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Abstract

Displacements of the spheroidal and torsional oscillations excited
by a double couple point source of dip-slip type located in a radially
heterogeneous earth are calculated at various stations on the free
surface. :

Calculations are performed using fundamental modes with colati-
tudinal order number n=0~2000, namely, those with period larger
than about 6 seconds.

The azimuthal variation of the initial phase of surface waves is
investigated by comparing the values obtained by Fourier analysis of
synthetic seismograms with the ones defined theoretically by excita-
tion functions of the free oscillation. Coincidence of the two patterns
of the azimuthal variation of the initial phase is excellent. This sug-
gests the possibility of estimating a source time function from the
analysis of the phase angle of observed seismograms.

§ 3.1 Introduction

In the previous paper [Usami et al. (1970)], a method of calculat-
ing theoretical seismograms due to various force systems in a radially
heterogeneous sphere was developed, and the effects of time functions
on surface waves were considered. Calculations were limited to the
displacements at a fixed point on the surface of the earth.

In this paper, calculations of the theoretical displacement at points
equally distributed along the equator are carried out employing a certain
time function. Radiation patterns of the amplitude and the phase of
surface waves are given. :

Radiation patterns for Rayleigh waves generated by dipolar point
sources in a homogeneous isotropic half-space were calculated by Haskell
[1963]. Radiation patterns for Rayleigh and Love waves from buried
point sources in a flat stratified earth were examined by Ben-Menahem
and Harkrider [1964] and formulated by Haskell [1964] as well.
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Seismograms due to a normal dip-slip point source with 60° dip
angle and 5.85km depth are calculated. An epicenter is fixed at the
north pole. Modes having periods larger than about 6 seconds are syn-
thesized. A ramp function with rise time 45 seconds is assumed at the
source. Since only the fundamental modes are considered in the numer-
ical calculation, synthesized seismograms mainly refer to surface waves,
that is, Rayleigh and Love waves.

The azimuthal variation of the spatial factor of the initial phase
calculated from synthetic seismograms by means of Fourier analysis is
in good agreement with that of the theoretical spatial phase which is
determined from the excitation functions of the free oscillation.

The study suggests that the knowledge of the initial phase of sur-
face waves of actual earthquakes will be useful for discriminating the
source time function as well as for determining the phase velocity and

the source mechanism..

§ 3.2 Calculation of the Spatial Factor of the Initial Phase

The initial phase of surface waves has been used by several seismo-
logists for the study of focal mechanisms and source functions [Aki (1960),
Brune (1961), Ben-Menahem and Toks6z (1963)]. The phase velocity of
surface waves canv}-bef- determined from seismograms at two stations on
the same great circle path by means of Fourier transform [Satdo (1955,
1956, 1958)]. It is given by the formula [¢.g. Toks6z and Anderson
(1966)] . : B ‘ ’

. C o d—4 o (3.9.1

ctr) (tz—t1)+(1/p)[¢2(p)_¢1(p)+271'N] ’ ( )

where 4,— 4, is the distance between the two stations, #, and ¢, the ini-

tial times of Fourier windows, ¢:(p) and ¢,(p) the phase delays relative

to the beginning of the windows, N an integer and p the angular fre-

quency. SR S e

+ If we know the phase at 4,=¢,=0, the phase velocity can be cal-

culated from .data at a single station by the formula

O NI—
-t {1/P)[S(P) — Sine () +22N] }
where 4 denotes the epicentral distance, ¢ the initial time of the Fourier
window, S(p) the phaSe delay relative to the beginning of the window
and ¢;,,(p) the initial phase.

" From the relation (3-2-2), we have

* Gi®) =p- (t—4/C(p) +6(p) + 22N (3-2-3)

(3-2-2)
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The initial phase is easily determined from this relation, if the phase
velocity is known. This definition of the initial phase is opposite in sign
to that of Brune et al. [1960] and Brune [1961]. This comes from that
the phase angle is defined as exp(—j- #(p)) in the present paper, where
J means the unit of imaginary numbers.

The source characteristic is assumed to be specified as a product of
three factors [Ben-Menahem and Toksdz (1963)], namely, the spatial,
temporal and propagation factors. Since a point source is assumed, the
propagation factor does not appear in the present study.

Describing the Fourier transform of a source time function as

FHp)=IF*(p)| e P, (3-2-4)
the spatial factor of the initial phase will be given as
Pen(D) = Pine (D) — Pem (D) . (3-2-5)
From the formulas‘ (3:-2-3) and (3-2-5), we have
GulD)=p- (= JICE) +6B)—Gulr) 422N . (3:2:6)

This relation makes possible to calculate the spatial factor of the
initial phase under the assumption that the value of the phase velocity
and the temporal phase factor &,, are known. On the other hand, ‘the
phase of a source time function, namely, the temporal phase factor will
be estimated, if the spatial phase and the phase velocity are given. The
latter case is more important in the analysis of actual seismograms, since
the spatial phase can be estimated theoretically under suitable assump-
tions as will be seen in later section. Here, care must be taken for that
the spatial phase defined by expression (8-2:6) involves the phases due
to the polar phase shift and the phase advance in leaving source.

As to much simpler sources, such as localized stresses applied around
the pole, the calculations of the initial phase from theoretical seismograms
were carried out in the previous papers [Satd et al. (1963), Usami et al.
{1968)]. :

§ 3.3 Theoretical Seismogram and Radiation Pattern

Figures 1, 2 and 3 show displacements on the surface of the earth
due to a normal dip-slip point source with 60° dip angle and 5.35km
depth. The direction of the fault is taken as the direction ¢=0°., The
source time function is assumed to be a ramp function whose rise time
is about 45 seconds. Its Fourier transform is given by

(1/p){sin (pto/2)/ (pte/2)} exp[—j (pto/2+7r/2)] ,
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THEORETICAL SEISMOGRAM
- GUTENBERG-BULLEN A EARTH MODEL
DIP SLIP " 3=60" 6=90°, DEPTH=5.35m
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Fig. 1. Vertical disturbances, which Fig. 2. Colatitudinal component, which
correspond to Rayleigh waves. involves both Rayleigh and Love waves.

Fig. 1~3. Theoretical seismograms of displacements excited by a
normal dip-slip point sourece with 60° dip angle at 5.35 km depth in a
Gutenberg-Bullen A’ spherical earth. A ramp function with a rise time
of 45 sec. is assumed as the source time function. The unit of time is taken
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Fig. 8. Azimuthal component, which
involves both the spheroidal and torsional
oscillations. Since the spheroidal com-
ponent is negligibly small compared with
the torsional one, the seismogram ex-
presses Love waves.

as 27a/vg,=11268 sec. The
ordinate scale is the same
as on Fig. 14 in the previous
paper [Usami et al. (1970)].

where p denotes the angular fre-
quency and t, the rise time. The
temporal phase factor is, there-
fore, easily assigned as (pto/2+7/2)
in the present case. A Guten-
berg-Bullen A’ earth model [Usami
et al. (1966)] is assumed.

The theoretical seismo-
grams were calculated at 17 points
on the equator with azimuths

=0° (30°) 330°, 15°, 45°, 165°,
195° and 345° for the time
interval t=0.195 (0.00025) 0.33
which covers the passage of
Rayleigh and Love waves. The
unit of time is 27a/vso, namely,
11268 seconds, where a is the
radius of the earth and ws, the
shear wave velocity on the sur-
face.

Synthetic seismograms re-
present surface waves, since only
the fundamental modes having
colatitudinal order numbers from
0 to about 2000, covering periods
larger than about 6 seconds, are
superposed in the present study.

The radial component (u)
consists of the spheroidal oscilla-
tion alone, and colatitudinal (v)
and azimuthal (w) components in-
volve both spheroidal and tor-
sional oscillations. The spheroidal
component of the azimuthal dis-
placement, however, is negligibly
small compared with the tor-
sional. The % component is con-
sidered to represent the vertical
displacement of Rayleigh wave,
and the w component the azimu-
thal displacement of Love wave.

As apparent from Figures
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1, 2 and 3, the radiation patterns of the amplitude of the radial and
colatitudinal components are expected to show two sectors over the whole
frequency range, and that of the azimuthal component to show a typical
four-lobed pattern.

As for the azimuthal variation of the phase angle, the azimuthal
components may indicate a four-lobed pattern as the amplitude factor
does, because each wave train changes its sign in crossing a quadrant
border. The phase factors of the radial and colatitudinal components,
however, do not necessarily show two-lobed patterns, which is different
from those of amplitude. For instance, wave trains with long periods
do not suffer any phase change over the whole azimuthal angle.

These expectations are ascertained by caleulating the spatial factor
of the initial phase from these seismograms using the expression (3-2-6)
and the value of phase velocity given in the previous report [Usami et
al. (1970)].

These results are shown in Figures 4, 5, 6 and 7 in which open and
solid circles and squares indicate thus obtained values. These values.
will be called the “observed spatial phase”. This procedure is useful
for obtaining the spatial phase from actual seismograms.

§ 3.4 Theoretical Spatial Phase

The spatial factor of the initial phase which appeared in the preced-
ing section is to be inherent in the source geometry and the response of
the medium except for constant values. This indicates that the spatial
phase of surface waves should be expressed as a function of parameters.
expressing the source geometry and the earth model. Expressions of the
spatial phase by the excitation functions of the free oscillation are given
in the following.

A detailed study of the calculation of the free oscillation excited by
a single force, couple and double couple point sources is given in the
previous paper [Usami et al. (1970)]. The expressions of displacement
are summarized here in a more compact way.

Radial, colatitudinal and azimuthal components of displacement of
the spheroidal oscillation due to a double couple point source are

w(r, 0,0,t)=—j-C ;f*(pn) et U, (r)

X[dy- S P,(cos 0) +d,- S’ P,'(cos 0) +d,- S P,2(cos 0)]
v(r, 0, 0, 8)=—3-C T f*(p) ¢ Valr)

X [dy-SP P, (cos 0) +d,- S P, cos 6) +d,- SO P2 (cos6)] ; (3-4-1)
w(r, 0,9, 8)=—3-C ¥ f*(p,) " V)
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X[ ds- 5P2080) 4 g gp2Plcost)]
" sing " sin@

where, for the case of dip-slip

d0=8m220 , d;=co0s 20 -sin @, d,=1 20, cos 2¢, dy;=cos 20 - cos o,
d= —5“1225.- sin 2¢,

and for the case of strike-slip

dv=0, d,=cosd-cose, d,=—sind-sin2¢p, d;=—cosd-sing,
d,=—sin 0 - cos 2¢.
Displacements of the torsional oscillation are
u(r, 0, ¢, t)=0,
v(r, 0,9, t)=—73-C X f*(p.) e W,(r)
’ 2

» 1
X| o T B8 0) 1, o2PCOSON] gy g

w(r, 0, ¢, 8)=—73-C 2 f*(p.) e™ Wa(r)
X[—hy TP P, cos 0) —hy- TP P,2(cos 6)]

where, for the dip-slip case

sin 20 sin 26

hy=cos 20 - sin ¢, h,= 08 2¢, hy;=—co0s20-cos ¢, h,= -sin 2¢,

and for the strike-slip case
hy=cos 0 - cos ¢, h,=—sin 0 - sin 2¢, h;=cos - sin ¢, h,=sin d - cos 2¢.

r, 8 and ¢ represent the polar coordinates referred to the earth’s center.
0 gives the dip angle and dot (-) on the associated Legendre function
P,"(cos 6) denotes d/d6¢ and p, the eigen-frequency in radians.

The other coefficients are

= M vso
dza® b’
2(32+2p)
) — — 25 (b
St (2n+1)[ e anAl
+ St ) V045 T B )|/ =),
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89 = 2n+1) L Ey(b) / 9Es(@) - so_2p41)v,0p) [ 2Es(@) (8-4-3)
JZ an o
(!)_'—_ b aETT(a/)
T =@t l) e Bl | 20
. 1 0E;7(a)
(2) — 2 I
TP =(2n+1) it ) 2 (0) o

where M, means the seismic moment, a the radius of the earth, b the
radius of the source surface, vs, the shear wave velocity at the earth
surface, 4 and ¢ the Lame’s constants at the source depth, » the non-
dimensional frequency of the free oscillation, U,(r), V,(r) and W,(») the
functions giving the radial distribution of %, v and w and E,, E, and
Eyr the radial, colatitudinal and azimuthal components of stress.

SP, S, 8P, T and T{ are the medium response functions which
depend on the earth model and the source depth. The excitation fune-
tion is defined as the product of these functions and the factors related
to the dip angle in the coefficients d; and ;.

Asymptotic formulas of the associated Legendre functions, which
hold for order numbers corresponding to the period range of ordinary
surface waves, are useful for the phase study of each mode of the free
oscillation.

These are

2
nrsin 0

P,"(cos @) ~ (—1)" n"‘\/ -cos [(n+1/2)0 +m=n/2—x/4],
(83-4-4)

P08 0) ~ (—1)"n* | —2— . cos [(1-+1/2)0+mm/2+x/4].

nz sin 6
(0<6<=)

Hence, we have

P,(cos ) ~k,-cos[(n+1/2)0—x/4],
P,cos 0) ~ nk, -sin[(n+1/2)0 —x/4],
Pcos §) ~ —n*k, -cos[(n+1/2)0—=/4],
P,(cos ) ~ nk,-cos[(n+1/2)0+x/4],
Blcos 0) ~ vk, - sin [(n+1/2)0+7/4],
P (cos ) ~ —nk, - cos [(n+1/2)0-+x/4],

L (8-4.5)

where,

2
b —2 .
nr sin
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Using these formulas, the expressions (3-4:1) at the earth surface
can be reduced to

u(a, 0, ¢, )= —-C £ *(p) & Uyfa) - k{(SP - do— S -d)
xeos[(n+1/2)0—x/4]+nSP - d, sin [(n+1/2)0 —=[4]},
=C X |f*®.) Unla) k,- S giont=dem=rl2] (3-4-6)
xcos [(n+1/2)0 —rn[4—ai’],
___% ; | * (0] Unl@) kn,S;u){ej[ﬂ,,t—(n+1/2)t9—7t/4+an(")——¢,m]

- gilpat+ 1D 0=3x/4=ay W =g T} (3-4-7)
where
f*p)=f*p)|e?n®,
S =[(S9 - dy—n2SP - o)+ (1S - )T,

nS® -d,
SO . dy—n2SP -d,

(3-4.8)

a =tan™

Similar expressions are obtained for the colatitudinal and azimuthal dis-
placements of the spheroidal oscillation. For the torsional oscillation,
equations (3-4-2) can be transformed similarly. Actual numerical cal-
culation is, of course, done taking the real part of these expressions.

The expression (3-4-7) means that each mode of the free oscillation,
which is represented as a standing wave in (3-4-6), is expressed as a
sum of waves traveling in mutually opposite directions.

From formulas (3-2-5) and (3-4-7) and considering that the value of
U.(a) is identically taken as unity, the spatial factor of the initial phase
of waves propagating on a spherical earth in the 46 direction is obtained

as } o
$up(D) =n/4—a?, (8-4-9)

and that of waves propagating in the —@ direction as
Pop(p) = —7[4+az?. (3-4-10)

In deriving the formula (3-4-10) from (3-4-7), the epicentral distance of
the station for the wave propagating along the major arc of a great
circle path was taken as 2r—6@. The spatial phase of every component
of the spheroidal and torsional oscillations is summarized in Table 1,
which will be called the “theoretical spatial phase”. Special attention
must be given to the fact that these “theoretical spatial phases” are
functions of the earth model, dip angle of a fault plane, the focal depth
and the azimuth of the station.
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Table 1. The theoretical spatial factors of the initial phase of sur-
face waves generated by a double couple point source in
a radially heterogeneous sphere. U., v, and w, are the
radial, colatitudinal and azimuthal components of displace-
ment having the order number n. d;, k;, S, and T, are ¢
quantities defined in the equations (3-4-1), (3-4-2) and

(3-4-3).
Waves propagating Waves propagating
in -6 direction in —@ direction
Un /4 —a, @ —7/4+a,®
Spheroid Uy —rx/d—a,® /440,
Wy —3x/d—a, 3r/d+a,®
Torsion Un —3r/d— B, 3[4+
Wn 8r/4+ —37x/4— B, )
_ nd; S, ® o) — ol Mg Sy ®
wr=tan| G e o=t ]
nh TV _ [ nhsT, W ]
(v) — -1 /=% (w) = 1] — 2%
ﬁn '=tan [2n2h2Tn(2)]’ ﬂn tan n2h4T1.(2)

The expressions are very similar to those for a flat layered model
obtained by Ben-Menahem and Toksbz [1963], although the medium re-
sponse functions are different from each other.

A constant phase difference 7/2 or —=/2 between waves radiated in
opposite directions means the polar phase shift [Brune et al. (1961)].
Strictly speaking of the initial phase, a correction must be applied for
waves passing the pole or antipode to remove these effects. Constant
terms of the spatial phases of waves traveling in the +6 direction show
the phase advance in leaving the source. If we disregard these con-
stants, the spatial phase of a wave propagating in the —@ direction is
opposite in sign and is equal in its absolute value to that traveling in
the +6 direction. That will, also, be apparent if the effect of the az-
imuthal angle on the theoretical spatial phase is considered (see al® of
the equation (3-4-8)). This conclusion is important, because when we
calculate the phase velocity from combination of waves such as B,—R,,
R,—R,, these phase factors cancel each other, but for combinations such
as R,—R,, R,—R;, their effect remains except for special cases having
particular azimuthal angles or source geometry. This will also be true
in calculating the differential phase [Ben-Menahem (1961)] of two opposite-
going waves from a finite moving source. Similar conclusions hold for
Love waves. Here, attention must be paid to the fact that the “theo-
retical spatial phase” is attached to each component wave with an eigen-

frequency.
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§ 3.5 Comparison between the Theoretical and Observed
Spatial Phases

Comparison of the “observed spatial phase” with the “theoretical
one” is done as is shown in Figures 4, 5, 6 and 7. Solid circles of
Figures 4 and 5 denote the “observed one” and solid lines the “theoret-
ical one”. Coincidence of the observed and theoretical spatial phases is.
excellent. Broken lines give radiation patterns of the Fourier amplitude:
spectrum of the seismograms.

The amplitude of the radial component shows two-lobed patterns and.
that of the azimuthal component has four sectors. The azimuthal varia-
tion of the spatial phase is much more complicated. That of the ver-
tical component of long period Rayleigh waves is nearly constant inde-
pendent of the azimuthal angle and the pattern approaches the one
corresponding to the two-lobed pattern of amplitude as the period of
waves diminishes. The spatial phase of the azimuthal component of Love-
wave has four sectors though it is disturbed near the axis of the strike:
direction of the fault. Of course, these features are, to some extent,.
due to the source geometry and the earth model adopted in the present.
paper.

Since Rayleigh and Love waves are mingled in the colatitudinal com-~
ponent, seismograms synthesized separately for the spheroidal and tor-
sional oscillations are used for calculation of the spatial phase. The
results are shown by solid and open circles in Figure 6. Solid and broken
lines are the “theoretical spatial phases”. The source geometry is the:
same as in the previous case.

So far, waves propagating along the minor arc of a great circle path
are considered. We next consider the case of R, wave which propagates.
along the major are. At first, the theoretical disturbance of the R, wave
was computed, using a group-velocity window. The spatial phases cal-
culated from these seismograms are denoted by circles and squares in
Figure 7. Solid and broken lines are the “theoretical ones”. As men-
tioned previously, the spatial phases of our figures are not corrected for
the polar phase shift and the phase advance in leaving the source. These
terms, however, are not important for examining the azimuthal varia-
tion of the initial phase, since they are constant independent of the fre-
quency and azimuthal angle.

It is noteworthy that both spatial phases, one ecalculated from the
theoretical seismogram which is synthesized by superposition of a large
number of modes of the free oscillation and the other from the execita-
tion function which holds for each mode of vibration, coincide well (refer
to Appendix (a)). This indicates that the theoretical spatial phase may
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T COMPONENT

calculated from excitation functions

TRVE °
calculated from theoretical seismograms 0
by means of Fourier analysis
---- Fourier amplitfude spectrum
| 270°

Fig. 4. Radiation patterns of amplitude and spatial phase of the vertical displace-
ment of Rayleigh waves generated by a normal dip-slip point source in the Gutenberg-
Bullen A’ spherical earth. The dip angle is 60° and the focal depth 5.35 km. 7T denotes
the period. The scale of the Fourier amplitude is taken arbitrarily, but is consistent in

Figures 4 and35.
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W COMPONENT

T=10.°%¢

calculated from excitation functions

calculated from theoretical seismograms
by means of Fourier analysis

---~ Fourier amplitude spectrum

270

Fig. 5. Radiation patterns of amplitude and spatial phase of the azimuthal com-
ponent of Love waves. The earth model and the source geometry are the same as in
Figure 4.
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V' COMPONENT

Spheroid  Torsion

---- cdleulated from excitation functions

. ° calculated from theoretical seismograms
by means of Fourier analysis ’
Fig. 6. The azimuthal variation of the spatial factor of the initial phase of the ‘co-
latitudinal displacement of Rayleigh and Love waves. The earth model and the source
weometry are the same as in Figure 4. '

calculated from calculated from *  |period "
xcitation functions | theoretical seismograms | (sec)
R ~ o 141
u
— O 317
——————— o AR
\'
******* O 31.7

Fig. 7. Azimuthal variation of the spatial phase-of vertical and horizontal com-
ponents of R: wave. The earth model and the source geometry are the same as in
Figure 4.
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be useful for estimating the phase factor of a source time function ¢,,
from -observed seismograms, if the phase velocity data, source geometry
and epicentral distance are known and an earth model is assigned. The
procedure is, as was explained in section 8.2, similar to that used in the
calculation of the spatial phase.

§ 3.6 Effects of Focal Depth on the Spatial Phase

In the preceding sections, the source is assumed to be located at
5.35km depth. In this section, the effect of focal depth on the azimuthal
variation of the spatial phase is investigated. Source parameters other
than the focal depth are the same as before.

Surface displacements due to dip-slip point sources at various depths
are computed at a point §=90°, ¢=0° on the surface, and shown in
Figures 8, 9 and 10. From these figures, it will be noticed that the
phase as well as the amplitude of surface waves is much affected by
the focal depth.

In radial and ecolatitudinal components, the amplitude of a wave
train of long period becomes very small at a certain source depth and
increases again to some depth. In crossing the critical focal depth which
corresponds to thé smallest amplitude, the phase angle seems to shift
by z. In the azimuthal component, on the other hand, the wave train
of any periods seems not to suffer any phase change. For waves of
shorter periods, it may be expected that the phase change occurs at
.shallower focal depths than 5.35km.

*  The “theoretical spatial phase” was calculated from the excitation
functions due to a source at each focal depth to see the effect of the
focal depth on the azimuthal variation of the spatial phase. Soid lines
in Figures 11, 12, 13 and 14 represent the results for some periods.
Some features of the phase angle seen in theoretical disturbances are
explained from these figures and Figures 4 and 5.

In the radial displacement, for example, the phase angle of a wave
train with period about 150 sec. changes by = between the focal depths
51 and 112km, and that of about 30 sec. does so between 5.35 and
26.7 km.

§ 3.7 Appendix

(a) Standing wave and progressive wave

The appendant result confirmed through numerical computations
seems to be interesting from a viewpoint of the physical interpretation
of wave propagation. _

The vertical displacement of R, wave was computed at a point
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@=90°, ¢=0°) using the first term of equation (3-4-7), namely, the
expression of waves propagating in the +60 direction. Modes with col-
atitudinal order number 7 larger than 40 were employed. The source
geometry and the source time function are the same as those in section
3.3. It is found that thus calculated R, wave agree satisfactorily with
that obtained by the equation (3.-4-6) which shows the sum of standing
waves and that the superposition of waves propagating in the —@ diree-
tion reveals displacements within the limits of the computational error.
Thus, it is expected that the R, wave can be synthesized from the second
term of the equation (3-4-7). The expectation was confirmed numer-
ically. This fact indicates that, if wave trains traveling in opposite
THEORETICAL SEISMOGRAM AT ¢=0°, =90
GUTENBERG-BULLEN A EARTH MODEL

DIP SLIP (DIP ANGLE=60")
FUNDAMENTAL MODE i=1,n=0~2200
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Fig. 8. Radial component, involving Fig. 9. Colatitudinal displacement.
only the spheroidal oscillation.

Fig. 8~10. Theoretical seismogram of disturbances excited by a normal dip-
slip point source with 60° dip angle located at various focal depths in the Gutenberg-
Bullen A’ spherical earth. A ramp function with a rise time of about 45 sec. is
assumed at the source. The station is at =90°, ¢=0° on the surface of the
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directions appear separately in time, they are computed with sufficient
accuracy from either the first or the second term of equation (3-4-7). In
other words, the second or the first term of (3-4.7) is dummy in ex-
pressing waves propagating in a certain direction. This means that,
although contribution of each mode of the dummy term has the same
amplitude as the other term, the summation of modes belonging to
dummy terms becomes negligible.

Therefore, both Rayleigh and Love waves used in the calculation in
the previous sections will be expressed by either of the two opposite-
going waves. This, in turn, guarantees the good agreement between
the “theoretical spatial phase” and the “observed one”, if we rémembé’r‘

that the formula (3-2-3) or (3-2-6)

is just the one to reduce the phase’

_ angle represented in the formula

W-COMPONENT (3-4-7) to the one at the epicenter.

_o Synthetic seismograms thus ecal-

. | culated do not, of course, include

AN - -0 . .

’ ’ . component waves with extremely

W\!‘M 1"0 long periods for which an asymp-

"7 totic expansion of the associated
Legendre function cannot hold.

(b) Symmetrical Relations

]
10
ey jo In the present paper, the spa-

tial phase as well as the theore-
tical seismogram is calculated at
azimuthal angles from 0° to 360°.

) ' | In practice, however, calculations
A VASas ® need not be carried out over this
:"" whole range, because there exist
0 the following relations between the
jlo displacement components for dif-
- o ferent azimuths (see (3-4-1) and
T T e A TR SO S S NN S SR (342)):
for the dip-slip case

Fig. 10. Azimuthal displacement. Love
wave is predominant, since the spheroidal
component is negligibly small compared v(r,0,0,t)=v(r, 0, t—¢, )
with the torsional.

earth. H indicates the focal depth.

The scale of the ordinate and the (3’7‘1)
abscissa is the same as in Figures

1~3.

u(r, 0, ¢, t)=u(r, 0, r—¢, t),

s

w(ri 0’ SD, t) = _?«U(T, 67 7"‘_90, t)’
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and for the strike-slip case

u(”', 07 ?, t): —u(’l", 07 T—9, t)’ 1)(7‘, 0; b, t) = ——'1)(7‘, 0! T—o, t),

(38-7-2)
w(r, 0,0, t)=w, 0, r—¢,t).

Since only the dip-slip source is considered in the present case, the .
radial and colatitudinal displacements are symmetrical about the axis of -
dip direction (p=90°~270°), and the azimuthal component is anti-sym-
metrical about this axis. ‘ :
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