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Introduction

Since a theoretical seismogram was first calculated for the torsional
disturbances on the surface of a homogeneous elastic sphere [Satd et
al. (1962)], it has become one of the powerful tools of studying focal
mechanisms and of interpreting various phases recorded on actual seis-
mograms. Works by Kanamori (1970a, 1970b) and Chander et al. (1968)
are the most recent ones along this line. In these studies, however,
disturbances with a limited period range are synthesized assuming source
mechanisms appropriate for their own purposes. On the other hand,
theoretical seismograms calculated by the present authors cover a wide
range of period from that of the gravest mode to about 10 seconds, and
a stress was assumed on the free surface or on a surface within the
earth [Sato et al. (1968, 1970), Usami et al. (1970)]. These situations
inevitably lead the authors to the study of the effect of source mechanism
to body and surface waves found in theoretical seismograms.

The theoretical aspects of the calculation of disturbances due to
various kinds of force systems at the source region have been given by
Saito (1967), Singh and Ben-Menahem (1969a, 1969b) and R. Sato (1969)
in elegant forms. In the present paper, a similar problem was pursued
using somewhat different methods with special attention to the contribu-
tion of P, S1 and S2 waves to the resulting disturbances. Convenient
expressions for computing theoretical seismograms are also given for
typieal kinds of force systems. This series of papers, the present one
being the first, intends to prepare seismograms expected on the surface
of the earth for various kinds of focal mechanism. It is also intended
to furnish the first approximation of the mechanism of earthquake by
the comparison of the actual seismograms with the theoretical ones.

Part 1. Basic Principles

A. Expression of Source Function

§ 1.1 Expression of Displacement due to Body Force
Expression of displacement in a homogeneous elastic medium due to
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a body force applied within the medium is given in the famous book by
A.E. H. Love (1934). Body force per unit mass K and displacement U
are expressed as

K=grad ¢ +rot-rot ¢

1-1-1
U=grad ®+rot-rot ¥ ( )

and they are related to each other through the equation of motion,
namely,

2
(A+2p) grad-div U—prot-rot U—|-pK paaTU v(1~1-2)

Displacement U is derived from the solutions of the equations

A+2u) 7P+ pdp= p~—f@

ot?
(1-1-3)
—prot-rot B+pAd= pa—zB
where . i
A=rot ¢, B=rot¥. (1-1-4)

The solutions of the equations (1-1-3) are

4VP m ple=r/Vad ;
jEorm——

Ve and V; are the velomtles of P and S waves and the integral covers
all space ». r is the distance to a point in v.
It is well known that scalar ¢ and vector A4 are expressed as

e L = () |
:im %, (rot/ K)dv' = —im [grad’ (,%) <K |dv

Notation (') on the upper right of differential operators means the dif-
ferentiation with respeet to a point (x/, %/, 2/) in the volume +’. All
the forces applied are included in the volume v'.

Employing a funection F(t) introduced by Keilis-Borok (1950)

47r Vit

(1-1-6)
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Ft) :j’dt”g'"x(t') dt’ (1.1-7)

the function I(t) which will appear in the integral expression of @ and
B is

rlvV

I, V) =j 'K(t—t')dt’ :gr/VPK(t— t')dt'rds
0 0

’ , (1-1-8)
=—F({t—r/Vy)+F{) —V—F’(t—r/Vp)

Putting the relation (1.1.6) into (1.1.4), the scalar and vector potentials
expressing the displacement due to a body force K distributed in the
volume v’ are obtained as

@zi”ﬂdiv(—}o— Flt—r/ VP)>~grad<%o-) : F(t)]dv'

B=—L{f[[ rot %"F(t“"ro/Vs> grad(r()) F() [dv" 29

In deriving this formula, the relation (1.1.8)
andl the following integral were used

“grad’(i>d8= 0 rol 7T
s B 2 1
— A4z grad(—) To>T
\ : T

0

(1-1-10)

The notations 7, B and r are seen in
Figure 1 and S is the spherical surface of
radius r from the observation point P(z, v,
2).

When the external force is concen-
trated at the origin, K, is defined by

Fig. 1.

Kozpm Kdv' (1-1-11)
and the formula (1.1.9) is reduced to
1
(D—Fp[dlv< -F (t—fro/VP> grad< 0) ]
R

B=— 4;{0[1*0’5(;0 F(t—ro/Vs> grad( > ] i3
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where

m@:f&ﬂwmwm# (1-1.13)

§ 1.2 Force System and Expression of Potentials

General solutions of vector and scalar displacement potentials due
to arbitrary force systems were obtained in the previous section and
they will be applied to the force systems of special interest. In this
section, a point source is assumed at the origin and the formula (1.1.12)
is employed. Solutions for a force system distributed within a volume
v’ will be obtained by integrating the solutions for a concentrated force
over this region.

The displacement is given by

U=grad ¢+rot B 1-2-1)

Since F,(t) is a function of coordinate (z’, ¥/, 2/) and not of (z, ¥, 2),
the rotation and divergence of F,(t) with respect to the latter coordinate
system vanish. Therefore, the contributions of the scalar and vector
potentials to displacement from the second terms of the right-hand side
of the equations (1-1-12) cancel each other. Thus, these terms will be
disregarded in this study.

a) Single Force. We assume that

F(t)=1,-F,- F(t) (1-2-2)

where 1, is the unit vector in the direction of applied force, and F); the
magnitude of applied force. A polar coordinate referred to the Carte-
sian coordinate (x, ¥, 2) is introduced. The direction of a unit vector
1, is expressed by (0,/, ¢/) and the position of observation point by
(70, 6o, ©0).

Then we have

o= 4FA [cos 6,-cos 0, +sin 0, sin by’ - cos(p,—¢,’) |- d G(Vy) (1-2.3)

o dr,
where G(V,) stands for (1/r,) - F(t—7,/Vy). The vector potential B is ex-
pressed by :

F,

B=—
4rp

rot {H, 0H 1 aH}T-G(Vs)

30, sinf op, (1.2-4)

H=5sin 6,-sin 8, - cos (¢, — ¢,

Suffix 7, represents the polar coordinate (r,, 6,, ¢,) and the notation
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Fig. 2. Relation between coordinate systems (x, y, 2) and
(x'", y", 2”7). The former is nothing but the (z, y, 2) system
in Figure 1 referred to the source point, the latter being intro-
duced to give simpler expressions to force system.

{ }.,, means that the expressions inside are the components of a vector
referred to this coordinate system.

b) Single Couple. A rectangular coordinate (x”, y”, 2”) is introduced
as shown in Figure 2. This system is related to the original one (x, ¥,
z) through Eulerian angles ¢/, ¢/, ¢/. The former is obtained by
rotating the latter around z axis by ¢,/, around Ok by 6,/ and around 2”
axis by ¢’. The direction cosines between the axes of two systems are

x Y 2z
x” cos ¢, -cosd, - cos ¢,/ sin ¢, -cos 6,/ -cos ¢," — sin b, -cos ¢/
—sin ¢y -sin ¢y +cos ¢, - sin ¢’ '
y” —cos ¢, -cos0,-sin¢,’  —sing, -cosd, -sin ¢, sin 8,/ -sin ¢’
—sin @y - cos ¢y +cos ¢, - cos ¢,/
2" sin 8, - cos ¢,/ sin 0, - sin ¢/ cos 0,/
(1-2-5)

Assuming a single couple forece in the z”—4” plane as in Figure 3,

the function corresponding to LE(t——%}"—) in the expressions (1-1-12)
T P

becomes

2 [1 r y o [1 »
_W{TDF()(t_ : )}.621, = " {‘/):;10'M0'F<t‘—' 71-)} (1-2-6)
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where M, is the moment of a single couple,
namely, :

M,=F,-oy"
Equation (1-2-6) is reduced to

=—1, 0 GV} M, (1-2.7)

oy

Fig. 3. Single couple
force system in the o’/ —y"/

Since G(V;) is a function of 7, only, this can plane

be written as

d
=—M, 1,-2-
o dr,

G(V5)

D=sin ;- cos ¢, - sin(p,— ¢,’) +sin ¢’ (cos b, sin §,” —sin G- cos 8, - cos (P, —@y’})
1-2-8)

Therefore, the scalar and vector potehtials for a single couple are readily
obtained by putting (1-2-8) into (1-1-12).

o=— Mo .Q-J.le-{iz—G(Vp)—i 2 G(VP)}
4<47rp dr, To AT
: (1-2.9)

M, ' oR, 1 0R, d
B=-"".rot{R,2, Q, — 2y -GV,
Amp ro { 00, sind, 0¢p, }ro dr, ( S):

R,=sin 6,-cosf, - cos ' - cos(go— o)
—c08 0,-sin 6, - cos ¢’
+sin 6,-sin ¢, - sin (@, —@y’)
(1-2-10)

2,2

¢) Dip Slip. First, two co-
ordinate systems (x, %, ;) and (x,
Yy, 2) as shown in Figure 4 are
introduced. The direction of strike
of a fault plane is given by the
angle 7 measured from the x-axis
and the dip angle ¢ is defined as
in the Figure 4. x,-axis is taken

as the direction of the strike, .- Fig. 4. Double couple force system as-
. dicul t is Ivi sociated with dip and strike slip faults. 7 is
axis perpendicular to x;-axi1s 1yINg  ¢he direction of the strike and & the dip

in the fault plane and =zs;-axis is angle. The coordinate system (21, 22, z3) is

. referred to the fault, the x; —x» plane meaning
perpendicular to the fault plane. the fault plane. Arrows show.the force system

In the coordinate system (2, @, %s), associated with the dip and strike slip faults.
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two single couple forces are assumed as shown in Figure 5, making a
double couple associated with dip slip fault of strike direction y and dip
angle 0. Referring to the former paragraph, single couple force speci-
fied by notation (I) in Figure 5, is expressed by

o' =y, O'=-zx/2, $/=—n/2-0 (1-2-11)
and for the one with notation (II), the Eulerian angles are
o) =y—=m, O/=-—x/2, /=0 (1-2-12)

The combined effect of the two single couples gives

o=-2 g { Lwy-L 0 gyl

Arp dre ro dr,
: (1.2-183)
B=e ot {Rd, Lok, 1 iRd} 4 _q(vy)
4mp 2 90, 2sind, oo, ro dry
R,= —c0825-sin 26,-sin{p,— ) —sin 28 - (cos?0,— sin?f, - sin®(p,— 7))
(1-2-14)
X3 X3
X2
I i
"""" . Xz oo X
1 e amn !
|
I I
X1
Fig. 5. Force system as- Fig. 6. Force system as-
sociated with dip slip fault. sociated with strike slip fault.
21— 22 plane is the fault plane. z1—22 plane means the fault
plane.

d) Strike Slip. The directions of strike and dip angle are defined
in the same way as the case of dip slip. Two single couples referred
to (xy, 2,, ;) are assumed as in Figure 6. In this case, the single couple
forces (I) and (II) are specified by Eulerian angles

0 o/=r—n/2, O/=—x/243, ¢'=—x/2

1-2.15
(II) o/ =r+r/2, 0, =—r/2—0, ¢ =0 } ( )

The vector and scalar potentials have the expressions

My p [ d 14
L G | 219
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M, 1 90 1 0 d ; "
B: e . t Rsy ¥___R” a s A tls CTy
4rp o { 2 00, 2sin 0, 6¢0R}r0 dToG(VS) 1

R,= —co0sd-sin 20,-cos(¢,—y) +sin d - sin’6,- sin 2(¢,—7) (1.-2-17)

§ 1.3 Further Reduction for Harmonic Source
(a) When the applied force K(t) is proportional to exp(jpt) we have
from the relations (1.1.13) and (1.2.2)
F(t)=—expljpt) [p*

where j is the unit of imaginary number. Function G and its derivatives
can be calculated as follows

G(Vy) =L Flt— 1 Vo) =—I—h,® (pro] Vi) -exp(ipt)
T Ve
d i -
d%G(VP) ==y h,® (pro/ V) -€xp(jpt) (1-3-2)
2 .
L ev)- L L gv)=IP 1o (prVy) -explipt)
d?"o To d’ro VP

Corresponding funections for G(Vs) have similar expressions.
(b) For a polar coordinate system (r, 0, ¢), the following relation
is well-known.

1 aQ )
t Y Tt An ? . A
o {Q N 90 Nsind ago}r

={0 rsilnﬁé Q——]{T—%(TQQ, —%%(Q—%,«%(TQD}T 1-3-3)
=rot{Q— -2 (), 0, 0}

where N is a constant.

(¢) Using the formulas (1-3-2) and (1-3-3), the scalar and vector
potentials for various kinds of force systems treated in the former sec-
tions can be reduced to simpler forms.

They are:
Single force
@:%‘% A-h® (pro] V),
P
B:% -rot {r,4-h® (pro/ V), 0, 0}, (1-8-4)
S

A=cos 8, - P;(cos 8,) +sin 6§, - P*(cos 6) - cos (p,—7)
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Single couple

0=""IPMELT 4 b i V)

47(.',0VP3
B=—IPME™ ot (] V), 0, 0}
- SR‘PVS3 0 2 (P V) Y, Ugry (135)
+Mrot-r0t{7 vdha® (prof V), 0, 0},
8rp Vs 0

A=cos2¢, - {% Pj}(cosb,) -cos 8y -sin 2 (¢, —7)
- %P; (cos0) -sin 0/ -sin g —7)
+sin 24" - {—1—12P22(cos 0,) - (14-cos’0y/) - cos 2(¢y—7) (1-3-6)

+ %PZ‘ (cos &,) -sin 20, - cos (o —7) — %PZ (cosd,) - sinzﬁo’}

A=P,(cos 0,) -cos 8, +P;*(cos 0,) - sin 0, - cos (@, —7)

Dip slip
O=— IPMs gine g 2 (pr V)
47rp VP3 (1 3 7)
- j M ipt
B= *ﬁy ‘rot {rod-h,® (pr/ V), 0, 0},
A=R,= —_g—P; (cos 6,) -cos 20 - sin (¢, —7)
—sin23- (Pz (cos 8,) +%P22(cos b,) - cos 2 (p,— 7’)> (1.3-8)
Strike slip
The same as the case of dip slip with the exception of
A=R.= _%PZ‘ (cosb,) -cos 8- cos(p,—7)
+—L€1))—P22(c0s 0,) -sin 0 - sin 2(py— 7) (1-3-9)

B. Transformation of Coordinate Systems

§ 1.4 Coordinate Systems

Cartesian coordinate system (X, Y, Z) fixed to the earth’s center is
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introduced as shown in Figure 7. Z-axis is directed to the north and X
and Y axes are on the equatorial plane and their longitudes are 0° and
90° respectively. The coordinate system (X, Y, Z) can be obtained by
rotating the (X, Y, Z) system as shown in the figure. An earthquake
source is assumed to be on the Z axis.
Another coordinate system (x, v, z) fixed
to the focus is introduced in which z, ¥
and z axes are parallel to X, Y and Z
axes respectively. Thus it is seen that
the z axis is directed southward, ¥ east-
ward and z upward. This is nothing
but the system used in the previous
sections.

Remembering that the suffixes ¢ and
s mean the quantities referred to the
source and observation station respec-

tively, the epicentral distance 4 is Fig. 7. Relation between coor-
given by dinate systems. (X, Y, Z) system is
fixed at the center of the earth and

cos 4=cosb,-cos 0, the Z axis is directed to the north.

¢ is the focus and s the observation

+sind,-sin g, COS(% - SD-') point. The system (X, _X _Z)_is ob-

(1-4-1) tained by rotating the (X, Y, Z) sys-
tem around Z axis by ¢. and around
where ¢ is the longitude and 7z/2—6 the Y axis by ¢.. Z axis directs to the

latitude. The azimuth of the source focus.

¥, and station ¥, seen from the station and source respectivelybcan be
- calculated from

_sin¥, _ sin(g,—¢,) _sin¥,
sin 6, sin 4 sin 6,

(1-4-2)

Position of station (@, @) expressed by a polar coordinate referred to
the system (X, Y, Z) is given by

0=4, O=r-V, (1-4-3)

Hereafter, all the discussions will be made referring to the coordinate
(X, Y, Z).

§ 1.5 Transformation of Scalar and Vector Potentials from (x, y, z} to
(X, Y, Z) Coordinate Systems.

The relation between the polar coordinate systems referred to (x,
¥, z) and (X, Y, Z) is shown in Figure 8. The former is distinguished
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from the latter by suffix 0, and evidently ¢=¢,. Solutions of wave
equation expressed by means of (1, 6, ¢,) can be transformed to those
referred to the system (r, 6, ¢) through the relations [Onda and Sato
(1969)]

h® (Jery) - P (cos 0,) = gs{" " frim(kr) - PRo(cosd)  b>r

(1-5-1)
=20 "hn(kr) - Pl(cosf)  b<r
where &’ ™ have following expressions,
& _(2l+1) -h{® (kb)
=214+ 1){-h,® (kb) [kb— h®,(kb)}
20 _ 9O _ 4@ @ _ @) 2
&= 2(2l+1){ 3h, (kb) +2-h®,(kb) [kb+1(1—1) b} (kb)/(kb)} 1.5.2

& '=(2l+3) - ki1 (kb) /Kb
&5 =8 (21 + ) {1 B2 (kb)  (leb)* — Iy (k) /cb}
&= (2l+5) h{?z(kb)/(kb)z

The function ('™ can be obtained from ¢
by replacing hZ, by jin.

As to the transformation of coordinate
system from (z, y, 2) to (X,Y,Z), the follow-
ing formula is known.

rot {F, 0, 0},, ;
=rot {F-cos (0,—0), F-sin(0,—0), 0},

=rot {E (r—bcosb) ,~Eb siné, 0}

T T
=rot {}i -r, 0, 0}
To T
Fig. 8. Relation between +rot {——b cosfd, —bsin 6 0}

coordinate systems (z, y, z) and 7o "o T
(X, X, Y). The system (Y, Y, F F.b
Z)%is the same as that in Figure =rot {— r, 0 0} +I'0t{0 0, — }
7 and (x, ¥, 2) the same as that in o " To /X
Figures 1, 2 and 4. (1.5.3)

In this relation, suffixes 7, » and X represent coordinate systems (r, 6,,
¢, (r, 0, ¢) and (X, Y, Z) respectively. Vector potential {F-»/r,, 0, 0},
of the first term will be called “radially polarized vector potential” and
that of the second term {0, 0, —F-b/r}x “vertically polarized vector
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potential.” The former give rise to the S2 wave, while the latter both
to the S1 and S2 waves.

The following formula [Usami et al. (1962)] is also useful for re-
ducing potentials. Putting '

—_— 2 m Sln
‘r/}n, m— h/:b ) (kT) P (COS 0) cos me

we have
I'Ot * rOt {Oy Or ¢’ﬂ, ’M}X

:k:zl;__ n__m_-ii_. ot.rot{_i wit, ms 0, ()} —ﬂj___ﬂ}_
Cntl)(m+l) ke RS

1 0
- rot - t{—i i 0,0} 1 ot{— 0 n,m,o,o} ]
10t 106 { = Pusim, 0, 0p =gy Oy =7 o ¢ 0,07

(1-5-4)

The third term corresponds to the so-called S1 wave and the first and
the second ones to the S2 waves.

§ 1.6. Expressions of Potentials Referred to (X, Y, Z) Coordinate

Scalar and vector potentials referred to the coordinate system (x,
y, 2) fixed to the earthquake origin can now be transformed to those
referred to the (X, Y, Z) coordinate system through the formulas ob-
tained in the previous sections. In this section, however, formulas are
given only for the outer sphere »>b. For the inner sphere r<b, similar
formulas ean be obtained by changing ('™ to ¢'™ and h?® to j..

a) Single force
= —IF4 i vV

tmpve’ AV

—3F,

=_"JA drp Ve e”"[rot{rA(Vs , 0L, 410t {0,0, —bA(V)}x]

(1-6-1)
A(V)=cos 8/ -;0 C°-hi® (pr/ V) - Pi(cos 0)

+sin 0 -cos(p—7) 2 Cir kit (pr/ V) - Plis(cos 6)

b) Single couple

JpMO ipt V
= dmovp s AV

B= —JpM,

e rot{r4(Vs), 0, 0}, +rot{0, 0, —bA(V)}x]
8rp Vs



546 T. UsaMI, T. OpAKA and Y. SATH
M,

——2_—¢""[rot-rot{rZ, 0, 0}, +rot-rot {0, 0, —b 5
8ro Vs

A(V)=cos 2 {080 -sin 2p—7) 6+ hith(pr/ V) - Phaleos 0)

—%sin 0/ -sin(p— ) ST - b, (pr] V) - Pl (cos 0)}

+sin 29, { ”j%ﬁcosz«o G (e V)

+%sin 20, -cos(p—7) 1 b, (pr V) - Pl (cos 6)

—%sinz 0, 30 1f? (pr] V) - P,(cos 0)}

E=cos 0/ (1 b (pr| V) - Py(cos 6)
+sin 6y -cos(p—7) L1 b, (pr] V) - Plia(cos 0)

¢) Dip slip
JpM,
47Z'p Vp

= IPMs pinrot rA(V), 0, 0}, 410t {0, 0, —bA(Ve))x]
8rp Vs

PR gine (V)

A(V)—écos% sin(p— )2@2 Lk (pr| V) - Plyy(cos 6)
+sin23- (¥ G hitpr| V) - Pfeost) + S 20=1) sy,

- P}, (cos 6’)}

d) Strike slip

The same as the dip slip case except

A(V)=— S‘g O sin 2(p— 1) 530 his(pr| V) - Phaa(cos 0)

=0

+§ cosd-coslp—7) G- hiti(pr| V) - Pl (cos 0)

- P}, (cos 0)

}xl

(1-6-2)

2=(07 V)

(1-6-3)

(1-6-4)
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C. Equivalent Source

§ 1.7 Equivalent Source Function

A point source of earthquake within a homogeneous elastic sphere
produces the displacement and stress discontinuity on the concentric
spherical surface on which the source is located. Thus the discontinuity,
which will be called “equivalent source function ”, is equivalent to the
original source, in the sense that the solutions obtained from the follow-
ing two methods are the same.

(1) Transfer the source funection to polar coordinate referred to
the center of the sphere and solve the problem under the condition of
free surface.

(2) Divide the sphere into two parts at the concentric surface on
which the source is located. Assume suitable waves satisfying the
equation of motion in both inner and outer parts and solve the problem
under the conditions satisfying (a) vanishing of stress on the free sur-
face and (b) discontinuity of displacement and stress on the source sur-
face amounting to the value calculated from the source function.

For a radially heterogeneous elastic sphere, it is quite difficult to
transfer the source function to the polar coordinate referred to the earth’s
center and to make satisfy the equation of motion. Therefore, in the
present study, the second method will be adopted using the equivalent
source function.

§ 1.8 Equivalent Source Function due to Various Kinds of Force
Systems

In section 1.6, the scalar and vector potentials valid for the outer
sphere r>b are given. Those for the inner sphere r<b have similar
expressions and the difference of these two on the source surface gives.
rise to the discontinuities of displacement and stress, namely, the equi-
valent source funections. In order to calculate these, relations between
the coefficients e~ ™, {™ and the spherical Bessel functions such as

Gt b — b+ =3 (20 +8)5/KY' (1-8-1)

are employed. The dots (*) mean d/db and the argument of the
spherical Bessel functions h{® and j, is assumed to be kb, & being either
p/V» or p/Vs. Here, the discontinuities of displacement and stress.
components on the source surface are defined as

AD=1m (D,_y,c—D,-;_.) (1-8-2)

e—0

The equivalent source functions are now readily calculated from equations.
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in section 1.6, in which material constants take values at the source
surface r=5.
a) Single force

Summation of equivalent source functions derived from scalar poten-
tial and radially and vertically polarized vector potentials gives

du=dv=w=0
Arr cos 8, (21 +1) P,
— Fejzzt
Arf b= L4 0
" 47b?
dre 0
0
21+1 P,
— ! P [
tsinogd 101 ¢ o) (£ +sm0>
20+1 P
— 2 g Sl ( )

(1-8-3)

Argument of the associated Legendre function Py is cos@ and dot
() means d/df. Underlined terms show S1 wave. The scalar potential

contributes to the equivalent source function A7+ and the vertically
polarized vector potential to 4r0 and Av’ﬂ\go.

b) Single couple

The sum of the equivalent source functions derived from the scalar
and vector potentials are

Adu 2 (2l + 1) Pl
J MO Cse“)tl(

4 0
Y 47rpb2V 2 z
Aw 0
0
. . P
M zﬁl?;j 11) (3Cu+sin6ysin(o—gy) )-(Be+ sm’ )
_}_-87rpcb2

2141 ’ > < 3 1>
> 3—— 0, +P
0+ ( C,+sin 0, -cos(p—¢,’) ne )
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A _se@+n 3t op 4 0 4+ 0
A+2p
— Meipt .
‘ T gl 0 +3(@21+1) 2 Cy-P,+0
Arg 0 + 0 43 (2141) cos by - P,

—>2sin 6 -sin(lp—¢/)- P} + 0
0 +22sin00’sin(go—goo’) (Pll+ P! )

+ l+1) sin @
2sin 6, sin (o—¢,) [ P! 51
0 P
o 11+1) (sinﬁ +—’—->
0
6C, (5., 2P
PZ
M RSTASTAN ’+s_in£>

6-0C,/ap ( P* | P?
e 2 )

Ci= %(cos 2y -c0s 0y -sin 2(p—gy) — SREL 22%/ (14cos’0y) - cos 2(p— 900')>‘

2 =%<—cos 2¢,’ -sin 6, - sin (o — @) +‘S¥’,— -sin 26, - cos (<p—goo’)>

C3=_sin_§¢i_sinzao, (1-8-4)

. Underlined terms mean S1 wave. Contributions of various kinds of
potentials which remain after the summation are tabulated below.

Table 1.
Potential du v Aw Ary Ar6 AT
] 0 0
B '/'1) Radially polarized 0
( Vertically polarized 1 1 0,2 2
B (5) Radially polarized 1 0,1
- Vertically polarized 1 1 1 1 1

Numerals mean the azimuthal order number m and blank indicates
no contribution. It must be noted that contributions from vector
potential derived from 5 in (1-6-2) characterize the single couple force
and the function & does not appear in any other force systems employed

in the present paper. Vertically polarized vector potential contributes
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to many more components of the equivalent source functions than the
Tadially polarized one does.
¢) Dip slip
The equivalent source functions are

(u gz @1+1) P, S 0 ?
M,Coe’” SMe™ | 2041 ~(; P}
4 = ot — 0 c P} ]
Y 47rprzbzl 87 ub? (ZZ(H—I) ( ’+sim9>
‘.Aw 0 2l+1 acl< Pll Pl
> I(l1+1) op sin0+—l*>
-~ 32+2u
4 2@21+1)P 0
jW 2+2ﬂ2(l+)z+
>l MCe™ 8142
Arf =0 + /z
drg 0 + 0
0
2020+1) c( Pz 2P}
+ 3Menn Z—F—i—l) 3( i + S1L6> (185)
2@1+1) oG,/ PF | P?
2 Il+1) ago<sin0+g>
2

Ci==-co0s20-sin(p—y), C,=sin20

b—‘W

C;=-=-8in 26 - cos 2(90 7)

(=2}

d) Strike slip
The equivalent: source functions for the strike slip have the same
expressions as the dip slip, except the constants C,, C,, C; which have
the following expressions.

C =§cosa~cos lo—71)
02:0

It is noted that, for the strike slip, the equivalent source functions Au
and 4rr become zero.
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Table 2.
Potential Au dv Aw drr Aro dryo
] 0 0 0
B Radially polarized 2 2
Vertically polarized 1 1 2 2

For the cases of dip and strike slips, the contributions of vector and
scalar potentials to the equivalent source functions are arranged in the
Table 2. Here again, vertically polarized vector potential contributes to
many more components of the equivalent source function than the
radially polarized one does. Contribution from scalar potential @ is con-
fined to the case m=0, and they vanish for the strike slip, in other
words, P wave does not contribute to the equivalent source function.

D. Method of Calculation of Theoretical Seismograms

§ 1.9 Basic Considerations

The equivalent source functions, namely, the amount of disconti-
nuities of stress and displacement on the source surface calculated in
the previous sections, can now be applied to the actual earth model,
since the earth can be considered consisting of thin spherical homoge-
neous shells.

On the other hand, theoretical seismograms due to surface stress
have been calculated by the present authors for various earth models
from a simple homogeneous sphere [Usami and Satd (1964)] to a rea-
listic model such as Gutenberg-Bullen A’ model [Satd and Usami (1970)].
The Common Spectrum, non-dimensional frequency and derivative of
surface stress with respect to frequency d8Eg/op, 0E./op, OE,/0p were
calculated. With the intention of using these numerical values, an at-
tempt was made to reduce an internal source problem to a surface
stress problem.

§ 1.10 Torsional Oscillation

In a radially heterogeneous earth model, let W be a function defining
_—dW'—ﬂ> gives
dr r

radial distribution of stress components. Displacement and stress in the
frequency domain are expressed by

the radial distribution of displacement, then E,= p(
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%(p) 0

mPr(cosf) —sin m
v(p) :;L_:an (r)-f*(p) sin @ cos t
w(p) —P,’,” (cos O) - g?snup
(1-10-1)
77 (p)
ﬁ(p) :”%Et(/r) < f*(p) 17
70 (p)

S*(p) is the Fourier transform of the time function of the applied force.
Then, distinguishing two solutions satisfying the equation

d? de | 2pu\dW, 2 1 dpe  nin+l)
Lw (B Cn 4 (frpy,— = S8 T Ny — .10-2)
# (dr 7 ) dr ( Ham dr rt > 0 (1-10-2

for a certain value of p by prefixes 1 and 2, we have [Satb et al. (1968)]
r*[,E,- , W—,E,-,W]=const. (1-10-3)

In order to find solutions for an internal source problem, we consider
the following solutions of the equation of moticn.

Table 3
- o Condition on the Amount of dis-
Notation surface continuity at r=b Remarks
(prefix)
Ei(a) Wia) E,(b) 40
7 0 1 0 0 Free oscillation
A 0 No disturbances within the
B 1 source surface r<b
+ 1 0 0 Satisfy the condition at the
center

Solutions satisfying the conditions of the free surface and of the
g?lfmcp)) on the
source surface r=b, can be expressed by the combination of solutions
specified by prefixes A and I.

Wa(r) =0,z W(r) —zE.(a) -1 W(7) [zE\(a))
Applying equation (1-10-3) to the solutions f and A4, we have

stress discontinuity E, amounting to 6l< =A3ﬂ?o-e‘“”/ (—P,’:‘-

(1-10-4)
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Eia)=(L) 7w (1-10-5)
Therefore
W) =0, W () () W) Wi i Eifa) ) (1-10-6)

Following a similar procedure, corresponding quantity due to the dis-
continuity of azimuthal displacement '

g i m , COS
62(_Awe [(— P smm<p)>

is given by

Wolr)=o{sWr) +( L) B0 W Eda)  (1-10.7)

a

The solution in the time domain is obtained by the integral

()= (ot} -extivt)-ap (1108
Putting (1-10-6) and (1-10-7) into (1-10-8), the quantities corresponding
to the first terms of W, and W;, become constant after the applied
force becomes steady. For such a time range, the contributions from
these terms are neglected since they are time-independent, the displace-
ment being expressed by the sum of contributions from residues due to
the second terms of W, and Wi,.
TFinal expressions of displacement in the time domain are

v j =—i(2Y 5 [TV Wb . ) S * () -exp (i) |

¢ —f)p—’?Et (@) o
w
0
mPr —sin
sng  cos™? (1-10-9)
n COS
~P; “sin™¢

where 6, and 0, mean the equivalent source functions A;ZD and dw ex-
cluding the factors of the location (6, ¢) and time (f). At an eigen-

frequency ;p,, the root of E\(a)=0, solution specified by prefix I is iden-
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tical to that specified by f. Numerical values of ai;E(a)= ai;E(a),
7W(b) and ;E,(b) were given previously [Satd et al. (1968)]. Thgrefore,
the displacement can now be calculated from the equation (1-10-9).
Since the colatitudinal and azimuthal components have same radial
distribution and they are accompanied by each other, it is enough to
consider the equivalent source function either colatitudinal or azimuthal
component.

§ 1.11. Spheroidal Oscillation

For a gravitating, radially heterogenous elastic sphere, solutions for
the spheroidal oscillations in the frequency domain are

n cos \
u(p) U.(r)-Pr{cosb)- sin M
v(p) V,(r)- Br(cos6) - Smo
) w(p) - mzn S*(p) mPy(cos 0)Sm—- sin .
g ' Gy " sing  cos™
n cos
\¢(p) Y. (r)- Py (cosf) - "mo
— (1-11-1)
rr(p) Ey(r)- Pr(cos ) - S2mgp

sin
Erlr)- mPy(cosf) —sin
() - L2 (COSU)

1?5(10) = 2 *0) | Er(r)- Pr(cos) - P5mg 5
r¢(D) sin @ cos™?

where U,, V, and Y, are the radial distributions of radial and horizontal
displacements and the gravity potential. From the differential equations
for U,, V., Y, [Satd et al. (1967), equation (3.3)] a relation is found
between two solutions for a certain value of frequency p, namely

P U Bt n(nt 1) oV By U= nlnt1) -, Vo B
+ 2Y‘1EY _ 1Y‘2EY
4z’ Az
Prefixes 1 and 2 discriminate two solutions and I” is the universal con-

stant of gravity, n the colatitudinal order number and E;, E,, E, are
defined as

:':const. (1-11.2)

r

Es=(1+24) Uﬁ%ﬁim—wwn ]
. — N\ B W&

r
Ey= Yn —drpl'U,
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Es and E; are the radial and horizontal stresses on the concentric
spherical surface and E; the force on the same surface due to gravity
potential. When the equivalent source function is given, solutions can
be expressed by the combination of the following solutions.

Table 4
. Condition on the surface Amount of di_scontinuity
Notation at r=b Remarks
(prefix) ema
Es Er E, U V Y Es Er E, U V Y
I 71 0 0 1 a1 B . o
J 0 72 0 1 a B 0 ?ﬁglscfe); tceorndltxon at
K 0 0 73 1 a3 P
A 1 0 0 0 0 O d b
No disturbances
B 0 1.0 0 0 0 within the source
C 0o 0 0 1 0 0 surface r<b
D 0 0 0 0 1 0
f 0 0 0 1 0 0 -
g 0 0 0 0 1 0 0 g}% t(:e(;'ndltlon at the
k O 0 0 o0 0 1
In this table E=E+"tly, (1.11-4)
r
and Es(a)=Er(a)=FE,(a)=0

gives the condition of the free spheroidal oscillation.

When the discontinuity E; amounting to J, is given on the source
surface, the solution is expressed by the combination of solutions speci-
fied by prefixes I, J, Kand A. From the condition of the free surface
we have »

I Es+J-;Es+ K- Ey+0,- 4Es=0
I'[ET+J'JET+K'KET+63‘AET=0 (1'11'5)
I‘[Eq_*_J‘JEq ‘}“K'KEQ +63‘AE‘1=0
Therefore, coefficients I, J and K are given by
I=—0;-4Es(a)/Es(a)
J=—05 1 Er(a)]; Er(a) (1-11-6)
K=_53°AEq(a')/KEq(a)

Using the relation (1.11-2) for the combinations of solutions (A4, f),
(4, 9) and (A4, k), we have
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B =20 B =(L ) ow

a’/ ;Ua) |
(DY LUD)-aEs() _(bY ,UWb) .
AET(CL)—(\Q) nin+1)-,V(a) (a> nn+1) (1-11-7)

=i (LB e (1.

Therefore, we have

Us(1) =05+ {;A Ur)— (%)2
(UL L Ub) -, U(r) 4zT - UD) - U \T .
< IfE'S(a) IU(T) + n(n+ 1)JET((Z) + KEq(a) >] (1 11-8)

Vir) and Y(?) have similar-expressions.

When the equivalent source E;, U and V amounting to d,, d; and
Js respectively are given on the source surface, the function U(r) are
calculated following similar way. They are

(1) =54[B U —(%)

Jnn+1),V(b) _2U() ) ) . xU(r)

(e U+, V0 O el i 1) V) J]
Uss (7) =55[C Ulr) + <§>

[ oEs(b) JEsb) L, U) o U

{elay 00+t g 4T Bl i)
U =0 U0 +(2) o
RULESACE U0 g ot 1) By D)
(B U0 4 Be(t)- 25 e Tt 1)) /]

(1.11.9)

Displacement in the time domain is obtained by the integration of the
form (1-10-8). Carrying out the integration, the first terms of equations
(1-11-8) and (1-11-9) are found to be time-independent after the applied
force becomes steady. These terms will be neglected in the numerieal
work. '

Contributions from the other terms come from residues and we have

v =—3( L) T o, ) +nlnt Do VD

@ j_IES(a‘)
op
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— 05+ s Es(b) —"(n+1)56'fET(b)}

SO [60,U0) L+ vy 05 Bs®) 5 .
+_6_E(a){n(n+1) +0d,+,V(b) ‘_‘—%('n—i-l) 06 yET(b)}

apl T )
+iﬂg’_'fm{53.kU<b)+n<fn+1)a4-kv<b)—as.kEs(b)—n(n+1)66-kET(b>}}

A~ K q(a)

op

(1-11.10)

Applying (1-11-2) to the combinations of solutions (I, J) and (J, K), we
have, at r=a

U Ee=nn+1)V-sEr,  nnAl) Ve Ep= L
~ . Azl

B, (1.11-11)

for arbitrary value of p. Therefore, when the frequency p approaches
the eigenvalue ;p,, we have

0 V 0 1 Y 0 .
—7 — 1 of —— —— = | — R q
o Es(a)=n(n+1) <U>7?:a op JEf(a) 47zF< U>r:a op KE (@)

(1-11-12)

It is also known that, at eigenfrequencies, solutions I, J and K mean
free oscillations and

solution (I)=solution (J)=solution (K) ‘
=solution ( f)—}-(K) -solution (g’)+<£> -solution (k)
U/r=e U/r=a
(1-11-183)
Employing (1-11-12)'and (1-11-13), we can simplify the equation (1-11- 10)
in the following way o

U, =—3( Y+ P[5 U0 i+ 190 V)
¢ ——1Es(a)
op
— o Fs{b) = n(n+1)3e- B )] (1-11-14)

Expressions for V,(r) and Y,(r) are obtained by changing U with argu-
ment r to corresponding quantities V and Y. Since the relation between
the colatitudinal and azimuthal components for both displacement and
stress in the expression (1-11-1) is similar to that in the equivalent
source functions, it is sufficient to consider the colatitudinal component
of equivalent source function of displacement and stress. Thus, the
final form of displacement can be obtained as
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u(t)
(b o [FH(D)exp(ipt)
v(t) ‘7( a ) mzn i[ %;Es(a)
P
w(t)

sin
<53'1U(b)+'n(n+1)64‘IV(b) ) IV(T)'P‘:" Cpsmgo
_65 * IES(b) _n(%+ 1)56 M IET(b) —P=;P, 8ln

Ur) - P I

mP! —sin J
Vir): sing ~ cos"?

(1-11-15)

where d;, d,, 0; and 0, stand for the equivalent source funections A;;',
4r0, du and 4v excluding factors relating to the time and the location
on the surface.

Part II. Time Function of Applied Force and Theoretical Seismograms
of Surface Waves with Special Reference to the Relation between
Earthquake Energy and Magnitude

In Part II, theoretical seismograms of surface waves due to a buried
source of normal dip slip fault are calculated using the equations (1-10-
9) and (1-11-15). The results are affected by various kinds of para-
meters such as the type of fault, geometry, time function and depth
of the source and location of observation point. Among these para-
meters, the effect of time function of applied force on surface waves
will be investigated and special attention will be paid to the relation
between earthquake energy and magnitude.

§ 2.1 Earth Model, Earthquake Source and Fundamental Properties of
Free Oscillations

Gutenberg-Bullen A’ earth model [Usami et al. (1965)] was adopted.
The radius of the earth is 6370km and that of the core 3470 (=6370
—2900) km. The thickness of the crust is 32km. P and S wave velo-
cities in the crust are taken as 6.30 km/sec and 3.55 km/sec respectively.
The focus, assumed to be in the crust, has 5.35km depth. A double
couple force associated with a normal dip slip fault of 60° dip angle is
assumed to act at the focus. The line connecting the center and focus
is taken as the z-axis and the direction of strike as ¢=0°.

Several fundamental quantities necessary for computation and inter-
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pretation of theoretical seismograms are shown in Figures 9, 10 and 11.
Figure 9 shows the non-dimensional frequency y=pa/Vs=(2ra/Vso)/T of
the spheroidal and torsional oscillations. Vj, is the S wave velocity at
the surface and T the period.

In the present study, only the surface waves are considered. There-
fore, the fundamental modes (i=1) alone are employed. In Figure 9, the
non-dimensional frequency for higher modes with 4=2~10 are also
shown. The largest value of 7 employed in the numerical computation
is 2000, corresponding to n=1970 for torsional oscillation and to n=2160
for spheroidal mode. In other words, modes with period larger than
about 5.5sec are adopted. Curves in Figure 9 can be extended almost
linearly to larger values of ». Non-dimensional frequency of spheroidal
oscillation for smaller values of w is found in the former paper [Sato
et al. (1967)].

&OO 100 200 300 400 500 600 700 800 900
Tlsec)
NON DIMENSIONAL FREQUENCY
; OF —12
900k~ SPHEROIDAL OSCILLATION

GUTENBERG-BULLEN A
EARTH MODEL
GRAVITY EFFECT INCLUDED

800

i=10°9°8°6] 5747372 il

v
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500

T ke
400 ekl
i*I09 8 6|5 4 3 2
300 160 AV aA : 70
—40)
50 \ /
14 =80
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Fig. 9-a
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Fig. 9. Non-dimensional frequency 7» of the spheroidal and torsional oscillations
of Gutenberg-Bullen A’ earth model as function of colatitudinal order number n. 7=ka
=(2za/Vs0)/T, where a is the radius of the earth, Vso the S wave velocity on the sur-
face and T the period. 7 of the spheroidal oscillation for smaller values of n is found

in the former paper [Usami et al. (1965)]. Curves can be extended almost linearly to
larger values of n.

Phase (C) and group (U) velocities of the spheroidal and torsional
oscillations ealeulated from asymptotic formulas

C/Vso=7/<n+“l>

2 (2-1-1)

UlVso= dyldn

are shown in Figures 10 and 11. The group velocity is important in inter-
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preting surface waves and it is well known that the waves with the
periods of maximum, minimum and flat group velocity appear predomi-
nantly on the seismograms. It should be remembered that in the present
study the group velocity of the spheroidal oscillation has a maximum
near period 60sec and minimums near 18 sec and 220~230 sec and that
of the torsional one is nearly flat for periods between 60 and 300 sec
and has a minimum near 18 sec.

§ 2.2 Excitation Function and Time Function

Excitation functions for the spheroidal and torsional oscillations are
defined as '

iBn =a—1—[53 1 U(b)+n(n+1)0,- V(b) —0;- 1Es(b) —n(n+1)d-  Er(b)]
—Es(a)

(2-2-1)

These are functions of the mechanism and focal depth of the source.
Using the excitation function, the relations (1-11-15) and (1-10-9) giving
the displacement on the surface are reduced to

y Ula)- PySSmg
_ Db\ S, £% ) . COS
v ==, )2 L&T*D) - exp(ipt)lyn Via)-Pr-Gime
. .mPy —sin
Via) sing  cos™?

(0

mPr —sin

U
J” J =—i(L) = Lt exotiptiln, { T Gng T cos™

—W(a)-Pr-*Sme

w sin

(2-2-2)

Common Spectrum defined in the previous papers [Satb et al. (1967, 1968)]
is written as



Theoretical Seismograms and Earthquake Mechanism 563

Clkm/sec)
351

30~ GUTENBERG-BULLEN A
PHASE VELOCITY

/4 SPHEROIDAL OSCILLATION

Fig. 10-a.

PERIOD(sec) |

: \ ' 1 ] I | ]
o] 100 200 300 400 500 600 700 800 900 100C

EN L EARTH UODEL
QSCILLATION
ELOCITY

C LO
GRR/ITY EFFECT INCLUDED

&)
<
%)
I

- I ! 1 1 L 1 ]
[éis) 200 300 400 &S00 €0 700 8U0 900 10C0

Perid (sech

Fig. 10. Phase and group velocities of the spheroidal oscillation as function of period..
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Fig. 11. Phase and group velocities of the torsional oscillation as function of period.

sec:

Si=:&% f*(p)-U.la) ’
S” (& fE(p) Vala) (2-2-8)
Sy=:&n [*(p) Wala) J

Common Spectrum is a function of external force and earth model, but
does not depend on the time and the location of observation station and
is conveniently used for the interpretation of the theoretical seismograms.
However, in the present study, in order to save figure space, the exci-
tation function and Fourier transform of the time function of applied
force are drawn separately as functions of the colatitudinal order number
n. In Figure 12, which shows the excitation function, the ordinate scale:
is rather complicated and has to be carefully read. For m=0 the execi-
tation function of torsional mode vanishes for all values of =.

Time funection, its Fourier transform and energy (cf. § 2.4) are given
in Table 5. The unit of time is 2za/Vg,=11267.6 sec.

The time function of case 5 is invented in order to avoid infinite-
energy. It is composed of straight line and cosine functions and by
controlling two parameters £, and t,, we can make the time function as
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Fig. 12. Excitation function as function of colatitudinal order number n. For the tor-
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This large difference of magnitude

-comes from the fact that P;' is roughly the order of n™ when # is large.
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close to any of those of cases 1 and 8 as desired. The energy of case
5 is finite, which, therefore, can be used widely instead of step and
ramp funetions.

Fourier transform of the above time functions are given in Figure 13
as functions of n. In the figure, a normalization factor, which makes
the total force of rectangular function unity, is multiplied for all cases.

§ 2.3 Theoretical Seismograms

Theoretical seismograms in the »-, 6-, and ¢- directions were
calculated at point #=90°, ¢=0° on the surface based on the equations
(1-10-9) and (1-11-15) superposing only fundamental modes. Since con-
tributions from the poles of the Fourier transform of f(t) is usually
time-independent after the applied force becomes steady, they are
omitted in the synthesis work, which covers the time £=0.195 (0.00025)
0.830 including the passage of Rayleigh and Love waves. Calculated
seismograms are shown in Figure 14. The unit of the ordinate scale is
0.176 cm when the moment of the double couple force is 10® dyne-cm.
Amplitudes of theoretical seismograms for the step and rectangular time
functions are contracted in the ratio 1:10. Wave groups with periods
70, 80, 18, 13 and 9sec. are clearly identified on the seismograms and
their arrival times can be well explained by the group velocity. The
radial displacement does not include torsional oscillation and in the azi-
muthal component the spheroidal oscillation is negligibly small compared
to the torsional. The contributions of the spheroidal and torsional
oscillations to the colatitudinal component is nearly the same.

It can be seen in the figure that the amplitudes of waves of about
70 sec period are nearly the same in all the cases notwithstanding the
difference of the time function. Since the same amount of moment M,
is assumed for all the cases, the above fact may indicate that the am-
plitude of long period surface wave is determined by the moment and
not always by the time function of the applied force. On the other
hand, shorter waves are much affected by the time functions and be-
come larger as the degree of discontinuity of the time function increases.

§ 2.4 Energy of an Earthquake

Energy radiated in all directions from an earthquake source can be
divided into two parts. The first part is the energy associated with the
wave propagation and the second is the potential energy associated with
permanent displacement. The former, integrated on the spherical sur-
face of radius 7 surrounding the focus, is independent of 7, while the
latter, integrated over the same spherical surface, diminishes as 7 in-
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creases. In the present paper, the former quantity is defined as the
energy of earthquake. It is expressed by

E=2(E;+ Ej) (2-4-1)
and

4 27 T o
E» S':%g dgojosino.daj Pl Ty 5 T Vo g dt (2-4-2)

0 —
where dot () means d/dt and 7 is the radius of spherical surface on
which the radiated energy is evaluated. On the right side of (2-4-1) the
factor 2 comes from the fact that the kinetic and potential energy as-

sociated with ‘wave propagation are the same. The following relation
between the time function and its Fourier transform is well-known

[Cir@ra= 1" 1w ran (2-4-9

—o T

By this formula, (2-4-2) is reduced to
By = %Sdgogsin0.da§p<ﬁz+ff+zéz)P,s.W- Ves-dp (244
T

where %, v and 1 are Fourier transforms of 4, v and W respectively.
In the expressions of particle velocity 4%, v and 0, only the terms dimi-
nishing with the order of 1/r are adopted. Then, the »- and w- com-
ponents of P wave and the u-component of S wave vanish. Referring
to the equations (1-3-7) and (1-3-8), we obtain

47'L"O r VP
i= " 1 O Ry-exp(—jpr/ V) (2-4-5)
2V 96
w= - ” 11 a—Rd'eXD(—jZW/ Vs)

2V sind  dp |
Employing the relation

w16
Sod¢§051n 0' (R,)*d0 = i

om0 [(2 R 41 (27 o=
Sq‘_dgososme [(aa‘R“’>+sifﬁa 850Rd> 15"

T

(2-4-6)

total energy radié.,ted-v as P and S waves becomes’
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B=2(Byt B =S o( 2 V(L4 B s mrap @4
’ ] : 15 47Tp Vp5 2V35 - ’ )

For cases 1~4, the integral of (2-4-7) diverges. Therefore, we replace
the upper limit of integral co by p, and consider this integral as the
energy of earthquake. p, is the maximum frequency used in the calcu-

lation. For the other cases the integral 2-5% gives a faithful represen-
0 .

tation of energy as far as the fraction of 2-r to Z-Sm is negligibly small.
. 0 ) »

Po

§ 2.5 Energy, Moment and Magnitude of Earthquake

 Figure 15 shows the relation between the energy defined in the
previous section and apparent amplitude measured from the theoretical
seismograms. However, in the case 5, the energy integral (2-4.7) de-
creases rapidly for the range p>p5, while in the range p<p, it does not
show rapid changes. The value of S in Table 5 is 6x10*, which is 5
times larger than the value of maximum frequency employed in the
numerical work. Therefore, some fraction of the calculated energy is
considered as effective for this case and the points belonging to this
case should be moved left by an amount corresponding to- the ratio of
effective energy to the total. On the other hand, Fourier transform of

the time function for the S
Relation between Energy and

cases 3 and 5 show negligibly ~ Amplitude of Ground Motion
small- difference for the fre- ., log(Moment(dyne-cm))= 29

1 o F T TTTH T 1T T FTTT T4 7117,
quencx range er.nployed in F Lo ] L ]
numerical calculations. There- X 30sec:U .

fore, the effective energy of 1
case 5 can reasonably be consi- |
dered equal to the case 3. In
fact, theoretical seismograms ,
of both cases show good coin- '
cidence in wave form and am- <
plitude. Thus, in Figure 15, /E
points of case 5 should be

(RN

HlIH‘

— (®)logA=05logE-12.7
— (#)logA=05logE-13.0

T

moved to the vertical line Mcess 4 4 5 12 ]

shown by the arrow-of case 3. 214 - ””IQS' = ‘“.”‘ZIS ! ”!”2”7 S
Vertical amplitude with log(Energy(erg))

about 70sec period (squares) Fig. 15. Relation between energy of earth-

is nearly constant, indicating  aquakein Table 5 and amplitude of ground motion
that the’ amplitude of waves measured .. from‘ the " theoretical seismograms.

. . . . Moment of double couple force is assumed to be
Of this peI‘lOd is not directly 102 dyne-cm. _Case number corresponds to that
related to energy. Vertical in Table 5.
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amplitude with 30 sec period (crosses X) increase with energy at first,
but the rate becomes small as the energy increases. This can be ex-
plained as follows. If we add modes with frequency larger than p,,
the energy increases rapidly, but the amplitude of waves with frequency
smaller than p, does not increase so much. Therefore, as the energy
increases, the curve of the amplitude as function of energy becomes
flat.

For waves having shorter periods each kind of mark can be approxi-
mated by straight lines. Among such marks the groups of radial and
azimuthal components of about 17 sec period are expressed as

(1) log A(em)=0.5logE (erg) —12.7 (radial) } 2.5-1)

(2) log A(em)=0.5logE(erg)—13.0 (azimuthal)

From this relation, earthquake energy can be obtained from apparent
amplitude of surface wave having 17 sec period. This statement premises
implicitly that the ratio of energy shared by waves with 17 sec period
to the total energy falls within a certain range. The equation (2-5-1)
cannot be applied to earthquakes in which the above assumption of
energy partition is not satisfied. In other words, for practical purposes,
it is important to choose a suitable range of period which shares a near-
ly constant fraction of energy for a wide range of earthquake magni-
tudes. Period 20 sec might be a good choice for surface wave magni-
tude. In case 6, the energy fraction shared by shorter waves decreases
more rapidly than the other cases as frequency increases. In fact, in
Figure 15, points of this case for period shorter than 15 see show much
less amplitude than expected from the equation (2-5-1). Gutenberg (1945)
defined surface wave mangnitude of an earthquake as

M=log A+Q 2-5-2)

where 4 is the maximum ground amplitude of horizontal motion surface
waves with period 20sec expressed in microns and @ is a function of
epicentral distance 4. At 4=90°, @ is 5.05. Using the definition of
magnitude, we obtain from the equations (2.5-1).

(1) log Elerg)=2.0 M+7.32 (radial)
(2) log E(erg)=2.0 M+7.80 (horizontal) (2:-5-8)

Since the effect of force system, mechanism of earthquake source
and azimuth of observation point are not considered, the numerical value
of constant term in (2-5-3) may be subjected to future change. How-
ever, it must be noted that this constant takes a value 8 in the pre-
liminary work using the result of Jeffreys [Richter (1958)]. In the
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following, discussions will be limited to subjects not affected by the
constant term of (2-5.8).

The coefficient, 2.0, of M in (2-5-3) means
Eoc A’cc M, (2-5-4)

which is also expected theoretically. Remembering that theoretical
seismograms were calculated for different time functions assuming the
same amount of moment M, we cannot but admit that, theoretically,
the coefficient of M in the relation between log E and magnitude should
be 2.0. On the other hand, widely adopted relation between magnitude
and energy due to Richter (1958) is

log E;=1.56 M+11.8 (2-5-5)

in which the coefficient of M is 1.5 instead of 2.0.

The discrepancy of these two coefficients can be understood in the
following way; namely the equations (2-5-8) and (2-5-5) express different
kinds of energy. In fact, according to Gutenberg and Richter (1942) E
means the energy conveyed by body wave with a period corresponding
to maximum amplitude. However, the energy in equation (2-5-8) means
total energy conveyed by all radiated waves having various periods.

Executing the integral of the equation (2-4-7), it is easily recognized
that

Eoc M/t (2-5-6)

where ¢, is a quantity having the dimension of time and can be considered
as the process time for case 6. Another possible interpretation suggests
that energy E; is equal to energy expressed by (2-5-6). Assuming

Myoct,”
we have
FEoct,™ 8, Aoc Myoct,”
and remembering that o
log E=1.5M+11.8 and M=log A+Q

we obtain

that is
Myeet,t. (2-5-7)
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Among the two interpretations, the present authors would like to adopt
the first one, that is, the standpoint that the energy E and E; have
different physical meanings.

§ 2.6 Simple Method of Estimating the Process Time

To estimate the process time at an earthquake origin is an important
means of elucidating the secret of earthquake occurrance. As to this
problem, the equation (2-5-7) suggests a simple method of estimating
the process time of external force applied at the source. In fact, if we
assume time function f(t), process time can easily be calculated using
the moment M, and energy E of an earthquake. For example, in the
case 6 of Table 5

oxt/ M,\*1 (1 , 15
B=2F )_< 15 2.6-1
15<4ﬂ:p gyt V55> @61

and E can be evaluated by
log E=2.0 M+7.80 (2:6-2)

Combining the two, ¢, is obtained from the known values.
Table 6 shows several examples.

Table 6
Location and date of Wi S M, (102 E £ (sec)
earthquake s (10%km?) | dyne-cm) | (102erg) r

Alaska 1964 II 28 8.5 8 15 63 200 (3)
Aleutian 1965 II 4 7.75 5 5 2 440 (5)
Kurile 1963 X 13 8.25 2.5 1.5 20 67(1)
Tokachi 1968 V 16 8.1 1.5 1.0 10 65 (1)
Kanto 1923 IX 1 8.2 1 16

M,: average of surface wave manitude, S: area of fault, M,: moment, E: energy
caleculated by the second equation of (2.5-8), t,: estimated process time assuming
time function of case 6. Numerals in parenthesis are relative value of ¢,.

Average values of surface wave magnitude M, and moment M, were
given by the courtesy of Dr. H. Kanamori (1970c). Since several assump-
tions are involved in this method, the authors do not insist that the
value ¢, in the table is numerically correct, however it is hoped that
the relative time given in the parenthesis may give a key to interpret
reasonably both magnitude M, and moment M, which do not necessarily
show good correlations for big earthquakes.

A more analytical and detailed method of estimating time process
at a focus will be discussed in a future paper.
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A part of the numerical computations was carried out at the Com-
puter Centre of the University of Tokyo. )

Glossary

a, b radius of the earth and of source surface

A, B:  vector potential of applied force and displacement

C, U: phase and group velocities

C, C,, C;: parameters defining force system as in (1-8-4)~(1-8-6)

E, E;: earthquake energy defined in the present paper and by Guten-
berg

Es, E;, Ey, E,, E,: surface stresses defined in §1.10 and (1-11-3),
(1-11-4) )

flt): time function of applied force

F*(): Fourier transform of f(t)

Fy: magnitude of force

F(t): defined in (1-2-2)

F(t), F,y(t): defined in (1-1-7) and (1-1-3)

G(V): F(@—r/V)|r, V being the P or S wave velocity

H: defined in (1-2-4)

h:.®, 7,: spherical Bessel functions

I(t): defined in (1-1-8)

radial mode number

unit of the imaginary number

oV

external force distributed in volume

external force applied at a point

order of the spherical Bessel function

degree of the associated Legendre function P!(cos0)

order

0: moment of single or double couple force

M: earthquake magnitude

Pr(cosf): associated Legendre function by Ferrers’ definition

p: angular frequency

R, ry:  see Fig. 1

R, R;, R,: defined in (1-2-10), (1-2-14) and (1.2-17)

(r, 0, ¢):  polar coordinate referred to the center of the earth

(10, 0o, ¢o):  poOlar coordmate referred to the source ‘

St 087, S common spectrum of the radial, colatltudlnal and azimu-
thal component

ds: see Fig. 1

SETEEE R
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rr, 10, r¢: stress component

QST
e - e
St

time

period

process time

constant used in case 5 of Table 5

displacement
displacement component in the »-, #- and ¢-directions
particle velocity in the -, - and ¢-component
Fourier spectrum of %, v, w

U, V., W, Y,: function giving radial distribution of displacement com-

51’ <o, 0

4:

g, L

ignsy ign
n.
e, 0.

O,, ¢,:
0., ¢.:
14

RS
RN
o.~s
°\

RSARICT b IR
559

=
3

T8 8%

ponent and the gravity potential

Vso: velocity of P and S waves and S wave velocity on the
surface

volume in which all the external force is applied (see Fig. 1)
constants used in case 5 of Table 5

strike direction of a fault

universal constant of gravity

dip angle of a fault

s: equivalent source function excluding factors related to the
time and location

epicentral distance

coefficients defined in (1-5-1)

T: excitation function of spheroidal and torsional oscillations
non-dimensional frequency (=(2ra/Vso)/T)

location of observation point referred to the polar coordinate
(X, 7Y, Z). See Fig. 7

colatitude and longitude of observation point
colatitude and longitude of source

direction of single force (see Fig. 2)

quantity defined in §1.3-(c)

Lamé’s constant

defined in (1-6-2)

density

scalar potential of applied force and displacement
vector potential of applied force and displacement

: ~azimuth of the source and station as seen from the station and

source
solution of the equation of motion in polar coordinate
gravitational potential due to disturbance
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