —nw/2) + R sin (hyd,+ hody— b2, +n7/2)

+R7 sin (h,d,—h,d,—h»,+n7/2)+ Ry RT sin (hy,d,— h,d,+ k2, —nw/2)
=0, (3.18)

where R7 and RY are the reflection coefficients defined by Eq. (8.18),
and d, is the thickness of the ¢-th layer.

(iii) Four-Layered Model (a three-layered mantle and a liquid core)
From Eq. (2.11), we have

Fﬂ1:D4D3E2("'2) ’ (3-19)
which yields, through Egs. (2.20), (3.2), (8.5) and (3.7),

A7y = — @O0, SiN h,d {cos hyd, cos HF,— (0,00./0,0,)81n hyd, sin HZ,}
+ (ryfr ) (P cos hd, =Py,
U= — 0P, sin hydfcos hyd, sin HF, + (0.0,/ 0;05)s81in hyd, cos HE}
+ (rfr)(Pg")i; cos hd, =Py,
Qg == — @O,B,7, sin k,d {cos k,d; cos K7, —(0,3,/0:85)sin k,d, sin K2}
+ (7, fr)(Sy); cos kd, =Sy,
Qg™ — WPO,B,7, sin k,d {cos k,dy sin K7, +(0.3,/0:85)8in k,d, cos KZ,}
+ (ryf7)(Si)i cos kd,=SY (3.20)

where (P, (PN, (S and (S)),; stand for the coefficients P, P,
Sy and S in Eq. (3.17).

After substitution of Egs. (3.11) and (3.20) into (3.10) and some
algebraic manipulations, we get

sin (9, +9,+7,) + R sin (9,+7,—9,) + Ry sin (9,—1,—7,)
+R{RY sin (9,— 7, +7.)=0,

sin (§4+53+52+H}1)+Rf sin (54+§3+§2—H:1)+R2P sin (E4+53_’=2—H;1)
+Ry sin (&,—¢&,—&— H},)+ RyRT sin (§,4-&— &+ H},)
+R5 ; sin (54—§3+52+H:1)+R§’Rf’ sin (54"‘53‘"52'*‘1{711)
+RIRI R} sin (8,—&,+&—H})=0, (3.21)

where 7, and &; are short for k.d, and h.d; respectively and H;, for
ko, —nw/2. The first and second equations correspond to the ScS-type
and PKP-type modes respectively.
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The equations for a general M-layered Model can readily be deduced
from Egs. (8.15), (3.18) and (3.21), if we ignore the terms of higher
orders than the second in the reflection coefficients.

It is found that the second equation of (8.15) and the first one
of (3.18) have similar forms to each other. Moreover the second
equation of (3.18) and the first one of (3.21) are similar as well. Hence
we can say that the discontinuities in the medium produce a similar
effect on the asymptotic frequency equations for both SecS-type and
PKP-type modes when the number of the discontinuities effective for
respective modes is the same (note that the mantle-core boundary
acts as a free surface for the ScS-type modes). The only difference
is that the equations for the PKP-type modes have different forms
according as n(angular order) is even or odd, resulting from the
factor HL(=h»,—nx/2), while those for the SeS-type do not depend
on #n. From a viewpoint of ray theory, this difference arises from
the fact that the PKP wave now concerned crosses the sphere but
the S¢S wave does not. These circumstances will be illustrated by
ODAKA (1980Db). :

Referring to Eq. (8.2) of SATO and LAPWOOD (1977a) and Eq. (5.3)
of the same authors (1977b), we find that their equations for toroidal
modes are identical with our first equations of Egs. (8.18) and (3.21)
respectively. Hence, we may conclude that eigenfrequencies of the
SeS-type modes of the spheroidal oscillations and those of the toroidal
modes are identical for the same Earth model at high frequencies,
and thus internal discontinuities produce entirely the same effect on
both eigenfrequencies.

4. Asymptotic Distribution of Eigenfrequencies

In describing asymptotic patterns of distribution of toroidal and
spheroidal eigenfrequencies, some different formulas have been used
by different authors. These formulas are mainly defined as a function
of two adjacent eigenfrequencies such as A(fi—Jf2)*' B(fiv—SfH)7VA
These formulas are, however, not suitable for obtaining a knowledge
of absolute values of the eigenfrequencies.

Alternatively, we investigate asymptotic patterns of the follow-
ing quantities defined for the PKP-type and ScS-type modes respec-
tively by reference to the formula introduced by LAPWOOD and SATO
(1977, 1978) for the torsional case.

S,=2t,f1—(i+¢/2) (1=1,2,3, ),

. : 4.1
Ss:2t3f§r'—l, (’L’:l’ 2’ 3, .. ) ,

where f? and fi are the eigenfrequencies of the ¢-th and ¢'-th radial
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modes. of the PKP-type and ScS-type modes respectively (to be exact,
1 and 4’ shift from real mode numbers by certain integral values which
depend on angular order n), t, and ¢, are the radial travel time of a
P-ray between the surface and the center of the Earth and that of an
S-ray between the surface and the mantle-core boundary, and ¢=0 or
1 according as » is even or odd.

It is readily proved that the zero order approximations to solutions
of Egs. (3.15), (3.18) and (3.21), obtained by discarding all the terms
multiplied by the reflection coefficients, are identically given by

fi=(i+ef2)f2t,, fi=1[2,, (4.2)

where ¢ and 7' are the integers.

Hence, the zero order approximations to S, and S, are equally
reduced to zero. For this reason, the term ¢/2 is included in the def-
inition of S, in Eq. (4.1). From Eq. (4.2) we get

ta—S1=12t,, fon—fi=1/2¢, . (4.3)

This constant spacing of the eigenfrequencies results from neglecting
the effect of the internal reflections. Similar formulas to Egs. (4.2)
and (4.3) have been presented by ANDERSSEN et al. (1975) and OKAL
(1978) and checked against realistic Earth models.

We can obtain the first order approximations, allowing for the
effect of reflections at the internal discontinuities, in a similar manner
as attempted by LApwooD and SaTo (1977).

From the second equation of (8.15), we get

S,=~ —(R{[m)sin{2x(i+¢/2)t,/t,} , (4.4)
where {,=t,+t,=7 /a,+d,/a,.
From Eq. (3.18), we get

S, = —(Ri[m)sin(2ri'ti/t,) ,

S, = (=R [m)sin{2x (i +¢/2)t,/t,} — (RE [)sin{2r (1 +¢/2),/t,} , (4.5)

where ¢,=t,+t,+t,=r/a,+dJa,+dJa,, t,=t;+t=dy/B,+ds/Bs
From Eq. (3.21), we get
S, = (R;/m)sin(2x1't,/t,) — (B3 /7)sin(2xwi't}/t,) ,
S, = (—1)"(R{/m)sin{2r(i+-¢/2)t,/t,} — (RS [7)sin{27m (1 +¢/2)(t,+1,)/¢,}
— (R [m)sin{2r (1 +¢/2)t,/t,} , (4.6)

where tp :Ziq U= D= (di/ ) + ("'1/“1) y L=t tl’c=2i:z (dk/Bk)
It can be inferred from these formulas that the solutions for the S¢S-
type and PKP(PKIKP)-type modes of the M-layered Earth are given by
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M—1 . M
—>, (Rf/=)sin {27:73'( St té)/t”}
=2 k=j+1
M—1 j
=3 (By/m)sin {27:@' (2 t,:) / ts} ,

S,~ — E(Rp/n-)sm {2n(z+s/2) 5_3 tk /t 4.7)

k=j+1

—(—1) g (RT/x)sin {2%(i+s/2)<§ltk> / tp}

where ¢,=>iL, ti =1, (d/Br)y  to=200 t=0 (d o) + (/).

The exact frequency equation (2.29) contains two kinds of solutions
in indefinite order which are to be classified into the PKP-type and
ScS-type modes respectively at high frequencies. Hence, in investiga-
ting asymptotic behavior of the functions S, and S, numerically on
the basis of Egs. (2.29) and (4.1), we first have to sort out its solutions
into two groups. When the scale of discontinuity (absolute value of
reflection coeflicient) is small, Egs. (4.2) and (4.3) are helpful for this
purpose, though they do not always work decisively. In the case of
n=0, we do not have such difficulty since all modes are equally identi-
fied as the PKP-type.

We made numerical computations for three models called LYR 2,
LYR3 and LYR4 (see Fig. 2), corresponding to the three cases dis-
cussed in the preceding section. Then, thickness of layers, densities
and S-wave velocities in the mantle are designed after the spherical
shell models employed by LAPWOOD and SATO (1977, 1978). This set-
ting of the Earth structure enables us to make use of their results for
the toroidal modes as information about our ScS-type modes of the
spheroidal oscillations since the asymptotic frequency equations for
these two modes must be the same as mentioned before. Thus we
can get rid of uncertainty of classifying the spheroidal modes into

LYR2 LYR3 LYRY
Depru Denstyy  V, Vg DeptH Denstty V. Vs DeptH  DensiTy VP Vg
%'%) (W/ar) () (ws) . i )
3.50 11-0 6:35 5.35 11.“'0 5'58 5[01 ]—1.73 6.77
2900, 2900. 2823
1130 952 0.0 11,30 9.08 0.0 .20 9.52 0.0
/0, ————— 830, — 6368,

Fig. 2. Density, P- and S-wave velocity structures for two-, three- and four-
layered Earth models. A liquid core is assumed for every model.
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Sp MODEL LYR2
0.2 PKP-type(n=1)

02 10
PKP-type(n=2) .

10 .

1 ! | | | i 1
10 20 30 40 50 60

Fig. 3. Graphs of S, against ¢ (upper two) and S; against ¢’ (bottom) for the
model LYR 2. Computation is made for the angular order n=1 and 2.
Dashed curves represent the smoothly varying property of S, at every 12
steps in <.

the ScS- and PKP-type modes. Generally speaking, for accurate clas-
gification of the modes to be made, we will have to compute such
physical quantities as compressional and shear elastic energy (DZIEWONSKI
and GILBERT, 1972), radial distribution of displacements (ODAKA, 1978),
and phase and group velocities (OKAL, 1978).

Figure 3 shows graphs of S, and S, for the model LYR 2 calcu-
lated in terms of Eq. (4.1), eigenfrequencies being computed on the
basis of the exact frequency equation. Discrete points plotted against
integral values of 7 and i’ are joined by solid straight lines succes-
sively. Two curves for » (angular order number)=1 and 2 are rep-
resentative of two cases when n is odd and even respectively. As
inferred from the theory, there is no significant difference in the
bottom two curves of the SeS-type modes and their values are neg-
ligibly small compared with those of the PKP-type modes (note that
there exists no internal discontinuity in the present model for S-wave
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MODEL LYR3
PKP-type

Fig. 4. Graphs of S, against ¢ (top) and S; against ¢’ (bottom) for the model
LYR 3. Computation is made for the angular order n=0 (only for the
PKP-type modes) and 1. Dashed curves for the SeS-type modes represent
the smoothly varying property of S; at every 5 steps in 7.

propagation). On the contrary, the curves for the PKP-type modes
vibrate rapidly as a function of 4, resulting from existence of the
mantle-core boundary. Their amplitude, period and dependence on
n are well illustrated in terms of Eq. (4.4), because we get, from
the elastic parameters in Fig. 2, —R[/zr (amplitude)=0.15 and ¢,¢,
(period in 7)~2.4 for the present model. Broken lines indicate that
successive points taken every 12 steps in 7 lie on a smooth sinusoidal
curve, of which amplitude and period are explainable in a similar way
as attempted by LAPWOOD and SATO (1977) for the toroidal case.
Computational results for the model LYR 3 are given in Fig. 4.
The curve for the ScS-type modes shows a typical pattern of the so-
called “solotone effect” (MCNABB et al., 1976), a vibration with a single
frequency, which suggests existence of single discontinuity in the
medium. Its amplitude and period agree well with those expected
from the approximate formula (4.5) since we get —R5/n (amplitude)=~
0.11 and ¢,/t; (period in ¢')=~5.1 for this model. Referring to Figs. 1 and
4 of LAPWOOD and SATO (1977), we find that there is a close similarity
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between our curve for the ScS-type modes and their curve for the
toroidal modes over nearly the whole range of 4. This implies that
decoupling of the spheroidal modes for n=1 into two types of modes,
PKP and ScS, begins from very low radial modes, that is, from very
low frequency range.

The solid and dashed curves for the PKP-type modes in Fig. 4
stand for the cases n=1 and 0 respectively as representatives of odd
and even numbers of n. It is clear that both patterns consist of the
superposition of two curves with different amplitudes and periods.
Their values are roughly coincident with those inferred from Eq. (4.5)
since we get —R!{/r=~0.08, —R}/n=0.12, t,[/t,=1.7, t,/t,~12.0 from
the elastic parameters in Fig. 2. Thus, it is concluded that a thin
surface layer gives rise to long-period oscillations(in 7), while the
core does short-period fluctuations and their amplitude is proportional
to the scale of the corresponding discontinuities. These results are
consistent with those obtaided by ANDERSSEN (1977) and WANG et al.
(1977) for torsional vibrations.

Figure 5 shows a graph of S, for the model LYR 4. The case
when n=1 is given as an example because it is expected for small »
that the modes are well decoupled into the PKP-type and SecS-type
respectively even at low radial modes. This decoupling is proved from
close resemblance between our curve and that for the toroidal modes
(Fig. 6 of LAPWOOD and SATO, 1977). Almost straight dashed-lines link
those points with recurrence period 10 in ¢. Detailed discussion on
such patterns has been made by LAPwooD and SAto (1977, 1978).

ScS-type(n=1) MODEL LYR4

Fig. 5. Graph of S, against i’ for the model LYR 4. Computation is made for
the angular order n=1. Dashed curves show the smoothly varying prop-
erty of S; at every 10 steps in 7’.
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MODEL LYR4

PKP-type(n=1)

A/\/\/\/\A M /\/\ F/\ /\A

dIAl \N \]\/V\/V

V\/\/ W/\V/\\/\/ﬁ/\A Av/\v/\ A /\A\N , \/AV/\W

Fig. 6. Graphs of S, against © for the model LYR 4. Computation is made
for the angular order n=1 and 2.

After removing the eigenfrequencies of the ScS-type modes from
the original composite solutions of Eq. (2.29), we can get graphs for
the PKP-type modes (Fig. 6). These curves show more intricate pat-
terns when compared with the previous examples. The approximate
formula (4.6) suggests that these patterns consist of three sinusoidal
curves with different amplitudes and periods specified by the constants
—RP/n=0.09, — RF/r=0.08, — R/x=0.05, t,/t,=~1.7, t,/(t;+¢t)=T.9, t,[t,~
11.9, which we get from the elastic constants in Fig. 2. It is however
very difficult to recognize any systematic variations in their patterns,
even though close observation surely reveals them. This complication
is mainly due to the large magnitudes of the discontinuities in the
model, which are characteristic of averaged Earth models consisting
of a small number of homogeneous layers. The patterns of S, and S,
for such models will be widely different from those expected for the
actual Earth. Hence, from the practical point of view, investigation
has to be made for more realistic Earth models.

Here we introduce two models called DSN and CNT respectively
(see Fig. 7). The crust/mantle structure of the model DSN is designed
in accordance with Model 10668 presented by GILBERT and DZIEWONSKI
(1975), which is characterized by two ‘discontinuities in the upper
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)

Vs (km/s)

5

DSN -model
........ CNT -model

1 — S

3% 1000 e 300 depthtkm)

Fig. 7. Density, P- and S-wave velocity structures for two Earth models,
DSN and CNT, which have discontinuous and continuous structures in the

upper mantle respectively. The core is assumed to be homogeneous and
liquid.

mantle. The model CNT has, on the other hand, a continuously vary-
ing structure through the whole space of the mantle, similar to Model
1066A of the above authors. A homogeneous liquid core is assumed
for both models to emphasize the effect of difference in the upper-
mantle structures on S,- and S,-patterns and to ensure high accuracy
in numerical computation.

We have computed eigenfrequencies for the case n=1 with the
use of Eq. (2.29), substituting 91 uniform layers for the whole mantle.
Deviation of the frequencies from the zero order approximations, Eq.
(4.2), is not very large in the present case as is expected for realistic
models, and we can sort out the PKP-type and ScS-type modes with
comparative ease by virtue of the relations (4.2) and (4.8).

In Fig. 8 (upper two graphs), S, and S, for the two models ob-
tained in terms of Eq. (4.1) are plotted against ¢ and ¢’ respectively. For
reference, the period of free oscillations is written in abseissa. It is
found that their patterns are relatively simple compared with those
for the previous averaged-Earth-models. There is a notable difference
between solid curves (model DSN) and dashed curves (model CNT),
resulting from the difference in the upper-mantle structure (with or with-
out discontinuities). Then, existence of the discontinuities gives rise
to large vibrations in their patterns. Good coincidence of the solid
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Sp
0.1
PKP-type (n = 1)

0
Ss
0.1

DSN -model

------- CNT -model

1 1 1
0 10 20 0
1 i 1 '
200 100 ) 50 30 period (sec)

Sp

PKP-type(n=1)

..... CNT(no crust)

Ss
———— DSN with homo.

0.02|- upper mantle
0

S
OOFZ’ PKP-type(n=1) with homo. mantle

oL AT AN A ATAAA A A

10 20 30 40 i

Fig. 8. Graphs of S, against ¢ (top) and S; against ¢/ (second) for the model
DSN (solid curves) and CNT (dashed curves). For reference, the period of
free oscillations is given in units of second in abscissa. The third and
fourth graphs show S,- and S;-curves respectively for partially modified
models, CNT without a crust (dashed curves) and DSN with a uniform
upper mantle (solid curves). The bottom graph shows a S,-curve for the
model with a uniform mantle and core which keeps the same scale of dis-
continuity at the interface as that of the model DSN or CNT. All the
computations are made for the angular order n=1.

and dashed curves at small ¢ and ¢ is attributable to the situation
that the whole upper mantle, where elastic parameters vary sharply
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with depth in the small range of radial distance (<700km) com-
pared with the radius of the Earth, acts as a discontinuity common in
both models on the long-period free oscillations. This will be discussed
later. Roughly speaking, the amplitudes and periods of the solid
curves coincide with those estimated by Eq. (4.7) by applying it
formally to the model DSN (putting M=5), because we get, for 671
km discontinuity, —RS/r=0.026, ¢,/(t,+t,+t)~9.0, —R;/x=0.028,
t./(ts+ti+t;)=3.8 and for 420 km discontinuity, —R{/7x=0.017, ¢,/(t,+t;)
~14, —Rj/mr=0.014, t,/(t;+1t;)=5.0.

In the model CNT there still remain two discontinuities, the erust-
mantle and mantle-core boundaries. From the previous discussion on
the simple models, it can be inferred that the crust-mantle boundary
gives rise to long-period oscillations, while the mantle-core boundary
does short-period fluctuations. We can readily recognize large trends
in the variations in the dashed curves of the upper two graphs. Their
amplitudes and periods are approximately coincident with those esti-
mated from Eq. (4.5) since we get, for the Moho discontinuity,
—R{[r=0.06, t,/t,~200, and — R;/r=0.08, ¢,/t;~80.

Dashed curves of the third and fourth graphs are obtained for a
model constructed by removing the Moho discontinuity from the model
CNT (the crust being replaced by a uniform layer of which material
is the same as that of the uppermost part of the mantle). Then, the
large trends are clearly eliminated from both curves of the PKP-type
and ScS-type. There still remain the oscillations with periods 7~8 in
4 in the S,-curve, superimposed on the short-period fluctuations, and
periods 3~4 in ¢’ in the S,-curve, both being conspicuous at the fore
part of each curve. We call those components middle-period oscilla-
tions. There is no doubt that the short-period fluctuations are the “solo-
tone effect” caused by the existence of the mantle-core boundary, the
only explicit discontinuity in the present model. In fact, we cannot
observe the corresponding fluctuations in the S,-curve since it does not
act as an internal boundary for the SeS-type modes.

The other discontinuity that we can imagine as the origin of the
middle-period oscillations is the upper mantle itself, where the elastic
parameters change continuously but very steeply. This speculation is
proved to be true through the numerical computation for a model with
a uniform upper-mantle. The model is designed in such a way that it
has a uniform structure at depth less than 671 km and it links to the
model DSN at depth 671 km without a first order discontinuity in its
elastic parameters. Then, we get solid curves in the third and fourth
graphs of Fig. 8. It shows that the middle-period oscillations are
clearly eliminated from these curves by this modification. Here, it is
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interesting to try to estimate the amplitudes of these middle-period
oscillations in a similar manner as attempted above for other dis-
continuities. We can regard the whole upper-mantle as one dis-
continuity since only long-period free oscillations are concerned with
this phenomenon. Then, assuming that the scale of the discontinuity
is prescribed by maximum and minimum values of the elastic param-
eters in this region, we get, from Eq. (8.18), —R*/r=~0.1and —R’/x=
0.1 for this discontinuity (put p,~4.4, a;,~11, 3,~6.2, 0,+,~3.3, a;4,~7.8
and fB,.,~4.4). These amplitudes are three to five times as large as
those observed in the graphs. Hence, we can say that the effect of
this discontinuity is in fact much reduced by its smoothly varying
character. This tendency increases as period of free oscillations de-
creases, which is physically reasonable. Now, it is concluded that the
solotone phenomenon is caused not only by an actual discontinuity but
also by a continuously but steeply varying structure in the medium.
In the latter case, its pseudo solotome-effect will depend on rate of
change in structure with depth and wavelength of free oscillation.

The remaining short-period fluctuations in the PKP-type modes
(solid curve in the third graph) still appear in the curve for a model
with a uniform mantle and a liquid core (bottom graph) where the
scale of discontinuity at the mantle-core boundary is retained as it is
in the model DSN. These amplitudes and periods agree with those
estimated from Eq. (4.4) since we get —R[/x~0.007, ¢,/t,~8.1 for this
discontinuity.

Thus, the whole oscillatory features observed in the S,- and S,-
curves are explainable in terms of an additive effect of individual
“solotone effect” caused by the discontinuities explicit and implicit in
the Earth. Then, the approximate formulas obtained for the layered
models are, on the whole, valid for realistic models as well.

In general, S,-curves have more complicated appearance than
S,-curves because all the discontinuities associated with the core affect
the PKIKP-type modes (taking the inner core into account) but not
the (ScS),-type modes (and (ScS),-type modes of the torsional oscilla-
tions as well). In this sense, the latter modes are more sensitive to
differences in the mantle structure than the former modes. However
there seems to be few observations of the (SeS),- and (ScS),-type
modes. GILBERT and DZIEWONSKI (1975) have identified a lot of higher
spheroidal and toroidal modes besides fundamental modes and compiled
them together with other authors’ data. Their table include, for ex-
ample, relatively high order of the spheroidal modes with n=1 such
as S, S, »S and .S, in their notation. Estimating S, and S, for
these modes from their data, we find that the values of S, are dis-
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tributed in the range of small amplitude while those of S, deviate
from the expected range. In the result, we can identify the above
modes as the PKIKP-type with the radial mode numbers i=11, 12, 13
and 14 respectively in our notation, and thus high (SeS),-type modes
seem to be missing from the observations. Figure 8 suggests that
those modes with 7<14 are unfortunately insensitive to the existence
of the discontinuities in the upper mantle, and a little higher PKIKP-
type modes and the missing (ScS),-type modes (or the corresponding
(8¢S),-type modes) are required for confirming their existence in
terms of the solotone phenomenon.

5. Summary

The matrix method is employed successfully for formulating the
frequency equation of the spheroidal oscillations of the multi-layered
Earth and for computing the eigenfrequencies of relatively high radial
modes with small angular order numbers.

The method is also applied to demonstrating the decoupling of the
equation at high frequencies and to deriving its explicit forms for the
simple Earth models.

The solutions of the asymptotic frequency equations to the first
order approximations well illustrate the effect of discontinuities in the
Earth on the distribution of decoupled eigenfrequencies. It is that
the amplitude and period of the “solotone effect” caused by an inter-
nal discontinuity depend on its scale and depth respectively and the
effect is additive for two or more discontinuities.

The numerical experiments for the Earth with realistic mantle
structures further reveal that a continuously but sharply varying
structure in the medium causes the pseudo solotone-effect for the lower
part of eigenfrequencies.

From a viewpoint of mode-ray duality, the normal modes that this
paper is concerned with are closely connected with body waves which
travel radially in the Earth. Then, P and S waves are decoupled
from each other, and we have independent frequency equations cor-
responding to respective body waves. In the case when P and S
waves are coupled, that is, the waves travel obliquely in the Earth,
ray geometries become complicated and we get different forms of
asymptotic frequency equations corresponding to different ray geom-
etries. Investigation on this case will be made in the succeeding
papers in terms of both mode theory and ray theory (ODAKA, 1980a, b).
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