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Abstract

TForced oscillations of the earth by tide generating potential are
investigated by assuming the earth as a visco-elastic body.

First, the Kelvin-Voigt type visco-elastic model is adopted for the
earth and equations of motion are deduced. By solving the equations
numerically, phase retardations of earth tides are calculated where
viscosity within the mantle is assumed to be uniform. As a result,
it is noticed that the retardations become marked when the viscosity
is over 10 poises.

Second, the retardations are calculated for real earth models
where radial distribution of viscosity is converted from @ model by
ANDERSON and HART (1978). Obtained retardations are too small to be
detected by actual observations. It is concluded that the effect of
mantle viscosity to the phase retardations is negligibly small.
Through the calculations, Love’s numbers, diminishing factor, gravi-
metric factor, etc. are also calculated for several principal components
of tide potential. The results are nearly equal to the values obtained
from the solutions of static deformation of the earth. There is,
however, slight frequency dependence of Love’s numbers.

Tinally, relations between the visco-elastic model of the Kelvin-
Voigt type and the Maxwell type are studied. From the results, it

- may be said that even if any kind of vibrating motion of the Kelvin-

] Voigt type earth is considered, the same vibration is possible for the

Maxwell type earth only by taking new appropriate values of viscosity.

- For example, 2X 10" poises of viscosity for the Kelvin-Voigt model
corresponds to about 1022 poises for the Maxwell model in the frequen-
cies of earth tides.

1. Introduction

The tidal deformation of the earth has been observed by various
methods on earth’s surface all over the world. The results obtained by
these observations have been compared with theoretical values in ordinary
cases. Here, the theoretical values are based on the assumptions that
the earth to be rigid or perfectly elastic. Some elastic properties of the
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earth can be clarified from the results.

By comparing the observed results with the theoretical ones, the
following quantities are usually determined for a harmonic component in
tidal potential. One is the amplitude ratio and the other is phase dif-
ference. The amplitude ratio is the direct reflex of the earth’s elasticity
and then, Love’s numbers are calculated as representative values from
them. Numerous papers have contributed to this kind of research.

The observed retardation of the phase to the theoretical one seems
an index of earth’s plasticity. As for the phase retardation, however,
only the observed results have been reported and in most cases left un-
analyzed afterwards. In considering the phase retardations in the earth
tides, it is necessary to establish some theories which connect the retar-
dations with earth’s plasticity as a first step. Accordingly, it is required
to have information on viscosity within the earth. Nevertheless, the
knowledge about earth’s viscosity has remained poor till quite recently.

In recent years, the data of the earth’s plasticity have gradually been
accumulated. They are obtained mainly from the post glacial uplift move-
ment of crust, the attenuation of seismic waves and time decay of earth’s
free oscillations. For example, HASKEL (1935, 1936) first estimated the
viscosity in the upper mantle to be 10% poises from the uplift of Fenno-
scandian area. MCCONNELL (1965, 1968a, 1968b) also treated the data and
obtained the variation in viscosity with depth in the upper mantle.
CRITTENDEN (1963) gave the value to be 10* poises from the isostatic
rebound of Pleistocene Lake Bonneville.

In another approach, the quality factor @ obtained from the attenua-
tion of vibrating motion in the earth was investigated by a lot of authors.
ASADA and TAKANO(1963) obtained the mean @, to be 2500-5000 for longi-
tudinal waves for the mantle in the frequency region from 1 to 10 Hz.
From another standpoint, KANAMORI (1967) showed @, to be 180-240 for
the upper mantle and 1600-6000 for the lower mantle. KOVACH and
ANDERSON (1964) also obtained the mean @, for transverse wave to be 200
for the upper mantle and 2200 for the lower mantle from the deep focus
earthquakes which occurred in Argentina. ANDERSON, BEN-MENAHEM and
ARCHAMBEAU (1965) constructed a model MM8 in which the distribution
of @, was given from the earth’s surface to 1000 km in depth by using
the attenuation of surface waves.

® in the core is investigated by QAMAR and EISENBERG (1974), SUZUKI
and SATO (1970) and BUCHBINDER (1974). On the other hand, NOWR00ZI
(1968) calculated the mean @ to be 251442 for spheroidal fundamental
mode of vibration from the free oscillation of the earth excited by the
Alaskan earthquake of March 1964 and the Aleutian Island earthquake
of May 1965.
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Although the above results do not necessarily coincide with each
other, it is understood that the distribution of the viscosity is about to
be revealed and theoretical considerations can begin to explain phenomena
related to earth’s viscosity.

In 1978, ANDERSON and HART (1978) presented new @ models SL7 and
SL8. In these models, radial distributions of @, and @, are given for the
whole earth and they are very convenient to various calculations con-
cerning the earth.

In this paper, first, equations of motion of spheroidal oscillation for
the Kelvin-Voigt type visco-elastic earth are derived. From the solution
of the equations, phase retardations, Love’s numbers and some other
factors are calculated for cases of various viscosities and several fre-
quencies. In the calculations, @ model SL8 is applied as the measure of
viscosity in the real earth model.

Following the calculations, strain-stress relations for the Maxwell type
visco-elastic body are deduced. By comparing them with that of the
Kelvin-Voigt body, viscosity relation between both bodies is considered.
This relation explains the apparent difference of viscosities obtained from
vibrational motion and from creep motion of the body.

2. Fundamental Equations

Equations of motion for an elastic, self-gravitating earth with
spherical symmetry may be expressed in terms of polar coordinates
(r, 0, #). In the case of spheroidal oscillation, the displacement components
Uy, %y and u, in the 7-, g- and ¢-directions and the additional potential ¢
may be expressed in the following forms as

= U,(r) Y,(0, 9),
us= V,(r){0Y,.(0, $)/06}, l 21)
us={V,(r) [sin 0HO Y,(0, ¢)[0g}, J

$=P,r) Y,(0, 9),

where Y,(0, ) is a spherical harmonie function of order n and U,(r), V,(r)
and P,(r) are functions of 7 only. By these relations, the equations of
motion are reduced to four equations (ALTERMAN, JAROSCH and PEKERIS,
1959). These expressions are

d

W(2Xn+2uifﬂ)+%{M1‘1,1—4U”+n(n+1>(—Un—rf/,ﬂrgvn)}

+an+ngw—p-7‘%r—(gUn)+wszn=0,
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2.2)

%{g(fzn_ ‘; ¥ Zn)}+%{5m+3rvﬂ— V,—2n(n+1)V,}

+A X, 4 LP— LIy, 4 wPoV,=0,
r r T

and
P,,-}—-?ZTP,L—E%;F—I)P”:ZMG(,& Up+pX.),

where
X,=U,+2 Un_"_(”_‘t_llvm
r r

2 and p: Lamé’s elastic moduli,

p: density in the undisturbed state,

¢g: gravity in the undisturbed state,

G: universal gravitational constant
and

w: circular frequency of the oscillation.
A dot over a quantity implies differentiation with respect to radius r.

In order to investigate the phase retardation in the earth tides
theoretically, the earth must be treated as a visco-elastic body. So, some
modifications become necessary for equations (2.2) considering the viscous
effect of the earth. In this paper, the earth is assumed as a Kelvin-
Voigt type visco-elastic body in the first place. Here, the stress com-
ponents caused by the elastic deformation and by the viscous flow operate
on the body as the sum of them at a time. In the case of one dimen-
sion, strain-stress relation is given as

de
X—#e+na~t, (2.3)
where
X: stress,
e: strain,
»: the coefficient of viscosity
and

T élapsed time.
Strain-stress relations in an elastic body of three dimensions are
generally given for spherical coordinates in the following forms

Rr"‘_"—‘lid'*"zﬂerm
@0224—}—2#630,
@¢=ZA+2/16¢¢,




Theoretical Study on Earth Tides by Assuming 227

Os=pesy, / (2.4)
D= ey,
R,=pe.q:
where
R,, 0, &4, 04 @, and R,: stress components,
€rr o5y €44, Cosy €4, ANA €40 strain components
and
4: cubical dilatation; d=e,,4egs+ €4y
By referring (2.3), the strain-stress relations (2.4) are expanded for a
Kelvin-Voigt type visco-elastic body. They are as follows:

04 66"

R, —M—l—Z,ae,,—l-lc +277 ,

A Geag

@6—24—’;—2#609—%—1: —1-277 ,

@gb—ZA +2}16¢¢+ ’C-—A— +2n—2% aae:‘ﬁ

’

86,,¢
ot

Os=pest+7
Qr:ﬂegﬁr"'v&r

Ro = #ere + 77 aew

where  is the second coefficient of viscosity. It may be also denoted by
7 and the coefficient of volume viscosity 7, as '

e=7,+20. (2.6)

In order to obtain the relations (2.5) from (2.4) for an oscillating motion
of the body of which the circular frequency is , it is sufficient to
introduce complex moduli 4 and 2 instead of 2 and g. In this case,
complex moduli 4 and 2 are written as

a

A=A+ 10k, }

2 2.7
= p+10m.

According to these replacements, displacement components u,, Ug, Ug
and additional potential ¢ are also taken as complex quantities. In this
case, the functions U, (r), V,.(r) and P,(r) in equations (2.2) may be expressed
in the forms
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Un (/r) = ’!/m + Iiwzﬂlv
V,,, (7‘) =Yns + 'iwzng, (2.8)
Pn (7‘) = yns + iwan;

where Y1, Yus Ynss Zu1 2as and z,; are real functions of » only. For simplic-
ity, a subscript “n” is omitted in later discussions and the above func-
tions are denoted as ¥, ¥s, ¥s, 21, 2 and zs.

By using complex displacement components, the phase retardation of
a displacement component (or additional potential) may be obtained from
the ratio of the real part and the imaginary part of the amplitude of
the considered component. This is evident from the general relation;

(A+iB)e*' =+ A"+ B*.¢"@'™, (2.9)
where
B
t =,
an e A

Then, the phase retardations ¢, ¢, ¢; and ¢, with respect to oscillations
of 7-, @-, - components and the potential ¢ are given as function of 7 in
the forms

tane, = __wz_l’ |
Y1
tan e,=tane;= ——%, : (2.10)
Ys
tan e;=—-2%,

Ys

In short, there are three kinds of phase retardations in the earth tides.
They are retardations ¢, in radial displacement, ¢, or ¢, in horizontal dis-
placement and ¢, in potential variation. The calculation of them is es-
sentially equal to obtain the solution of differential equations with respect
to functions y., ¥s, ¥s, 21, 25 and 25 for given circular frequency w.

From the above discussions, necessary differential equations are
obtained by substituting the relations (2.7) and (2.8) into (2.2) after re-
placing 2 and ¢ by 4 and 2. In deriving the equations, new dependent
variables ¥, ¥, ¥e, 22, 2. and 2, are introduced in order to simplify later
calculations. This is a similar procedure taken by ALTERMAN et al. (1959).
In our case, they are defined as follows:

vo= (2t (22 Y= (MDA o] (et 201

(2o
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() ()2 )

Ye=1s— 4G oYy,
2= (k+2n)9 +(27'C>y1— {n(—”jﬁﬁ}yﬁ (2+2m)2,

H(E)n ),

ol () (ol (2)0(2)

Re=— 25— 47tszl-

2.11)

Then, stress components R,, O, and @, are written in complex forms as

R.= (yz+iw22) Yn(ﬁ, ¢): ‘
_ . 9Y.,(0, 9) }
0, = (ys+1iwz,) {_—60 }’ L 2.12)

0, = (ys+iwz,) siiﬁ ){ay%(g’ ¢)}' j

After some elementary but troublesome calculations by using relations
(2.7), (2.8) and (2.11), equations (2.2) are finally transformed into twelve
simultaneous first-order differential equations. They are expressed in
matrix representations as follows:

! a /’ / \
T @
0%

o Ye “
oy, |
; =A —o'B , (2.13)

Y Y 24
or
01

3 v &
0

o Y B

and
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0 \ ‘

aj_l ‘( Y1 / 21 \
| 0z, | | { .

or v | |

02, | ;

or | Ys %

[ =B + A , (2.14)

02,

or Y 24

025

or Ys %

025 ‘ | .

or / ' s / \ °J

where A and B are 6x6 matrices. By denoting them as

(281 * Qg
A=| 1 (2.15)
Qe * * * Ags
and
bn .. b1s
B=|: L (2.16)
bm “e bEG

the elements in the matrices are given in following forms.

2p

Ay = —
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Ay =———
Q3= —,
2.17
. P (2.17)
#2_1_(02772
(luzﬁg 2021
r T
As2= ——?L.
qr
A= —a’p +i;—y
r
Ayy—= —i,
r
Ays— — —p"9
r
0«51-——37’,
as=1,
_ 3n(n+1)r
Aga— ’
r
Qo= n n;{—l) ,
e
Aeg=— — —2*’
r
bll—" - 4w ’
qr
b= — k427
q
_ 2n(n+1)w
13 qr )
e,
21— ’,‘2 )
bzzzﬂy
qr
__ 2nn+1e, (2.18)
23— e ;
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b= ———
ﬂ2+0)2772
_ 2¢
b41 - 7‘22 s
__ 2w
42— ’
qr
d.
b43 - _/);g“y

and all the other elements are zero, where

p=A(A+2¢) + 0% (k+27),
q=(2+24)"+ 0*(k +27)*,
s=p(242p) + w*p(c+27),
w=rp—2n,
7=(4/3)7Gp,
c1=1{s(324+2¢) + 0*w (3 +27)}/q,
c:={s(3x+2n) —w(82+2p)}/q,
d,={2

(2n°+2n—1) (pp—20°wn) +4(n*+n—1) (sp+wwy)}/q,
d,={2(2n"+2n—1) Qwp+ py) + 402+ n—1) (sp—we)}/q.

(2.19)

N
/

As it will be mentioned later, above differential equations are solved
for earth’s core under the conditions of

p=r=n=0

In this case, the relations with respect to
(2.14) are reduced to four equations. They are already given by ALTERMAN

et al. (1959).

where

'%\ | Cuu Ciz Cis
%Zf B Can C2 Cz
%_1;1'5 Cor Cs2 Css
\."%/FG_ \Cer Coz Ces

C1s

|
\

In matrix representations, they are

s vanish and (2.13) and

(2.20)
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_nn+l)g 2
Cu= 22 ,
o r
e — n(n+1) 1
12 a)zfrzp z,
__ nn+l)
Cis=— 2.2
™
2
Cm:%(ntlz)pg 409 _ o2,
o r
o — nin+1)g
22— 2 .2
"
o, = — _nnt1)og
25— 2.2
'
_ (2.21)
Cog— — (0,
Cs =37,
056:1’
_ 3n(n+1l)r
Cn=—""—"— 55
o'
_ 3n(n+l)y
Coo=—"+5 5
o
065:n(n+1){ 327/2—-%%},
*r 7
Cog=— — ,
r

C16=C52=Cs5— 0.

In an earth model, there are internal surface discontinuities where
abrupt change occurs in the values of elastic constants, coefficients of
viscosity or density with respect to r-direction. In these cases, boundary
conditions must be considered in addition to conditions for the center and
for the surface of the earth.

For the elastic earth, the conditions are considered by TAKEUCHI (1950),
ALTERMAN et al. (1959) and others. In our case, these boundary conditions
are summarized as follows:

(1) At the center of the earth: Regularity of the funetions ¥, ¥,
ys and ¥, are necessary. Here, two sets of initial values are taken for
numerical integration of differential equations (2.20) for each component of
tidal potential.

(2) TFor the surface of discontinuity in the core: It is sufficient to
consider the continuity of functions ¥, ¥s, ¥s and ¥s.

(3) For the boundary surface between the core and the mantle:
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Continuity of the functions ¥, v, y; and Ys from the core to the mantle
must be considered. On the boundary surface in the mantle, Yo 22, 24 and
% are zero. Here, y; 21, 2; and z; can be taken as independent values.

(4) For the surface of discontinuity in the mantle: It is sufficient
to consider the continuity of all the functions v, Yo, Ysy Yi» Ys» Ysr 21 R2» B3y 2ty
zs and 2.

(5) For the surface of the earth: From the condition of vanishing
the stress components R,, 0,(=R,) and @,, it is derived that Yo, Ys, 22 and
2, must be zero. On the other hand, from the condition of continuity of
potential gradient, two conditions

yfknjly5:@n+DM”Gmﬁﬂ“

and

n+1

zS+ 25:0

are obtained, where

a: radius of the earth,

m: mass of a disturbing body; for example, the moon or the sun,
and

d: distance between the center of the earth and disturbing body.

Under the above conditions for boundary surfaces, numerical inte-
gration of differential equations (2.18), (2.14) and (2.20) can be executed
for a given earth model.

3. Q value and coefficient of viscosity in the Kelvin-Voigt
type visco-elastic body

As the value related to the viscosity, the elastic quality factor @
is often treated in seismology. It is usually estimated from the atten-
uation of seismic waves or time decay of free oscillations of the earth.
Therefore, the relation between @ and coefficients of viseosity is first
considered for the Kelvin-Voigt type visco-elastic body. By the relation,
Q will be converted into coefficients of viscosity.

Let us now consider a plane wave which moves in the z-direction
through the visco-elastic medium. The plane wave may be expressed in
the following forms as

— —az i (ot—qzx)
p=dee (3.1)
— Aez(wt—%)
where
¢: scalar potential for the wave equation,
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A: initial amplitude of the wave,
«a: attenuation constant,
q: wave number,
and
4. complex wave number; §=q—1a.

When the velocity 9 of the wave is taken as a complex quantity, it
is written as

P=v+v%, (3.2)

It may also be given as '
=0 = oltia) 3.3)

q +a

because the velocity of a wave is generally given as the ratio of the
circular frequeney o to the wave number §. Then, the relations

_ oq

Y ¢+at l a4
_ o ' (3-4)
T ra |

are obtained. By dividing v* by o, the attenuation constant « is express-
ed as

a=""_4q. (3.5)

The values v and v* in complex velocity may also be given through
complex moduli 4 and 2 for the Kelvin-Voigt type visco-elastic body.
For the longitudinal wave (for which the letter “p” is appended to corre-
sponding quantities), the complex velocity 9, is expressed as

by =v,+iv,* =" (1+24) o
=V (2+2p)/0-V1+1u, (3.6)
=V {200 {V A+ VItu)2+iV (—1+v1+u,7)/2}.

where
_ ot+2y)
T a42
Then, the relation
v, ¥ U

= £ 3.
v, 1+v14u,’ 81)

is obtained. Substituting (3.7) into (8.5), the attenuation constant « may
be written as
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= U _q. 3.8
ETrvigus ! 38)

It is generally recognized that the condition
%,<1 (3.9)

is always satisfied in the earth. This is equivalent to the following
conditions that

2+2u>w(e+27), 3

>a (3.10)
V> v, k.

In this case, equation (3.8) is approximated by the relation

or

=g, 3.11
a=-2rq (3.11)

On the other hand, the quality factor @, for a longitudinal wave is
defined by

1 1—etrle
B s —— 3.12
o~ = 812
This is approximated under the condition given (3.9) or (3.10) by
1 _2a_, _ olkt+2y) (3.18)

Q a¢ 1 it2p

This is the relation between @, and coefficients of viscosity. By the
relation, the value £+2» can be calculated from the @, for a given circular
frequenecy ® because the elastic moduli 2 and ¢ are known in the earth.

In a similar way, the relation for the transverse wave (for which
letter “s” is appended to corresponding quantities)

1 @n
=g, = 3.14
Q. 2 e14

is obtained. From the relations (3.13) and (3.14), # and » can be calculated
separatly if @, and @, were known, for example, from seismic data.

4. Adopted viscosity within the earth

In order to solve the differential equations (2.13) and (2.14), it is
necessary to give radial distributions of density, elastic moduli and coef-
ficients of viscosity within the earth beforehand. Although the distribu-
tions of density and elastic moduli were well determined from seismic
data, coefficients of viscosity have still been left uncertain. Therefore,
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the coefficients of voscosity must first be estimated.

Before the estimation, the following bold assumptions are taken for
the viseosity within the earth.

First, we assume the viscosity to be zero within the earth’s core
throughout our calculations. Although this is not true, the assumption
seems to be permissible considering the fact that the outer core is liquid
and the effect of high viscosity value in the inner core is considerably
reduced by the outer core. '

Table 1. Adopted viscosity values for Kelvin-Voigt model in mantle and
related values as assuming the frequency of transverse wave to

be 0.04 Hz.

depth @ in SL8 smo(gghed ﬁgﬁ%}?&éﬁ o7y (poise/s) Vls(gg?;g v

km x1012 X 1010 X 1010
2878 100 100 2.954 2.954 11.754
2300 200 193 2.934 1.520 6.049
2600 500 505 2.804 0.555 2.209
2400 515 518 2.678 0.517 2.057
2200 510 510 2.555 0.501 1.993
2000 495 495 2.439 0.493 1.960
1800 465 470 2.324 0.494 1.967
1600 440 440 2.209 0.502 1.998
1400 410 405 2.090 0.516 2.053
1200 370 365 1.967 0.539 2.144
1000 310 318 1.837 0.578 2.298
800 260 258 1.656 0.642 2.554
650 215 208 1.462 0.703 2.797
650 215 208 1.396 0.671 2.670
500 150 157 1.041 0.663 2.638
350 105 116 0.749 0.646 2.569
350 105 116 0.697 0.601 2.391
300 105 -106 0.693 0.654 2.601
200 105 94 0.686 . 0.730 2.904
100 90 91 0.678 0.745 2.964
60 110 90 0.675 0.750 2.984
60 110 90 0.713 0.792 3.152
45 110 110 0.712 0.647 2.575
45 500 500 0.712 0.142 0.567
15 500 500 0.709 0.142 0.564
15 500 500 0.358 0.072 0.285
0 500 500 0.358 0.072 0.285
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Second, we take the assumption that the second coefficient of viscos-
ity « is zero within the mantle. This fact is supported by the @ model
given by ANDERSON et al. (1978). Moreover, it is also confirmed that the
vibrating motion of the earth is affected little by the value of « through
some trial calculations.

By these simplifications, it becomes sufficient to give the distribution
of viscosity » only in the mantle for the calculations. As mentioned be-
fore, the coefficient of viscosity » can be converted from the quality
factor @,. In the present study, €. values are adopted from the @ model
SL8 given by ANDERSON et al. (1978). After smoothing the values in
model SL8, they are converted into coefficients of viscosity » according
to the relation (8.14). Here, the circular frequency  is assumed to be
0.04 Hz for transverse seismic waves. The results are presented in Table
1. These are used in later calculations.

5. DPhase retardations in the earth tides

In this section, the differential equations (2.13) and (2.14) are numer-
ically solved and phase retardations are calculated.

As for the distributions of density and elastic constants, there is no
serious problem. We use here the values given by HADDON and BULLEN
(1969) after a slight modifieation. The modification is trivial and is taken
only for the convenience in calculations.

For the distribution of viscosity, two cases are treated in the present
study. One is the case where the coefficient of viscosity 7 is constant
all over the mantle (Case I). Here, the variation of phase retardations
versus viscosity is considered. The other is the case where the distri-
butions of the coefficient of viscosity 7 is adopted from the results shown
in Table 1 (Case II). Here, phase retardations are calculated for several
principal harmonic components in tidal potential.

The numerical integration was executed from the center towards
the surface of the earth under the boundary conditions mentioned in
Section 2. In the calculation, the Runge-Kutta-Gill method was employed.
For the spherical harmonic function, Y,(d,¢) only was used because the
tidal potential is overwhelmingly predominated by the harmonic function
of order 2. Two sets of initial values were adopted from analytical solu-
tions of spheroidal osecillation for a uniform earth given by TAKEUCHI and
SAITO (1972).

For Case I, two circular frequencies of forced oscillation were con-
sidered. One was ws(=28°984104/hour) for semi-diurnal wave M, and the
other was w,(=13°943036/hour) for diurnal wave O,. As the coefficient of
viscosity in mantle, the following values were successively taken. They
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were 0, 10%, 3x10%, 10*, 3x10* 10" and 10" (poises).

Obtained phase retardations are given in Table 2 for M, wave and
in Fig. 1 for O, wave. From the figure, it is clear that phase retardations
e, and ey(=¢,) rapidly increase as the
coeflicient of viscosity » increases in
the range between 10" and 10*® poises.
The retardations are small when 7 is

Table 2. Phase retardations of M.
wave for various values of
viscosity in mantle.

under 10° poises and are nearly 90° coefficient retardation in degrees
X . of viscosity

when 7 is over 10" poises. 7 in poises c €0, €4 €y

' A§ for & in. potential variation, 0 0°00 0°00 0°00
it varies quite differently. It takes 10 432 | 1.64 | 0.68
the maximum value (~6°) when n 3% 1015 12.62 5.07 2.00
is nearly 3Xx 10" poises and then, it 10t 34.36 | 19.46 5.25
decreases as u increases. It seems 3% 1016 62.40 | 48.72 6.65
that ¢, approaches to zero as z appro- 107 80.72 | 74.85 3.15
aches infinity. This fact is explained 10t 89.06 | 83.44 0.34

in the following way. The additional
potential ¢ can be divided into two parts. One is the tide generating
potential of a disturbing body and the other is the potential due to earth’s
deformation. When » approaches infinity, the latter closes to zero because
the earth’s deformation becomes zero and only tide generating potential
remains as the additional potential. This is the reason why the retar-
dation e, becomes zero.

90°

80—

70°%-

60°-

50%—

407

NOlLVYAyVL3Y 3FSVH

30°-

20°~

o /a/igég‘
15 16 17
1o 10 yiscosiTy 100 T —> o

¥ (poises)

Fig. 1. Phase retardations ¢, in radial displacement, e(=e4) in horizontal
displacement and ¢, in potential variation versus viscosity values in the mantle
for O, wave.
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Table 8. Phase retardations for several principal components in tidal potential.

retardation in degrees

retardation in time for

wave frequ)ency directions
&r €, €¢ [ r- 0, ¢' 51"
/hour X10-6 x10-6 x10-6 ms ms ms

@ 132399 5128 1726 8°1 13.93 4.72 2.18
0, 13.943 54.0 18.3 8.4 ” 4.71 "
Py 14.959 57.9 19.6 9.0 ” ” ”
K, 15.041 58.2 19.7 9.1 ” " "
N, 28.440 110.7 36.9 17.3 14.01 4.67 2.19
M, 28.984 112.8 37.6 17.7 " " "
Se 30.000 116.8 38.9 18.3 14.02 4.66 2.20
K, 30.082 117.1 39.0 18.4 ” ” ”
Ms 43.476 170.9 55.4 26.9 14.15 4.59 2.22

For case II, the viseosity distribution given in Table 1 was adopted
and phase retardations for following nine principal waves were calculated

by similar procedure in Case I.

were,;

and

©,=13°398661 /hour for @,
®,=18°943036/hour for O,
w;=14°958931/hour for P,
w;=15°041069/hour for K,
w;=28°439730/hour for N,,
w;=28°984104/hour for M,
®,=30°000000/hour for S,
w;=380°082137/hour for K,

w,=43°476156/hour for M,.

The results are summarized in Table 3.

As expected from results in Case I, the retardations obtained from
the adopted earth model are negligibly small.
is, however, approximately proportional to the circular frequency of the
Then, it may be said that the retardations expressed in time
are nearly equal for each kind of displacement or variation. This fact
is clearly shown in Table 8 although there remains slight dependence of
the retardations on frequency.

vibration.

The circular frequencies considered here

Each kind of retardation
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6. Viscosity relations between the Kelvin-Voigt
model and the Maxwell model

As shown in Section 4, adopted values of the viscosity in our cal-
culations are at most 10" poises except for the lowest layer of the mantle.
On the other hand, plenty of research shows the viscosity in the mantle
as greater than 10” poises as mentioned in Section 1. These high values
of viscosity coefficient apparently contradict with our values. This contra-
diction, however, originates from the definition for the coefficient of vis-
cosity. These points may be explained in what follows.

There are two models which often represent the visco-elastic body.
One is the Kelvin-Voigt model as mentioned earlier, and the other is the
Maxwell model.

In the case of the Kelvin-Voigt model, The displacement occurs
within a limit for an ever-lasting constant stress operating on the body.
Here, the creep of the body never occurs. Then, the model is inadequate
to interpret the phenomena which involve the creep motion like a post
gracial rebound movement. For this case, the Maxwell model is adequate
and often adopted. In this model, the creep occurs even by small stress
when it works continuously.

In the Maxwell model, strain rate is expressed as the sum of the
quantity proportional to stress rate caused by the elastic deformation and
the quantity proportional to stress accompanied with the viscous flow.
In the case of one dimension, the relation is written as

o a4 6.1
dt p dt + 7 (6.1)

In an elastic body of three dimensions, strain-stress relations in
spherical coordinates are generally given in the following forms:

1
Yy = ———————{2(2 R,—A(0,+D,)},
e 2#(324—2/1){ (24 p) ©,+ ¢)‘}
1
=~ [2(2 O,—2D;+R,)},
€9g 2!1(32_‘_2#){ (2+1)0,—2(Ds+ R,)}
1
. S— 21 D;— AR, +6,)},
= @t o) 202+ p)Ps—A(R,+ (1)}.
1 5 (6.2)
€9¢=—'@¢,
¢
eqﬁr:_l‘“'@ry
o
ero=l'R0y
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These equations are merely transpositions of (2.4).

In the Maxwell type visco-elastic body of three dimensions, the strain-
stress relations are analogically obtained from (6.2) by referring (6.1).
The expressions are

de, _ 1 ) {2(2+;z} oR, _ <6@5+6®¢ >}

ot 2u(31+2p ot ot
+m{2(ﬁ+’?)Rr—x(@0+¢¢)};

aaege = 2,,(3,21.1_2,,) {2(2-{-#) aa(;)e <3@¢ + a£ )}
+m{2(x+n)@a—fc(@¢+&)},

aae:,, = 2;:(321+2/x) {26+a) a£¢ —2< aazj, + aa% >} (6.3)
+m{2(x+m@¢—x(m+@a>},

(s mai

Oy 1,00, | 1

ot p Ot g

R

For later discussions, it is convenient to express the stress components
as explicit functions of strain components. By integrating the latter half
of relations (6.3), the stress components Oy, @, and R, may easily be ob-
tained in the following forms;

2
@¢:ﬂ39¢—-p— eXp <—#—t>see¢ +exXp (ﬂ‘>dt+ C1 exp (_ﬂ_t>;
' Ui 7 U 7
2
O, =pe,— L exp (—ﬁ> g €4, €XD <Lt>dt+C2 exp <—”—t), (6.4)
U 7 Ui n
o ut t ;zt
Ry=pe.,——-exp( —— )\ e, -exp (= )dt+C,exp
U 7 7 7

where C,C, and C, are integral constants. As the stress components
may, however, be considered as superposition of periodic variations for
tidal deformation, these exponential terms may not exist. Then, they

become
01:02-:03:0. (6.5)
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For obtaining the stress component R,, it is convenient to calculate
the following quantities
0

a—t(err+eoo+e¢¢) and

0
o (26, —€go—€4)

as a first step. Then, the linear combinations of stress components R,+
0,+ 9, and 2R,—0,—®d, are obtained similarly in the cases of 0, @, and
R,. From the sum of them, R, is written in the form;

Bt L B2 (BB o (BB
3x+2n

3  3rk+2p 3t +27
—ZLZ-eXp <—Lt>gen-exp ﬂ>dt
7 7 7
2
37 Ui Y

Other components @, and @, are also calculated in similar ways. After
all, they are reduced in the following forms as

Ry =24+ 2, — 3“?:2” (PM+PM+P¢¢>—2qu+23i(QM+QM+Q¢¢),

Op=24+2p160— 32;:2“ (Poy 4 Poot-Pyy) —2#an+%<Q,,+QM+QM),

(Prr+Pae+P¢¢) —2ﬂQ¢¢+ zgi(Qn'{‘Qee"{‘QM), (6'7)

@¢:/2A+2‘U€¢¢— 32—*3-2#

Oy = pregs— 1Q oy,
D, = prey— Qs
Ry=pe.o— pQry.

where P;; and Q;; are expressed in the forms

34+2y -ex —M«t>jeij-exp 34+ 2p t>dt,1
342 3c+2p 3/c+227 69)

Q~-=-’-;— -exp ( #Tt)se“ -exp <‘“Tt>dt.

Then, all the stress components are obtained as explicit functions of
strain components for the Maxwell type visco-elastic body of three dimen-
sions. In the relations given in (6.8), exponential terms are also neglected.

Let us now consider to calculate P;; and Q,; for strain components
e;; corresponding to a circular frequency w. In this case, e; is generally
expressed in the form;

i =
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¢i;=F;(0, ¢) exp (iot), (6.9)

where F';;(6,¢) is an appropriate function of ¢ and ¢.
By substituting (6.9), integrations in (6.8) are executed and the

relations
@ Oe;;
P“—Z%T{“e”— 6t]} ’ t

Q= (e 205, | o
T Bt oot r
are obtained, where
_ 32+2p W
and ) f (6.11)
p=L. J :
U)

By substituting (6.10) into (6.7), stress components for the deforma-
tion of which the circular frequency is @ are finally obtained. They are
as follows:

1{ @’ } o
R=—{(81+2y)— 2 —2u L 1442 rr
3 ( +”)a2+w2 #1824- +ﬂﬁ2+26
1 2 2 04 ? de,,
+§{(3x+277) 2y ﬁf } 205 e,
1 o* o o
@ozg{(?)l—’rzﬂ) o+ o —2p Bt }A+2ﬂ e Coo
1 { o I } 04 B ey
=13 -2 2 .
+3 ( E+277) a2+6()2 77 ‘82+w2 + 7) /32_1‘_(0 at
1 i : i
0=—={(81+2p e My 2}A+2#—ﬁ;%;;;9¢¢ (6.12)
2 2 2
+-§_{(3E+272) azjl—a)2 —2 ﬁzﬁ }ad T ﬁz‘i ¥ a;:“’,
2 2
9,— G 8 ) a@w,
[ ﬂ2+w2 06 77 ‘82+w2 at
— a)z e BZ . ae¢r
= Bt €srt 7 Btao* ot ’
R S S
Rg—ﬂ ﬁ2+a)2 W'@—i"rl7 ﬁ2+w2 . atﬁ .

By comparing these expressions of stress components with that of
(2.5), it is easily found that relations (6.12) are obtained by replacing 2,
i, £ and » in (2.5) with the values given as follows:
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1 { o* o’
A—>—=1(32 -2 ,
ey RS s ,32+0)2}
(!)2
e
2 6.13)
L o F ) (
—{(8r+2 —2 ,
g (3x+27) po n T
ﬁZ
=7 [.32 dw? :
They are rewritten in simpler forms as
(02
wZ
e
o (6.14)
‘82
—> .
e/ ﬁ2+m2

The above relations connect elastic constants and coefficients of viscosity
of the Kelvin-Voigt body with that of the Maxwell body. Accordingly,
for the case where a Kelvin-Voigt body and a Maxwell body which are
similar in shape and which oscillate in the same way under an external
force, the following relations hold for elastic constants and coefficients of
viscosity of both bodies.

2

Oy’ + @

’

a)Z
18M2 +o*

3kx+ 277K= (3’51.1 + 27?M)

He=Unm

’

(6.15)

oy’
aM2 + 602
[9 2
__ M

ﬂM2+ o’ '

’

Ne=Nu

where suffixes “K” and “M” are appended to the quantities correspond-
ing to the Kelvin-Voigt body and the Maxwell body, respectively.

Then, when a kind of viscosity of the earth is known as a Maxwell
body, corresponding viscosity for a Kelvin-Voigt body can be calculated
according to relations (6.15).

For example, when it is assumed that the mantle is a Maxwell body
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of which elastic constants and coefficients of viscosity are

Ar=2X10%" dynes/cmz,

tu=2X10" dynes/cm?
and

£x="nx=10% poises,

the following values are calculated for the Kelvin-Voigt body that

Ax=2X10" dynes/cm?

1r=2X10" dynes/em?,
and

Ex=ng=2X10" poises.

For simplicity, w*=2x10"%/sec® is adopted as the cireular frequency in this
case. From the results, it is evident that coefficients of viscosity diminish
of the order of 10“ in spite of the fact that elastic moduli keep un-
changed. This is the main reason why apparent contradiction occurs in
considering the viscosity in the mantle as mentioned before. Greater
values of viscosity correspond to the case where the mantle is assumed
as a Maxwell body, on the contrary, smaller values correspond to the
case of a Kelvin-Voigt body.

7. Tidal Love’s numbers

Tidal Love’s numbers are calculated through the solutions of dif-
ferential equations (2.18), (2.14) and (2.20). They are given by v, y, and
ys for the earth’s surface in following forms as

Table 4. Love’s numbers and factors to rigid earth for several principal components
in tidal potential.

Love’s numbers factors to rigid earth
wave frequency e T

/hour I ! k p | L ‘ G
Q 13°399 0.60177 0.08520 0.30155 0.69077 | 1.21635 | 1.15846
0O, 13.943 0.61083 ” 0.80157 0.69074 | 1.21637 | 1.15847
Py 14.959 0.61094 0.08521 0.30163 0.69069 | 1.21642 | 1.15850
K, 15.041 0.61095 " ” 0.69068 " ”
N, 28.440 0.61307 0.08531 0.30265 0.68958 | 1.21734 | 1.15910
M, 28.984 0.61319 ” 0.30270 0.68952 | 1.21739 | 1.15913
S 30.000 0.61341 0.08532 0.30281 0.68940 | 1.21748 | 1.15919
K, 30.084 0.61342 0.08533 0.30282 0.68939 | 1.21749 | 1.15920
M, 43.476 0.61705 0.08550 ’ 0.30456 0.68751 | 1.21906 | 1.16021
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Table 5. The variation of Love’s numbers and factors to rigid earth versus
values of coefficient of viscosity for M, wave.

coeflicient Love’s numbers factors to rigid earth
of viscosity
7 in poises h [ k D L G
0 0.6132 0.0853 0.3027 0.6895 1.2174 1.1591
1015 0.6115 0.0852 0.3018 0.6903 1.2166 1.1588
3x 1015 0.5986 0.0847 0.2947 0.6961 1.2100 1.1566
10 0.4850 0.0748 0.2380 0.7530 1.1632 1.1280
3x10 0.1910 0.0336 0.0984 0.9074 1.0648 1.0434
1017 0.0252 0.0049 0.0156 0.9904 1.0107 1.0018
1018 0.0003 0.0001 0.0002 0.9999 1.0001 1.0000
0.8
S
o7k m
w

0.6

0.5

SYIGNNN

0.4

03——o——-——o—

0.21

O.l= £

0 15

% 7 Pa— b Toolees)
10 107y iscosity 19 10" (poise

Fig. 2. Love’s numbers k,/ and k versus viscosity values in the mantle
for O; wave.

h=1y(a)d’g(a)/Gma’,
I=ys(a)d*g(a)|Gma’, (7.1)
kE=ys(a)d’/Gma—1.

The meaning of the symbols are already given in Section 2. The results
are shown in Tables 4, 5 and Fig. 2.

On the other hand, the following three factors to values for a per-
fectly rigid earth are frequently treated in the analysis of earth tides.
They are the diminishing factor D(=1+k—h) obtained by observations
of tidal tilting, the magnified ratio of latitude variation L(=1-+k—I)
obtained by observations of periodic variation of latitude and the gravi-
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Fig. 8. The diminishing factor D, magnified factor L and gravimetric
factor G versus viscosity values in the mantle for O; wave.

metric factor G{=1+h—(8/2)k} obtained by observations of tidal variation
of gravity. These factors are also calculated and given in Tables 4, 5
and Fig. 3.

Table 4 gives the three factors in addition to tidal Love’s numbers
for each component of tidal potential considered in Section 5. There, a
slight dependence of Love’s numbers on circular frequency of vibration
is recognized.

In Table 5, Love’s numbers and the three factors for M, wave are
given according to the coefficient of viscosity » from calculations of Case
I in Section 5, where Love’s numbers show sudden decreases as 7 takes
values in the range between 10" and 10" poises. Similar relations for
the O, wave are shown in Fig. 8. As a matter of course, Love’s numbers
h, 1 and %k become zero and factors D, L and G approach to unity as 7
increases because the earth becomes rigid if we let » approach infinity.

Tidal Love’s numbers for S, wave given here almost coincide with
that of SAITO (1974) and one of the results of ALTERMAN et al. (1959)
obtained from dynamic solution of the earth’s oscillation. This also indi-
cates the smallness of the effect of viscosity in the mantle for earth
tides.

8. Summary and conclusion

In the present research, the viscous effect of the mantle has been
considered for the earth tides. The phase retardations have been calcu-
lated for various viseosity models and for several tidal components. In
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the course of calculations, tidal Love’s numbers are also obtained. The
results are summarized as follows. In this summary, viscosity for the
Kelvin-Voigt type visco-elastic body is denoted by 7.

(1) Three kinds of phase retardation may be defined for tidal defor-
mation of the earth. They are retardations e in radial displacement,
¢s(=¢,) in horizontal displacement and ¢, in potential variation. For these
retardations, the relation e, >¢,>¢, always holds in our results.

(2) As 7 increases, both e, and ¢, always increase. Such a tendency
becomes marked in the case of 7>>10° poises. When 7 exceeds 10* poises,
they become about 90°. It is supposed that limit values of & and &
may be 90° for the case of n—co.

(3) For e, in potential variation, as #» Increases, ¢ reaches the maxi-
mum value and afterwards gradually it decreases. The maximum value
of ¢, is less than 10° and occurs when 7 is about 3% 10 poises for tidal
components O, and M,. The limit value is supposed to be 0° for p—oco.
The physical meaning of such variation is clear.

(4) Love’s numbers h,l and k decrease and approach to zero as 7
increases. On the other hand, factors D, L and G close to unity. It is
quite natural because the earth is considered to be perfectly rigid in the
case of p—co. They undergo rapid changes of the values when 7 is be-
tween 10 and 10" poises as in the cases of changes in & and e,

(5) From the general relations mentioned above, it seems that large
phase retardation may not be expected in the real earth because the
viscosity values converted from @, within the mantle are only of the
order of 10® poises in average. This speculation is confirmed by caleu-
lations of Case II in Section 5 where retardations are obtained to be
under 10~ degrees. It may be difficult to detect these small retardations
actually by observations.

(6) In actual observation of earth tides, a few degrees of phase
retardations are sometimes detected. By our analysis, it is concluded
that the retardations do not depend on mantle viscosity but on some
other causes, for example, load variation of ocean tides, effect of topo-
graphy around observation sites or effect of temperature variation on
measuring apparatus.

(7) Calculated phase retardations in Case II are approximately pro-
portional to circular frequency e in our considering range of frequency.
This fact may imply that each kind of retardation converted to time
interval is nearly constant regardless of frequency variation. Strictly
speaking, there remains a slight dependency between o and retardations
in time interval. ’

(8) There is also a slight dependency between Love’s numbers and
circular frequency . As o increases, Love’s numbers h,l and k increase
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a little.

(9) As the effect of mantle viscosity is very small, the obtained
solutions of differential equations approximately correspond to dynamic
solutions for forced oscillation of the elastic earth. These solutions are
already obtained by ALTERMAN et al. (1959), SAITO (1974) and others. It
seems difficult to compare our results directly to their ones because the
adopted earth model and the circular frequencies are different from one
another. The obtained Love’s numbers in our calculations, however, almost
coincide with that of Saito (for Wang’s model, 1972) and one of the
Alterman’s results (for Bullen’s B model, 1950) to three places of deci-
mals in the case of w=30°/hour.

(10) The coefficients of viscosity and elastic moduli are generally
determined according to the adopted model for a visco-elastic body. In
the case of vibrating motion, they are convertible to each other in the
Kelvin-Voigt model and in the Maxwell model through the circular fre-
quency. Actually, coefficients of viscosity « and 7 in the mantle are greatly
affected by the model, although elastic moduli 2 and ¢ undergo practically
no change for the circular frequency range in the earth tides. After all,
it may be said that only viscosity values depend on the adopted model.
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