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1. Introduction

The stress-strain relation of soil material generally reveals nonlinearity
when its strain exceeds 1074~107°. In ground motions due to earthquakes
of small and medium size, the nonlinear effect of soil would be practically
negligible, since the maximum strain of the soil hardly exceeds 107°
However, during strong earthquakes the mechanical behavior of the soil is
nonlinear to a considerable extent, resulting in nonlinear ground motions.
This is evident from the observation that railways and roads have occasion-
ally undergone permanent deformation due to the ground motions of strong
earthquakes. Unfortunately, the record of such a strong earthquake on the
ground has not been obtained so far. Therefore, many studies concerning
linear or nonlinear ground motion have been made to find the ground motion
characteristics of strong earthquakes. Methods of analysis to obtain the
earthquake response of the ground can be categorized into two groups: one
is an analytical method based on wave propagation theory, the other the
matrix method, the so-called Finite Element Method (FEM).

The first method has been developed and applied to various problems
of ground motions by KANAI (1932) and others. They have found certain
ground motion characteristics, for example, the existence of a predominant
period of the ground. However, this method entails certain difficulties if
we wish to consider nonlinearity of the soil material and to solve complex
boundary condition problems. On the other hand, the second method is
effective with respect to the two above-mentioned problems. Above all,
it is one of the most effective methods for studying the dynamic inter-
action of a structure and the surrounding ground. Many papers on elastic
or elasto-plastic dynamic analysis by FEM have been written (SEED and
IDRISS, 1970). However, it should be mentioned that the dynamic analysis
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of the ground by FEM has not succeeded in rigorously treating earthquake
waves dissipating into an infinite half-space, which is one shortcoming.

In this paper, following the work made by OkAMOTO and HAKUNO
(1962), a difference equation, including the effects of the nonlinearity of
the soil and the dissipating wave energy, is derived from the one-dimen-
sional wave equation (Figure 1). In a ground model which consists of two
layers, we will examine, by means of the derived difference equation, how
the nonlinear dynamic response of the ground during a strong earthquake
differs from the linear response, especially with respect to the following
two points:
1) Predominant period

In general, the existence of the predominant period of the ground has
been confirmed theoretically and also from observation. We wish to know
how the predominat period will change during a strong earthquake due to
the nonlinearity of the soil material.
2) Amplification factor of a surface layer

In the elasto-plastic response of a structural system such as a steel
member, it is generally recognized that the stress-strain curve of the
system draws a hysteresis loop and that this consumes vibrational energy.
Therefore, the nonlinear response does not increase in proportion to the
magnitude of the excitation. The question arises whether there is such
a characteristic in nonlinear ground motion.
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2. Modelling of the ground

A soft ground layer A overlying a half-space B, as shown in Figure 2,
is adopted as the ground model in this analysis. Incident waves are
assumed to propagate upwards vertically to the surface layer A. Since
shear waves are considered to play a major role in causing damage to soil
foundations and structures, the following shear wave equation can be used
in the analysis.

0°U __ oo

p,—_

= 1
ot* ox (1)

where

U=horizontal displacement of the ground
p=density of the ground soil

t=time

o=shear stress

xr=co-ordinate in the depth direction.

Note that (1) holds when the soil is not only in elastic state, but also
in the elasto-plastic state, since it is derived from the equilibrium of forces.

It is assumed that the stress-strain relation of the soil in the layer A
is of a bi-linear type as shown in Figure 3. The shear modulus after
yielding is expressed by aG (G=the elastic shear modulus, 0<a<1).

3. Difference equation

In this paper, (1) is solved numerically by the equivalent difference
equation which satisfies the boundary conditions of the ground model.
Expressing (1) in terms of the difference equation, one obtaines
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If one chooses, 4t and dx so that they satisfy (G4t} pdx)=1, (4) yields

Un.m-l-l: n+1,m+ Un—l,m_ Uw,m-—l ( 5 )
where

dt=time interval

dx=grid point interval

G=elastiec shear modulus
aG=shear modulus after yielding

e,=elastic strain

e,=plastic strain

m=grid point number indicating time

n=grid point number indicating depth from the surface.

Knowing the values of U, ., and U,.._;, one can calculate the displacement
U.ni by (3) and (5). The elastic strain ¢, and plastic strain &, can be
obtained as follows. When the displacements Ui (1=1,2,8,--+) at the
m+1 step are obtained, the strain e, .., is given by

en,m+l= Un,m+l ;fn—l,m+1 . ( 6 )

Hence the strain increment e, .., with respect to time is expressed as
Aen,m-}-l:en,m-[-l_Ee,n,m_ep,n,m . ( 7 )

Using the elastic strain limit ¢, the elastic strain &,» and plastic strain
&,» are obtained as follows.
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b) If Aen,m+1'£¢,n,m>0

ee,n,m+1 = sc,n,m + Aen,m+1

Ep,n,m—}-l: <':;p,'n,'m. .

Thus the ground motion can be calculated by (3) in the elasto-plastic state
and by (5) in the elastic state, respectively.

Next, the difference equations must be found to satisfy the boundary
condition of the ground model. The
boundary condition at the surface is ot
that the shear stress is zero, i.e. 6=0.

This can be solved by placing one E‘ Yo o o SURFACE
hypothetic grid point above the sur-
face as shown in Figure 4. Equating S U PR o -
U_yn to U, at any m, one finds that - " " Time
Uym—Upm _ Fig. 4. Hypothetic grid points at
G—Tz (9) ground surface.

is always satisfied. It should be noticed that perfect reflection of incident
waves at the surface is automatically satisfied.

Concerning the boundary between the layers A and B, the soil material
close to this boundary is assumed to remain in the elastic state. Actually
only the soil close to the surface is expected to reach the nonlinear state.
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elastic waves at the boundary. impulse at the boundary.

Then, the transmission and reflection law of elastic waves can be applied
at this boundary. Note that the suffixes A and B are hereafter attached
to the variables and constants associated with the layers A and B, re-
spectively. Consider the case when the upward and downward waves
approach the boundary simultaneously. The amplitudes of the waves
are U, and Dj, respectively. The amplitudes U, of upward wave and Uj
of downward wave through the boundary (Figure 5) are given by

U,=pBUs+a’D, } (10)
DB:C(OUB+‘BODA
where
1-Fk GV,
= ’ =1 ’ O — 0 o= — ’ k= B2
24} 14k ,Bo +ay 24 a B 44 GV,

in which «, is the coefficient of transmission and B, is the reflection co-
efficient for upward incident waves, while o' and ° are the transmission
and the reflection coefficients for downward waves, respectively. Now
consider the case when a unit impulse reaches the boundary from the side
of layer B (Figure 6). At this boundary, the unit impulse is separated into
two, namely the upward wave and downward wave. The amplitude U,
of the upward wave is obtained from (10) by

UA:(1+Q'0)UB- (11)
The amplitude Dy of the downward wave is similarly given by
DB-:ao Ug . (12)

Next, consider the amplitude of an impulse at the boundary. First, in the
upward wave of a unit impulse, equating the amplitude of the pulse to
1+a® (5) can be applied as it is, i.e.
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il Il [l
14+a, O 1
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(13)

In turn, in the case of the downward wave, the value of the amplitude
at the boundary can be obtained by multiplying it by 1—a,, i.e.

Uk+l,m+1: Uk,m+ Uk+2,m— Uk-.\-l,m—l:l_'a'o
i If I

1— 0 0
o (14)
Uk-l,m+1: Uk—z,m+ Uk,m— Uk—l,m—1: — &
1l I Il
0 l_a'() 1

So far, treatment of a unit impulse at the boundary is considered. For
any form of waves, the value of the displacement U, . at the boundary
is obtained as follows

Uk,m = (1 + a'o) Uk+l,m_1 + (1 - ao) Uk—l,m—l - Uk,m..z (15)

which is analogous to (13) and
(14).

For layer B, the earthquake
wave dissipating into the infinite
half-space must be incorporated T NN,
in the analysis. The co-ordinate u'/u\/"u/\
system is chosen as shown in L - e
Figure 7. An input earthquake Fn- “"H"_"";l‘_’:;‘\':\f\j"\f‘"’*i’
wave F'(m) is applied upward at
the grid number n. As far as
the displacement U,_,._; is concerned, it contains an upward wave and
a downward wave. The downward wave should be subtracted in the
analysis. As Figure 7 shows, the upward wave {U,_i n_; in U,_i»_, is equal
to the input earthquake wave F(m—2). Therefore the following holds.

/
/

1
L
1
A1

Fig. 7. Grid points of difference mesh.

Un—l,m—lzT Un—l,m—1+ l Un;1,m_2

16
=Fm—2)4+]U,_1,m_1- 16)

The displacement U,_; ... is expressed as
Un—l,m+1= T Un—l,m+1+l« Un—l,m+l (17)

which is similar to (16). Also one can find that the following equation
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holds.
Uiy =F(m) 4+ Un_i s 18)
=Fm)+1U,_2m-
The displacement U,_. . is given by
Unzn=1Unent{Unom- (19)
Substitution of (19) into (18) leads to
Uirynin=Up s m+F(m)—F(m—2). (20)

Thus the wave propagating downward in layer B is not reflected at the
artificial boundary. Now the boundary conditions of this ground model are
completely resolved in the difference equation.

4. Generation of simulated earthquake wave

From the results of analysis of many earthquake records, it has been
found that an incident earthquake wave has a fairly constant velocity
spectrum over a wide range of frequency. Autocorrelation of an earth-
quake motion generally decreases rapidly as the time interval becomes
longer. This indicates that earthquake motions are indeterministic in
nature. Since the frequency components of them are relatively invariant,
the randomness of earthquake motions can be attributed to the randomness
of phases of each frequency. Then, in simulating an earthquake motion,
the following functions g¢(t) having a constant velocity spectrum can be
adopted as a first-step model. :

g(t>=z%cos 27 (fit+) (21)
where
b=velocity
Jfi=frequency
t=time
¢,=random variable distributed between 0 and 2r.
It is required, in generating (21) in a digital computer, that the following

condition between earthquake duration time T and the frequency interval
4f must be satisfied by Someya-Shannon’s Theorem.

Afé% : (22)
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Since an earthquake wave is, in fact, transient, the stationary funetion
given in (21) should be multiplied by the envelope function @(t), ie.

St)=0(t) Xg(t) (23)
in which @(¢) is assumed as follows.

exp (—1/f) 0<t<3 sec
o(t)= 1 3<t<12
exp (—t+12) 12<¢
This function f(f) is used in simulating an earthquake motion in a digital

computer. The following two types of earthquake motions are synthesized:
Model Wave No. 1 and Model Wave No. 2. In both waves the range of
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|
1 (i s l { { I Iw ld
i '“\r’t m\\f ’lﬂz\téfﬁmli"":nk‘«\]\ \“M W\ ”k ‘1!%”( ‘llir '|hl"'1' 1‘ *)FvN‘\hH]ﬁ«l’l‘n'fl“%h”w&w%——
100 l
ACCELERATION
3cnys
Lo ,
' | 1
o b f}“{ A ;M\m b l!,! Y '|" N “I“ Qﬂ thw ‘] L
v‘qfk' {i *,lli“l'ft‘ll“lltl? }UIVA%";W;‘A ":qy‘: U'\ "%{Wlﬁ“lh%‘r‘l;""r,{‘“ "x'll bl t!H 1';% H e
| i i ‘\! ””W\.LN | “ e HW‘WLLM \«‘\
F2
VELOCITY
O.Zem \
o
gy
- 0.2
DISPLACEMENT
Il 4 ' ? ! I i 1 llo 1 Il Il Il II5 | ! 1 |(sel(3

Fig. 8. Simulated earthquake wave No. 1.



368

Y. FusmNo and M. HAKUNO

DISPLACEMENT
5 io 15 20

1 ' 1 1 ! 1 1 1 1 I 1 1 1 1 ! 1 L i

Fig. 9. Simulated earthquake wave No. 2.

t
2
2
£
(e}
(&)
£
Z &
= 13
2 2
E o
S .
[8) .
E _ﬂ:_.,,_ ——————————————————————————————— —_—
3 .
=
3
=3
w
2 I 1 1 1 1 1
1.0 1.5 2.0 (sec) 0.5 1.0 1.5 2.0 (sec)
Periods Periods
Fig. 10. Velocity spectrum of model Fig. 11. Velocity spectrum of model

wave No. 1, wave No. 2,



Characteristics of Elasto-Plastic Ground Motion During an Earthquake 369

frequency is between 0.25~10 Hz, with 4f=0.025 Hz, and the duration
time is 20 sec., but they have different spectra. In Model Wave No. 1 the
velocity spectrum is constant for all frequencies. On the other hand, in
Model Wave No. 2 the frequency components above 3 Hz decrease at
linearly. the velocity intensity at 10 Hz is 1/9 of that of 83 Hz. Model
Waves No. 1 and 2 are shown in Figures 8 and 9. Comparing Model Wave
No. 1 with No. 2, one finds that No. 2 has less high-frequency components,
resulting in a slowly varying wave.

This can be confirmed from the results of Fourier spectral analysis
as shown in Figures 10 and 11. Maximum acceleration of the waves is
normalized to be 100 gal.

5. Assumption of parameter values used in the analysis

The values of the parameter used in the foregoing numerical example
are:

shear wave velocity (surface layer A) V4=100 m/s
a=04

(half-space B) V=300 m/s
density of the soil for both layers 0=2 ton/m®
elastic strain limit £,=0.001
time interval At=0.005 sec
grid point interval Ax=0.5m (layer A)

1.5m (layer B)

thickness of layer A H=20m (10 m, 7.5 m)

Besides the constant elastic strain limit, the case when the elastic strain
limit increases linearly with depth is also considered in the numerical
example. In this case, the elastic strain limit is specified to be 0.002 at
a depth of 20 m from the surfzce. This is based on the conjecture that
the elastic strain limit increases when lateral pressure becomes high.

6. Computational results

Nonlinear ground motions are investigated by the method described in 3.
(1) Response to stationary sinusoidal waves
The response at the surface is a sinusoidal wave for a stationary
incident sinusoidal wave of a small amplitude. However, nonlinear
response appears as the input amplitude increases. Figure 12 shows two
example of nonlinear response at the surface subject to sinusoidal waves.
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The frequencies of the sinusoidal wave are close to the predominant period
0.8sec. One can observe that the responses are deformed approximately
into triangular shapes from sinusoidal shapes due to the nonlinearity.
However, the amplitude of the responses varies little as time passes. The
linear trend is caused by employing a bi-linear relation of stress and strain.

When a structure system subject to the excitation f(¢) is linear, response
y(¢) can be determined by

t

y(t)={ hlt—a)ftelde (24)

0
in which the function h(t) is the impulse response function of the system.
Y(iw) = H(iw) - F (i) (25)

where

-

Y(io) =S y(t) exp (—iot)dt

—c0

F(iw):r F(t) exp (—iwt)dt

—c0

©

H(io) :S h(t) exp (—iw)dt .
The function H(iw) is the frequency transfer function. As far as the
structure is linear, the frequency transfer function is invariant to any
excitation. However, when the magnitude of the structural response is
large, generally it becomes nonlinear due to the yielding of the structure.
The variation of the frequency transfer function due to nonlinearity in
case of a one-degree of freedom spring-mass system has been studied from
various aspects (JENNINGS, 1968). The principal results of these studies are
the elongation of the natural period and the increase of the apparent
damping.
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in terms of the velocities of the
input and output. Figure 13 indi-
cates the calculated transfer func-
tion. The solid line shows the
linear case. The first predominant
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period is 0.8 sec., and the second one is 0.267 sec. and so on. It is remarka-
ble that the amplification factor at the predominant period is only 6.0 even
though internal damping of the soil material is neglected. In other words,
the damping effect of dissipation of waves into an infinite half-space is
considerable. As the input excitation becomes large, the apparent damping
increases and the predominant period appears to be somewhat elongated.
(2) Response to earthquake waves

Figure 14 shows an example of the linear response at the surface.
The response shape is rather similar to the input shape, which implies
that the natural vibration is not strongly induced. This occurs because
of the large dissipation damping as mentioned before. Next, Figure 15
shows an example of the nonlinear response. There is a long-period trend
in the displacement response, but otherwisethe shape of the displacement
response is almost identical to the linear one. However, the shapes of
the velocity and acceleration are not so smooth as those in the linear
response. This can be explained by increased high frequencies in the
nonlinear response. Figure 16 shows the number of peaks in the displace-
ment, velocity and acceleration surface responses for different magnitude
of excitation of the same model wave. One can observe that the number
of peaks, particularly in the acceleration, increases for larger excitation
magnitude. It is widely accepted that, in nonlinear vibrations, the natural
period is elongated and that the apparent damping increases. However,
as far as nonlinear earthquake ground motion is concerned, the results
shown in Figures 15 and 16 imply that this is not the case. From the
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Fig. 17. Transfer functions.
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velocity response shown in Figure 15, peak values are relatively constant
throughout the response.

As mentioned in (1), in linear vibration, the frequency transfer function
is inherent to the vibration system and is invariant to any input excitation.
But, in nonlinear vibration, the frequency transfer function is dependent
on the input excitation. It is of interest to know whether there is a great
difference or not between sinusoidal and random inputs. Figure 17 shows
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the frequency transfer functions calculated in the case of Model Wave
No. 1 input. It clearly indicates that the amplification factor decreases
for larger input magnitude. Elongation of the natural period due to non-
linearity is not evident. It appears that the peak at the natural frequency
is separated into a number of small peaks.

Figure 18 shows the frequency transfer functions in the case of the
yielding coefficients a=0.0 and 0.4 for comparison. They are practically
identical.

Figure 19 shows the frequency transfer functions in the case of Model
Wave No. 2 input. They are similar to those in Figure 17.

Figures 20 and 21 show the frequency transfer functions when thick-
nesses of the surface layer are 10 and 7.5 m, respectively. They are also
similar to those in Figure 17.

A decrease of the amplification factor and the disappearance of clear
peaks at the predominant period in the nonlinear ground motions are found
in Figures 17~21. HAKUNO et al. (1969) carried out an experimental study
concerning the nonlinear response of steel structural members. On the
other hand, this study is a theoretical study of nonlinear ground motion.
Thus only qualitative comparison of the results of these two studies is
allowed. The common results are:

a) The amplification factor in the nonlinear response is decreased.

b) Nonlinear response is not simply characterized by elongated natural
period and increased apparent damping. Short period waves appear in the
nonlinear response. The natural period is not clearly elongated and its
peak is split into a number of small peaks.
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Fig. 20. Transfer functions.
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Figure 22 shows the frequency transfer functions when the elastic
strain limit in proportion to the depth. They differ little from each other
sinece plastic strain in the soil hardly ocecurs under this situation.

7. Conclusions

The following can be concluded from this study:
i) In the elasto-plastic nonlinear ground motion subject to sinusoidal
incident waves, the apparent damping increases and the predominant period
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is somewhat elongated. In the case of random incident waves such as
earthquake waves, however, only the apparent damping increases while the
predominant period does not vary.

ii) Based upon i), it may be inappropriate to apply the equivalent
linearization method to nonlinear ground motion due to an earthquake wave.

iii) In the surface layer subject to strong earthquake motion, the
predominant period becomes undistinguishable and the surface ground
motion tends to be a white noise.
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