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Abstract

Theoretical seismograms of spheroidal disturbances on the surface
of an elastic sphere consisting of a homogeneous mantle and a liquid
core are calculated when uniform radial stress is applied to a small
circle around the pole. The effect of gravity is taken into consider-
ation. Contributions are included from the free spheroidal oscillations
of the first few radial modes for all orders with periods larger than
12 sec. The results of these computations are compared with the
corresponding quantities for the case excluding the effect of gravity.

Noteworthy results from the study of spheroidal disturbances
propagating on the surface of a gravitating elastic sphere with a
homogeneous mantle and a liquid core, when the uniform radial stress
is applied to a circular area around the pole, are:

1. The difference between non-dimensional frequency for the
present case and for the case excluding the effect of gravity is not
a simple function. The discrepancy is large for modes lying along
the branch specified by 7=1’; it tends toward negligible values as
the order number increases.

2. The corresponding phase and group velocities exhibit their
greatest differences for the first three radial modes and for orders
less than about 15. The number of maxima and minima for the
group velocity curves increases with radial mode number ¢. Curves
connecting corresponding maxima and minima tend toward the value
U/Vs==1.2 as the period decreases to zero; in the case of the
homogeneous sphere these curves approach 1.3.

(Contribution No.79. Geosciences Division, Southwest Center for Advanced Studies)
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3. The amplitudes of the Common Spectrum suggest that higher
radial modes with 7>10 may still give appreciable contributions to
the theoretical seismogram.

4. The Rayleigh wave shows a simple disturbance consisting
of approximately one cycle of oscillation. The pattern of wave
propagation can be explained by the concept of dispersion.

5. The convergence of the wave form of the P wave by the
successive addition of radial higher modes is not so rapid as in the case
without gravity. The slower convergence is caused by the difference
of the time and space functions of the applied forces and by the
minimum values of period .employed in the synthesis.

6. The orbital motion of the Rayleigh wave shows a phase
advance of =/2 near the antipode.

7. In the seismograms showing body waves, the surface-reflected
S waves end abruptly near the travel time of a wave propagating
along the surface with the shear wave velocity.

8. The variation of amplitude of the body waves as a function
of epicentral distance can be explained by the theory of the
divergence factor, after accounting for the effect of reflection at
the surface.

1. Introduction

Theoretical seismograms of torsional and spheroidal disturbances
have been calculated during the past few years for various cases from
simple models such as the homogeneous elastic sphere” to realistic
earth models under the influence of gravity”. Basic properties have
been found which characterize the behavior of these theoretical seismo-
grams. 1) The fundamental mode is closely related to the surface
waves and the higher radial modes to the body waves. 2) The waves
in the S group, which travel most of their paths as S waves, are well
represented by contributions from the lower radial modes, while higher
overtones are necessary to express the P wave group. 3) The apparent
arrival times and amplitudes of body waves identified on the theoretical
seismograms usually are concordant with values calculated from the

1) Y. Sa1d, T. UsaMmi and M. EWING, “ Basic Study on the Oscillation of a Homogeneous
Elastic Sphere IV. Propagation of Disturbances on the Sphere,” Geophys. Mag., 31 (1962),
237-242,

T. UsaMI and Y. SATO, “Propagation of Spheroidal Disturbances on a Homogeneous
Elastic Sphere,” Bull. Earthq. Res. Inst., 42, (1964), 273-287.

2) Y. Sat0, T. UsaMi and M. LANDISMAN, “Theoretical Seismograms of Spheroidal
Type on the Surface of a Gravitating Elastic Sphere. II. Case of Gutenberg-Bullen
A’ Earth Model,” Bull. Earthq. Res. Inst., 45 (1967), 601-624.



Theoretical Seismograms of Spheroidal Type III 793

theory of geometrical optics. 4) The introduction of the core causes
special transition branches on the non-dimensional frequency vs. colati-
tudinal order number curves for the spheroidal oscillations. Spheroidal
modes on these branches show features characteristic of boundary
waves between two different media.

The effect of gravity on the propagation of spheroidal disturbances
has been investigated for two cases, a homogeneous elastic sphere® and
the Gutenberg-Bullen A’ earth model®. In these investigations, the
effect of gravity on the non-dimensional frequencies was found to be
complicated, but the resulting theoretical seismograms were not greatly
altered. ‘

The present study, the third one of the effect of gravity on the
periods of free spheroidal oscillations, its effects on the phase and group
velocities, Common Spectrum and on the theoretical seismograms was
planned in order to unravel the influence of gravity and to make clear
the extent of the contributions from various parameters. A homogeneous
mantle and a liquid core were assumed. The theoretical seismograms
representing the disturbances on the surface were calculated by summing
up contribution from the free spheroidal oscillations through the tenth
radial mode, for all orders from the gravest with period 55 minutes to
those with periods near 12 seconds. Phase and group velocities, the
Common Spectrum and theoretical seismograms were calculated and
comparisons were made with the corresponding quantities found for the
case excluding the effect of gravity. In the latter”, the shortest periods
employed in the synthesis were about 60 seconds. Special attention
was paid to the propagation of Rayleigh waves and to the variation of
wave form and orbital motion with epicentral distance, as these observable
quantities are related to the polar phase shift.

2. Glossary

a: radius of the sphere
b: radius of the core
C,U: phase and group velocities
Eg, E;: radial and colatitudinal components of stress on the surface

3) T.UsaMiand Y. SATO, “ Theoretical Seismograms of Spheroidal Type on the Surface
of a Homogeneous Gravitating Spherical Earth,” Bull. Earthq. Res. Inst., 44 (1966), 779-791.
4) Y. SaTO and T. Usami, “Propagation of Spheroidal Disturbances on an Elastic
Sphere with a Homogeneous Mantle and a Core,” Bull. Earthq. Res. Inst., 42 (1964), 407-425,
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3. Fundamental Expressions

The Spherbidal disturbance of a radially heterogeneous elastic sphere,
when the effect of gravity is considered, may be expressed in the polar
coordinates (r, 8, @),

(.0, 9) =5 @) 9(0), W), $(p)-exp Gptidp,  (31)

wp)=3, AnU,(r)-P,"(cos0) - 2mp-f*(p) ,

0p) =3, A Volr) P (cos 0)- o me-f*(p)
P,"™(cos0) —sin (3.2)

= A ") e *
w(p)= 23, Awm V) =2 = cos M () ,

9P)= 3, A Y, (1) P, (e0s0)- 5 mp-f*(v) ,

where u, v, w are the displacement components in the #-, 6-, p-directions
and ¢ is the gravity potential due to the disturbances. U,, V, and Y,,
the radial distributions of displacement and gravity potential, satisfy
the simultaneous differential equations,

—(AX +20U,) + LU, — 40, +0(0+ (= U1V, +3V,)]

+ P Yn +|00g0Xn _Po‘c%(go U,) +pp*U,=0,

_d_[p@?; Vo U)}r L 5U, +30V,— V,—2n(n+1)V,]

dr r

U (3.3)

+_Xn+'ﬂYn‘_p0g0—_—n—+p0p2Vn=0 ’
r r r

Y+—3~Y o U,+00X,)

X,=U, +§Un— n(n—i—l)L
r r

7 is the universal constant of gravitation and p, and g, are the density
and gravity in the undisturbed state. A dot over a quantity 1mphes
differentiation with respect to the radius 7.
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Denoting the coefficients of spherical surface  harmonics in the
surficial expansion of the radial and tangential stresses applied on the
surface by S,.. and T,,, the displacement components in the time domain
can be expressed, through the technique of contour integration, as

=2 5 P,m(cos 0)- 08 [ S T )-
uh)=75 2, Far(eos) gy me (dEs/dp+dET/dp

U0)-f o) expint)|

=iPn

] d cos N T
=9 5 L P (cost)-Some:[ (D m ).
w0= 5.3, 3P 80 5| (i 2 (3.4
V.- f o) exp Gt |
] -P,™(cos) —sin S, T
nod s m-P,(cosd) [ ma ).
w() 2i§,‘n sin 6 cos ¥ <dEs/dp dET/dp>

V() () -exp (p1)

p=p,

E, and E; are the radial and tangential stress at the free surface r=a,

Ey=(+2p).- U@+ U, (@) —n(n+ ) V(@)

. (3.5)
EBy= (e (Vo) = L (V@) = o)) -
a
E,=FE,=0, together with the relation
V(@) + 2L () = d2r- (o). Unl@) (8.6)

a

comprise the exterior surface boundary conditions for free spheroidal
oscillations of a gravitating elastic sphere.

4, Earth Model

The earth model employed in our previous paper” was adopted
here. However, when the effect of gravity is introduced, it is insufficient
to specify the ratio of densities in the mantle and core; the absolute
values of density are necessary in order to determine uniquely the
natural periods of free spheroidal oscillation. Values of parameters
characterizing the model are
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a=6370 km ,
b= (6370 —2900) km ,
P‘z/Po:2-2 ’

p:=10.171, p,=4.6232,
Vpe=11.55 km/sec ,
Vao=Vp/1V 3 =6.667 km/sec ,
Vp:=10.00 km/sec .

The above density values give 5.52 gr/em® as the mean density of
the model sphere, a value equal to the corresponding one for the
actual earth.

5. Non-dimensional Frequency of Oscillation

The eigenfrequencies of the free spheroidal oscillations are obtained
by solving the differential equations (3.3) under the boundary conditions:

1) Vanishing of the radial and tangential stresses and the continuity
of the gravitational potential on the surface r=a and

2) Continuity of the radial and tangential components of displace-
ment and stress and the continuity of the gravitational potential and
the gravitational force on the core boundary, »=b.

Since a model consisting of a homogeneous mantle and a liquid core
is assumed in the present study, the functions U,, V, and Y, can be
expressed by the spherical Bessel functions. In the present study,
however, the non-dimensional frequency of free spheroidal oscillation
7(=ka=pa/Vy) is calculated by numerically integrating the equation
(3.3). The method was explained in a previous paper® which treated
the case of a Gutenberg-Bullen A’ earth model.

The non-dimensional frequencies through the tenth radial mode, for
all orders with periods longer than about 12 see, were calculated and
are arranged in Figures 1-a and 1-b together with those obtained for
the case excluding the effect of gravity. As is physically reasonable,
the difference between the non-dimensional frequencies, for the cases
with and without the influence of gravity, becomes negligibly small as
the colatitudinal order number % increases. The existence of the core
has little effect on the free oscillations of short period. Therefore, the
curves for large values of 7= represent nothing but the frequency for
the case of a homogeneous elastic sphere. Modes on a special branch
specified by i=1" show large amplitudes near the core boundary, a
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Fig. 1-b.

Fig. 1. Non-dimensional frequency 7(=ka/Vso) of spheroidal oscillation for an elastic
sphere consisting of a homogeneous mantle and a liquid core. Solid lines and solid circles:
case when the effect of gravity is included. Broken lines and open circles: case without
influence of gravity. As the colatitudinal order number # increases, the difference between
solid and broken lines becomes negligible. Fig. 1-a is reproduced from the preliminary
report?.

characteristic associated with Stoneley waves between two different
media.

6. Phase and Group Velocities

Phase and group velocities are calculated from the non-dimensional

5) Y. SAT0, T. Usami and M. LANDISMAN, “Preliminary Report: Theoretical Seismo-
grams Excited by a Localized Radial Stress on the Surface of a Gravitating Homogeneous
Mantle over a Liquid Core,” Nuovo Cimento (in print).
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Fig. 2. Phase and group velocity as functions of period. Solid lines refer to the
case of a gravitating elastic sphere and broken lines to the case without the effect of
gravity. In the fundamental mode (i=1), the phase and group velocities both tend toward
the corresponding value of a plane Rayleigh wave, 0.9194 Vs,, as the period tends toward
zero. In order to show the detailed features of group velocity, the short period part is
enlarged in the rectangular enclosure. The group velocity of a homogeneous sphere and
a homogeneous mantle with a liquid core is compared in Fig. 2-¢, when the effect of
gravity is considered. Dots show periods for which the radial distributions of disturbances

terminate near the core boundary.

frequency by means of the well-known asymptotic formulae

C/Vsn:77/(’n+—;~> 6.1)

and Ul Vg=dz/dn ' (6.2)

Results are graphically represented in Figures 2-a and 2-b. The
differences between the phase and group velocities for the present case
and those for the case without the influence of gravity are not great
except for modes with longer periods and for the radial higher modes
t=1". In order to show detailed features of the group velocity curves,
a part of the figure is enlarged along the period axis and is given in
a rectangular enclosure.
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As the period tends toward zero, the phase and group velocities
of the fundamental mode approach 0.9194 Vg, corresponding to ordinary
Rayleigh waves along a plane boundary. The number of maxima and
minima in the group velocity curve increases as the radial mode number
1 increases. Corresponding maxima and minima seem to lie on smooth
curves which tend toward the value U/Vg==1.2 as the period decreases
to zero. A similar feature was pointed out in the case of torsional
oscillations of an actual earth model by Sat6, Landisman and Ewing®
and explained in connection with waves which graze the core. Alterman
and Kornfeld” found the same phenomena for torsional oscillations of
an elastic mantle with a liquid core and associated it with a guided
wave due to the introduction of the core.

Figure 2-c shows the group velocity for the present case and for
the case of a homogeneous gravitating elastic sphere. Broken lines
represent the latter case, in which values of maxima and minima
approach U/Vs,=1.3 as the period tends toward zero. Dots in the figure
correspond to modes for which the displacement becomes negligible near
the core boundary (b/a=0.5447). Denote the period of these modes by
T.. For modes with periods longer than T;, the core (or the part of
the sphere for which 7<0.5447a) participates in the free oscillations.
The core (or the corresponding part of the solid sphere) does not affect
the oscillation for modes with periods shorter than T,.. As may be
expected, the group velocities of the two cases for modes with T<T;
do not show any difference.

The maxima and minima of group velocity approach the limit
U/Vs=1.3 for infinitesimally short period spheroidal oscillations of a
homogeneous elastic sphere. This limiting velocity is understood by
Alterman and Abramovici® to be representative of the mixed wave
type P.S,, in the limit as g—co. The wave travels ;. segments as P
and v segments as S, with multiple reflections at the free surface.
This explanation does not seem to be valid, because the limit of the

6) Y.SATO, M. LANDISMAN and M. EWING, “ Love Waves in a Heterogeneous, Spherical
Earth. Part 2. Theoretical Phase and Group Velocities,” J.G. R., 65 (1960), 2399-2404.

7) Z. ALTERMAN and P. KORNFELD, “Normal Modes and Rays in the Propagation of
a Seismic Pulse from a Point-Source in a Layered Sphere,” Israel Journ. Tech., 4 (1966),
198-213.

8) Z. ALTERMAN and F. ABRAMOVICI, © Propagation of a P-pulse in a Solid Sphere,”
Bull. Seism. Soe. Amer., 55 (1965), 821-862.

7. ALTERMAN and F. ABramovici, “Effect of Depth of a Point Source on the Motion
of the Surface of an Elastic Solid Sphere,” Geophys. J., 11 (1966), 189-224.
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group velocity maxima and minima, U/Vg=1.3, disappears for the
case of a homogeneous mantle with a liquid core. The corresponding
limit of the maxima and minima for the present case, U/Vs, =1.2, is
caused by the introduction of the core. If they exist in this case,
waves corresponding to these extremal values of group velocity seem
to be closely connected with the core. Detailed study of these waves
will be left for the near future.

7. Common Spectrum

The components of the Common Spectrum, ;S,* and ;S,*, for the
radial and colatitudinal displacements are defined as

U — Smn Tmn . ¥
Se=(gpsiay Famp ) U@ .

S T
iSnv:-( mn + mn ).Vn,r. % .
iE.Jdp | dE.jdp (r)-f*(p)
If the temporal and spatial distribution of the applied force is
specified, the Common Spectrum is independent of the variables ¢, 0
and @, and it may be used to calculate the disturbance at all times and
locations. Using these expressions, the disturbances may be written

u(t)=A 2 S, P, (cos 0) COSWP -exp (jpt) ,

J d cos
—Ei,%, 5! ”P (cos 0)- . mp-exp (jpt) , (7.2)
w(t):% S, S mP_n’”(c_OSQ.—sm

- sin 8 cos P XD (Gp1) -

The radial and colatitudinal components of the Common Spectrum are
shown in Figure 3-a and 3-b. Parts of the figure for small values of
n are magnified and given in rectangular enclosures.

The discrepancy between the patterns of the Common Spectrum
for the cases with and without the influence of gravity stems from
the differences between the constant values defining the temporal and
spatial distributions of the applied force. It is remarkable that the
maximum value of the Common Spectrum for the fundamental mode
is far larger than those for higher radial modes, and that the maximum
values of the higher radial modes decrease rather gradually as the
mode number 4 increases. This gradual decrease implies that the
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Fig. 8. Common Spectrum of radial and colatitudinal components of displacement.
Portions of these curves for large and small values of % are enlarged in enclosures.
Values of radial component for n=0 are given by dots.

addition of radial higher modes with 7>9 will improve the accuracy
of the theoretical seismograms which express the body waves. The
effect of this improvement will be discussed in the near future.

The Common Spectrum decreases as the colatitudinal order number
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n increases. It becomes negligibly small when 7 is larger than 500 for
the fundamental mode, and for values in excess of 250 for the higher
radial modes.

8. Theoretical Seismograms

A purely radial stress is applied to a small circular area around
the pole, implying axial symmetry (m=0). Its geographical distribution is

1 6<6,

@(0,¢)=¢°(cos0)={0 0t (0,=0.012 radian) .  (8.1)
The time function is taken to be
-1 —t,<t<0
fiy=1 1  o0<t<t, (t,=0.004) . (8.2)
0 |t|>t

From the function given above, the Fourier transform is immediately
given as

f*(p) = —47 sin® (pt,/2)[p . (8.3)

The largest values of colatitudinal order number n employed in the
synthesis are

() 1 1 2 3 4 5 6 7 8 9
Nmax 540 87 481 470 460 452 445 439 432 429

Theoretical seismograms are calculated at 11 points on the surface,
namely 6=15°(15°)165° for the time interval ¢{=0.001(0.001)1.000. The
time required for the S wave to circle the sphere (2za/Vy,) is taken as the
unit. The seismograms are shown in Figures 4-a, 4-b, 5-a, 5-b and 7.

In Figure 4-a, the solid line shows (;Ue0) and (s, and the broken
line (iue) and (0g). The expected arrival time of various body waves
as predicted by geometrical optics is indicated in the figure. Figure
4-b shows theoretical seismograms consisting of contributions from
radial higher modes. These figures imply that the fundamental mode
is closely related to the surface waves, while the radial higher modes
are associated with the body waves. The agreement between the
expected times of arrival and the actual times of appearance of the body
phases is satisfactory.

The Rayleigh wave shows characteristic features. The disturbance
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continues for nearly one cycle and has a phase which changes gradually
with epicentral distance. Its apparent period, nearly 60 sec, reflects
the period of the applied force, 48 see. Theoretical seismograms of the
Rayleigh wave will be analysed and discussed in detail in the next
section. Figures 5-a and 5-b are the theoretical seismograms showing
the disturbances of radial higher modes, calculated at points with epi-
central distances 0=15(15)165°. The curves clearly represent the propa-
gation of the body waves. The direct waves, surface-reflected waves
and waves reflected at and diffracted by the core can be identified
on the seismograms. The splitting of the S wave into multiply- surface-
reflected S waves such as SS, SSS, --- with increasing epicentral
distance, is well represented on the seismogram. The phase change
of n between the S wave reflected n times and (n+2) times at the
surface” is also seen in the seismograms.

Figure 6 shows the variation of total amplitude of body waves read
from the theoretical seismograms in Figures 5-a and 5-b. Curves re-
presenting the variation of amplitude as a function of epicentral distance
are calculated from the divergence factor after taking the effect of
reflection at the surface into account™®. The reflection coefficient is

VARIATION OF BODY WAVE AMPLITUDE
60~ WITH EPICENTRAL DISTANCE

40}

20—

EPICENTRAL DISTANCE (DEGREE)

Fig. 6. Variation of radial and colatitudinal components of amplitude of various body
waves read from seismograms in Fig. 5 as a function of epicentral distance. Curves show
theoretical values calculated from the divergence factor, taking into account the reflection
at the free surface. Ordinate scale for observed values is consistent with that of Fig. 5.
Ordinate scales for calculated curves are adjusted by multiplicative factor. This factor
is same for S, SS, SSS and SSSS waves, and a different factor is adopted for P wave.

9) H. SHIMAMURA and R. SATO, “Model Experiments on Body Waves—Travel Times,
Amplitudes, Wave Forms and Attenuation,” Journ. Phys. Earth, 13 (1965), 10-33.

10) M. LANDISMAN, Y. SaT0 and T. UsaMI, “Propagation of Disturbances in a
Gutenberg-Bullen A’ Spherical Earth Model: Travel Times and Amplitudes of S Waves,”
Amer. Geophy. Union, Monog. 10, J.S. Steinhart and T.J.Smith, eds., (1966), 482-494.
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obtained by assuming a plane P or SV wave incident upon a plane free
surface. The scale of the ordinate is the same as that of Figure 5.
Curves are adjusted by a constant multiplier for the S, SS, SSS and SSSS
waves. A different constant is adopted for the P wave. Satisfactory
coincidence is obtained between the curves and the observed values.
For each wave, better agreement is found at epicentral distances where
the waves are isolated and well developed.

Figure 7 shows the displacements obtained by summing up the
contributions from the first several radial higher modes. Waves which
travel most of their paths with the velocity of S waves may be expressed
by the summation of contributions from the comparatively lower order
overtones, while contributions from higher order overtones are necessary
in order to express the P wave group. Comparison of Figure 7 with the
corresponding figure for the case without the effect of gravity?, shows
that near the arrival of the S wave group the convergence of the sum
of radial higher modes is not so rapid in the present case as in the
case excluding the effect of gravity. This indicates that the neglected
radial higher modes should make an appreciable contribution to the total
disturbance. Figures of the Common Spectrum also show these features.

THEORETICAL SEISMOGRZM OF SPHEROIDAL DISTURBANCES

CONSISTING OF RAD!AL HIGHER MODES oo 2Ugoad - (Uoo) s (:Vaoa) = (Veao)
GRAVITY EFFECT 1S INCLUDED == = (Us00)={,Uso0) » {Vaoo)- (Voo
= (ool (W00} + (Vaoo )= (Veoo)

Voo e (eUso0)~ (Uso0? .+ (Vso0) - (:Viao)
T bUso0)- (Ueao) - (Veoo)- [ Vaao)

T
w»
3
ses

— - 2P
ScPPeP
—2(Pcs)
== 3PcP}
SesseP

- —2(5e)

=30 b
1

Ly 1
cfgk.wﬂ,g,\,__,\
| | |
00 ot 02 03

-— 3PeS)e

TIME(270/Vso) TIME(27a/Vso)

Fig. 7. Theoretical seismograms showing contributions of radial higher modes to
various kinds of body waves. The meaning of each line is given in the figure.
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The notation S, in Figure 7 refers to the theoretical arrival time of
an S wave reflected an infinite number of times at the surface, which
is equivalent to the time required for an S wave to travel to the
station along the surface. Disturbances due to the S wave group end
abruptly near this time S,.

In terms of ray theory and its observed travel time, the wave S,
may be considered to be an S wave reflected an infinite number of
times at the free surface. The period of S, in Figure 7 is found to be
about 0.01 unit (==60sec). For this period range, the group velocities
of the radial higher modes are in the range U/V4,=1.02~1.15 and
show monotonous features as functions of period. The summation of
contributions from these modes will explain the S, wave in terms of
normal mode theory. The difference between the travel time of S, and
the end point of the S wave group in Figure 5 can be explained by the
group velocity of the radial higher modes for periods near 60 seconds.
This group velocity is slightly larger than V. For the non-gravitating
case”, the period of the applied force is 240 seconds. The group velocities
for that case show sharp variations for periods near 240 seconds. There
are also sizable differences between the values for the various radial
higher modes ; consequently the S, wave can not be identified on theore-
tical seismograms consisting of radial higher modes in that case. From
its apparent velocity, V, Alterman and Kornfeld” explain the S, wave
for the torsional oscillation as a surface wave of limiting group velocity
U=V, In the present case, the S, wave represents contributions
from the short period portions of the higher radial mode dispersion
curves. Reference to the group velocities in Figure 2-b, the com-
ponents of the Common Spectrum in Figure 3 and later portions of
the seismograms in Figure 5 shows that the well excited regions of
these overtones produce a number of surface reflections. At first these
reflections grow in number with increasing travel time. They then
wane as the time corresponding to S, approaches because the extremely
short period portions of these overtones are not well excited by
the present source function. A source function with a shorter time
duration should excite multiple reflections which more closely approach

the limit defined by S,.

9. Analysis of Rayleigh Waves

The Rayleigh waves show characteristic features including a sudden
commencement followed by a disturbance which lasts for about 90 sec
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THEORETICAL SEISMOGRAM
OF RAYLEIGH WAVES
AND ITS PARTICLE MOTION
GRAVITY EFFECT IS INCLUDED

Fig. 8-a.




814

errst f-ﬂv iA(b L

DJ 055

‘*4‘)

o051 il

8:177.5°

300+

200

TIME (2wa/Vso)

Fig. 8 Theoretical seismograms of

T. Usam1, Y. SATd, M. LANDISMAN and T. ODAKA

054

6:185°

‘ 8:1825°
058

U hv 05? - \\/

053

[
% 560"

Fig. 8-b.
Rayleigh waves and the orbit of particle motion.

Scale of orbital motion is half as large as those for radial and colatitudinal components.
Orbit shows elliptic form. Ratio of vertical to horizontal axes is nearly equal to 1.46,

corresponding to Rayleigh waves along

a plane boundary.

and ends abruptly. The period is about 60 sec corresponding to the

48 sec period of application of the theoretical generating force.

Figures

8-a and 8-b show the Rayleigh waves consisting of contributions from

only the fundamental radial mode.

The orbit of particle motion exhibits

typical characteristics of Rayleigh waves: 1) elliptical form, 2) retrograde

6.6
720°}-

540°

360°

180°

o°
o°

1 ! |
180° 270° 360°

Alin degree)

!
90°

Fig. 9. Graph showing the change
of angles 0, and 0, as functions of
epicentral distance. The meaning of
these angles is explained in the figure.
They show sudden change of about =/2
near the antipode, indicating polar phase
shift in orbital motion.

particle motion, 3) amplitude ratio of
the vertical and horizontal displace-
ment which is nearly equal to the
theoretical value of 1.46 for a Rayleigh
wave along the plane bounding a homo-
geneous half-space with the physical
properties of the outer shell.

The amplitude of the Rayleigh
wave becomes large near the pole and
the antipode, which is a characteristic
of surface waves propagating on a
spherical surface. In TFigure 9 the
angle 0,, between the vertical line and
the tangent to the orbital motion of
the Rayleigh wave at its start, is
considered to be closely related to the




Theoretical Seismograms of Spheroidal Type III 815

phase of the wave since in the present case the Rayleigh wave has a
sharp onset. The variation of this angle as a function of epicentral
distance shows a sudden change near the antipode which amounts to
7/2, the value corresponding to the polar phase shift. This phenomenon
may be explained as follows. When = is large

o CoS {(n—l— )0-%}
( g 9.1)
voc eos l( >0+Zf

The phase difference between the u- and v-components of displacement

q)c:%—@v:[(%nt—f) 4J [( 1>0+4] "25 (9.2)

Upon passing the antipode, the radial and colatitudinal displacements
are subjected to polar phase shifts of —=z/2 and 7/2 respectively. Con-
sidering the reversal of the relation between the direction of propa-
gation and the plus direction of the colatitudinal coordinate 0 at two
points, close to and on opposite sides of the antipode or pole, the
polar phase shift of the colatitudinal component is finally

Tir=2ta -1, (9.3)

The phase difference ¢,, after passing the antipode is

%=%—%=[(n+ L )0—1—%1—[<%+%>0+%+%+ﬂ}= —%. (9.4)

Formulae (9.3) and (9.4) indicate that the phase shift of both components
is the same, namely —=/2. This explains the sudden change of angle
0,==/2 near the antipode and the conservation of the three characteristics
of the Rayleigh wave as given above, at places close to and on opposite
sides of the antipode.

The theoretical disturbance of the Rayleigh wave was calculated
by summing up contributions from a large number of component
waves with different spectral amplitudes and different phase velocities.
Therefore, the synthesized wave form could be explained by the
terminology of dispersion, although the wave form does not show any
apparent dispersive character such as the period change with arrival
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time™. In order to show these points vividly, numerical analysis was
performed, regarding the theoretical seismograms as observed reco?d-
ings. The method of Fourier analysis was applied and the Fourier
spectrum, the initial phase £, omitting the effect of the polar phase

SPECTRAL AMPLITUDE OF
THE THEORETICAL SEISMOGRAM
HOMOGENEOUS MANTLE WITH A LIQUID CORE
SPHEROIDAL OSCILLATION
FUNDAMENTAL MODE (i=f)

CALCULATED FOURIER
SPECTRUM

COMMON SPECTRUM

THEORETICAL FOURIER
SPECTRUM

INITIAL  PHASE

399940G0u . 58533 0 0 8 0 & 009NN 0000023020053 0000008 CC 0 ad

8 . 630
O [—wsassesenseesssasd o o s 0 s contsvovsvessnsacas oo nconsessed

TN

L4

8:90°

R LT P S A

o

T g=270° /

Fig. 10. Fourier spectrum and initial phase g calculated from theoretical disturbanc.e
of the fundamental mode. Agreement between the theoretical and calculat'e(? ‘spectra is
satisfactory. The effect of polar phase shift has been remove'd fl"om the initial phase.
Open circle refers to radial component and solid circle to colatitudinal component.

11) Y.SATO, “ Attenuation, Dispersion, and the Wave Guide of the G Wave,” Bull.
Seism. Soc. Amer., 48 (1958), 231-251.
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shift, and the phase velocity were caleulated. They are shown in Figures
10 and 11.

In Figure 10, thick solid and thick broken lines show the envelope
of curves given by |;S,*:P,(cos 0)| and |,~S,,”-H‘%Pn (cos 0)\ respectively.

The value 7 of the initial phase £ for the radial component stems from
the minus sign in expression (8.3), and the value zero for the colatitudinal
component is the combined effect of this sign and the sign of (v/u),—.,
which is negative for all orders when ¢=1. The remarkable agreement
between these calculated quantities and the theoretical ones shows that
wave propagation with no apparent change of period can be explained
by the concept of dispersion.

PHASE VELOCITY SPHEROIDAL OSCILLATION
HOMOGENEOUS MANTLE WITH A LIQUID CORE
GRAVITY INCLUDZD FUNDAMENTAL MODE (i=1)

km/sec —— THEORY
70l ©  CALCULATED. U-COMPONENT
. CALCULATED. V- COMPONENT

e.,,.f' RI(90°)-RI(30°)

60 I | ' ! | !

70—

6.5 _‘,,M""/
o R3(90°)-RI(90°)
o
-
6.0 ! | I 1 ] | |
[e] 100 200 300 400 500 600 700 800
PERIQD (sec)
! - L [ L !
0.02 001 0.005 0.002 000125

FREQUENCY
Fig. 11. Phase velocity calculated by the method of Fourier analysis from theoretical
seismograms of fundamental mode. Open and solid circles refer to the radial and
colatitudinal components respectively. These circles lie on the solid line expressing phase
velocity calculated by equation (6.1) from theoretical values of non-dimensional frequency.
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