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Abstract

In this paper, the long waves in the rectangular bay are elucidated
for the normal invasion of a train of periodic waves. The principle
of the analysis is based on the method of the buffer domain. Among
various results obtained, more interesting facts are that (i) the mouth
correction depends upon only the phase of the reflexion coefficient at
the estuary for the arrival of the incident waves from the inside
of the canal, the values of which are arranged in the paper for several
specified values and (ii) the lateral oscillations are most significant
for kl=mr+x/2 (k: wave number, I: length of the bay and m: non-
negative integers), while they vanish completely at kl=mx=.

1. Introduction

We have treated long waves around a breakwater with infinitesimal
orjfinite thickness (Momoi, 1969 and 1970a) and in the vicinity. of an
estuary (Momoi, 1970b) based on an exact method, i.e., the buffer. domain
method. In this paper a long wave in a rectangular bay is elucidated
for normal incidence of a wave by the rigorous method employed already
previously. ‘ o

2. Exact Theory

In this section, the exact theory for the.wave in the fectangﬁlar
bay is derived.

2,1. Model used and Nomenclature.

 The Configuration of the bay.is shown in Fig. 1. The entire domain
of waters is assumed to have uniform depth. The length and width of
the bay are I and 2d. The z-axis runs along the coast facing the open
sea, the y-axis being taken normally on the axis of symmetry of the
bay with the positive off-shore. » and @ in Fig. 1 are polar coordinates.
A train of periodic waves is’ then propagated normally against the
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Incident wave coast, which is stated by
1 exp(-iwt-iky) i . .
Y1) o : exp (—iwt—1ky), (1)
% X where
7z 0!
5 o : the angular frequency,
k : the wave number,
L 24— "t .t : the time variable.
l o2 2,2. Equation and Boundary Conditions.
Fig. 1. Mo de'l and For the case of periodic waves, the equation
nemenclature. for the long wave is expressed as
- oL T | o
+ +k3=0. ‘ 2
oxt 0yt ¢ 4 (2)

The conditions at the rigid boundary are given by

& _0  (y=0 for |z|>d), | (3)
oy
08 _p (lz}=d for y=0 to —I), (4)
0x

and
¢ _ -
o 0 (y=—1 for |z]<d). (5)

2,8. Formal Solutions.

Referring to Fig. 2, the entire domain is 1y

separated into three parts, i.e., ' 'py
domain D, : 0<6<z and r>d, BN
domain B : 0<0<z and r<d, ////] Of /
domain D, : |z|<d and 0>y>—I. D
In the above three domains, domain B is the ;
buffer domain in our method.

Let ¢; (=1, B, 2) be the wave heights in Y
domains D,, B and D.. The formal solutions Fig. 2. Geometry of
are then expressed as the domains defined.

G=2cosky-- ioif{z”‘Héil (kr) cos 2me (6)

in domain D,

Cr

m=0

5 {cgwm (k7) cos 20 +LE™ Ty (k) sin (2m+ 1)0} (7)

in domain B,
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o

L=> ™ cos k,.(I+y) cos "(? © » ('8)

m=0

in domain D,

where C&™, g, ™ are the unknown factors -and

()

In expression (8), the term sink,(+7y) is excluded for . to satisfy con-
dition (5).

2,4. Infinite Simultaneous Equations.

Infinite simultaneous equations are derived from the formal lsolutions
in the foregoing section and from the conditions between the adjacent
domains, i.e.,

&=0Cs ‘

oG, =6_CB} at r=d and 0<0<m, (10)
or or

{e=0Cs
%Lz_a;ﬁ} at y=0 and [z|<d. (11)
oy oy

Applying the operator
r cos2mbdd (m=0,1,2,...)
0

after substitution of (6) and (7) into (10), we have
{Jz;m }Cézm)_i__l_.gi 2n+1 .{J2n+1}cgn+1)_{ H;) }C{Zm)

2m em T n=0 (2n+1)2_ (2m)2 J£n+l . ng)z/
—-l ng p— ves
In the above, '
en=1 (m=0) }
=1/2 (m>0))’

and J,, J5, H® and H' are the abbreviations of J,(kd), J;(kd), H® (kd)
and H®’(kd) (p:non-negative integers). The expressions in the wavy
bracket are taken in the same order. The conventions are followed in
the subsequent reductions, unless otherwise stated.

Likewise, substituting (7) and (8) into (11) and applying the operator

gdcos M da (m=0,1,2, --.),
0 d
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we have
> K, ol =e,ld cos kil G40
} (13)
5 Ly sl = —efind sin ol 40
(m=0,1,2, --.),
where '
kd
K, .= S Tale)
(14)
L. (2n+1)5 Tinald) oo5 MT g,
z kd ‘
Eliminations of (™ from (12).and &™ from .(13) yield .-
1 2n+1
(2m) . 07 __ (1) 2n+-1)
C + € 'nz:o (2n+1) (2 ) (J2n+lH2m 2n+1H2m)C
2 1 ( |
=4 . =0,1,2, ---
e Td (m ) (15)
and .
Fond Sin kol 3 Ky, nC87 +od c0S knl 3° Ly, L850 =0 (16)
n=0 n=0

(m=0,1,2, ---).

Equations (15) and (16) are now the infinite simultaneous equations
to be obtained.

2,5. Reduction to F’Znite Simultaneous Equations.

The infinite simultaneous equations are reduced to finite simultaneous
equations in this section.

Approximation
Jn(2) =0 (m=2p +1)} (p: positive integers) - 1m
J.(2)=0  (m>2p+1)

for z<kd is applied upon expreésion (T)Iin the buffer domain B.
Using approximation (17)4 equations (15) and (16) are reduced to.

R T A gL U (I 40 B
kd Jon HY! 2m+1 =0 (Zn+41)*— —(2m)? Jen{rle(i,)f" 2n+2
= i . ¥ -._.._H]Z('z, (m:O, 1’ 2, cee, p) (18)

and
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k.d exp (ik,l) sin k lE ™ Xons1

2n

L Ied exp (ik,]) cos kol 3o Lmm X, =0 (19)

2=0 ofopt1
(m=0,1,2, -+, D)
where o
o Xpa=C§J

Equatlons (18) and (19) are normalized in order to avoid truncatlon errors
in the numerical caleculation by the computer. The normalization factors
are J, HY or J,. HY in (18) and exp (ik.) in (19). Using 2(p+1)
equations (18) and (19), the unknown factors

gim m=0,1,2, ---, 2p+1) , . (20)

are calculated through the use of the electronic computer. If one takes
the degree of the approximation 2p+1 high enough, an exact discussion
of waves begins to be possible. In the caleulation of (18), integrals
K, . and L, , which are expressed by (14) are computed by the same
procedure as that described in Section 2 of the fifth work concerning
long waves around an estuary (Momot, 1968). o ~

2,6. Computations of ¢, & and .

With a view to avoiding truncation errors in the computer, expres-
sion (8) in the bay is reduced to

L= j::ocm F.(3) cos %’ix . 1)

where
C.={" exp (—1ikal),

Fo(y) =~ exp (—ikw) [ exp (i-2knl+0)) +1].

Factor C, in the above expression is calculated from expression (13)
with a slight modification, i.e.,

= de -
or ; , b , (22)
—1 2 9
C.= L, . (2n+1)
" enknd Qn ZLnn 05

where
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1

P,= 7{exp (i-2k l)+1}

or

Qm=2i%,{exp (i-kal)-—ll }

The calculation of C, is made by the first expression of (22) except for
P,=0, while C, for P,~0 is obtained from the second expression. Wave

height ¢, in the bay is now computed by substltutlon of unknown factors
5" obtained in the foregoing section into (22).

For wave height ¢, substitution of (20) into the first expression of
(12) makes possible the caleulation of ™ in the formal solution 6),
which leads to the elucidation of waves in the open sea.

The direct substitution of (20) into (7) finally yields wave height ¢,
in the domain B.

3. Discussions

3,1. Application Range of Ippen-Goda’'s Theory.

Ippen and Goda (1963) derived an approximate theory for wave
induced oscillations in rectangular harbours with the limitation d< L
(d: a half width of the harbour, L: the wavelength) Their result is
presented in the following.

F\(z, y)=2cos ky+ (2A/z) sin kl-f(x, y) (23)
in the open sea,
Fylx, y)=Acosk(l+y) ' (24)

in the habour or bay,
where

2 2sinkl
——=cos kl— I,
e cos -

I= kdj Sg‘rf dz,
S, g)=kd | s‘;f ¢ ¢ cos (Ex/d)de,

r=yE—(kd)*.

Factor |A| of expression (24) is plotted in Figs. 3-1 to 3-9 for %d
and kl together with the value of |{{”| in the expression (8). These
figures reveal that Ippen-Goda’s approximate theory suits to discuss the
qualitative behavior of longitudinal oscillation up to kd=~3.0.
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Figs. 8-1 to 8-8. Comparisons of Ippen-Goda’s approximate theory and Momoi’s:
- exact theory for kd=0.5 to 2.6. The curves designated as M and 1.G. are based on
Momoi’s and Ippen-Goda's theories respectively. This convention is followed in Fig. 3-9.
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25t 1Al or 1LY
b 1.G |
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) ! Fig. 3-9. Comparison of Ippen-Goda’s
: on approximate theory and Momoi's exact
’ W kd=
15 : RY X/ theory for kd=38.0.
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Fig.3-9,kd= 30

8,2. Longitudinal Osczllatwn

Variations of [{”| versus k] are given in Figs. 4-1 and 4-2 for the
«<change of kd. These figures expose the following facts. For small kd
(the case of Fig. 4-1), the range of kI for [(”]|>2.0 exceeds that below

o
1
7 0.3 03
6
(o)
5 12 1.2 1.2
0.5 0.5 25
-4
0.8 0.8
Lo 1.0
3 2,0
2
, 2w
i ’ T e/ 15 .
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F|g4lkd=03tolo ' an42kd|21030

Figs. 4-1 and 4- 2 Variations of |6,®| for the change of %d and kl. The first
figure is relevant to the variation of kd from 0.3 to 1.0, the second to that from 1 2
to 3.0. The numeral stated on the‘curve denotes the value of kd.

2.0. The maximum value, which refers to the state of resonance of
longitudinal oscillation, becomes larger with the decrease of kd. If one
traces the cross points (X) on the curves, it is found that the value of
ki, corresponding to the resonance, decreases gradually from kl=(n+41/2)x
(n: non-negative integer) with kd. The above value attains minimum
value kl=nr+6.8 at kd=2.0, and increases- with further increase of kd.

Longitudinal oscillations in the bay are discussed by multiple reflec-
tions of two kinds of waves in the problem of an estuary. One of them
is the wave transmitted to the canal for normal invasion of. the incident
-wave and the other one the reflected wave for the incoming wave from
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Table 1. Degree ofv Agreement of |A®| é.nd |Eo)*

KD= 0.50000
KD= 0,50000
KD= 0.50000
0,50000
0.50000

0.0

0.15708
0.31416
0.47124
0.62832
0.78540
0.94248
1.09956
1.25664
1.41372
1.57080
1.72788
1.88496
2.04204
2.19911
2.35619
2.51327
2.67035
2.82743
2.98451
3.14159
3.29867
3.45575
3.61283
3.76991
3.,92699
4.08407
4.24115
4.39823
4,55531
4.71239
4.86947
5.02655
5.18363
5.34071
5.49779
5,65487
5.81195
5.96903
6.12611
6428319

0.0

0,15708
0e31416
0,47124
0.62832

0450000

2.00000
2,00000
= 2.00000
2,00000
2.00000
2,00000
2.00000
2,00000
2.00000
2,00000
2400000
2,00000
2.00000
2,00000
2.00000
2,00000
2,00000

2.,00000 2.67035
2400000 2.82743
2.00000 2.,98451
2.00000 3.14159
2,00000 3.29867
2.00000 3445575
2,00000 3.61283
2.00000 3.76991

.00000 3.92699
2.00000 4.,08407
2.00000 4.24115
2.00000 4,39823
2,00000 4.55531
2.00000 4071239

2,00000 4.86947
5.02655
5418363
5434071
5.49779
5.65487
5.R1195
5.96903
6.12611
6.28319

ARRARRRRR R

= 2.00000

A( INF
AU INF
A{INF
AU INF

z
=
-

AU INF)=

Al

At
Al
At
Al
At
Al
A(
AL INF)=
AU INF)=
AU INF)=

AUINF)=

2.00000)
2,180 4
2.44027
2.8275R
3.350

4.00°70C
4460892
4.70724
4420400
3.52R73
2.96187
2.54552
2.25089
2.045R7|
1.90732
1.82041
1.77635
1.7709 2,
1.80361
1.87752
2.00000
2.18394
2444987
2.,82758
3.35002
4. 00870
4,60892
4.70724
4420400
3.52873]
2.96187,
2454552
2.25089
2.04587
1.,90732
1.82041]
1.77635
1.77092
1.80361
1.87752]

2400000

1.78651
1.82309
1.87274]
1.93313

2.C00CH

KD= 1.00000
KD= 1,00000
KD= 1.00000
1.,00000
1.00000
1,00000
1,00000
1,00000
1.00000
1,00000
1.00000
1.,00000
1.00000
1,00000
1.00000
1.00000
1.00000
1.00000
1.00000
1,00000
= 1.00000
D= 1,00000
D= 1.00000

b= 1,00000
0= 1.00000
0= 1,00000
D= 1.00000
= 1,00000
D= 1.00000
0= 1,00000
D=
D=
D=
D=
D=

1.00000
1,00000
1.00000
1,00000
1.00000
1.00000
1.00000
1.00000
KD= 1.00000
KD= 1,00000
KD= 1.00000
KD= 3.00000
KD= 3,00000
KD= 3.,00000
KD= 3,00000
KD= 3,00000
KD= 3.00000
KD= 3,00000
KD= 3,00000
KD= 3,00000
KD= 3,00000
KD= 3.00000
Kp= 3,00000
KD= 3,00000

ARARRARRARRARARARRARAARRRARRARARA

xR R
ooo
T

KD= 3,00000 Ki

KD= 3.00000
KD= 3,00000

KD= 3.00000
KD= 3,00000
KD= 3.00000
KD= 3,00000

KD= 3.00000
Kp= 3,00000
KD= 3.00000
KD= 3,00000
KD= 3.00000
KD= 3,00000
KD= 3.00000
3,00000

KD=
KD= 3.00000

0.0

0.15708
0.31416
0.,47124
0.62832
0.78540
094248
1.09956
1.2566%
1,41372
1.57080
1,72788
1.88496
2.04204
2419911
2.35619
2.51327
2.67035
2.82743
2.98451
3.14159
3429867
3.45575
3.61283
3.76991
3.92699
4408407
4,24115

. 4439823

4,55531
4e71239
4,86947
5.02655
5.18363
5.34071
5.49779
5.65487
5.81195
5496903
6.12611
6.28319
0.0

0,15708
0.31416
0.47124
0.62832
0.78540
0.94248
1.09956
1.25664
1.41372
1.57080
1,72788
1.88496
2.04204
2419911
+35619
2.51327
2.67035
2.82743
2.98451
3.14159
3.29867
3445575
3,61283
3.76991
3.92499
4.0R407
4.26115
4439823
4.55531
4671239

KL= 6,28319

AUINF)=

A{INF)=

ALINF) =

AU INF) =

AU INF)=

AL INF)=

AlLINF)=

A{ INF)=

AUINF)=

AU INF) =

AUINF) =

AU INF) =

AU INF) =

A{ INF) =

ACINF)=

AUINF) =

AUINF)=  1.68199(
ACINFY=  1,71437}
AUINFI=  1.77628

ALINF)=  1.87040
ACINF)=  2.00000]

A{INF)=  2.16720)

AUINFI=  2.36880f,
A{ INF)=. 2,58R02

ALINF)=  2.78417

AU INF)=  2.89508

AUINF)=  2.87281

ACINF)=  2.72778

AUINF)= 2.51820

ACINFI=  2.30149

AUINF)= 2.10989

A{ INFY=  1.95469

AUINF)= 1.83673

ACINF)= | 1.75321

AUINE)=  1.70096

ACINF)=  1.67759

AUINF)=  1,68199

ACINFY=  1.71437}
ACINF)=  1.77628

AUINF)=  1.87040};
ALTNE)=  2.00000%
AUINF)=

AL INF)=

A({ INF )=

A{ INF )=
A INF
Al INF
AL INF
AUINF
A( INF
AUINF
At INF
AUINF
A INF
AUINF
AC INF
AUINE
AL INF
AUINF) =
A{INF)=
AUINF)=

AUINF) =

879

* KD, KL and A(INF) denote, respectively, kd, kl and |A©|. The line inserted into-
the numerals of A(INF) denotes the critical order of |A©)|above which the numeral is in
complete agreement with that of [{@].
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Table 2. Degree of p for A%, =0.1*

KDz 0.05000 KL= 0.0 ACINF)= 2,00000 A(P)= 1,82469 P=23 EPS= 0,10
KD= 0.,05000 KL= 1.57080 A{ INF}= 14.97135 A(P)= 13,65900 P=23 EPS= 0.10
KD= 0.05000 KL= 3.,14159 A{ INF)= 2,00000 A(P)= 1,82469 P=23 EPS= 0.10
KD= 0,05000 KL= 4,71239 A{ INF}= 14,97135 A(P)= 13.,65900 P=23 EpS= 0.10C
KD= 0.05000 KL= 6.28319 A(.INF)= 2,00000 A(P)= 1,82469 P=23 EPS= 0.10

1.98043 P=11 EPS= 0,10
8.74194 P=11 EPS= 0.1C
1.98043 P=11 £PS= 0,10
8474194 P=11 EPS= 0.10C
1.98043 P=]1 EPS= 0,10

KD= 0.10000 KL= 0.0 ACINF
KD= 0,10000 KL= 1.57080 A( INF
KD= 0.10000 KL= 3.,14159 A{.INF
KD= 0,10000 KL= 4,71239 A( INF
KD= 0.10000 KL= 6428319 A{ INF

2.00000 A(P)
8.82835 A(P)
2.00000 AlP)
8.82835 A(P)
2.00000 A(P)

naonmann

o nagu

KD= 0,20000 KL= 0,0 A( INF)= >2.00021 AP

)= 1.96328 P= 6 EPS= 0.10
KD= 0,20000 KL= 1.57080 Al INF)= 5,35740 A(P)= 5,4R3685 p= & EPS= ‘0.10
KD= 0.20000 KL= 3.14159 A(INF)= 2.00021 A(P)= 1.96328 P= & EPS= 0,10
KD= 0.20000 KL= 4,71239 A{INF)= 5,35740 A{P)= 5,48685 p= & EPS= 0.10
KD= 0.20000 KL= 6.28319 Al INF)= 2,00021 A(P)= 1.,96328 P= 6 EPS= 0.10
KD= 0.30000 KL= 0.0 A{INF)= 2,00000 A(P)= 1.,90645 P= 4 EPS= 0,10
KD= 0430000 KL= 1,57080 A{ INF)= 4,07106 A(P)= 4,27522 P= 4 EPS= 0.10
KD= 0430000 KL= 3.14159 A(INF)= 2.00000 A(P)= 1.90645 P= 4 EPS= 0.10
KD= 0.,30000 KL= 4.,71239 AUINF)= 4,07106 A(P)= 4,27522 P= 4 EPS= 0.1C
KD= 0.30000 KL= 6.28319 Al INF)= 2.00000 A(P)= 1.90645 P= 4 EPS= 0.10
KD= 0.40000 KL= 0.0 ACINF)Y= 2.,00965 AlP)= 2,13083 P= 3 EPS= 0.10
KD= 0,40000 KL= 1.57080 A{ INF}= 3,40176 A(P)= -3,60690 P= 3 EPS= 0.10
KD= 0.40000 KL= 3,14159 A{ INF)= 2,00965 A(P)= 2.13083 P= 3 EPS= 0.10
KD= 0.,40000 KL= 4,71239 A{ INF}= 3,40176 AlP)= 3,60690 P= 3 EPS= 0.10
KD= 0.40000 KL= 6.28319 A({INF)= 2,00965 A(P)= 2,13083 P= 3 EpS= 0.10
KD= 0450000 KL= 0.0 ALINF)= 2.00000 A(P)= 1,80839 P= 2 F 0.10.
KD= 0.50000 KL= 1,57080 A{ INF)= 2,96187 AlP)= 3,24565 p= 2 0.10
KD= 0.50000 KL=.3,14159 A{INF)= 2,00000 A(P)= 1,80839 p= 2 EPS= 0.10
KD= 0.50000 KL= 4.71239 A( INF)= 2,96187 A(P)= 3,24565 P= 2 EPS= 0.10
KD= 0450000 KL= '6.28319 A{ INF)= 2,00000 A(P)= 1.80839 P= 2 EPS= 0.10
KD= 1.00000 KL= 0.0 ACINF)= 2,00000 A(P)= 2,14061 P= 1 EPS= 0.10
KD= 1.00000 KL= 1,57080 A{ INF)= 2,10989 A(P)= 2,25822 P=1 EPS= 0.10
KD= 1.00000 KL= 3,14159 A{INF)= 2,00000 A{P)= 2.14061 P= 1 EPS= 0.10
KD= 1.00000 KL= 4.71239 A{ INF)= 2,10989 A(P)= 2,25822 pP= 1 EPS= 0,10
KD= 1.00000 KL= 6.28319 A{ INF)= 2.00000 A(P)= 2.14061 P= 1 EPS= 0.10
KD= 2,00000 KL= 0.0 AUINF)=  2,00000 A(P)= " 2,01911 P= 1 EPS= 0.10
KD= 2,00000 KL= 1,57080 A({ INF)= 1,87672 A(P)= 1,89465 P= 1 EPS= 0.10
KD= 2,00000 KL= 3,14159 Al INF)= 2,00000 A(P)= 2,01911 P= 1 EPS= 0.10
KD= 2.00000 KL= 4,71239 A({ INF)= 1.87672 A(P)= 1,89465 P= 1 EPS= 0.10
KD= 2.00000 KL= 6,28319 A{ INF)= 2,00000 A(P)= 2,01911 P= ] EPS= 0.10
KD= 3.00000 KL= 0.0 ACINF)= 2.00000 A(P)= 2,00362 P= 1 EPS= 0.10
KD= 3.00000 KL= 1.,57080 Al INFl= 1.99353 A(P)= 1.99714 p= 1 EPS= 0.10
KD= 3.00000 KL= 3,14159 A(INF)= 2,00000 A(P)= 2,00362 P= ] EPS= 0.10
KD= 3,00000 KL= 4,71239 A{ INF)= 1.99353 A(P)= 1.99714 p= ] EpPS= 0.10
KD= 3.00000 KL= 6.28319 A(INF)= 2.00000 A(P})= 2,00362 P= ] EPS= 0,10

* The representation KD=kd, KL=Fkl, A(INF)=|4 )|, AP)=|A®|, P=p and EPS=
AL, are employed, of which the conventions are followed in Table 3.

the inside of the canal. These problems have already been discussed
in a series of papers concerning long waves in the vicinity of an estuary
(Momot, 1968 and 1970b).

Let T and R be the transmission and reflexion coefficients at the
mouth of the estuary, respectively, for the invasions of the incoming
wave from the open sea and from the inside of the canal. Using the
same notation and definition as in Section 2, the transmitted wave from
the open sea to the bay is expressed as Te ™', The transmitted wave
produces the reflected wave at the head of the bay (y=—10) to be des-
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Table 3. Degree of p for 49,,=0.01

KD= 0.05000 KL= 0.0 A{ INF)= 2.00000 A{P)= 2.01138
KD= 0,05000 KL= 1,57080 A({ INF)= 14.97135 A(P)= 14.88709
KD= 0.05000 KL= 3,14159 Al INF)= 2.00000 A{P}= 2,01138
KD= 0,05000 KL= 4,71239 A{ INF)= 14,97135 A(P)= 14.,88709

KD= 0.05000.KL= 6.28319 Al INF)= 2.00000 A(P}=. 2.01138
KD= 0.10000 KL= 0.0 A{ INF)= 2.00000 AlP)= 2.01899
KD= 0.10000 KL= 1.57080 Af{ INF)= 8.82835 A(P)= 8.91218
KD= 0.10000 KL= 3,1415% A{ INF)= 2,00000 A{P)= 2,01899
KD= 0.10000 KL= 4,71239 A{ INF)= 8,82835 A(P)= 8.91218
KD= 0.10000 KL= 6.28319 A{ INF)= 2,00000 A(P)= 2.01899
KD= 0.20000 KL= 0.0 AUINF)= 2.00021 AlP)= 1.99362
KD= 0.,20000 KL= 1.57080 Al INF)= 5,35740 AtP)=" 5.37542
KD= 0.20000 KL= 3,14159 A{ INF)= 2.00021 A[P)= 1,99362
KD= 0,20000 KL= 4.71239 A({ INF}= 5.35740 A(P)= 5,37542
KD= 0.20000 KL= 6,28319 A{ INF)= 2.,00021 A[P)= 1,99362
KD= 0.30000 KL= 0.0 AULINF)= 2,00000 A(P)= 2,01129
KD= 0,30000 KL= 1.57080 Al INF)= 4.07106 A(P)= 4,04832
KD= 0.30000 KL= 3.14159 Al INF)= 2,00000 A(P)= 2,01129
KD= 0.,30000 KL= 4.71239 A{INF)= 4,07106 A(P)= 4,04832
KD= 0.30000 KL= 6.28319 A[INF)= 2.00000 A(P)= 2,01129
KD= 0.40000 KL= 0,0 A{ INF)= 2.,00965 A(P)= 2,00618
KD= 0.40000 KL= 1,57080 A{ INF}= 3.40176 A(P)= 3.39589
KD= 0.40000 KL= 3,14159 Al INF)= 2.00965 A(P)= 2,00618
KD= 0,40000 KL= 4.,71239 A{INF)= 3.40176 A(P)= 3,39589
KD= 0,40000 KL= 6.28319 Al INF)= 2.00965 AlP}= 2,00618
KD= 0.50000 KL= 0.0 A{INF)= 2.,00000 AlP}= 1.98165
KD= 0,50000 KL= 1.57080 A[ INF)= 2.96187 A(P)= 2,934¢9
KD= 0,50000 KL= 3.14159 A{INF)= 2.00000 AlP)= 1.98165
KD= 0.50000 KL= 4,71239 A{ INF)= 2.,96187 A(P)= 2,934
KD= 0.50000 KL= 6.28319 A{ INF)= 2.00000 A(P)= 1.98165
KD= 1.00000 KL= 0.0 A{ INF)= 2,00000 A(P)= 1.99062
KD= 1.00000 KL= 1.57080 A{ INF}= 2.10989 A(P)= 2,09999
KD= 1.00000 KL= 3,14159 A(INF)= 2.00000 A[P}= 1.99062
KD= 1.00000 KL= 4,71239 A{ INF}= 2.10989 A(P)= 2,09999
KD= 1.00000 KL= 6.28319 A{INF)= 2.,00000 AlP)= 1.99062
KD= 2.00000 KL= 0.0 ACINF)= 2.00000 A(P)= 2.00197
KD= 2.00000 KL= 1,57080 Al INF)= 1.87672 AlP)= 1,87487
KD= 2.00000 KL= 3,14159 A( INF)= 2,00000 A(P)= 2,00197
KD= 2,00000 KL= 4.71239 A({ INF)= 1.87672 A(P)= 1,87487
KD= 2,00000 KL= 6.,28319 A(INF)= 2.00000 A(P)= 2.,00197
KD= 3.00000 KL= 0.0 ACINF)= 2.,00000 A(P)= 2,00362
KD= 3,00000 KL= 1.57080 A{ INF)= 1.99353 A(P)= 1.,99714
KD= 3,00000 KL= 3.14159 A{ INF)= 2.00000 A(P)= 2,00362
KD= 3.,00000 KL= 4.71239 A{ INF)= 1.99353 A(P)= 1,99714
KD= 3.00000 KL= 6.28319 A({ INF)= 2.00000 A(P)= 2,00362
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cribed by Te™**  The wave expressed lastly is reflected at the bay
mouth and propagated toward the bay head, which is described as
TRe® . This wave is again reflected at the bay head to yield the

wave TRei#+ikv,

The above procedure is repeated. Let W, be the wave produced as

the result of p time reflections at the bay mouth. W, is given by

Wp: zp: TRnei2nkl—iky+ i TRneiZ(n+l)kl+iky
n=0 n=0

After a simple algebraic reduction, the above expression is reduced to
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W,=A"cos k(l+v), (25)
where
AP =2 i 1— Rrtigittothkl ‘ ~ (26)

1— Rei®+
If p tends to infinity, the relation

o ~Tlim A®

oo
— A
ikl
g @
must hold.

The exact theory in Section 2 is ascertained numerically through
the use of relation (27) in order to avoid unexpected results arising from
truncation errors in the numerical calculations. The calculated results
are shown in Table 1. Inspection of this table reveals that |A“’[ is in
very good agreement with |{P].

Let A%, be the relative error of A® from A“ to be defined as

A(oo) _A(P)

et (28)

A=

If one sets a critical value A%, of A%, the smallest p making A%,
<AY,, is evaluated from (28). The evaluations are carried out for
A =01 and 0.01. The results are arranged in Tables 2 and 3.
Inspection of these tables exposes the following. The degree of p
decreases rapidly with increase of kd, which denotes strong trapping of
the wave in the bay for very long wavelength. The value of p for the
one percentage error (Table 3) is nearly twice of that for the ten per-
centage error (Table 2). When kd=1.0, the error becomes less than 10
(or 1) percent after one (or three) time reflection at the bay mouth for
AL,,.=0.1 (or 0.01). ' '

3.3. Mouth Correction.

b

The mouth correction for free oscillations in the rectangular bay is
discussed in this section. The uncorrected period 7', of the free oscil-
lation of the bay, having the node at its mouth and the loop at its
end, is given by the formula

u

_ 2zl (29)
Viz/2+nz).
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(V: the velocity of the long wave and m: the non-negative integers),
provided the correction due to the mouth be neglected. The corrected
period T, may readily be found in the following way.

The corrected period of the free oscillation corresponds to that of
the resonance of the wave in the bay discussed in the foregoing section.
In order to derive the expression of the resonance period, equation (27)
is employed, which is obtained on the basis of the method of multiple
reflection. The validity of the use of expression (27) in place of the
rigorous expression {{° in section 2 is well ascertained by Table 1. Using
(27), the period T, is derived as follows.

The absolute value of (27) becomes

o 2|T
jai=21, 30)
where
|B2=B-B  (B: the conjugate value of B)
=1—Apeieti™— Ape-ie- 4 A% (31)
and
R=Age'e (the vector expression of complex R).

The procedure making |A“’| a maximum for variable k! in (30) can be
replaced by that making |B|* a minimum. Differentiation of |B|* of (31)
yields a minimum point of k! and the maximum value of |A“|, i.e.,

M=——C-4nz  (1=0,1,2, ) (32)
and
2| T}
A = . 33
A =7 (33)

Setting down —a==—2a, in (32), the corrected period T, becomes

2rl
I= V(z/2+n7—ay) n=0,1,2, ), 84
where the relation k=2x/VT, is employed. As found in (32), the mouth
correction is dependent only upon « (the phase of the reflexion coefficient
for invasion of the incoming wave from the inside of the canal).
The ratio of the corrected period to the uncorrected is given, from
(29) and (34), by

T |2+ nz
== =0.1.2 ...
T. w24nr—ay m=0,1,2,--). (85)
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Letting » tend to infinity, the expression (35) is reduced to
T,

u

—1 (n—o0).

The above relation denotes that higher modes of free oscillations are .
less sensitive to the mouth correction than the fundamental mode.

The calculated results for the fundamental oscillation (n=0) are ar-
ranged in Table 4. According to this table, the ratio of the corrected

Table 4. Mouth correction in the rectangular bay*

KD= 0,05 AL= 0,12356 KL= 1,44724 L/B=14.472 TC/TU= 1,08538 AMAX= 40,33
KD= 0406 AL= 0414123 KL= 1.42957 L/B=11.913 TC/TU= 1.09879 AMAX= 33,69
KD= 0,08 AL= 0,17349 KL= 1,39731 L/BR= 8,733 TC/TU= 1.12416 AMAX= 25.41
KD= 0410 AL= 0.20252 KL= 1436828 L/B= 6,841 TC/TU= 1.14801 AMAX= 20.45
KD= 0,20 AL=.0.31690 KL= 1.25390 L/B= 3,135 TC/TU=-1.25273 AMAX= 10.59.
KD= 0.30 AL= 0.40159 KL= 1.16921 L/B= 1.949 TC/TU= 1.34347 AMAX= 7.33
KD= 0,40 AL= 0.,47012 KL= 1.10068 L/B= 1.376 TC/TU= 1.42712 AMAX= 65.74
K= 0.50 AL= 0.52719 KL= 1.04361 L/B= 1.044 ‘TC/TU= 1.50516 AMAX= 4,75

* The representations KD=kd, AL=ay, KL=k, L/B=I/b, TC/TU=T./T., and AMAX
=]|A®)|max are employed.

period to the uncorrected begins to be gradually larger than 1.0 with
the deecrease of I/b from infinity (I: length of the bay and b: breadth
of the bay) to amount finally to about 1.5 for I/b=1.0. The values in
Table 4 are plotted in Fig. 5 together with those obtained by Honda et
al’s (1908) on the basis of approxi-
mated method. Fig. 5 reveals that
Momoi’s result is in very good agree-
ment with Honda’s in the range
over l/b="T, while the difference be-
comes more significant with the de-
crease of [/b below 7. This departure
might be ascribed to the approxi- .
mation employed 'in Honda et al’s
Fig. 5. Comparison of the mouth  theory  Deriving their theory, they
corrections calculated by Momoi’s and . R
Honda et al’s theories. employed approximations that the
potential energy in the open sea
might be neglected as compared with that in the bay, that there exist
no lateral modes in the bay and further that I>»>b. These approximations
may be acceptable only for a relatively small kd in which the wave
height in the bay is great compared with that in the open sea as as-
certained from the values of |A* |... in Table 4, and in which the lateral
modes are of negligible order. Since small values of kd for resonance,
as shown in Table 4, refer to large values of I/b, the agreement of

Tc/Tu
6
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Momoi's and Honda et al’s results is more favourable in the range of
larger 1/b than smaller 1/b.

8,4. Lateral Oscillation.

The amplitude factor of higher modes is discussed. The first mode
&) of expression (8) is plotted as funection of kd and kI in Fig. 6.
Since the first mode in the bay is described as {{ cos k,({+¥) cos (zz/d)
in complete form, [({"| denotes
the amplitude of the first mode
at the midpoint and the two 152" P
corners of the head of the bay S / """"""""""""""""""
(y=—I, x=0 and +d). In Fig.
6, it is of greatest interest that
the first mode disappears for Heemee L ek N2
kl=nz (n: positive integers).

After trying various numerical 2.6

calculations, all the higher modes 20

seem to vanish for the above % 2

critical values kl=mnr, though Fig. 6. Variation of |Z,®| for the changes

the computed results are not of kd and kI. The numerals on the curve
A N denote the values of kd. :

shown in this paper. An ap- :
proximate verification for the above fact, though not complete, is given
in the following. A thorough verification will be made after the re-
flexion coefficient at the mouth of the canal has been discussed for the
outflow of the wave of higher modes. The amplitude factor for higher
modes is derived by the method of multiple reflexions under a certain
assumption,

For the arrival of the incident wave e *'-*' from the open sea at
the mouth of the estuary, the higher modes generated in the canal are
expressed as

g :mi::lee—ikmy cos ﬂdﬂx# (36)

where T, is the amplitude factor of higher mode. The wave in (36) is
reflected at the bay head to produce the retrograding wave

L0=3 T,en v+ cos M 37)

m=1
Supposing that the wave reflected from the bay head, expressed by
(37), does not reach the bay mouth with a sufficient magnitude, a slight
amount of the wave is reflected at the mouth toward the inside of the
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bay, which may be permitted to be set equal to zero. This supposition
might be accepted, if I/d is large enough in the range kd<<z. The
above assumption is employed repeatedly for the reflected wave of the
above type. The zeroth mode of the reflected wave from the bay head
is Te*v*t™ a5 described in Section 3,2, which produces the higher modes
of the wave reflected at the bay mouth, i.e.,

¢ =”§1Rm Te**'e="n¥ cos %E—x (38)

In the above, R, is the amplitude factor of higher mode of the reflected
wave (.., at the mouth of the estuary for the invasion of the incident
wave e~ % from the inside of the canal as expressed by

higher modes of {,,=3 Rue~*" cos 2 s,
m=1

The reflected wave of (38) at the bay head is given by

L0 =3 R, Te™env+? cog %x. (39)
m=1 .
Under the assumption employed in the present analysis, the reflected
waves of (39) are no more produced at the bay mouth.
The above process is repeated. After the m-th arrival of the re-
flected zeroth mode at the bay mouth, the higher modes produced at
the bay mouth and head are, respectively,

n - n—1,2nikl ,—1 T
(=3 BoTR ¢ He cosme (40)
and
o 2nikl ik T
C:n)___mZ;IRmT m—1g2nikl piky 42 oo %Lx (41)

Using (36) to (41), the higher mode waves (i, in the bay, after
the (n+1)-th arrival of the zeroth mode at the mouth, are given by

n

F

1
L= (L +L)

:mi:lei,:" cos k., (y-+1) cos 'rr(;r: x, (42)

where ,

Ag=20n( T+ BT LT ) (43)
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after a few algebraic reductions. If » tends to infinity, (43) is reduced
1o

2tk
A= 2e“‘m’<Tm + %)- U

Within the range of the assumption employed in the above development,
the relation

G AP (45)

must now hold, where {{™ is the amplitude factor of higher mode in the
bay for the exact theory developed in Section 2.

Using the relations T=1—R and T,=R, (m>1), the verification
of which is carried out in the appendix, the amplitude factor (44) is
reduced to

1 — g2kt

Putting kl=mz (n: positive integers) in (46), this expression is found
to be completely equal to zero. The vanishing of [({’| at kl=nrx in
Fig. 6 is now ascertained.

As known from (46), |Z] takes a maximum value for kl=mz+=z/2
{(m: non-negative integers).

AP =2¢%n!T,,» (46)
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Appendix

In this appendix, the verification of the relation

TR+ =0, (al)
(@=1, ¢,=0 for m=1)
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is performed. {7 and {{¥ are the amplitude factors of the waves pro-
duced in the canal, respectively, for the invasion of the incoming waves
e~* and ¢** from the open sea and the head of the canal (refer to Fig.

al).
described as

and
where
1Y |a-iky
H €
1343 l
AR x
I =24 7
Case of
Inflow
oy
W
/////
Ccse of
Outflow
;(M)
e+lky

Fig. al. Nomencla-
ture of the model used.

where

and m are non-negative integers.

The wave heights {,, for the former and , for the latter are

E (me=in¥ cos ﬂz{r—x (a2)
[ee]
La=e+ 3 (e cos %x, (a8)

temfE (Y.

For the geometry of the model used, Fig. al
should be referred to. The expression (a2) refers
o (13) of the fifth work (Momoi, 1968) concern-
ing the long wave around the estuary and the
expression (a3) to (4) of the seventh paper (Momot,
1970b), the former of which is referred to as
paper V and the latter as paper VII in the fol-
lowing discussions.

The amplitude factors ¢ and (Y are ex-
pressed as

= I KA (ad)
from (9) in paper V
and
r= Z K .(5 —¢n (ab)

€ kd n=0
from (9) in paper VII

e=1, e,=1/2 (m=1),

C(Zn)

(Zn)

("‘n)

of paper V,

@n) —

cld

K, =1(J:, m)

of paper VII,
of paper V

The addition of (a4) to (ab) yields
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(m) —

g S )~ 6)

(m=0,1,2,:-).

Expression (a6) will be used later.
Finite simultaneous equations for determining {2y and &7+ (={§*
in paper V) are given by (6) and (7) in paper V as follows.

1
Lol 5 Ki WL+ 3 LG =0 (a7)
and

!
eull) —ikd T Pr L1 =2, (a8)

where the following transfer of the notations is made, i.e.,
k.=k{™ in paper V,
LL,,.:I(ﬂfl, m> in paper V,
r

2n+1
2n+1)*— (2m)*

and m=0,1,2, ---, 1. :
Likewise, C:%;"’ and C&+ (=8 in paper VII) are given by equa-
tions (11) and (12) in paper VII, i.e.,

{ Tl B (o) — T4 () i )

m,n

i
k d nn Gl + 20 Lo C ™ = 20kd (a9)

and
en G —%de P,.Ciitt= (al0)

where m=0,1,2, --- [
The additions of (a7) to (a9) and (a8) to (al0) yield

lcd 2 K, &+ Z L} .8 =g, 2ikd (all)
and
end™ —ikdY P, 40 =2, (@12)
where -
£ =L 4L (al3)

and m=0,1,2, ---,1[.
Applying the operators
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d
S cos M oz (m=0,1,2, --.)
0 d

to the formula relevant to the Bessel function
o 1 : _
S ——du(k2)=1,
n=0 sn

we have
K

&y

ERM

£ o =l (14)

Using (al4), equations (all) are reduced to

> o ! 7 (21’!)___2__) kd L 4 2n41) —
DN ME o 3 Lag™ =0 (a15)

én

(m:()’ 1’ 2! ...’l)’

A slight modification of equation (al2) yields

5m<$(2m) __?_)__ikdéopwé(mn =0 (al6)

m

(m=0,1,2, ---,1).

Solving equations (alb) and (al6) with respect to £®”—2/e, and £@+0
(n=0,1,2, --.,1), we have

L e =2
& . (n=0$ 17 21 Tty l) (a'17)

2141 2n+1) —
VLR =0

through the use of (al3). ’
Substitution of the first expression of (al7) into (a6) and use of

(al4) give the final result, i.e., .
(O =pn |

The verification is now completed.
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