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Abstract

Based on the long wave approximation, a formula to compute
the tsunami wave form on a flat bottom generated by a broad crustal
deformation is introduced. The energy transfer from the sea bottom
to the water is examined in relation to the duration of the bottom
movement. If the duration is less than several minutes, the defor-
mation may be considered to be abrupt as far as the tsunami is con-
cerned. However, if the movement is completed in a few second, the
energy transferred to the compressional water waves might be larger
than the tsunami energy.

The two-dimensional propagation of tsunami generated by a
simple source of rectangular shape is explained by the superposition
of various elementary waves. If the deformation of the bottom is a
simple uplift or depression, the wave decay with distance near the
source deviates from that due to geometrical spreading from a point
source: in the direction of the major axis, the decay is faster, indi-
cating a strong effect of diffraction, and in the direction of the minor
axis, the decay is slower, indicating the approach to the one dimen-
sional propagation. The variation of the directivity coefficient is con-
spicuous only for azimuths less than z/4 from the direction of the
minor axis. '

For long distances from the source, the directivity of energy
radiation is proportional to the square of the lateral dimension of the
source with respect to the direction of the observing point. The non-
dispersive and dispersive wave forms are compared for long distances
from the source, and it is concluded that the long wave approximation
may be applicable for p,>4, p, being a parameter related to the
dimension of the source, distance and the depth of water.

1. Introduction

The generating area of a large tsunami is elongated more and more
as the magnitude of the earthquake increases, and the existence of the
directivity of wave radiation from a tsunami source has been recognized
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for a long time. For the causes of the directivity, the following two
factors are considered to be most important: 1) the effect of the
shape of a source, 2) the effect of the bottom topography in the
vieinity of the source. TField evidences for the directivity of tsunamis
were presented by Miyoshi (1955) and Hatori (19683).

As to the shape factor, several studies were undertaken both ex-
perimentally (Takahasi and Hatori, 1962) and theoretically (Momoi, 1962,
1963; Kajiura, 1963). As to the topographic factor, Miyoshi (1968)
proposed a simple theory based on wave refraction. Recent numerical
experiments by Aida (1969) for the Niigata tsunami revealed clearly
the importance of these two factors in the consideration of tsunami
propagation.

In spite of the importance of the directivity of energy radiation of
a tsunami, adequate consideration has not been paid to this effect in
the estimation of the total tsunami energy by a conventional method.
If various errors in the estimation of tsunami energy are taken into
account, the uncertainty of the estimated energy may amount to a factor
of 10 for extreme cases. If the magnitude scale of the tsunami is to
be defined in relation to the tsunami energy, more accurate determina-
tions of tsunami energy seem to be essential (Soloviev, 1969).

Here, a problem arises as to the attenuation of the wave height
with distance. The region of tsunami generation is mostly on the
periphery of the ocean, and the nearest coast which is most severely
affected by a large tsunami is located in the distance comparable to the
dimension of the tsunami source. In this region, therefore, the propa-
gation characteristics of the tsunami would be like the one-dimensional
one. For a moderately long distance, R, from the source the attenua-
tion of the wave height may be approximated by H,/v'R, in accordance
with the geometrical spreading if the gravity wave dispersion is negli-
gible. However, the proportionality factor H, would be a function of
the direction because of the directional difference of wave radiation. In
the estimation of the attenuation characteristic of the wave height with
distance from field data, this is one of the factors responsible for the
large scatter of data points by a factor of 3 or so in the wave height
vs distance graphs (Soloviev, 1965; Iida, 1966). In actual cases, the
situation is further complicated by the wave guide effect of a continental
shelf.

In the present paper, a simple case of tsunami generation on a flat
bottom is examined theoretically based on the long wave approximation
to shed some light on the wave propagation characteristics and the energy
radiation pattern from an elongated tsunami source of a large scale.
Although various studies of this kind were made in the past and con-
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siderable knowledge has been accumulated, it seems worthwhile to dis-
cuss the problem from a unified standpoint.

At first, the effect of duration of the bottom movement on the
total energy transferred to the water body is examined. Next, the
radiation pattern of the wave energy together with the directional dif-
ference of wave height is discussed. Lastly, for long distances from
the source, asymptotic wave forms are computed and the validity of the
long wave approximation is discussed by comparing the non-dispersive
wave form with the dispersive one.

2. Wave generation by the bottom deformation

The generation and propagation of a tsunami in the sea of constant
depth under various source conditions were already discussed by the
author (Kajiura, 1963, hereafter referred to as Paper I). We consider
now the wave directivity for a tsunami source of large dimensions under
the linear long wave approximation. The limitation of the long wave
approximation will be discussed in Section 7.

The linear wave equation for the tsunami generation is,

2Q4l§f§_=—lﬁa’”B , 2-1)
c? ot’ ¢t ot

where { is the free surface elevation from the undisturbed level, ¢*=gh
with ¢ the acceleration due to gravity and h the constant depth of
water. Here t is time, p? is the Laplacian operator in the horizontal
co-ordinates, and w; is the vertical velocity of the bottom movement,
taken positively upwards.

A Green’s function G in the infinite domain for the wave equation
(2-1) is given by (see, for example, Morse and Feshbach, 1953),

G(r,t|x, t)= (20/'\/02(“’—%)2_ (r—ro)*) Hlc(t—t) — | r—ro |1, (2-2)

where r is the position vector, the suffix 0 denotes quantities related to
the source, and H(x) is a unit step function with H(z)=0, for x<{0, and
H(x)=1, for x>0. .

Making use of (2-2), the elevation { in the infinite domain can be
written as,

(r, t)= dng?

0

j‘ dtﬂgg G(r’ t | roy tO) au)B dSO, (2'3)
s ot

‘where S covers the source area with ds, the surface element.
Now we assume that w; is constant for a certain duration, 0<t< T,
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and zero otherwise and the total bottom deformation is D(r,).
Then, it follows:

ws/0ty= (D] TH3(0) —o(T)}, (2-4)

where d(x) is Dirac’s delta function.
Substituting (2-4) into (2-3) and taking the origin of the co-ordinates
at the observing point, we have

C=(m—7:)[(2rcT), (2-5)

where

7= | er=r e —rids, (2-6)

and
r,=ct, tT.=c(t—T).

In the later discussion, we omit subscripts 0 for the source and ¢
for »; and z; for simplicity, unless otherwise noted.
In the polar co-ordinates (r, 0), we may write (2-6) in the form

77=§:2(@7'/«/z'2—_ ) Hiz —r1dr, 2.7)

where

@:ﬁ?p(a, 2)do. 2-8)
1
In (2-7) and (2-8), the integral is limited within the source region so
that the integral limits, (r-7,) and (0,-0,) are determined by the geo-
metry of the source. Here we may call v@ as a directive source func-
tion relative to the observing point.

For a limiting case when T'— 0, we may transform (2.5) together
with (2.7) into

c=1/(2ﬂ)an/ar=1/(27:)(@(0)5(7-1)+§'2_77_@H[T—r]dr>. 2.9)
A T2 —1 fr

If the observing point is in the source region (r,=0), @(0) in the right
hand side is preserved.

If the source region (source dimension, L) is very far from the
observing point (distance to the center of the source, R), namely L/R<K1,
we may approximate, by taking the rectangular co-ordinates with the
x-axis in the direction of the source center,
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Vii—?=+2RVt—ux, for t|R=1.

Therefore, (2-6) may be approximated by

_ 1 = W@ gr._ .
= «/ZRL ) He e, (2-10)
where

W) :S"Zp(x, »dy. (2-11)

The limits of integration (x, @), (¥, ¥2) in (2-10) and (2-11), respective-
ly, are determined by the geometry of the source and (z.—:), (¥.—v1)
are of the order L with L/R<1. In this case the directive source
function 70 in (2-7) is replaced by W(z). For a limiting case when
T —0, we can derive in place of (2.9),

Sl L[ L oW
2r V2R )y A/t—2x O

Hic—zlda. (2-12)

It is remarked that the approximations (2-10) and (2-12) deteriorate for
the proximity of xz=x, or . unless W(x) approaches zero. Although
the directive source function »@ always approaches zero as 7 — 11 OT 75,
the corresponding directive source function W(x) does not necessarily
exhibit this feature unless (y,—v.) approaches zero as x—x, Or .

For a simple geometry of the source, the directive source funection
can be expressed by an analytical formula and the generated wave form
can be computed easily either analytically or numerically. Source models
used in the present paper are:

Model A Rectangular shape with uniform (Al) or linear variation
(A2) of the bottom deformation,

Model B Elliptic shape with uniform (B1), elliptic (B2), or parabolic
(B3) deformation of the bottom,

Model C Cireular shape with the uniform bottom deformation.

Model C is a special case of Model B and widely used for the study of
the tsunami generation problem in the past. ’

3. Computation of wave forms for rectangular models

To compute the wave form due to an uniform deformation (Model
Al) or due to a linear variation of the deformation (Model A2) in a
rectangular area of the bottom, it is convenient to make use of the
method of superposition. An elementary solution can be taken in various
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way, but, here, we take an elementary source geometry as shown in
Fig. 1. The origin of the co-ordinate is at the observing point, and
the nearest corner of the source, P, is at (d, ¢) or (x, v, with the
source region in z,<2x<co and y,<y<co.

a) Uniform deformation D,

In Fig. 1, we divide the source into two regions (1) and (2), and
denote the solutions given by (2-7) as
y (2) 7% and 7® for the regions (1) and (2),
(1) respectively. Then, ® can be obtained
: from ™ by replacing ¢ by z/2—¢, or
///////// exchanging , and %,. Let us now
{Xp,Yp) write the combination of »® and @

as 7(c/x,, ¥,), namely,

O > X 7/, Y) =19 +9®, for wx, y,>0.
Fig. 1. Co-ordinate systems re- ’ (3_1)
lative to the source geometry.

P

For the region (1), the directive source function can be written as
’)‘@:DD’I‘{SD—S’I:’)’I/—l(’_I/,,/’I‘) }H(T_d) ’ (3 2)

where 1 is the radial distance, and H(r—d) is a unit step function.
Substituting (3-2) into (2-7), and performing the partial integration,
we have

C WEE
") Dozv( vr=r Uiy, f >d. 3-3
7] A= T r, for < (3-3)

(3:8) can be transformed into:

7Y Dy={cI(c/d, y,) —y,J (t/d, y,)} H(z —d), (3-4)
where
_ [ Yol1°
Teld, )= vz Vs S
=Sin Y (y,/d)V (= —d}) [ (=" —y,])}, (3-5)
and

Tteld, v = 1Tl v T= <l

=Sin 'V (=) (—y,)). (3-6)

If the apex P is in the second quadrant, we have
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7?(‘51%, yp) :272(T|0, ?/p)—ﬁ(fl | Ty I’ yp) ’
for 2,<0, y,>0, 8-7)

where
7(c 10, ¥,) = (#/2) (c—y,) Hc—y,) . (3-8)

If the apex P is in the fourth quadrant, the solution is given by ex-
changing x, and ¥, in (8-7), and if the apex Pis in the third quadrant,
we have

77(T|90m y,,)=277(r|xp, 0)—77(1'1.’13,,, Iyp 1)1 for x,,<0, yp<0' (39)

Thus, the solution 7 for a rectangular source in a general position
(the co-ordinates of 4 corners are (@, %), (T2 ¥1), (%2, %), (T 1, with

(x, >z, ¥.>Y:) can be expressed by,
() =n(c | @1, 1) +7(0 | Ty y2) —7(z | X1, Y2) —7(7 | T2, Y1) - (3-10)

The wave form {(r) can be given by (5).
For the case of the instantaneous deformation, the wave form for
the region (1) is derived directly from (2-9) as

{O[Dy=I(r|d, y,)H(r—d)/2x), (3-11)

and the resultant solution {(r|=x,, ¥, can be constructed as in the case
of 7(c |z ¥y -

b) Linear variation of deformation

The linear variation of deformation is given by D=a(x—p) in the
region shown in Fig. 1. In this case, the contribution of the constant
part (—ap) is the same as in the case of an uniform deformation provided
that D is now put (—epB). For the linearly varying part, the directive
source function is given by

r@ :7‘562 arcosddd , (3-12)

6y

where z=rcosd, 6, and 6, are defined by sinf,=y,/r and cosbO,=x,/r.
The integration gives

O=a(V7r* =z, —Yy,), (3-13)

and

dO/dr=ar[vV 1 —x,’. (3-14)
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Substituting (3-13) into (2:7) and performing a partial integration, it
follows:

(|, Y,) =aj-:1”«/ =V —atdr
=(/2){(*—2AJ(c|d, x,)—V ([ —d) (d*—x,)}Hc—d), (3-15)

where d*=x,’+y,”, and J(r|d, x,) is given by (3-6).
If the apex P is in the second quadrant, the solution is

(|, y,,):n(z' l [ %, |, yr) , for ©,<0, Y,>0, (3-16)

because of the antisymmetric character of the deformation with respect
to the y-axis. The solution for the apex P in the fourth quadrant is

given by

77(T | L) yp)=277(7'- | Lp, 0) —7(7 | Ty, I Yp I) ’
for 2,>0, y,<0. (8-17)

If P is in the third quadrant, we may write
(e ] %, v) =9 ||, |, y,) for 2,<0, y,<O0. (3-18)

For the case of the sudden deformation (7--0), the substitution of
(3-14) into (2-9) gives

Cle| @ ¥) = (m)/(zn)g;r/«/ (=) (=) dr
=(a0)/@n)J (z |d, &) Hc—d), o 3-19)

and the solution when P is not in the first quadrant is constructed

similarly to the case of 5(r|=z,, ¥,).
To compute the wave form due to the combination of the linear

deformation of the bottom, we should superpose the solutions for each
elementary part of the bottom deformation, which, in turn, can be ex-
pressed by the combination of elementary solutions given in this section.

4. Energy exchange associated with the bottom deformation

between the solid bottom and the overlying water

a) Static energy and tsunami energy
The energy flux dE/dt to the overlying water by the vertical move-
ment of the bottom can be computed from
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dE/dt= Hpgwgds , (4-1)
S

where p; is the bottom pressure and S is the total area of the defor-
mation.

The total flux of energy E, to the water in the time interval 0<t
<T is

E:Sm pawsdsdt. 4.2)
S

Now, under the long wave approximation, the pressure may be consi-
dered as hydrostatic:

r+L
po= padz=0g(h—La+0), (4-3)

B
where p is the density of the water, { and {; are the vertical dis-

placement of the water surface and the bottom, respectively. Substi-
tuting this pressure in (4-2), we may write,

Eg:ES+ED (4'4)
where
T
By=pg| [{waln—tidsdtz, (4-5)
S
and
E,= pgf”wngsdt. (4-6)

S

Taking the relations 8{y/0t=1w;, and {z=D for t>T, into account, (4-5)
is transformed into

Es=pg (h V—_;_Hmzs), (4-7)

where V is the total volume of the bottom deformation; VzﬁDds.

The energy flux Ejs is independent of the time characteristics of the
tectonic movement and may be called the static energy exchange. If
the total volume of the deformation is zero or negative, it is evident
that Eg is negative, indicating the energy transmitted from the water
column to the solid bottom. On the other hand, E, depends on the time
characteristics of the deformation and is always positive, so that we
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may call E, as the dynamic energy of a tsunami. This kind of separa-
tion of the energy exchange is originally envisaged by Miyoshi (1954)
who proposed the concept of the efficiency of tsunami by defining the
efficiency as E,/Es.

It is immediately clear in (4-6) that: 1) if the deformation is very
slow (quasi-static), {—0 and E;,—0, and 2) if the deformation is instan-

taneous, {~{z and Ep=(1/2) ,ogHDzds. In case (2), the total energy trans-
ferred to the water is, ’
Et:Es"l‘ED:pgh/V,

showing that FE, is equivalent to the potential energy to transfer the
water mass pV from the bottom to the surface. We denote the dynamic
energy in the case (2) as E), and investigate the dependence of the ratio
Ey/Ep on the duration T of the bottom movement.
Taking (2-5) into account, we may write (4-6) in the form:
Ep=pg/2rcT) S: Hw sndsdt. (4.8)

S

Therefore, E, can be computed numerically, if 7 is found from (2-7) for
0<t<T. For a uniform circular model (Model C; diameter A, defor-
mation D,), a formula to compute » given by Takahasi (1942) is used

1.0 10"k r r ry
r N 1
N i
CIRCULAR AN i
0.8 L MODEL —> N
s 3 . ONE DIMENSIONAL »
u;: wio'k MODEL - \'
w \o N 1
0.6 N 58} L
cmcuum\\ r
MODEL "\ \{ i
\
\\ 2
04 ! 1 1 PN T T 10 - 1 [T | . I.I“”,
0.l 05 1.0 10 10° o}
cT/A cT/A
Fig. 2a. Efficiency of tsunami gene- Fig. 2b. Efficiency of tsunami genera-
ration, Ep/Epy, as a function of the dura- tion, Ep/Epy, as a function of the duration
tion of the bottom movement, ¢T/A, for of the bottom movement, ¢T/A, for one-
Model Al. dimensional and circular uniform source

models.
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(Eq. (36) in Takahasi’s paper where & is used in place of 7). For a
uniform rectangular model (Model Al; side lengths A and B, deforma-
tion Dy, n is computed by the method given in §3. For Model Al, E),.
=(1/2)pgD*AB and for Model C, Ep=(1/8)pgDizA. A limiting case of
B—oco for a rectangular model corresponds to the one- -dimensional case
and the energy E, for unit width can be derived easily (see Appendix
A). ’ -
Fig. 2a shows the variation of Ep/Ep with ¢T/A. It is seen that
a rectangular model with A=B is roughly similar to a circular model
and with the increase of B, the variation of Ejp/Ej, approaches that for
an one dimensional model. In general, the decrease of Ey/E, is gradual
for small values of ¢T/A. For large values of ¢T/A, the decrease of
Ey/Ep, is proportional to (¢T/A)™ with n=1 and 1.64 for the one
dimensional and circular models, respectively, as shown in Fig. 2b.

b) Compressional wave energy and tsunami energy

In principle, if the bottom is uplifted (w;>0), the energy is, at
first, transferred from the solid earth to the overlying water by gene-
rating compressional waves in the water and then partly converted to
gravity waves. To examine the relative importance of sound waves and
gravity waves in terms of the generated wave energy, a simple model
is considered, taking into account the fact that the gravity wave energy
Ep can be approximated by Ep, for small values of ¢T/A(<0.2).

We confine the attention to the vertical direction only by assuming
a very large horizontal dimension of the bottom uplift. If we assume.
c/v<1 and wy/v<1l, the sound pressure p* at the bottom due to the.
bottom movement wy is given by

p*=pvws, 4-9)

where the characteristic impedance of the sound wave is pv with v the:
sound wave velocity. Therefore, the sound intensity I is,

I=p*ws=pvwg’, (4-10)
and the total energy E, transferred as sound in the time interval ¢ is,
E¢.=pwg*vt. (4-11).

The pressure change due to a reflected sound wave from the water sur-
face interferes with the bottom after ¢{=2t, where t; is the travel time:
of the sound from the bottom to the free surface and

te=h/v. (4-12)
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‘Since this reflected wave is a rarefaction wave if the initial wave is a
-compressional one, the resultant bottom pressure is p*= —pvw; and the
transfer of energy takes place from water to the solid bottom as far as
the sound wave is concerned, in the time interval 2t,<t<4t,. After
the termination of the bottom movement, the energy exchange between
the solid earth and the water stops if the solid earth is perfectly rigid.
The time sequence of the sound pressure p*, the variation of the
free surface with both components of the sound wave and the hydro-
‘ static displacement, the total

L 20; ) ! — sound energy E. and the gravit'y
: = o Lo wave energy K, are shown in
Soo 2:_4‘ T T iz E Fig. 8, where for the clarity of
® Lol T EI__} L Fig. 3¢, the hydrostatic energy
: is shown for a fictituous value
100 o) : ANy of ¢/v(=1/4/10). The variation of
3 /= =~ the free surface given in Fig.
£s0f 7 | Do 3b is similar to the result ob-
s L s ' | . tained by Miyoshi (1959) in the
TO0 KT ot L general discussion of the gene-
] | ration of tsunamis in compres-
Foo [ () /,i --------- sible water.
H t /H/ f T The energy K of the sound
gl.or -~ < E - Es wave at the time of the termi-
w o.o; =2 "’ AN ¢} N E’c.z ‘.[; nation of the bott'om movement
1 o) depends on the ratio T/t; because

E; oscillates between 0 aud E.,..
Fig. 3. a) Sound pressure variation p* with (=20w,%h). On the other hand

time t/t. at the bottom, .
b) Surface disturbances { due to the hydro- the total energy Ej of a gravity

static displacement (H) and sound waves (S).  wave generated by the bottom
¢) Variation of energy with time for both movement is
‘the hydrostatic displacement (H) and sound
‘waves (S) in which ¢/v=1/4/10 is assumed. Ep=pg(w,;T)*2. (4-13)
'The ratio E;/E, can be given by
EEp=2v/(gT), for T<«2t ‘ (4-14)
and
E¢nal En=4h/(gT? for T>2t. (4-15)
The duration T..., for which the ratio E,..,/Ep becomes unity is

Toie=2V'h]g. (4-16)
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For a depth h=2000m, T.,. is 28sec. This value of 7., indicates that,
for the duration of several minutes of the bottom movement, the energy
of the sound waves is negligible compared with gravity wave energy,
and the opposite is true for a very short duration of the bottom move-
ment.

It is very difficult to estimate the duration T of the bottom move-
ment for actual earthquakes. From the study of the earthquake:
mechanism, the rupture velocity of an earthquake fault is considered to
be of the order of S-wave velocity. If the fault length is, say, 400km,
and the rupture velocity 4 km/sec, the duration is 100sec. In this model,
the duration of the displacement at a particular location is assumed
instantaneous and the displacement propagates along the fault. On the
other hand, in the model adopted in the present paper, the displacement.
occurs in a broad area at the same time, but the vertical displacement.
is completed in the time interval 7. Because of the difference of the:
models used, it is not possible to compare directly the duration T in the
present paper with the duration of the fault movement considered in.
the study of the earthquake mechanism.

According to the study by Mikumo (1964) on atomospheric pressure:
waves generated by the tectonic deformation at the time of the Alaskan
Earthquake of March 28, 1964, the deformation does not seem to have
lasted much longer than 3min. However, the lower limit of the dura-
tion could not be determined.

In view of the fact that the duration T of the seismic local source:
movement might be very small, the energy transfer to sound waves in
the water due to the erustal deformation should be examined more care-
fully by taking the impedance of the crust into account.

5. Directivity of wave radiation for rectangular models
(Model A)

The wave radiation due to the crustal de- 1111
formation in a rectangular area of the bottom is (
discussed by using rectangular co-ordinates (x*, ‘T‘ /
y*) and polar co-ordinates (R, 6) as shown in :

Fig. 4 with the origin at the center of a rec- B
tangle. The side lengths of the rectangle are _ J{_
A and B in the x* and y* directions, respective- ‘

ly. The time is measured from the first arrival I

of the wave disturbances at the observing point Fig. 4. Co-ordinate sys-—
and is non-dimensional if we write t*=c¢t/A. tems relative to the source
The method to compute { is already shown in 8eometry.
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Section 3. The asymptotic solutions for long distances from the source
are derived in Appendix B.

a) Wave form due to an uniform bottom uplift (Model A1)

In this model the vertical displacement of the bottom is D, with
the duration T. Now consider the wave form travelling along the x*-
axis (see Fig. 4). It is easily understood that if the length B becomes
infinite, the wave form would be similar to that of the one-dimensional
case; that is to say, the wave form travels without change of shape.
However, the effect of the finite length of B is felt as soon as the wave
fronts originating from the side corners of the uplifted area arrive at
the observing point. This sequence is shown in Fig. 5, for B=3A4 and

¢T/A=0.2, where the distance

0.5 F B=3A x is measured from the edge of
: cT/A=0.2 the source area; z=x*—A4/2.
o.0f : It is seen that, for x/4=0,
_ W the elevated portion of the wave
bl form is the same as that for
N . the one-dimensional model and

00 A ,
\\/-"';/’A_— the following depressed portion
i ) =1

corresponds to the contribution

S from imaginary sources on both

g 0.0 sides of the real source; namely,
.\ <m-2  D=—_D, for |y* |>B2, |2t |<

N A N , Al2..

With the increase of x/A,

00— : ‘ X
\/""X/A_4 the . depression wave due to

imaginary sources begins to over-

05 g----mmmnn
lap that of the one-dimensional

0.0 [ " wave, the interval 4t of the
i ~\/'— X/A =8 arrival times of the two types

C . . . . . , of waves being given by
oo 10 . 20 30 (V@ + (Bj2)*—x)/c.  Therefore,

Fig. 5. Sequence of the variation of wave the resultant wave form devi-
forms propagating in the direction of the z*- ates more and more from the
axis, illustrating the effect of two-dimensionality gne-dimensional case. However,
of Model Al with ¢T/A=0.2 and B A=3. the maximum wave height does
not change as long as cdt>T.

The directional variations of wave forms for the case of B/A=2,
¢T/A=0.2, and R/A=4, are shown in Fig. 6. The variation of wave
forms for 6=0 to §==/2 is very conspicuous, reflecting the variation of
the directional source function. It may be noticed that for =0 and
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6=r/2, the wave forms are rather
similar, provided that the total
duration of the elevated portion
of the wave is longer and the
maximum height smaller for 6==/2
than for §=0. Judging from the
shape of the directive source func-
tion, the main parts of the ele-
vated portion and also the
depressed portion in the wave
forms for =0 and §==/2 become
almost identical if we scale the
distance R by the lateral dimen-
sion of the source area; namely,
R*=R/B for 6=0 and R*=R/[A
for 6=z/2. The duration of the
elevated portion of the wave form
is roughly equal to the length of
the source projected in the diree-
tion of the wave propagation.
However, the wave form is very
sensitive to the assumed source
characteristics and the gravity
wave dispersion, neglected in
the present discussion, modifies
the wave form drastically for
long distances from the source
(see §7). It is then more advan-
tageous to discuss the directivity
of wave radiation in terms of
energy than in terms of wave
forms.

04 B/A =2
R/A =4
0.2
e =1/2
00
0.2 r
311/8
0.0
.
') 0.2
N ] /4
N 0.0 \\//-
0.2
[\ T1/8
0.2
0
0.0
-0.2

Fig. 6. Directional difference of wave

forms at R/A=4, for Model A1 with B/A=2.

b) Directivity of the energy radiation (Model A1)

The total flux of gravity wave energy E; for the unit width, trans-
mitted in a particular direction may be computed approximately by the

formula,

E,= pggo Cedt |

(6-1)

since the wave can be considered as progressive after leaving the source
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area. The directively coefficient @ of the total wave energy flux at a
distance R from the center of the wave source is defined by

Q=27RE,|Ep, (5-2)

where Ej is the total energy of gravity waves. For a uniform bottom
uplift in a rectangular area, E), is already shown in Fig. 2a. The total
energy flux K, is computed numerically by (5.1) after evaluating .
The dependence of @ on the distance R*(R/B for 6=0, R/A for
0==/2) is shown in Fig. 7 for B/A=1, 2,8 and 6=0, =/2. For large

30 T T T T T T T
T b T =N -
\\
30} ]
2.0 b\ ]
\\ \\
\
EANRY R/A = 4
20 - - Q AN
BN -
Q .o [ NN B/A = -
N e
1ok e 2
. ~ T
3
00l et e 0.0 S S S
g 10° % 10’ 0 T4 T2
R o
Fig. 7. Variation of the directivity Fig. 8. Directivity coefficient at R/A
coefficients @(0) and Q(x/2) with the rela- =4 as a function of the azimuth ¢ for

tive distance R* (R*=R/B for 0=0, and Model A1 with B/A=1,2,3, and ¢T/A=0.2.
R/A for 6==/2) for Model A1 with B/A=3,
2, and 1, and ¢T/A=0.2.

values of R*, @ becomes constant, but, for small values of R*, @ de-
creases for 0=0, and increases for =x/2 with the decrease of R* ex-
cept for the case of B/A=1. This nature of @ reflects the following
features of energy propagation. E; decreases inversely proportional to
R* for R*>4 but, for small values of R*, the deviation from this law
becomes significant as B/A increases. In particular, for R*<1 and
B/AZ=3, the energy flux E,;(0) (in the direction of the minor axis) does
not vary much, indicating the approach of the wave form to the one-
dimensional case. On the other hand, E,;(z/2) (in the direction of the
major axis) decreases much faster than the inverse of distance near the
edge of the source area, indicating that the lateral dispersion of wave
energy is stronger than the ordinary geometrical spreading.

Fig. 8 shows the directivity coefficient Q at R/A=4, as a function
of 6 for the length ratios, B/A=1, 2 and 3. As is expected, with the
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increase of B/A the variation of @ with # increases. The minimum of
@ lies somewhere around #=3z/8 but in the range, 7/4<0<7/2, @ does
not differ much from this minimum value. For the case of B/A=1,
two local minimums of @ appear because of the symmetry of the wave
form relative to the direction of §==/4 but the variation of @ is, in
general, very small. For B/A=3, the decrease of @ with @ is very
rapid for small values of #, showing a very strong directivity. The
ratios Q(z/2)/Q(0) at R/A=4 are 0.326 and 0.187 for B/A=2, and 3
respectively. The variation of @ with 6 shown in Fig. 8 suggests strongly
that, in practice, it is rather difficult to estimate the total energy of a
tsunami from the energy flux measured at a single location unless in-
formation on the source characteristics is available.

c) Rectangular source with the combination of linear variation of de-
formation (Model A2)

A model considered here has -

sides with the lengths [, I,, and B/A=1 , R/A=4
1, whereby l,+1.+1;=2a and the o2r
heights are D, and D,’. The bot- 0.0 A ®0
tom deformation D is limited with- L
in | ¥* |<b and the x*-dependence -0.2 |
is given by o2rf
D|Dy= a,(x,—x*), 0.0 b e WBJ.
for wm<a*<x, I \/ o
. 0—0'2 r
a2(w0_x*) ’ O o2t
for x<z* <, S oo ' /4
oty (@, — %), I R4 - g
for z,<z*<az,, -0.2
o2}
(5-3) I
0.0 KA L e, OB
‘mmu/ﬂlml _ L
_TI AR ~o2 |
y 0.2
Kl
18 . 5
8 IIZ“" * 0.0 ; ' e
I ’ ' -
l Ixel r
“);,x,xzx, -0.2 PP SRR EPA AT ST
— A _,; 0.0 05 . 10 .15 20
T
Fig. 9. Co-ordinate sys- Fig. 10. Directional difference of wave
tems relative to the source forms at R/A=4, for Model A2 with T—0

geometry. : and B/A=1.




852 K. KAJIURA

where a,=1/l;, ay=— (1+7)/l;, au=7[l; with y=D//D,. The other para-
meters are x,=a, T,=x,—, Te=2—L/(14+7), vs=2.—1, and z,=x,—1,.
As an example, the case when y=1 and l,=l,=2I, is shown in Fig. 9,
where A=2a and B=2b.

The computed dependence of the wave form on the direction @ is
shown in Fig. 10 for B/A=2, and R/A=4. The directional difference
of the wave form is quite large, reflecting the variation of the diree-
tional source function. For example, at 6=3z/8, the wave train is
divided into two groups of crests and troughs, the second one of which
is quite similar to the first one but the shape is inverted. This is due
to the characteristics of the given source model, for which the direc-
tional source function vanishes in the central part of the source area as

0 approaches 7/2.

0.6

[ The dependence of the

o4 | o wave form on the ratio B/A

Sl AN e is shown in Fig. 11 for 6=0

N AN and R/A=4. It is noticed
00 by A =i v g :

I N6 10 .+ 20 that, in general, the first

-0z f q 2/6 / crest height is smaller than

—oal W /¥ the following trough.depth

] / J and a small secondary crest

weer v appears after the major

-os b trough, in spite of the fact

Fig. 11. Comparison of wave forms at a fixed that the bottom deformation
distance R/A=4 in the direction of the z-axis, for s s
Model A2 v/mh B/A=1,2, and 3. in the direction of the «*-
axis is antisymmetric with
respect to the center.

For long distances from the source, the wave pattern can be com-
puted easily by means of (2-12) (see Appendix B), and in the present
example, the height ratios become 2.28 and 0.45 for trough/lst crest,
and 2nd crest/1st crest, respectively.

In general, a steep scarp of the fault produces a deep trough in
the generated wave at long distances from the source.

6. Asymptotic wave form for long distances from an elliptic
source (Model B)

Elliptic source models are defined by :
(B1) uniform deformation; D/D,=1, - (6-1)

(B2) elliptic deformation;  D/D,={1— (x*/a)*— (y*/b)*}'?, 6-2)
(B3) parabolic deformation; D/Dy=1— (z*/a)*— (y*/b)?, (6-3)
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within the area bounded by
(@*/a)*+ (y*[b)*=1.

Now take the X-axis in the direction of the observing point with
‘the origin at the center of the source. Then the directive source fune-
tion W defined by (2-11) in the direction X can be written as

g{l— (XJa¥),

W(X)=2b*Dy 1 (=/4){1—(X]a*)*, (6-4)
l(2/3) {1— (X]a*)%}",
for Models B1, B2 and B3, respectively. a* and b* are defined by,
1/a**= (1—s‘in220/2)/(a2 cos® 0 +b? slin2 6), (6-5)
:and '
1/b*2=sin*d/a’+cos’0/b*. (6-6)

These expressions show that the directive source function is similar for
all directions, provided that the parameters ¢* and b* corresponding to
lengths of axes of the ellipse in the directions of X and Y are given
by (6-5) and (6-6). ,

‘The wave form for long distances from the source, then, can be
derived in the form (see Appendix C),

¢/ Dy= (0% a*B)C* (6-7)
‘with | o | L |
Cr={F(t,*) — F(t:")}a*/ @rcT), (6-8)
and for T—0,
CE=G(tY). . (6-9)

‘Here, t* is defined by {r—(R—a*)}/a* and indicates the non-dimensional
time from the first arrival of disturbances at the observing point. F(t*)
and G(t*) are given by simple algebraic formulas (Model B2) or by the
combination of the complete elliptic integrals of the 1st and the 2nd
kinds (Model Bl and B3). It may be mentioned here that the wave
forms due to models similar to Bl, and B3 are computed by Momoi
(1962, 1963) by a completely different method, in which the high wave
number components are truncated in the Fourier-Bessel expansion of
‘the wave form.

(6-8) and (6-9) show that for largé valﬁés of ¢T/a*, ‘the maximum
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wave height is given by the maximum of F(t,*) and the height varies
as b*+v/a*/R in contrast to the case when T—0, in which the maximum
height varies as b*/4+/a*R. The dependence of the maximum wave
height on the duratlon T is shown in Fig. 12, where the variation of
(%. on ¢T/a* for Model B3 is
given for b*/a*=2 3, and 4. As

T

1.0

5 is expected, the decrease of (%,
*J\JE\O.s with the increase of ¢T/a* is
Z larger for larger values of b*/a*.
06 If we compare the maximum
> . . . .

w wave heights in the directions
“‘2‘ 0.4 of the major and the minor axes
g of the ellipse, the height ratio
So.2 is found to decrease from (b/a)*?

to (b/a)'® with the increase of
the duration ¢T/a.

. 20 For the case of the sudden
cT/a deformation T—0, the total flux
Fig. 12. Dependence of the maximum of of wave energy in a particular

the scaled elevation (¥, on the duration of . .
the bottom movement ¢T'/a for Model B3 with direction defined by (5-1) be-

bla=2, 3 and 4. comes

o
o

o
o

mﬁzmmwmfmwmm (6-10)

and, since the integral part is invariant with respect to the direction 4,
the directivity function R(f) defined by

R(0)=E/(0)/E/(0), (6-11)
becomes

R(0) = (b*/b)?= {cos?0 + (bja)? sin’0}~". (6-12)

For b/a=2, 8, and 4, the dependence of R(f) on 6 is shown in Fig. 13.
The minimum value is found at §==/2 where R(z/2)=(a/b)?.. The gene-
ral pattern of R(#) given in Fig. 13 is comparable to the directivity
coefficient Q(0) given in Fig. 8. Both figures show that, roughly
speaking, the variations are very rapid for small ¢ and almost constant for
0 larger than /4, in spite of the difference of the source models used.

If we imagine a straight boundary perpendicular to the x*-axis (the
direction of the minor axis of the source) at a distance z;* from the
source center, the variation of the maximum wave height along the
boundary can be expressed, by means of (6-7) and (6-9) as
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Fig. 138, Variation of the directivity Fig. 14. Relative maximum height
function E((0)/Ef0) with the azimuth ¢ distribution along a straight coast perpen-
for Model B3 with b/a=2, 3, and 4. dicular to the z*-axis for Model B3, with

bla=1, 2, 3, and 4. L*=L/xg*: L, distance
along the coast, and xp*, shortest distance
from the source center to the coast.

CaL)/6(0) = (05" R)(%D) (a]a*)
=[(L+L#) (v I+ L7 L¥) {1+ (L¥bja ™, (613

where L*(=y*/x;*) is the non-dimensional distance along the boundary
measured from the intersection of the x*-axis with the boundary.

Fig. 14 shows the variation of wave heights for B/A=1, 2, 3, and
4. Compared with the case of b/a=1, which is a symmetric source
model, the cases of b/a=2 or larger show strong directivity, and the
distance L* for which the local wave height decreases to 1/2 of the
maximum height are 0.56, 0.36, 0.29 for bja=2, 3, 4, respectively, in
contrast to 1.19 for the symmetric case.

7. Comparison of non-dispersive and dispersive wave forms

For long distances from a source, the asymptotic wave form, taking
the effect of the gravity wave dispersion into account, can be computed
by the method developed in Paper I. Here, we compare the non-dis-
persive and dispersive wave forms for the case of an instantaneous
bottom deformation of Model Al and B3.

In both models the wave form in the x*-direction can be expressed
by

¢/ Dy= (b/v aR)C* (7-1)
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where in Model A1, a=A/2 and b=B/2. In the case of a non-dispersive
wave, (¥ is a function of #* only defined by

tr={r—(R—a)l/a, | (7-2)

which is a non-dimensional time measured from the first arrival of non-
dispersive waves at the observing point.

In the case of dispersive waves, the scaled elevation ¢* is a funec-
tion of p* and p, or t* and p,, and does not depend explicitly on R and
b. The parameters p* and p, given in Paper I are defined in the present.
notations by

p*=(6/2)"*(R—7)/h=(1—1*)p., (7-3)
p.= (6h/c)"*(a/h) = (6h/R)"(alh). (7-4)

The last expression of (7-4) holds if we confine our attention to the
main part of the wave train only (a(1—#*)/(8R)<1). The formula to
compute * for Model Al and Model B3 can be derived from (94) and
(98) in Paper I, respectively, by a slight modification.

Thus, we may write

o _( pLe ) T(p*—p,)—T(p*+p.), for Model Al, 7.5
e 2f T(p*—ap)av/'I=oda, for Model B3,
-1
where T(p) is defined by
T(p)=Re [ (1+47) S:exp (Ut +pu? du] (7-6)

and is shown in Fig. 3a of Paper 1.
In Fig. 15a, b, the dispersive and non-dispersive wave forms {* are

compared for Model Al and Model B3, respectively. It is easily seen
that Model A1l contains more energy in high wave number components
than Model B3, so that the difference of the dispersive and non-disper-
sive wave forms is greater in Model Al than in Model B3 for the same
parameter p,.

It is remarkable that, for Model B3, two wave forms for the dis-
persive and non-dispersive cases are relatively similar up to about p,~4.
This indicates that the non-dispersive assumption is satisfactory for large
values of p,, but for p,=2, for example, the wave forms are different,
showing the significance of dispersion. For Model Al, dispersive waves
of high frequencies appear from the beginning, but the non-dispersive
wave forms represents a kind of smoothed version of dispersive waves.

for large values of p,.
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Fig. 15a.

Comparison of the scaled
wave forms (* for Model Al in the z*-
direction for the non-dispersive (---),
and dispersive (—) cases. An arrow in-
dicates the time when the disturbance from
the rear end of the source arrives at the
observing point with the velocity c.
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Fig. 15b. Comparison of the scaled
wave forms ¢* for Model B3 in the z*-
direction for the non-dispersive (- - -) and
dispersive (—) cases.

To see the applicability of the non-dispersive assumption which may
be limited by the condition p,>4, a diagram is constructed in Fig. 16,

where the relations between R/h, a/h and p, are shown.

The assump-

tion of long distances requires the condition a/R<0.1, and the scale of
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the ocean is delineated by assuming R=20,000 Km and h=4 Km. From
this diagram, it is found that if a/h=20 or a=80 Km, the non-dispersive
assumption for Model B is satis-
factory up to R/h~800, or R~
3200 Km and the minimum value

N\

o // ggf of p, is about 2. On the other

o' L \Q\'f// e hand, if a/h=5 or a=20 Km,

°/ %I/ the same limiting distance be-

b // Rz gg? comes R~50 Km and the assump-

s /4// tion of a long distance is invali-
3 1

. — dated. The actual scale of the

10 E =< To —*7’*/— tsunami source L is somewhere

7 ! ] around several tens Km to several
I ] hundred Km at the depth of
2 J 2~3 Km. To convert the scale

L at depth h, to the scale a at

10° Leuut e 1 N T
° o} 1o’ 5x10° | o* depth h, we should apply the
R/h relation a=+/h/ho(L/2).
Fig. 16. Diagram indicating the range Fig. 16 indicates that, if the
of the validity of the non-dispersive assump-  tsunami propagation is to be dis-
tion as a function of a/k and R/h. cussed, the long-ane equation

can be used near the wave source of large horizontal extent, i.e., for
tsunamis generated by near earthquakes in the vicinity of the Japanese
coast, but it is not a good approximation for the tsunami propagation
in the whole Pacific Ocean. :

8. Concluding remarks

In the present paper, the following topics are discussed for a sea
of constant depth: 1) the energy exchange between the solid bottom
and the overlying water associated with the broad crustal deformation
—in particular, the dependence of energy exchange on the duration of
the bottom movement, 2) the variations of wave forms in two-dimen-
sional propagation and the directivity of energy radiation, 8) the effect
of the gravity wave dispersion.

Most of the conclusions obtained are rather sensitive to the assumed
source characteristics and we should be careful when generalizing. This,
in turn, suggests that the estimation of the source characteristics is
essential to the prediction of a tsunami wave form.

To develop a method to solve the inverse problem, various factors
not included in the present paper should be examined. One of the
important first step seems to be the evaluation of the effects of the
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bottom topography near the tsunami source—the directivity of energy
radiation would be modified significantly. The deep water tsunami
signatures is expected to include the effects of multiple reflections on
the continental shelf near the source and this problem will be discussed
in a separate paper.

To obtain wave forms under conditions of a realistic topography and
source, it is necessary to resort to a hydrodynamical-numerical method,
where the starting equations of motion should be selected in relation to
the seales of the source and the ocean area concerned. The inverse
problem would then be solved by comparing wave forms computed on
various probable source models with observations.
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Appendix A Wave in a one-dimensional model

The Green’s function for one-dimensional wave propagation is given
by

G (@, ¢ | @, t) =2en{l—H[| 2 —, |[e— (t—1,)]}, (A-1)

where = and =z, are horizontal co-ordinates of the observing point and
the source, respectively. Taking the time origin at the beginning of
the bottom movement, we have the movement in 0<¢,< 7.

For the uniform deformation D, of the bottom in the generating
area delineated by a>x,>—b, the elevation {(x, t) is given by

¢/Dy=1/(4zc*T) Sib{G (x, t | @, 0)—Gi(x, £ | @, T)}daro. (A-2)

The integration of (A-2) is étraight forwards and if z is inside the

source region,
apsenf() )]

and if 2 is outside the source region (z>a),

c/Do=1/(2T)[<"i>]:0=o" (A-4)

0=T

where ct’=ct—(x—a), and A=a+b. Here the following abbreviation
is adopted:

<ct>_{ct, for ci<a,

a a, for ct>a,

’

and
[Flozt=F(t,=0)—F(t,=T).

Now if the observing point is at the origin of the co-ordinate which is
inside the source region and ¢< 7T, we have

j.‘th,' for ct<a,
a+ct, for a<et<b, (A-5)

¢/Dy=1/(2T)
(A, for b<ct<cT.

Therefore, the energy e transferred by the bottom deformation to the
gravity wave at the origin is given by
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e=pgDJ T cat
1, for c¢T<a

— (1/2)pgDe {1/ @T?) (T*+2aTjc— (aje)}, for aje<T<ble,  (A-6)
1/@2T%{2AT/c— (afc)*— (be)?}, for T>bc.

Integrating this energy for the whole source region with the length
A, we have

1—¢T/B4), for c¢T<A, (A7)

Ep|Epe=
o/ B A (T (cT/A—1/3), for c¢T>A,

where

Ep=(1/2)pg DA (A-8)

Appendix B Asymptotic solutions for long distances

from a rectangular sources

For long distances from a source, wave forms can be computed from:
(2-10) or (2-11), which are written in terms of rectangular co-ordinate
system (x, y) with the origin at the observing point and the x-axis.
directed to the center of the source area. However, to compute the
directive source function, it is convenient to take right-handed rectangu-
lar co-ordinates (z*, y*) and (X, Y) with the origin at the center of a.
source. The x*-axis is taken parallel to an edge of the rectangle, and
the X-axis is directed toward the observing point. The azimuth of the.
X-axis relative to the x*-axis is 6 and the distance to the observing:
point from the origin is R.

(@) Rectangular uniform source (Model Al)

If the uniform uplift of the bottom occurs in a rectangular area
- D/D,=1, for |z*|<a, and |y*|<b, (B-1)

the directive source function W defined by (2-11) can be given, by
projecting the corners of the source area on the X-axis, as follows :
(@*—X)/d, for a**<X<a¥*,
W(X)=2b*D,{ 1 , for —a**X<<a**, (B-2)
Me*+X)/d4, for —a*<X<—a**.

Here, from the geometry of a rectangle relative to the (X, Y) co-ordi-
nates, we have
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a*=qcos@+bsind, (B-3)
a**=|acosf—bsind |, (B-4)
A=q* —q** (B-5)
and
B blecos @, for 0<OKO*, (B-6)

- a/sinf, for 0*<6<=/2,
with tan 6*=b/a. ;
The solution for » given by (2-10) is now transformed to
- 7/Do=(4V2/8) v/ a¥|R(b*|4'){ELH E,)
— &~ 4 HE—4) — E A4 PHE +4") +EPH(E,)} (B-7)
*éi'}he.re dla*=4" and
§={r—(BR—a®}/a*, &={r—(R+a*)}/a*. (B-8)
For a ‘limiting case of 4/—0, we have
1/Dy=2+"2v/a*[R b*{g\"H(E,) — € HE.)}, (B-9)

where 4’—0 corresponds to the situation when 0=0 or z/2, and b*=b
or a, respectively.
For an instantaneous deformation (T—0), (2-11) gives, in terms of &

C/Dov=(v"2 [m)b*[(4'v/ Ra*) (& H(E,) — (§,— 4') " H(E,— 4')
— G+ PHE + L) +EPHE)Y, (B-10)

and for a limiting case of 4’—0,
LDy=1/(v/ 2 x) (b*/|v Ra*) {7 2 H (E,) — €72 H )} (B-11)

(B-11) shows that {/D, becomes infinite for &—0 or &—0. This is due
to the deficiency of the directive source function W(x) near the edge of
the source as already mentioned in Section 2. In the interval, 0<&,<e
or —e<E, <0 with e~b*/(2R), we should return to the exact formula.
For example, in the interval 0<&,<e, we have

n/Dy=ntH(,), and for T—0, {/D,=1/2H(£,). (B-12)

Since the elevation ¢ for a duration ¢T is given by substituting (B-9)
into (2-5) with an appropriate change of &, and &,, it is found that the
elevation for 4=0 with the duration ¢7T is similar to the elevation from
the instantaneous deformation if 4 is put equal to ¢T and b* is equal
to b or @ in (B-10).
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(b) Rectangular source with linear variation of deformation (Model A2)

A model defined by (5-3) can be transformed to
DIDy= 3. Bi(wi—o*) Him—*), (B-13)
=1
where

-31=a1, [32’—_- (ozz—al), ‘83: (ag—az) and ﬁ4=_a3.

In this formulation, the contribution from, say, the first term in
(B-13) to the directive source function W(X) in the direction X can be
written as

W(X) =S12DdY=D0,81(Y2—- Y ) {(x;— X cos 6) + (1/2) sin 0(Y.+ Y1)} -

(B-14)y
where
Y,=bjcos—Xtand, for X=X,
_ {X/tan @—mx,/sinf, for X,>X>X*, (B-15)
T —bjcos§— X tan 0, for X*>X,
and
X,=x,cos80+bsind,
X *=w,c080—bsinb. (B-16)
Therefore, it follows:
W(X) =D,/ (2 sin 6 cos® 0)
— 2 E3
{(Xl ] X) ’ for XI>X>XI ’ (B'17))
4bsinf(z, cos 0—X), for X*>X,
and
X,—X), for X, >X>X¥*,
{( - ) ) B.18)
2bsind, for X *>X.

Thus, the surface elevation for the case of an instantaneous defor-
mation (T—0) is given by

¢/Dy=1/(2=+/2R sin 0 cos*0) ilﬁ;L- , (B-19)
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where
L=2[t;v/ & —&"[3];,+4bsin 0+/tF, (B-20)
and
ti=t—(R—X), t*=7t—(R—X*. (B-21)

The expression I; holds provided that t; and ¢* are positive. In ex-
plicit form, we have

4/8)t2, for >0 and t*<0,
i={(/) or t,>0 an B-22

(2/3) (b sin 0){2t:/ (VE:+V1¥) +5v/8*},  for t*>0.

In particular, for the wave propagating in the z*-direction (#=0), in
which X;=X;* and ¢,=¢,*, (B-19) becomes

UD=(1m) VTR b T HIE), (B-23

and the first crest {, and the following trough {, occur at ¢,=0 and ¢,
=0, respectively. Furthermore,  the second ecrest appears at ¢,=0.
Therefore, we have,

| €I 1= VIFLL+ (B B) VTG | (B-24)

It is easy to derive the ratio of the heights of the second crest &,/ to
the first crest ¢, in the similar way. Thus,

¢/ C= BV l1+l2+'l3+f92«/l2+ls +BAV L) (BT . (B-25)

2.0 If we go back to the original para-

meters defined in (5-8), it follows

Be/Bi=—{14+1+7)L/L:}. (B-26)

The relation between I/, and 7
with |{,/{,| as a parameter is
shown in Fig. B-1, from which we
can estimate the height ratio for
given values of I/l and y. For
example, |(./C. |=2.28 for r=1
0.0 : : : and [,/,=0.5 which is an example
-1 0] | 2 3 4 . . . .
Y given in Section 5-c. For this ex-

ample, {//{,=0.45 from (B-25).

Fig. B-1. Relation between Ilp/l; and 7
with £/, as a parameter.
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Appendix C Elliptic source models

Let us transform the variables by putting

F=(c—2a)ja*, o={c—(R—a*}/a*,
and
f={r—(R+a*)}/a*,

where z is the co-ordinate with the origin at the observing point.
Then, it follows:

(@*—pF)=2,
‘dx/«/z-_——x= —2+/a*d2,
and
Xla*=1— ("= )= 1—-F)—1.
The directive source functions (6-4) can be written as

Wx)=2b*D,f(2),

with
{(@—=2) (=g},
FA) =1 (=/4)(e*—=2) (2—F),
(2/3){(a®—2) (— B},
and
dW(x)|dz= (2b*Dy/a*)9(4),
with

(@/2){1— (&*— 2}, (C-5)

(1= (@—-D)H(@= ) (-}
g(A)=
2{1— (@ =) H(e*—2) (22— B }2.

Substituting these relations into (2-10) or (2:11), we have the solution
of the form:

n/DO:Z«/Yb*«/aT/Rj:f(Z) H(2)da, (C-6)
and for T—0,

¢IDv= (v 2 ) (b*/vcz*—zz)j: g H(R)d2. ©-7)
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It is remarked that for t<R+a*, S is negative and the lower limit of
the integration in (C-6) and (C-7) should be put zero.

The integrals in (C.-6) and (C-7) are composed essentially of the
following kind of integrals:

Loo={ (@=2)R(+] § )72, tor [<0, (C-8a)
0
and

J,,m=j: (*— )22 —gAm2d2,  for BF>0. (C-8b)

If both I and m are 0 or even numbers, the integration can be performed
without difficulty. The solution for Model B2 corresponds to this case.
On the other hand, if I and m are odd numbers, the solution is given
in terms of the complete elliptic integrals.

Now, (C-8a) is transformed, by putting A=« sin 6 into

o= {(+]| B |)m/2a1+1}j”’2cos"+l>e(1—k2 cos*0)"%df), (C-9)
[}

where
E=a?(e+| £ ),

and (C-8b) is transformed by putting 2*=a?sin %0+ B2 cos %, into

Tom={ (0= py+ <l+m>/2/a}g”'2sinm+?o cos'+0/v/ T— R cosdde,
0
where
k= (a*— Y ]a’. (C-10)
(C-9) and (C-10) can be integrated by making use of the following re-
currence formulas :
E, (k= Y/zcosz"ﬁx/ 1—/k2cost0 do
0
={(1—k") Kz (k") + (2n—1) Ey(n_yy (K7)}/ 21+ 1), (C-11)
and
K..(kY) :Smcose"ﬁ/«/l——k2 cos*0 do
0
:{Kz(n—l) (kz) _Eztn—n (kz)}/k:, (C12)

where K,(k*) and E,(k*) are complete elliptic integrals of the first and
the second kind, respectively.
Performing the integration, the final form for (C-6) becomes,
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7/ Dy=b*+a*|RF (t*). (C-13)
The explicit form of F(t*) is as follows:
Model B1;
2T (12
F(t*)':S{ZfIZ{(:C(lZ’;) —-f;;(ki:fz’for t*>2, (C19
Model B2;
: 32
F(t%)= (v 23 {fﬁ:;@g ,;i"Z,,i”_tfif;(tiI,i;*), ror prog, O
Model B3; :
" 0 _ 12 (12 :
Pe=649 0 o aman rme, for w2, O
with ‘
CkE=t*2,  KP=20tF, t¥E=t*-2,
and

t*=a’={r— (R—a*)}/a*. '
E,(), E(k), E(k), K(&k?, K(E™ are' given by (C-11) and (C-12).’
In the same way, (C:-7) becomes '
¢/Dy= (b*/v/a*R)G(t*). (C-17)
The explicit form of G(t*) is aé follows :
Model B1;

(KR 2K}, for <2, o8
G(t*)_(I/ﬂ){k’{Ko(k’z)—-2K2(k’2)}, for t¥>2, (C-18)

Model B2;

Vt¥(3/2—t*), for t*<2,

_ — (C-19)
VT (3/2—t%) +/t*¥*¥(3/2+1t**), for t*>2,

G{t*) = (x/f/?)){

Model B3;
E{E, (k) — 2k E,(k?)}, for #*<2,
G(t*) = @®/x) [ (/K" [(K*2—1){K. (k") — K.(k"")}
+H{E, (k") —E(k")}], for t*>2. (C-20)
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Fig. C-1. F(t*) as a function of t* for Fig. C-2. G(t*) as a function of £* for
Model B1, B2, and B3. Model B1, B2, and B3.

The time dependence of F(t*) and G(t*) for Model Bl, B2, B3 are
shown in Fig. C-1 and Fig. C-2, respectively. Fig. C-2 shows that the
maximum height appears earlier than the time corresponding to the
wave travelling from the center of the source, but the lowest level
(trough) appears very close to the wave corresponding to the rear end
of the source (t*~2). It is noticed that for Model B3, the crest height
is larger than the trough depth, and for Model B2, they are equal. In
particular, for Model B1, the maximum height appears at the front of
the wave, and a depression of infinite amount occurs at the time cor-
responding to the rear end of the source. This behavior, however, is
somewhat fictituous in view of an unsatisfactory approximation of the
directive source function near these points. »
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