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Abstract

In §1 and 2, the effect of radiation on the heat transfer in solids is
deseribed in terms of radiative thermal conduetivity. In §3, radiative
thermal conductivity of olivine in the temperature range from 300°
to 1300°K is obtained from the results of the measurement of its optical
absorption coefficient in the range of wave length from 0.3 to 10
(Fukao et al., 1968). The sum of the ordinary lattice conductivity and
the radiative conductivity of olivine is approximately constant and its
value is about 0.012 cal/em. sec. deg. from 800° to 1300°K. This
conclusion is different from the simple T?® law which assumes tempe-
rature independent absorption. The conductivity deduced from the
ordinary experiment will depend not only on the material but also on
the thickness of the specimen. Quantitative discussion about the thick-
ness effect is made (§4) for the case of the relatively large thickness
of the specimen. §5 deals with some geophysical implications of the
present results. If the upper mantle is mainly composed of peridotite
and the crystal size in it is larger than about lem, the sum of the
lattice conductivity and radiative conductivity is estimated to be appro-
ximately constant and its value is about 0.010 or 0.011 cal/em. sec. deg.
up to 1300°K. This result suggests that the possibility of mechanisms
other than the above two modes of the heat transfer, such as solid
state convection, should also be taken into account especially in the
oceanic upper mantle.
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1. Introduction

The suggestion that the radiation mode may play an important part
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in the heat transfer in the earth’s mantle was first proposed by Birch
and Clark (1940). Since 1950, the problems of the radiative heat transfer
within semi-transparent solids have been treated mainly by glass tech-
nologists. Stimulated by these studies, some earth scientists have paid
attention to this mode of heat transfer (Preston, 1956; Clark, 1956,
1957; Lawson and Jamieson, 1958). Especially Clark (1957b) measured
the optical spectra of various important minerals. He found the existence
of a pass-band near the infrared region for most of these minerals. This
experiment is important because it showed directly the possible effecti-
veness of radiative transfer in the earth’s mantle.

Effect of the radiation on the heat transfer can be represented by
the ‘‘radiative thermal conductivity, K,”’. After Clark (1957a) and
others, K, is expressed as,

4~ n,20B,
KT:;&*” s dy, 1
3he o " (1)

where T is the absolute temperature, v the frequency of radiation, =,
the refractive index, ¢,=a,--¢, the extinction coeflicient or opacity defined
by the sum of the absorption coefficient and scattering coefficient and
B, the spectral black body radiation function.

Now if we define the mean extinction coefficient z as

}:ri 9B, 4 rand 2
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(1) becomes

K= 16122_3T3
3e
(s=Stefan Boltzmann constant)

(3)

provided that n,=n (=constant). The above formula has been used in
the thermal history ecaleculations of the earth while there has been a
serious ambiguity regarding the actual value of ¢ in the earth.

Since MacDonald (1964) and Clark and Ringwood (1964), the constant
mean opacity, such as é=10cem™ or 5em™, has been widely used in
discussing the thermal state of the upper mantle. The most characte-
ristic feature of the constant opacity is that it makes the temperature-
depth curves convex bhecause of the rapid increase of the radiative
conductivity with increasing temperature. Recently, however Aronson
et al. (1967a, b) and Fukao et al. (1968) have found a large temperature
effect on the optical absorption spectra of olivine and other minerals.
The direct measurements of thermal conductivity at high temperatures
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of various crystals (Kanamori et al., 1968) and rocks (Kawada, 1966)
also seem to reject such a large increase of thermal conductivity with
increasing temperature as assumed in Clark and Ringwood (1964). These
experimental results suggest that we must re-examine the temperature
distribution in the mantle and the thermal history of the earth having
a lower thermal conductivity. This paper aims to help us in advancing
such a course of investigation.

2. A Brief Review of Radiant Heat ¢ Conduction”’

Thermal conduction in solids is deseribed in terms of the propagation
of energy by elastic waves caused by thermal vibration of atoms. Solids
in which the atoms undergo harmonic motion were called ideal solids by
Debye (1914). In a plane sheet of an ideal solid bounded by two walls
at different fixed temperatures, thermal elastic waves generated at the
boundaries propagate independently with each other from right to left
and from left to right, so that any unit volume element in the sheet
has the same vibration energy. Finite net flow of energy and zero
gradient of energy density mean infinite thermal conductivity of ideal
solids. The reason why the thermal conductivity is finite even in a
structurally perfect crystal is that when an elastic wave creates instan-
taneous volume change at some point, other waves encountering this
region are scattered due to the change of sound velocity at that point,
that is, due to the anharmonic effect. Such a mutual scattering of
elastic waves assures the redistribution of energy among waves with
different frequencies of vibration and then the possibility of attaining
thermal equilibrium.

Debye called the intensity of the energy transported by thermal
elastic waves ‘‘ radiation intensity’’ as in the case of the theory of heat
radiation. The amount of energy passing through a small element of
area in solid is the sum of ‘ radiations’ scattered in the different volume
elements. Those ‘‘radiations’’ would reach this area after weakening
their intensities due to scattering on the way. Following such an idea,
Debye (1914) derived the formula of the thermal conductivity as follows.

1 g4k (4)

K=" v
4 ar’

where [ is the mean free path which is the distance that the intensity
of ““radiation”’ weakens to 1/e of the original, E the internal energy
of thermal elastic waves per unit volume at equilibrium and v the velocity
of sound. dE/dT is, of course, the heat capacity per unit volume.

By Dulong-Petit law, the internal energy of a crystal composed of
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N single atoms per unit volume at sufficiently high temperatures is
E=3NLT, (5)

where & is Boltzman constant. Substitution of eg. (5) into eq. (4) yields
3
K,,_ZNkml. (6)

Radiant heat conduction in solids is described in terms of the transfer
of energy by the light waves caused by thermal emission of material
particles. It is apparent that Debye’s method is completely useful to
derive the radiative thermal conductivity of solids. In this case no
mutual scattering of waves exists. Redistribution of energy among
waves with different frequencies and the thermal equilibrium are realized
through the absorption of radiation by material particles and simultaneous
emission of radiation by the same particles. As inferred from eq. (4),
the radiative conductivity K, should be represented by

=1adU (7)

where U is the volume density of radiation at the equilibrium state in
a medium of which refractive index is n and « is the absorption coeffi-
cient which is the inverse of the mean free path of radiation. g=c/n
is the light velocity in the medium, while ¢ is the velocity of light in
vacuum.

If the volume density of black body radiation in a pure vacuum is
denoted by U,, then

U=nUy=n4 T, (8)
C

(e.g. Planck, 1959). Substitution of eq. (8) into eq. (7) yields

[24

Equation (9) is essentially equal to eq. (3) except a slight difference in
constant factor, which is due to the roughness of the treatment of
Debye. In truth a more exact three dimensional treatment leads to a
constant factor 1/3 instead of 1/4 in eqs. (4) and (7). Here the scattering
process of radiation has been ignored for simplicity. Thus the radiative
conductivity is proportional to 7® while the lattice conductivity is constant
so long as the mean free path is assumed to be constant.

When a solid has a size ecomparable with the mean free path, a
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quantity relating to the mean free path is seriously affected by the
boundary of the body. This is the so-called boundary effect or size
effect. Roughly speaking, the mean free path of a lattice wave is of
the order of A and that of radiation is of the order of em in ordinary
dielectrics. This situation often makes it difficult to use the concept
of radiative thermal conductivity in actual cases while the concept of
lattice conductivity is entirely valid.

3. Optical Absorption Spectra at High Temperatures and
Radiative Thermal Conductivity of Olivines.

Fukao et al. (1968) measured the ahbsorption coefficient of olivine
crystals in the range of wave length from 0.3 to 10 # at every 100°K
from 300° to 1300°K. Based on these measurements, they calculated
K, and ¢ using egs. (1) and (2) in which ¢,=0 was assumed and obtained
the following results.

1. In general, « increases with increasing temperature except in

a region near 1y in which an Fe** absorption peak exists. Espe-
cially « in the pass-band (from 1.8 to 8.0y) increases by a factor
of about 100 (from 0.05 to 5em™) in going from 300° to 1300°K.

2. Because of the rise of «, K, becomes smaller than the one

expected from Clark’s measurements (1957b) of « at the room
temperature by more than an order of magnitude. This small
value of K, isin a good agreement with the radiative component
of the thermal conductivity K estimated from the actual measure-
ment of thermal diffusivity on olivine crystals (Kanamori etal.,
1968).

Fukao et al. (1968) in their paper left the confirmation of the
reproducibility of their optical results above 900°K for further experiment.
The present author practised this experiment. The specimen used is
olivine from Arizona, U.S.A. and its Fe/Mg ratio seemed to be the same
as the one used in the previous experiments because the height of the
Fe*t absorption peak which is sensitive to the amounts of Fe** ions was
nearly equal. That is, the composition of the present olivine may be
fayalite 129 and forsterite 889;. Thickness of the specimen was 2.603
+0.002mm. In the experiment by Fukao et al. (1968) it was found
that the spectrum in the near-infrared was connected smoothly with
the one in the infrared at every temperature up to 1300°K, therefore
it was thought sufficient to make the confirmation of reproducibility
only in the visible and near-infrared regions.

The experimental method was entirely the same as before; the
optical system is shown in Fig. 1. Measurements were made at the
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Fig. 1. Optical system for visible and

Fig. 2. Absorption speetrum of olivine
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Fig. 4. Transmission spectrum of

forsterite at high temperatures.

Fig. 8. Absorption spectrum of olivine
at high temperatures.

room temperature and at every 100°K from 800°K up to 1300°K. Experi-
mental results are shown in Figs. 2 and 3, in which the infrared spectra
are reproduced from the earlier results. Spectrum at every temperature
in these figures includes the data in both the heating and cooling processes
and the coincidence between them is very good. Comparison with the previ-
ous data shows also a good coincidence of the absolute values of the ab-
sorption coefficient. Especially the near-infrared spectra are remarkably
similar to each other, while the present olivine is slightly more trans-
parent in the visible region at every temperature and its spectrum at
the room temperature is closer to Clark’s result. This slight discrepancy
may be reasonable when we consider the possible difference of the
crystallographic orientation and of the chemical composition. The value
of ¢ and K, calculated from the present data give only negligibly small
differences from those calculated from the earlier data. In conclusion,
the results of Fukao et al. (1968) are reliable through the entire tempe-
rature range. _

The author measured, though preliminarily, the transmission spectrum
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of a single erystal of forsterite,
which was kindly offered by Dr. T.
J. Shankland, The University of
Newecastle-upon-Tyne, at high tem-
peratures. Some of the results are
shown in Fig. 4. No distinct de-
crease of transparency was found
in the pass band with the increase
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of temperature. A large decreasein TEMPERATURE, K
transparency can be seen but Only Fig. 5. Reeiproca] of thermal con-

in the tails of the long and short ductivity of olivine (from Kanamori et al.,
wavelength absorption bands. This 1968). ,
experiment may support the explanation that the remarkable increase
of absorption coefficient of olivine in the pass band is mainly attributed
to the broadening of Fe** absorption band. It does not mean that there
exists no increase of the absorption coefficient in the transparent region of
forsterite but that «=0.001cm™, for example, cannnot be distinguished
from «=0.000lcm™. It is notable that in fact Grybnack and Burch
(1965) observed an increase of the coefficient of this magnitude for
saphire (single crystal of ALQO, at high temperatures.

Figure 6* shows the relations between K, K,, K,+ K, and other quan-
tities with the absolute temperature in which lattice conductivity K, is
estimated from the actual measurement of thermal diffusivity of olivine
as in Fig. 5 (Kanamori et al., 1968). Here K,, means the radiative
conductivity calculated from the room temperature spectral data. It
may be noticed that K,+ K, is in a fairly good agreement with the
observed conductivity K, while K,+ K,, is larger than K by more than
an order of magnitude. When we, however, examine the curves in
Fig. 6 in more detail, K is found to be smaller than K,+ K, at most
temperatures. As will be stated in the next section, this fact may be
interpreted as due to the size effect that takes place in the measurement
of the thermal conductivity.

The dotted line in Fig. 6 shows the thermal conduectivity of the
powdered forsterite measured by Kingery et al. (1954). In this result,
the porosity of the sample is reduced to zero by a simple correction.
No deviations from the proportionality between this line and 1/T is found
at least in the concerned temperature range and this line is very close
to K, curve. Again this phenomenon may be interpreted as due to the

* The main part of this figure is essentially the same as Fig. 4 in Fukao et al. (1968)
except for a slight improvement of the estimation of K,. The older estimation was based
on the values of Table 3 in Kanamori et al. (1968), which are the average values of
original data.
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Fig. 6. Thermal conductivity of olivine.

K: thermal conductivity deduced from the diffusivity measurement (Kanamori
et al., 1963).
Kp: lattice conductivity estimated from the diffusivity measurement as in
Fig. 5. :
Kr: radiative conductivity calculated from room temperature spectral data.
Kr: radiative conductivity calculated from high temperature spectral data.

boundary effect for the radiative transfer. In powdered material radia-
tion cannot penetrate so far because of the almost entire seattering by
the grain boundaries of particles. Recently Fujisawa et al. (1968) mea-
sured the thermal -diffusivity of powdered forsterite at high pressures
and temperatures. They also found no deviation from the proportionality
between the diffusivity and 1/7 up to 1200°K.

Aronson et al. (1967a, b) measured the absorption spectra of olivine,
diopside and oligoclase at elevated temperatures. They obtained K,=0.0050
cal/em. sec. °K at 1513°K for olivine. They find further that K, decreases
beyond 1500°K (Aronson, private communication). Thus it may be
inferred that the magnitude of K, of olivine would be about 0.005 at
most in the whole temperature range.
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4. Size Effect in the Measurement of Thermal Conductivity

Thermal conductivities are determined usually by measuring the
rate of heat flow through a specimen and the corresponding temperature
drop across it under the steady state condition. In Fig. 7 two opaque
walls are separated by an infinite planar sheet with thickness d. Sur-
faces of the sheet are in good contact with the walls so that their
temperatures are maintained at those of the walls, that is, T, and T,
(Ty~ T, respectively. As stated in section 8, the mean free path of
a lattice wave is so small that the specimen can be assumed to have
infinite thickness for the lattice conduction. On the contrary the mean
free path of radiation is often comparable with the thickness of the
specimen. In this case some of the radiation reaching a layer inside
the sheet may be directly attributed to the radiation emitted by the
‘walls or reflected at the walls. Now let the sheet be so thin that it can
be assumed to be a nearly ideal solid for the radiant transfer. Then,
through the sheet, the radiation emitted by cne wall penetrates with
negligibly small attenuation before reaching the other wall and the radi-
ation reflected at the latter also reaches the former without attenuation.
Under such a condition the temperature gradient within the sheet in-
creases with the reduction of the thickness, d, of the sheet when the
temperature of both surfaces is fixed at 7, and T, while the rate of heat
flow by radiation through it is held nearly constant. Thus the thinner the
sheet is, the more the usual lattice conduction contributes to the total
heat transfer. To summarize, the observed thermal conductivity should
be the sum of the lattice and radiative conductivity for a sheet of
infinite thickness, while it approaches the lattice conduectivity for an
infinitesimally thin sheet. Here the terms “‘ infinite’” and ‘* infinitesimal ”’
are used in comparison with the mean free path of radiation.

The problem of radiation be-
tween parallel plates separated by
‘semitransparent material whose
thickness is neither ‘‘ infinite ”’ nor
‘“infinitesimal ' is a difficult one,
including many tedious numerical
or graphical ecaleculations (e.g.
Hottel and Sarofin, 1967). Existence
-of the usual lattice conduction in
solid gives farther complex aspects
(Gardon, 1961). Analytical solu-
tion can be obtained only for Fig. 7. Model for static measurement of
‘the case when the optical thickness, thermal conductivity.

ANNN

2
X=0 X=Xo X=d
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which is the thickness of the sheet multiplied by the extinction
coefficient or divided by the mean free path of radiation, is relatively
large. Only such a case will be discussed in the remainder of this
section. Kellet (1952, 1953), who first reached the idea of radiative
thermal conductivity, treated the problem along this line, though his
paper is concerned with the unidirectional radiation only (Gardon 1956).
It is easy to amend this point, however, as will be explaned from now
on, by the introduction of the two flux method.

The spectral intensity, at a distance x from the surface, of a beam
of radiation travelling in a direction specified by polar angle ¢ with the
positive z axis is denoted by I, (x, 6) which is assumed to be independent
of azimuthal angle ¢ (see Fig. 7). Then the energy radiated per unit
time through the element of area d¢, which is perpendicular to z axis,
in the direction of the cone dw=sin 6d0d¢ is

I,cos0-dw-do.

Denote the radiant spectral flux across unit area of a plane perpendicular
to x axis at a distance x from the left by I,.(x) and that from the
right by I,_(x). Then,

T zf
Iu+(x):jz j " Lie, 0) cos 0de, I

e i

—1I,_ () =5 S I,(x, 0) cos Odw.
¢=0 JO=xj2

Spectral net flux of radiation through this unit area is then
H@ =1, (@) —I,. (x):r’ S T(@, 0) cos 0 do. 11)
$=0J0=0

General equation of radiative transfer in a medium with isotropic
scattering is
cos 0th”= —sUI,,+0Dq—E”+m2a» &, (12)
dx 4z T
where FE, is the volume density of radiation and ¢ the light velocity in
the solid, that is,

2m 4
o 5 g Ldo. (13)
¢=0)0=0

The first term in the right hand side of eq. (12) means the loss of
beam intensity due to absorption and scattering. The second and third
terms express the gains of intensity by the re-emission due to scattering
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and by the thermal emission respectively. Multiplication of eq. (12) by
do and subsequent integration from ¢=0 to 2r and then from ¢=0 to
w/2 or from 0==/2 to = yields respectively

dI_H: —e, Sn _‘m Ido+o, qE”—I—Zn,,Za,,BD, }
dx g=0)o=0 2
d 2 T (14)
_£: —e, S ,( Ldo+o, qE”—l— 2na,B,. g
dx $=0J0=m/2 2
We then expand I, by a Legendre polynomial
I,= A+ BP,(cos 6) + CP(cos ) & . . . . . . (15)

According to egs. (11) and (13), A and B are represented respectively
by qF, and H, as

A=41 qu,

§ (16)
B=3 4,

A

From now on the terms higher than the third in the expansion (15) will
be ignored. This approximation may not be exactly valid near the
boundary. We shall now consider the conical element on do specified
by the solid angle d?2 and cut by the boundary (Fig. 7). First we shall
pay attention to the case of uniform temperature of the sheet. All
volume elements of this conical element produce by their emission and
scattering a certain amount of energy reaching do. The closer this
conical element lies to x axis, the less amount of energy reaching do
is produced because of the smaller volume of the conical element. In
other words, in a sheet of finite thickness, the intensity of radiation is
higher in oblique directions when the direct radiation from the boundary
is ignored. Obviously, the thinner sheets radiate relatively more strongly
in oblique directions.

Now let us consider the case of such nonuniform temperature that
the right side is hotter than the left in Fig. 7. Let a certain volume-
element of the conical element in the colder half space, as in Fig. 7,
be bounded by two cross-sections at distance equal to r and r+dr res-
pectively from the vertex. The closer the conical element lies to x axis,
this volume emits the less amount of energy reaching do because of
the present temperature distribution. Then the oblateness of the inten-
sity distribution is relatively more emphasized than in the case of uniform
temperature for the radiation propagating from the left to the right.
For the radiation in the direction of decreasing z, the effect due to the
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finite thickness and the effect due to the nonuniform temperature
distribution act in opposite direction and it gives rather complex intensity
distribution of radiation. Until now the direct radiation from the
boundary has been ignored, which is due to the emission and the reflection
by the wall. The wall is assumed now to emit and reflect radiation
uniformly in all directions. It cancels the effect due to the finite thickness
in the case of uniform temperature.*

This effet, however, remains at least to some degree when it is
accompanied by nonuniform temperature distribution and I, cannot be
adequately described by the first two terms alone in eq. (15). The third
or higher terms become relatively more significant in thinner sheet.

Then, our approximation is exactly valid only for relatively thick
sheets and under such limitations it leads to the following equations
for hemispherical fluxes, I,,(x) and I,_(z), as a result of eliminating
qFE, using egs. (10)~ (16).

%I;G_*.—_ — {Zau + (%ED — av>} I,.+ <%su — ay>Iu_ +2a,m,:B,,

__da%z _ {2av+(%,—a,,>}1y_ +<%,,—au>l,,_ +20,n,%B,.

(17)

Readers might notice that eq. (17) is the modification of Kubelka’s formula.
for diffuse radiation (Kubelka, 1948).

%‘: — (2a,+20,) L, +20.1,_,
X
(18)
— Lo (90,4201, +20.1..,
dx

Let us calculate the rate of heat flow @ through unit area of the
sheet, which is the sum of the one due to the ordinary conduection and
that due to the radiant transfer.

Q=— ﬂ-{—ij(ﬂc)du. (19)
dx
The condition of steady state demands
aQ_, (20) **
dx

* If the reflection takes place according to Snell’s law, the direct radiation from the
boundary does not cancel this effect even in the case of uniform temperature because the
reflected ray in the oblique direction is relatively stronger than in the normal direction.

** In the case of practically linear distribution of temperature within a distance of
mean free path of radiation, substitution of eq. (19) into (20) yields




On the Radiative Heat Transfer and the Thermal Conductivity 561

To get an analytical solution, all the quantities should be independent
of frequency of radiation v,

a,=a, &,=¢, N,=MN, (21)

and
z+=jn+ d, I.=\L_dy, B=§Bvdu=sT4, 22)

Under such simplifications the necessary equations to be solved are therefore
(i) rate of net heat flow

Q=—EKX L1 (0)—I_(), (23)
dx

(ii) steady state condition

de _

(iiiy equations of radiative transfer

1 A PSS 3, ;
Lo {2a+ (4 c a>} I, (@) +( S a>I_ (z) + 2t B(x), "
—%: — { 20+ <-‘f’fs~a>} I_(x) +<%e——a)l+(w) +2n*aB(x).
Hemispherical flux I, at the boundary x=0 is attributed to the

emission by the surface of which hemispherical emissivity is ¢ and the

dHy_ dlvy _ dIu—:O
dx dx dx

) (i)
Substituting eq. (17) into eq. (i), then

Iu++[u-=27lusz, (“)

It follows from eqs. (17) and (19) that

dT 2(1 d
=—K% 2\ = Z (L, +Ib-)dy, !
Q dx 385y gy LT holde i
and from eq. (ii) that
4¢1 o daT .
=—1K+ — 2 (nv2By) dviZ—, v
? { 3S6D o7 "B U}dx (iv)

The second term in parenthesis in eq. (iv) represents the radiative conductivity ”’ and
coincides with eq. (1). Use of the two flux' method for derivation of eq. (1) and for
discussion of scattering process had already been tried by Aronson et al. (1967b).
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reflection of I_ reaching this surface. Thus the boundary conditions
at v=0 are

T0)="T,, }
(25)
L.(0)=en’B(0)+(1—e)1_(0),
Similarly at z=d
Td)=T,, } 26)
I_(d)=en’B(d)+ (1—e)I.(d). (

Equations (23), (20) and (24) correspond to Kellet’s eqs. (1), (2) and (3)

and the solution is easily obtained as follows after his way of calculation.
— —md
nzB(TO)_nzB(T,)+%K(TO—TI)+27952“_@(TO—TI) —

- B , (27)
ieﬂ?@_%% 2—c3aed1+e

4 m? e 2m l—e™

_ 4wa{B(T,) — B(T\)}

" K(T,—T)

+ Bace. (28)

If K=0, ¢=1 and e=a (no scattering), eq. (27) yields

0= _ W’ B(T,) —n*B(T) (29)
%dﬂ
This corresponds to eq. (30) in Genzel (1953).
Observed value of thermal conductivity K, is given by
Q=K DD, (30)

If the average temperature of the sheet is denoted by T, B(T,) —B(T))
is approximated by

B(TO)—B(T1)=4ST—3(T0—T1), (31)

Under this approximation, substitution of eq. (27) into (30) gives

e 2 v 3¢D

Keff — 2_6 1/3 90 2P

K, 4 e 2 vV 3¢D\ "’
2 q-pyy ¢ + 2 p th( 90)
3D | A S op

(32)
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where
D=ed,
o'=ale, _
Ko=K+K,=K+ l“_g?_f (33)
P*=K/K.,

In the case of ¢*=0 (no absorption) eq. (32) becomes

4P* e

Kef( _ 3D 2—e

K. 4 e (34)
3D  2—e

Equation (34) is equivalent to eq. (5d) in Van der Held (1952). Notice
that

Keff_>1{ fOI‘ d*—)O
K—K.=K+ K, for d—co

1.0 T T
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Fig. 8. Effective thermal conductivity
Keff as a function of optical thickness D.
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(e) ¢2=0

as have been stated at the beginning of this section. Of course, eq.
(27) and then eq. (32) are good approximations only for a relatively
thick sheet, say D\3 or 4. More sophisticated calculations, however,
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seem to be meaningless in practical use so long as we take such appro-
ximations as eqs. (21) and (31). Figures 8a, b and c¢ illustrate K./ K,
versus D=ed for various P’=K/K,, when ¢*=a/c=1, 0.5 and 0 respec-
tively (e=0.9 for all cases). As can be seen in the figure, the value of
K./K.. does not depend significantly on the value of ¢* for given D and P2

5. Discussions and Geophysical Implications

Recently Fujisawa (1968) estimated the temperature in the upper
mantle by comparing the phase diagrams of the olivine-spinel transition
in the Mg,SiO,-Fe,SiO, system obtained by Akimoto and Fujisawa (1967)
with the latest P-wave velocity distribution (Johnson, 1967 ; Kanamori,
1967). His fundamental assumptions based on various observations and
experiments are:

1. The upper mantle is composed mainly of olivine and pyroxene,
and the average content of olivine possibly amounts to about 80%.

2. The plausible values for the Fe/Mg ration of mantle minerals
lie between 1:9 and 2:8, and from the petrological evidence the
magnesium-rich side in this range seems more probable.

Under these assumptions, according to Fujisawa, the olivine-spinel
transition accounts for the sharp discontinuity found by Johnson (1967)
and Kanamori (1967) that starts at the depth of about 370km in the
mantle and whose thickness is of the order of several tens of kilometers.
The temperature necessary for starting transition at the pressure corre-
sponding to 370km depth was found to lie in the range between 1150°
and 1530°C, using the stability relation of olivin-spinel transition in 109,
fayalite 909, forsterite. To interpret the observed thickness of the
transition layer which ranges from 50 to 70 km, in terms of the width
of the two-phase region in the olivine-spinel transition, the temperature
at the termination of this region must be only 0° to 100°C higher than
that at its beginning.

This estimation appears to be based on fewer and more sound
assumptions than others so that the proposed temperature range and
temperature gradient at 370 km depth may be considered as one of the
important boundary conditions in estimating the temperature distribution
in the upper mantle. Clark-Ringwood’s geotherm (1964) or Ringwood’s
geotherm (1966) were derived from a constant mean opacity £ and,
therefore, from the assumption that the radiative conductivity K,
increases as 7°. This is a wrong approximation as mentioned before.
Now it seems to be possible to inquire into the more probable value of
the thermal conductivity in the upper mantle. The author adopts
Fujisawa’s two assumptions. According to the first assumption, thermal
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conductivity K in the upper mantle would be described as

1 _0.8, 0.2 (35)

in which K, and K,, are the thermal conductivities of olivine and pyroxene
(mainly enstatite) respectively. According to the second assumption Fe/
Mg ratio in those minerals is 1:9 or a little more. Olivines used in
our optical experiments are of 129 fayalite and 889, forsterite and
may be taken as the representative of the Fe/Mg ratio in the upper
mantle. Figure 7 shows that K., of olivine is approximately constant and
about 0.012 cal/em. sec. deg. in the temperature range between 300°K
and 1800°K if the crystal size is infinite. Is this assumption justified
in the upper mantle? The peridotite nodules or olivine nodules have
been thought to be the fragments of rocks in the upper mantle brought
to the surface by the basaltic melts (e.g. Harris et al., 1967). It is probable
that these nodules have been crushed during the upward movements to
the surface. The size of the olivine crystal in these nodules lies in the
range of from less than Imm to 1 or 2em. Therefore it does not
seem unnatural to consider that olivine crystal has the size of at least
about 1cm in the upper mantle.

Figure 9 shows the size effect on the thermal conductlwty of olivine
at various temperatures. Calculations were made from eq. (32) in which
the values of K and K. were taken from Fig. 6 and extinction coefficient
¢ was assumed to be equal to £ at each temperature. According to
this figure, K,; is more than 90% of K. at all temperatures if the
thickness, d, of the plate of olivine
isequal to 1em. Evenifd=0.5cm,
K, is more than 85% of K, at most
temperatures. Judging from these
considerations, K, has a constant
value of 0.011 or 0.012 cal/cm. sec.
deg. up to 1300°K and very large
increase of K, cannot be expected
in the upper mantle.

Measurements of neither the
thermal conductivity nor the ab-

sorption coefficient of enstatite
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conductivity of peridotite and basalt (Kawada, 1964), the thermal diffusivity
of olivine and jadeite (Kanamori et al., 1968) and the absorption coeffi-
cient of olivine (18%; fayalite) and diopside (129 hedenbergite) (Clark,
1957b ; see also Fig. 3 in Clark and Ringwood (1964)) suggest that the
lattice conductivity and the radiative conductivity of enstatite are both
smaller than those of olivine. Putting the values ranging from 0.006
to 0.009 cal/em. sec. deg. for K,, into eq. (35), the following conclusions
are obtained: the thermal conductivity K is approximately constant and
about 0.010 or 0.011 cal/em. sec. deg. up to about 1000°C in the upper
mantle and that the rapid increase of K as in the case of constant opacity
cannot be expected.

These conclusions revive the classical difficulties in explaining the
heat flow through the oceanic mantle. To avoid them, Clark and Ringwood
(1964) have proposed the oceanic pyrolite model in which large upward
oncenctrations of radiogenic heat

sources were assumed. Even if T T T

their model were adopted, however, 1600} A - _ R
the oceanic geotherm, based on o F /,/ Z-5" ]
the surface heat flow value of  ©° ., 7 5 4
1.2~1.5X107° cal/em?® sec. under & | Foo

o . . pn <)

the steady state condition with E gool /¢ i
K=0.010 or 0.011 cal/em. sec. deg. o Ay .

o F N Geotherm for Oceanic
tends to exceed by far the temper- = /S Purolite Model
ature range and the temperature  M*°°7 /A yrolite Mode T
gradient at about 370 km depth 7 7
estimated by Fujisawa (1968) (see %5 750 260 366 300

DEPTH, km

Fig. 10). It suggests that the
EZEQS fitfeec)zll:telrr?i‘;};az;s;: f;l);r}lflit pyrolite model V\;ith the surface heat flow of
1.2X10-%cal/em?. sec. under the steady state
Excitonic energy transport pro- condition in cases of ¢=5cm (Clark and
posed by Lubimova (1963) is of Ringwood, 1964) and K=0.011 cal/em. sec.
negligible importance for the ther- ~ d°¢: A: Solidus of peridotite for unhy-
mal conductivity of mantle material drous con.dmons. B: So‘hc.lus of‘ perldotlt.e
for Puzo%= Piotar. F: Olivine-spinel transi-
because the energy of formation of  tion in peridotite whose Fe/My ratio is
excitons in mantle materials is too 1:9.
high to create a large number of
excitons at the temperature prevailing in the earth’s mantle (Shankland,
1968).

In Fig. 10 the curves of the beginning of melting of peridotite are
shown for the cases of no water in host materials and of water pressure
= total pressure (Kushiro et al., 1968). The present geotherm intersects
with the curves for solidus with Py o=P,,, at 100 km depth. If a small

Fig. 10. Geotherm based on oceanic
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volume fraction of liquid exists in the intergranular channels of coherent
solid matter, upward current by liquid is capable of carrying heat many
orders of magnitude larger than that due to ordinary heat conduction
even with a melt fraction less than 10=* (Frank, 1968). It is noteworthy
that this mechanism inevitably accompanies a solid plastic flow essentially
downward.

Tozer (1967) considered that there exists a low viseosity region in
the upper mantle in which the decrease of viscosity due to the tempe-
rature rise overcomes the pressure effect, and that the convection was
probably confined to this region which extended from the depth of about
50km for the oceanic regions to the depth of about 600km. The
temperature distribution is nearly equal to an adiabatic distribution in
the convecting layer. In any case it now appears fairly certain that
mechanisms other than ordinary conduction and radiative conduction
should be taken into consideration to account for the heat transfer in
the oceanic upper mantle.
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