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Abstract

The long wave around the breakwater gap is discussed for the case
of the oblique incidence of a train of periodic waves. In the analysis,
the incident wave always meets at a sharp angle with the right-hand
breakwater. The most conspicuous features found in the analysis are-
as follows. A reverse current appears in the windward waters around.
the terminus of the Jeft-hand breakwater for the wave of long wave-
length which is the current against the direction of the incident wave:
travel. The stagnation point discriminating between the above reverse
current and the advancing one is in a sense moving away from the
breakwater gap along the left-hand breakwater for the increase of
the incident angle of the incoming wave. In the analysis concerning
the influence of the breakwater wing upon the diffracted wave from
the other breakwater, it is found that the wave is reflected from the
breakwater shadow.

1. Introduction

Succeeding the previous works (Momoi, 1967a-1969b), the long wave:
around the breakwater gap is discussed in this paper for the case of the-
oblique incidence of a train of periodic waves. The basic method is the-
method of the buffer domain which was outlined in Section 2, 8 of the-
first paper (Momoi, 1967a). The points of discussion are the wave be--
haviors due to the oblique incidence of the incident wave.

2. Theory

2,.1. Geometry of the Model Used.

The breakwaters are assumed to be thin plates of infinitesimal thick--
ness, which run along a single straight line with a small gap to separate
the infinitely extending waters of uniform depth (H) into two semi--
infinite ones. The coordinate is centered, referring to Fig. 1, at the:
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- undisturbed water surface of the midpoint
i of the breakwater gap, the breadth of
which is 2d, the breakwaters being situated
S Butter ™ on the z-axis of the cartesian coordinate

©=mor-m ,’/domoin D2

Y 02 bl with the positive direction of the y-axis

Breakwater} O /Breakwater

o O Infinitesimal s on the windward side. A train of periodic
bomain plane waves is then propagated toward
Fig. 1. Geometry of the the breakwater wings with the inclination

-model used. of 6,, radians, which is stated by

i =0, exp (—iwt—1k,x —1k,y) cosh k(z+ H),

1
klzk CoS 0im kzzk sin 0iny ( )

~where

.« ¢ the velocity potential of the incident wave,

: the amplitude of the velocity potential of the incident wave,
the angular frequency of the incident wave,

the wave number of the incident wave,
the time variable,
the z-component of the cartesian coordinate with the positive
upward.

In the above expression, only the real part has a physical meaning.

S e

S S

-2,2. ‘Basic Equation and Boundary Conditions.

Assuming irrotational and infinitesimal motion in incompressible fluid.
“the velocity potential satisfies the equation

62 aZ a? )
—— Jp=0. 2
<6oc2 + 0y* + 02* ? (2)

Let ¢ and g be, respectively, the elevation of water surface and the
-gravity constant. ( is expressed as (the relation of energy)

_ 1/
<:_5(R N (3)

On the other hand, we have, as a kinematical condition,

aC___ag
ot <8z =0 (4)

_Equations (3) and (4) are the conditions at the surface of water.
As the condition at the bottom, we have '
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9 _0  at z=—H. (5)
0z

The conditions at the rigid wall of the breakwater is

@:0 at y=0, |[z|]>d. (6)
oy

2,3. Formal Solution. '
In our model, the entire domain is, referring to Fig. 1, separated
into three parts, i.e.,
domain D,: the region in the range 0<f#<z and d<r (non-buffer
domain),
domain D,: the region in the range r<d (buffer domain),
domain D,: the region in the range —z<6<0 and d<r (non-buffer
domain),
where » and 6 are the radial and azimuthal components of the polar
coordinate.
The formal expessions are then described as follows.

¢‘” =@, exp (— 1k —ikay) + Po( — k.0 +1ky)
+ 3 g™ HS (kr) cos mo (7)
m=0

in domain D, ,

o= Z (@5 cos mO+ o™ sin m8)J .. (kr) (8)

m=0

in domain D, ,

o8 = ¢“’”H“ (kr) cos mé (9)
in demain D, ,

where ¢¢ (=1, 2, 8) denote the horizontal factors of the velocity poten-
tials ¢; (g 1,2, 3) in domain D; (j=1, 2, 3), which are related by

¢;=9¢3 coshk(z+H) (j=1,2,3), (10)

and where ¢{™, ¢i™, ¢, ¢i™ are the unknown factors to be determined
by the boundary conditions between the adjacent domains. Expression
{(10) satisfies the conditions (3) to (6).

2,4. Condition between Adjacent Domains.

Since the depth of the waters is assumed to be uniform through the
entire domain, the conditions between the adjacent domains are described
by use of only horizontal factors ¢ (7=1, 2, 8) of the velocity potentials
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as follows.

2) — (1)
Ty Ty

0¢%, 0 ‘:3,} (r=d, 0<0<r)

or ~ or

¢(2) — (3) (11)
09 6;15‘3)} (r=d, n<0<2x) .

or or

2,5. Infinite Simultaneous Equations.
Using formal expressions (7) to (9) and conditions (11), the following
simultaneous equations are obtained.

@m+1) 2m+1 JJ?m-}—l(kd) }
nz¢ @2m+1)*— 2n)* | T4, (kd)

- { 5 (kd) Jon <kd>}
Y HY! (kd) b (o)
(50:‘_‘1, 87:.:2 fOI‘ /n/gl, n=0y 17 27".) ’

i Bem 2m {ng(kd) } — gD {Hg‘)“ (kd))
S0 (2m) = 2n 1) | g, (kd) HYL, (kd) |
) }

én+1(kd)

} b, (—1)" cos 2n0,~n{

4
T

=10,2(—1)"* cos (2n+1)6,, { (13)

(n=0,1,2, ---) .

The reductions made in the above go along the same lines as those in
Section 2,5 of the fourth work (Momoi, 1968b). The above equations
refer to those of (33) and (34) in the fourth work.

In the course of the above reductions, the relations

agn) =dpe,(—1)" cos 2nb,, ,
$é2"+1):’l:¢92(_1)n+1 cos (2’)’L+1) i, G’)’I,:O, 17 2, . ) (14)
B=—gp

are derived.

Elimination of ¢ and ¢(**", respectively, from equations (12) and
(18) yields

& 2m+1
é2m+1) J2m+1 kd 1), kd 2m+1 kd (l) kd
z¢ 2m 1= @n)? 2 ema(kd) H! (kd) — s (kd) HE (k) }

=1¢,(—1)" cos 2nb,,/kd , (15)



A Long Wave around a Breakwater [VIII]

B ity e () EHs ) = To ) Es )

=¢y(—1)"cos (2n+1)8,,/kd ,

where n=0,1,2, -.-.

2,6. Simplified Forms of Formal Solution.

Substituting (14) into formal expressions (7) to (9), these are reduced
to the following.

92r=00 exp (—th,w —ikyy) + @, €XD (— ik + k)
+oL(r, 0 (0<0:<7),

68= 1o exD (—ika— i) + -9y exp (ko +ife) 1)

+ i; AT (kr) sinm0  (0<L60<2r) ,
L (r, 0)=—06%(r, 6) O,=—0,) ,

where

R (r, 0,) = i SMHP (kr) cos mo, . 18)

0

In the above derivation, the reduction
exp (—tkxFik.y) =exp {—ikr cos (6F0,,)}

= i en(—1)"on (k1) cOS 21 (0T 0,,)

n

-1 2 2(—1)"d 0 sa (k) cos (2n+1) (07F06,,)
is employed, where the double sign T must be taken in the same order.

2,7. The (2l14-1)th Approximation.

As the second step, the approximation is given to the expression of
the buffer domain. That is to say, setting

Jnlkr)=0 (m>21+1)

Jn(kr) 0 (mZ204-1) 1=1,2,8,...) 19)

for *<d in (17), the upper limit of 3> of this equation becomes 2/+1.
Equations (15) and (16) are then reduced to the following.
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! 2m—+1 Jimi1(kd) Hy) (kd)
X, 1—Yzm1
2 +1(2m+1)2—(2n)"’{ Jz,,,H(kd)H;;”(kd)}
=igs(—1)" cos 2nl,,/{kdHY (kd)} (20)

and

! 2m o (kd) Hi 1 (kd)
Xm 1__ 2 +
X (2m)2—(2n+1)2{ sz(kd)Hé}Ml(kd)}

=@o(—1)" cos 2n—+1)0,,/{kd H!,(kd)} , 21)

where X,=¢PJ,(kd) (p=1,2,---,2l+1) and #=0,1,2,---1 (-1 for
(21)). It must here be noted that the quantities in the wavy bracket
are normalized by Jomy(kd)HE (kd) in (20) and J,.(kd)HP!,(kd) in (21).
This procedure is preferable to avoid the truncation errors in the calcu-
lation of simultaneous equations. Using equations (20) and (21), the
unknown factors

¢2(p) (p:1’21 "'y2l+1) (22)

can be obtained.

As for the unknown factors ¢{” in domain D,, equations (12) and (13)
are used. Substitution of (22) into the first equations of (12) and (13)
yields

¢ (p=0,1,2,--) . (23)

In using (12) and (13), the approximation (19) is taken into account for
the calculation of Bessel and Hankel functions.
The unknown factors

:f)p) (p2071727 "') (24)

in domain D; are obtained from (23) and the last equation of (14).
Using the factors obtained in such a way, the wave around the
breakwater gap can be discussed through formal expressions (17) to (18).
The actual calculation of the above procedure is made with the aid of
an electronic computer.
Since the depth of water is uniform, the relation between { and ¢
is given by

Q/Co=¢/¢o (25)

where {, is the amplitude of the incident wave which is assumed as 1.0
in the following.
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3. Computed Results

Following the afore-mentioned procedures, numerical calculations are
carried out.

3,1. Validity of Our Theory.
To begin with, the validity of our
(6) %cidevt theory is verified through the use of an

wave

(.6 exp“”(‘k*likk;gs‘gzi:f approximated theory based on Stoker’s so-
k2=ksin®jn) lution around a single breakwater wing
Lol e Ok Rgn (Stoker, 1957). The approximated theory
Fig. 2. Nomenclature of is described in the following.
the mOdeI used' Cap:Cright+Cleft_ eXp (iklx-l_?:ka) ’ (26)
where

CrighL: eXp (Iikld) * f(k?"/, 0/, oin) »
Ciope= €xp (—thid)- f(kr"’, 0", 7—0.) ,

Slo, 0, 0)=Ju(o) +2§jl exp <%>Jm(p) - cOS <1L2—9'1> cos <%0> )

(27)

B.W. Fig.3. kd=2.0. XA " Fig.4. kd=2.0.

B.W. Fig.5. kd=3.0. B.W. Fig.6. kd=3.0,

Figs. 8-6. Comparison of two results calculated on the basis of the method of the
buffer domain and the approximated method.*

* 1. W. and B. W. are the abbreviations of “incident wave” and “breakwater”.
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For the definitions and notations, Fig. 2 should be referred to. As be
readily found from expression (26), only the primary reflection at the
breakwater has been allowed for. Since the secondary reflection con-
tinues weakening with the increase of kd, the above approximated theory
might be well expressible of the real phenomena of the wave around the:
breakwater gap. Using expression (26) and the procedure described in
a previous section, the conformity of two theories are examined for the
incident angle of 0,,—=45 degrees. The result is given in Figs. 3 to 6,
in which the curves depicted by |{| (given by (25)) and |{,,| (given by
(26)) are, respectively, the solid and broken lines. These figures show
a good agreement of the two theories. Our theory based on the method
of the buffer domain developed in the foregoing section is therefore well
applicable to the present problem.

3,2. RST Wawve.

The RST wave is the abbreviation of resultant wave, which is ex-
pressed by (25) through the use of (17) to (18). The calculations are
based on |,,| for the amplitude and arg Z,,, for the phase*, where ...
is the conjugate value of the wave height of the RST wave.

To begin with, the calculation is carried out for a specified value
0.,=45 degrees (=r/4 radians) in the range kd=0.01 to 3.0. The results.
are presented in Figs. Taw to 12aw for the amplitude in the windward
waters, Figs. 7pw to 12pw for the phase in the windward waters, Figs.
Tal to 12al for the amplitude in the leeward waters and Figs. Tpl to
12pl for the phase in the leeward waters. Inspection of Figs. 7Taw to
12aw shows that the contours of the amplitude run in a circular from
around the breakwater gap for small kd (the case of Figs. Taw and 8aw)
and that the high waves (>2.0 in amplitude) appear along the break-
water and in the offing with the increase of kd which are characterized
by the shadow (the case of Figs. 9aw to 12aw). As for the phase
variation in the windward waters (Figs. 7pw to 12pw), the most con-
spicuous feature is an appearance of reverse current in the nearby waters.
of the leeward (left-hand) breakwater for small kd (refer to Figs. 7pw
to 9pw). For the generation of the reverse current, the same phenome-
non has already been found in the fourth work (Momot, 1968b) with
lateral incidence of the incident wave. In the leeward waters, the
contours of the amplitude and phase are almost in a circular shape for
kd in the range 0.01 to 0.1 (the case of Figs. Tal(pl) and 8al(pl)). As
kd increases, the directivity of the wave continues growing, which are

* The degree of the employed approximation is taken highly enough to keep good con~
vergence for the calculated results.
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B.W. Fig.9aw, kd=05. B.W. B.W, Fig.!0aw. kd=1.0. B.W.
5 1w,/ % LW,
. —— .
/:—7 /H . //45 T 45
15 Ny
o LI T
1.0 —
on H %‘o
% =
10 1.5 _ 1.0 L 10
" 2o T~ H "
, K ZVZ 2.0 H 2.0 20
BW. Fig.llaw. kd=2.0. B.W. B.W, Fig.I2aw. kd=3.0, B.wW.

Figs. 7Taw-12aw. Amplitude variation of RST wave in the windward waters.*

—

Ws 003
- Reverse
- Cury, 0.02
/ 7 00 SN
— — T TT—

B.W. Fig.7pw. kd=0,01,

>0
Fig.9pw, kd=0,1, W B.W. Fig,)0pw, kd=05. B.W.

(to be continued)

* See the footnote of Figs. 3-6.
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(econtinued)
"
20 j 1%
0 5 |n
Fig.!lpw. kd=1.0, B.W. Fig.12pw. kd=2.0, B.W.

Figs. Tpw-12pw. Phase variation of RST wave in the windward waters.* S. P. is the
separating point between the advancing and the reverse currents. -

W 4s°
BW. BW.

Fig.7al . kd=0,01, Fig.Bal. kd=0ll,

Fig.9al, kd=05,

Fig.llal, kd=2.0,

Fig,12al, kd=3.0.

Figs. Tal-12al. Amplitude variation of RST wave in the leeward waters.* Note the

gradual elongation of the contours showing the increasing sense of the directivity of the
wave.

* See the footnote of Figs. 3-6.
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LW, 1450
W
EEEE

Fig.llpl. kd=2.0. Fig.12pl. kd=3.0.

Figs. Tpl-12pl. Phase variation of RST wave in the leeward waters.*

shown, respectively, by the elongation of the contours of the amplitude
(see Figs. 9al to 12al) and by the running of the crest lines (see Figs. 10pl
to 12pl) toward and normal to the direction of the incident wave travel.

With a view to inquiring into the variation of the reverse current
for the incident angle of the incident wave, which has been found in
the windward waters around the terminus of the leeward breakwater
for small kd, the calculation of the phase of the wave with kd=0.01
and 0.04 is made for the incident angle 6;,=1.8, 22.5, 45 and 67.5 degrees.
The results are given in Figs. 13a (b, ¢, d) and 14a (b, ¢, d). According
to these figures, the reverse current continues growing with the increase
of the incident angle 6;, so that the separating point, stated by S. P. in
the figures, moves away gradually for the increase of 0.,.

¢ See the footnote of Figs. 3-6.
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Q
'OK

kd=0.04.

S BW. Fig.14d. kd=0.04.

Figs. 13a-14d. Variation of the vererse current for the change of the incident angle
of the invading wave.* S, P. is the point separating the reverse current from the ad-
vancing one.

8,3. RD Wawve.

The RD wave is the abbreviation of the reflected and diffracted wave
which is exclusive of the incident wave from the RST wave. In other
words, the RD wave denote a coastal response for the invasion of the

* See the footnote of Figs. 3-6.
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incoming wave. The calculation is based on
z‘rd:zrst_co exp (-‘_?:I{;l{rU +ik2y) .

¢.. and ,,, are the RD and RST waves. The bars denote the conju-
gate values which refer to the conversion of the incident wave exp
(—iwt —ikx—1ikyy) to exp (+iot+ikx+ik,y). The depiction of the figures
of the amplitude and phase is made by |C,.] and arg {,,. The calculated
range of kd is 0.01 to 3.0 for the incident angle 6;,=45 degrees. The
results are shown, respectively, in Figs. 15a (b, ¢, d) and 16a (b) for the
phase and amplitude. The figures relevant to the phase (Figs. 15a, b,
¢, and d) show that the geometric shadow grows to have a definite
boundary line as kd increases from 0.01 to 3.0. According to Figs. 16a

. - . . BW.
BW. Fig.Sc. kds1.0. BW. B.W. Fig.15d. kd=3.0.

Figs. 15a-d. Phase variation of RD wave in the windward waters.*

B.W. Fig.I6a. kd=1.0. BW. BW. Fig.I6b. kd=3.0. 8.

' Figs. 16a and b. Amplitude variation of RD wave in the windward waters.* L de-
notes the region of low amplitude.

* For I. W. and B. W., the reader should refer to the footnote of Figs. 3-6. G.S. and
D. Z. are the abbreviations of “geometric shadow” and “diffraction zone”. -
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and b, the diffraction zone is characterized by the extension of the low
amplitude area (the shaded region in the figures) from the breakwater

gap.

8,4. Kffect of the Breakwater upon the Diffracted Wawve.

The effect of the breakwater wing upon the wave diffracted from
the other breakwater is discussed in this section. The method of the
analysis is as follows. Let (. and &, be the wave heights in the
models of single right and left breakwaters for the invasion of the
incident wave exp (+iwt+ikx+1ik,y), which are given by (27). The
gross effect of the right-hand (or left-hand) breakwater upon the wave
diffracted from the left-hand (or right-hand) breakwater, ¢, ,, (or &, ,,)
is assessed by the equation

Ce,r,b, (01' Ce,l,b,) :Cm ~Cign: (OT Cleft) (28)

where (. is the wave height of the RST wave given in Section 2, 2.
The illustration of equation (28) is given in Fig. 17a(b).
The numerical caleulation of ¢, ., (or ¢, ,,) is carried out for kd=
0.01, 0.1 and 1.0, the results of which are given in Figs. 18a(b, ¢), 19a(b, ¢),
20a(b) and 2la(b).
B Through Figs. 18a(b, ¢)

Trst

and 19a(b, ¢) (the figures of
A ;

the amplitude relevant to
the waves (,,, and
o m respectively), the regions
\/\/// //r/\/ over 0.1 are shaded. The
—p PA=AE shadowed area in Figs. 18a,
:mkww m AL b and ¢ degenerates rapidly
with the increase of kd from

W77

Breakwater _J Breakwater
1 |

fel- ‘”-‘}/ﬁ 0.01 to 1.0, while that in
TN V= ; ;
A —_— Figs. 19a, b and ¢ occupies
Breakwater Breakwater nearly the same region
Fig. 17a. Effect of Fig. 17b. Effect of through three figures. The
the left-hand break- the right-hand break- reason for this phenomenon
water on the wave water on the wave - . R
diffracted from the  diffracted from the is considered to be owing
right-hand one. left-hand one. to the incident angle of the
Fig. 1Ta(b). Illustration of equation (28). incoming wave (6,.) whieh is,

in the present case, 45 degrees against the right-hand breakwater.
Through Figs. 18a (b, ¢) and 19a(b, c}, the low-amplitude region is spread
out before the breakwater gap which is produced by the reflecting
component from the leeward waters. The above low-amplitude region
is designated by the letter L in the figures.
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015 BW. BW. 02 ois Fig.19a. kd=0.01
/

Figs. 18a, b and ¢. Variation of |lers.|.*
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As for the phase variation of the diffracted waves (Figs. 20a(b) and
2la(b)), the following facts are found. Comparing Fig. 20a relating to
‘the wave (,,, with Fig. 21a relevant to ¢,,, for kd=0.01, the phase
-of the former is more retarded than that of the latter. The retardation
lessens as kd increases from 0.01 to 0.1 (refer to Figs. 20b and 21b).
In Figs. 20a and b, the kinking phase line is found near the terminus
-of the right-hand breakwater, suggesting the behavior of the reflection
-of the wave from the breakwater shadow. In Figs. 21a and b, such a
‘behavior is not found. Instead of the above phenomenon, the inflow
‘toward the leeward waters is exposed in Fig. 21a. The arriving wave
-diffracted from the right-hand breakwater in the case of Fig. 21 is
much stronger than that diffracted from the left-hand breakwater in
the case of Fig. 20, so that the reflecting behavior from the break-
water shadow in the case of the former is suppressed by the over-
“whelming inflow toward the leeward waters

References

"Momoi, T., 1967a, 1967b, 1968a, 1968b, 1968c, 1969a and 1969b, A Long Wave around a
Breakwater [I1, [II], [1IX], [IV], [V], [VI] and [VII], Bull. Earthq. Res. Inst., 45, 91-
136, 45, 749-783, 46, 125-135, 46, 319-343, 46, 889-899, 47 165-184 and 47, 701-T19.

iStoker, J. J., 1957, Water Waves, Pure and Applied Mathematics, Vol. IV, Interscience
Publishers, Inc., New York, 109-133.

40. PO ¥ Y- BT B ER [VII]
—®AHOHE —
wEmER Bk H o&m K

ARG I B TIBFRIRCH U CEARAMAR T 554 (2 2 CHAME FC BT OMHRE
BRI TIORELONATVLD) DRENRINTHD, HERITICE > CHIELAZ LVWES
HHRDZ EL Th 5. ’

ZEF DR PRI < DR LRI K I CHEAD DHETHA & 381 & OFhBEEOR VI L
CCHbNMS., £ U CZ OWROBBIIEAW OHEAS AW L AT ORI LR TH) ikl
TEBIONTREL I T B, FRENICHNT 2 RS OB 5 ITIC B\ T, Bl
BEDEN B R LN OR A EARE IS,




