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1. Introduction

Waves generated by a traction acting on a free surface of a semi-
infinite elastic solid are important, and since Lamb (1904) a great many
investigations have been carried out on them. Application of a horizontal
traction was first studied by Dr. Nakano (1930). By using expressions
of his solution for the elastic wave equations in cylindrical coordinates,
the case in which the given horizontal traction is expressed by the n-th
order Bessel function was solved. Some numerical analyses were performed
by Dr. Hirono (1948) who studied mathematically the mechanism of
shallow earthquakes. In those papers, it was pointed out that the
longitudinal, the wvertically and the horizontally polarized shear and
Rayleigh waves as well as two kinds of certain diffracted waves are
generated. In those two investigations, the solutions for the radial, the
horizontal and the vertical tractions have been closely discussed. A similar
work on a horizontal traction was given attention by Cherry (1962).

On the other hand, since 1957, the Seismic Exploration Group of
Japan has taken observations by using some transversely sensitive
geophones and by hitting with a hammer the end of a weighted slender
wooden plate laid down on the ground surface, or by detonation in a
gun firmly fixed on a slender plate. In those experiments, it seems
that a horizontally polarized shear (so-called SH) wave is generated, by
a horizontal traction acting between the plate and the ground surface.
The wave observed near the plate is certainly the shear wave from an
infinitely linear source, and the wave far from the plate is one from
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an empirical point source (Kobayashi, 1959 ; Komaki, 1959 ; Shima and
Ohta, 1967). ;

This paper concerns wave propagation from the shear wave generator
developed by the Group, and makes clear the relations existing among
the length of the generator, the distance from it and the wave length
of the generated waves. Moreover, the condition necessary to make the
effective observation of the shear wave is offered. A serious purpose
of the theoretical study is not only an interpretation of the phenomena,
but also some proposal for the design of the apparatus and the experi-
mental techniques.

In section 2 the outline of the mathematical process carried out in
this study is described. In the next section the solution is obtained by
the displacement potentials and later is rewritten into the displacement
components. The solution is expressed in some integral representations.
The detail of the mathematical treatment takes place in Appendix III.
In section 4 the integral representations are estimated by the method
of steepest descent, and the radiation of the body waves is discussed.
A special reference is associated with the transverse displacement. In
section 5 the radiation of Rayleigh wave is dealt with. The subsequent
section concerns an example of a field experiment. In the last section the
result is summarized and the comments for such experiments are stated.

2. Procedure of this study

The shear wave generator developed by the Seismic Exploration
Group of Japan utilizes principally the friction acting between its bottom
and the ground surface. The in-situ shear wave velocity near the surface
in experiments by the Group is about 100 m/sec or less, whereas the
wave velocity propagated in iron materials of which the generator is
made is certainly of the order of 1 km/sec. Therefore, the generator will
be regarded as a rigid source laid on the surface. It is known that the
stress due to loading is distributed so as to be a maximum beneath the
vicinity of the rim in muddy soil, or beneath the vicinity of the centre
in sandy soil. Although it would not be distributed uniformly, the stress
distribution is assumed as constant, as the first step of this study. In
addition, the underground structure is also assumed as uniform. In the
result, a linear source with a finite length laid upon a semi-infinite
elastic medium is treated.

In general, the problems of a slender source are solved by any one
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of the following treatments mathematically :
1) to use an elliptical coordinate system,
2) to express the source’s form by a Bessel-Fourier series, or
3) to superpose the solution from a point source.
In the first treatment, Mathieu and associated Mathieu functions are
adopted, and the result is derived in terms of Bessel functions or
trigonometrical functions after expanding them into some series. The
second treatment seems to be more complicated for the calculation involved.
In this paper, the last treatment is followed.

Let us take a force system (F,, F,, F,) applied to a point parallel
to the (v, y,2) axes and (F,, F,., F,) to the (r,0,2z) axes, respectively.
Here, components F', and F), are related with ¥, and F, by relations

F.=F, cos0'+F,sint,
b | (1)

Fo=—F,sin0’+F,cos?,

and F, is common between two coordinate systems.

Now, we assume that & force acting on the plane z=0 is directed
towards the y-axis. This condition is equivalent to considering the
boundary condition by means of stresses

re=Y(r, 0’) sin ¢,
02=Y(r, 0) cos0’, {at z=0, (2)
22=0,

where Y(r, 0) is the y-component of the force acting on the plane z=0.
The Hankel transform of Y(r, ¢’) with respect to » is written as

Y 0)=3| @ Y@, 0)J.v)dw (3)
where 7 is the number of nodes in the azimuthal direction of the force.
It is cumbersome to express the stress in terms of a sum of functions
related with n, especially when the source is of an elongated form. So
in this paper, we proceed with the following analysis. Firstly, a solution
for a concentrated stress acting at the origin is obtained, that is, the
solution gives rise to one from a point force applied at the origin;
secondly, this solution is rewritten by means of the new coordinate
system in which the new origin is shifted by some distance from the
old origin; and lastly, the resulting disturbance is integrated over the
extent of the source.
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‘3. The boundary condition and the solution by integral
representations

From the preceding remarks of this study the number = is zero,
because there are no azimuthal characteristics of the source, and the
force Y(r, 0’) is the delta function, d(r), because of the concentrated
force acting at the origin. Then, the boundary condition is given by

ol —Fore- Jo(er)d&- sin ¢,
0

07z=—F0r$-Jo($r)dE~ cos @', (2t 2=0, (4)
0

22=0,
where F, denotes a source intensity acting in the direction 0'=w/2 at
the origin. These expressions agree with ones approaching an infinitesimal
source area in the limit, in Cherry’s condition (1962).

The displacement potentials are obtained on account of the convenience
in the analysis of the coordinate translation.

8.1.. The solution due to a point source (the first step)

Substitution of (4) into (AI-6, 7, 8) determines each coefficient, and
the resultant forms of the potentials are

_ﬂ m2§2v, —-VZ o3 9/
0= p SO FE J1(Er)e " sin 0/d¢,

w1= FO SOO 1 Jl(ET)e"”'z COS olds, (5)
2

0o v

_ F, [~ 28—k Ye—¥' in 6
@"2—#50 ) Ji(Er)e """ sin 0'd§,

where . ‘
F(&) = (288 —k»)*— 48w/, (6)

3.2. Transform of solutions due to the ccordinate translation (the second
step)

Before integration over the source elongation, the solutions obtained
in the preceding paragraph are transformed into the expressions in a
new coordinate system where the origin is shifted in the direction
0’=z/2 on the surface z=0 by a distance —r,. In Figure 1, the
potentials observed at a point @, which are expressed by (5), have been
written by means of the coordinate system where the origin is at point
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P. The potentials are transformed by means
of another coordinate system where the origin
is at point O, by a distance of r, from the
point P along the y-axis. From equation (5),
we find that the r- and 6’-dependences of
the potentials are J,(&r) sin 6’ or J,(§r) cos &’
According to the addition theorem (see Ap-
pendix III), the potentials which are written
in the coordinate system (r,, ¢,2) are ob-
tained as

Fig. 1. Translations of
coordinate systems.

=T i [®,. sin 2m—1)¢p+d,,, cos 2me+,,],

.
qq:l;& 33 [Fsen 008 (2m—1) 0+, sin 2], (7)
7= 1; ) Wan Sin 2m—1)¢+¥aun c05 2mp + ¥,

where

D= () 2 e U a6 o 61) = Tenl ) Tl 1S
D= (=) B e sl s 67) + TenslErd S 60108, | (5
0= B ) er)ds
V= (=) L€ TeaE13) -+ T a6 T 1S,
L T J s EANHC DA SR ANE AR ASEN T o)
and

Farm (=10 B o) T ) = Jon sl Tl 15,

W= (1) ’”S?E%E‘”"[sz(&m) Ton 2 6+ Ton (67 Tena (67108, L10)

vo=( e e nerae.

Putting r,—0, r.—r and ¢—0’, we can easily justify that these expres-
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sions tend to ones for the point source (5), by using the relation (AII-6).

3.3. Disturbance from a linear horizontal source with a finite length
(the final step)

Lastly, the solution from the point source is superposed over the source
elongation. If the source intensity is uniform and the source length is
2a, the solutions are obtained by integration from —a to ¢ with respect
to ;..  As the potentials (8), (9), (10) involve the forms J,.(ér) or
Jems1(671), it is easily found that by using the relation (AII-4) we get

ij” Tonaa(Er)dr, =0, (11)
20 J -
and
‘“1—5‘1 sz(‘srl)d’rl: 2 5 J2n+1($a/)-
2a J-a gan:m
Whence
P=U =5, =0, m=0,1,2,...... R (12)

and the resulting expressions for the potentials are

@:% 31 @, sin (2m—1)o,
m=1

_(=nmafe gy S
@37“_ o SO F(&) (7 [J2m+1(57'2) n; J2n+1($a)

~Tan-alfs) 3 TunaE0) 18
% i;qulm cos (2m—1)o,

Fin= DR ) £ Tnalé) (13)

a o & n=m
+ Tom_s(E75) ng%_l(sands;

IFIZ

and
=12 S, sin @2m—1)¢
(=

]
1)"20° 28—k, .,
Vo= CL BB i) 5

S am—3(ET2) é Jama(Ea) ]df

/i8

Jonnr(éa)
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The displacement components are easily calculated by applying
suitable operators to these potentials (13). Waves derived from @, ¥, 7,
are asssociated with the longitudinal, the horizontally polarized shear
and the vertically polarized shear waves, respectively:

U,=u=—2:i 3 [w® +uSP +uSP] sin (2m—1)g, (14)
m=1
up = (12 ) G e )i,
ut = (— 1) B G e, calds,
7y o
wp= (=1 (25(5 B) -G e, £0)dE;
2
Uw'—'”:%i:{ [v R +v5 + 05 ] cos 2m—1)o, (15)
m2(27n—1) Sm E2’J, —vz( (=)
(P) — _1 [ Gm y d ’
p® =(—1) Py T 7y, Ea)dE

" G (6, Ba)dE,

o Y

o= (-1
2

P = (— 1) 2m—1) 5‘” V' (280 — ) e G (Ery, Ea)dE;

Ty o F(§)
and
U=w= % 3 P+ +wP]sin @m—1)o, (16)
w® = (—1)"*. 25:0 il’(‘-é; e G (&rs, Ea)dE,
wSP =0,
W = (—1)" j :0—52—(21—7%)—162)—6'”'”(;(;’ Ery, £a)dé;
where '
G267 80) =2 T 3} o 60) 2 e slerd 5 o)
= %SZ[JW(ETZ) Ton(60) £ Tom s 67 Tonal€) M. (1)

These agree with Cherry’s solution (1962, egqs. 17-19) in the limit of
a infinitesimal. In the plane ¢=0 and =, both radial and vertical
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displacements vanish and only the transverse displacement exists, while
in the plane ¢==+7/2, the transverse displacement vanishes and the
other two displacements exist. In distant observations, it follows from
Js(x)oc 272 cos {x— (2v+1)7/4} that the components %™, u®"; p&0; ®,
w*®" constitute the main part, while #®®; »® &S0 are slight or
null.

4. Radiation of body waves

The type of the integral involved in expressions (14), (15), (16) has
already been treated by Dr. Hirono (1948). In that investigation, the
integral was estimated by means of the method of steepest descent in
terms of Weyl’s integral identity, according to Prof. Sakai (1934).
Referring to those results, the waves observed at stations distant compared
with the wave length are approximately expressed as:

;ﬂ[%‘;«/(?/ﬂ)?——siﬁ?ﬁcos 0sin?0 e *F S,(ha sin 6, o)

T F(—hsin 0) R
k*cos 20 cos? 0 e % . ]
Sk a, , 18
Y F _ksing g resind g 18
v=% 6'1’;3 S(ka sin 6, ¢), (19)

and

F, [ 2h*+/ (@] B)*— sin® 0 sin 0 cos? 0 =% S,(hasin 6, ¢

W=y, F(—hsin 0) R

k*cos 20 sin 0 cos 0 e~ % .
S,(ka sin 0, ] 20
Y F_ksng g esinG) (20)

where R=+4/ri+2% 0 is measured from the z-axis, and

S =2 5 Jously) sin 2m—T)g,
77 m=1 (21)
2 o o

S2 (7]) :;E [JZm—l(r]) +2 Eszwl(’?)] cos (zm_‘ 1) SDy

n=(h or k)a- sin 0.

In these expressions, the order R~? is neglected, and the integrals are

carried out for the relation B>asin 6.
If the displacement components are transformed from cylindrical
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coordinates into spherieal polar coordinates (R, 8, ¢), the expressions (18),
(19), (20) yield the following :

_Fy, ' (/B)’—sin*0sin 20 ¢~

=Ty F(—hsin 6) R Si(ha sin 8, ¢), (22)
F cos 20 cos 0 e *E .
U, = Fo S, (ka sin 8, @), 23
’ Fl—ksing) & eesnd o 23)
and ’
—ik
=T eRR S, (ka sin 0, ¢). (24)

It follows that the component U, is associated with the P wave, U,
with the shear wave which is coupled with the P wave to supply the
boundary condition and corresponds to the SV wave in the cylindrical
coordinates, and U, with the shear wave of torsion which to the SH
wave. The expressions S; and S, are regarded as the radiation patterns
in the azimuthal distribution of the P or SV wave and of the SH wave,
respectively. If the source length is negligible compared with the wave
length, the azimuthal patterns tend to the expressions

S:(n, ¢)— sin ¢, and S;(n, ¢)— cos . (25)

Under this situation the azimuthal distribution of the SH wave varies
as cos ¢, while the distribution of both the P and the SV waves as sin ¢.
The vertical radiation patterns were obtained by Cherry (1962). If the
source length is not small, the resultant pattern is modified, but its
modification diminishes with increasing depth and when approaching the
direction of the bisection of the source. The azimuthal pattern of the
P and the SV waves is shown in Figure 2. It follows that the effect
of the source length is important. However, since this pattern is modified
by the vertical pattern, the effect on the observed wave will not be so
large as the azimuthal pattern expressed in Fig. 2. For angles such
that sin 6>p/«, the observed shear wave has a phase shift and becomes
complication, because F(—Fk sin 6) is complex (Hirono, 1948 ; Cherry, 1962).
Although the change of wave forms caused by a phase shift is important
for discussions of the wave propagation, our interest lies mainly in the
transverse displacement. :

The radiation pattern of the transverse component S,(ka sind, ¢) is
shown in Fig. 3. If the wave length of a shear wave is L, we have
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—— (hork)asing=0.0
—— 1.0
_____ 2.0
_______ 3.0

h = wave number of P wave
k = ve of S wave

2 a = source length
6 = angle from z-axis

Fig. 2. Azimuthal radiation pattern of P or SV wave.
ka=2ra/L==-(2a)/L, (26)

and ke is the product of = and the ratio of the source length to the
wave length. If the accuracy of amplitude observations is within ten
per cent, the effect of the source length cannot be neglected for the
azimuth of the observation |¢| larger than about ten degrees when the
source length is comparable with the wave length. Accordingly, to
obtain the SH wave as simply as possible, the observation must take
place in the direction bisecting the source, ¢=0. It is easily justified,
too, by the formula of Bessel functions (AII-12) that when ¢=0 the
radiation pattern S, is unity, <.e., the effect of the source length on
the wave length vanishes.

Next, we consider the effect of the source length on the distance
from the source, in the ¢=0 direction. We derive results directly from
the relation (15) but not from (19). In this vertical plane, the transverse
component is expressed by the sum of three terms (see Appendix IV):
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ka sing=0.0 k = wave number of
______ 1.0 S wave

S 2.0

mmmmeee 3.0 _ .
: 4.0 8= angle from z-oxis

2a = source length

Fig. 3. Radiation pattern of SH wave.

o (Fufp)=—-2-{ Fi:;’)e—%(émds
1/a 2. bl _1_ © g2
+§7<72 "o T I 7l
_ 16 [ &Y B qym.ae
ars Ldrljo F© v m2=1( )™ P o (§72) S om (E71) dE
+0(a/ry), @7)
VS (Fylp) = 62' S:O—e;—tz—Jl(ETz)dE
1(a y 2 1 @ "
+ogr o) oy H ) = () T () — S )
+0(a 4/7"2) (28)
o el )=H (28(5) B) Jigrgede
: (252 ) —D’z
31 2( > or, 1,2 So 7 Ji(rdé
S g 252 eV izl(_1)m°m2J2m(§7"2)sz(§7'1)d§

+0( 4/7'2) . ’ (29)
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In these expressions, the first term of each component of the
transverse displacement is the integral representation corresponding to
the solution from a point source, and the second and later terms signify
the effect of the source length. Consequently, this effect is of the same
order as the square of the ratio of the source length to the distance
between the centre and the station. In the SH component, the disturbance
from the linear source turns out to be of the order of the square of
the ratio, because the second term consists of the solution from the
linear source.

5. Radiation of Rayleigh wave

It is well known that Rayleigh wave is estimated by the contribution
of some pole on a suitable Riemann sheet. Referring to Dr. Hirono's
calculation (1948) again, the effect of the Rayleigh wave at large distance
is given by,

a®=T0 [2 Frvgp i O

< 7; F’( ) b (If’lz) V—L1+O(1/KTZ)]Sl(Ka’ (P)

_F 2 kzlﬂ)R —3ir] e 2
p® = ﬂo n. F’(—-/c) e 4 (k7 )3/2 [1‘*‘0(1/’57‘2)]83(”(1’ ®), - (30)
w® = F» 2 @RI s € r1+o<1/m>]s,(m 9,

F'(—x)
where S;(ka, ¢) is given by equation (21),

Sy(ka, ¢) =K—2a 3 (2m—1)us k) cos @m—1)g, (31)

£ is the wave number of Rayleigh wave, and
vp=+ KE—}?, V=~ KE—IZ, (32)

P = PR (e g ) 33

K Yp Vg

Then, the transverse component of the Rayleigh wave does not vanish
but is of higher order than the other components. This results from
the azimuthal distribution of the source traction, as mentioned by Dr.
Nakano (1928). The principal components of the Rayleigh wave are radial
and vertical, and its orbital motion is determined uniquely. The radiation
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pattern is given by the equation

2.3 Janalra) sin @m—1)p, (34)
xq m=1

which agrees with the azimuthal pattern of the P or the SV wave, and
tends to sin ¢ with decreasing source length. Accordingly, the longer
the source length, the less is the radiation of Rayleigh wave.

6. Field experiments

The Seismic Exploration Group of Japan held a joint experiment in
the vicinity of Shirane City, Niigata Prefecture, in September 1964. As
one of the experimental subjects, the directional properties of the waves
which were generated by detonation of a gun firmly fixed on a slender
plate were checked. Transversely sensitive geophones were placed at
22.5 degree intervals around a circle 10 meters in radius, and at the
centre of the circle the shear wave generator was placed. The generator
consisted essentially of a length of thick-walled steel tubing (one meter
long) that has coupled closely to the ground by steel pegs. Detectors
of electro-magnetic type having natural frequencies of 27 cps were used.
The records were obtained by a conventional 24-channel recording system
(ETL M-3).

According to a travel time-distance plot of the SH signals from
transversely sensitive detectors along a line perpendicular to the
generator, the shear wave velocity of the surface and subsurface layers
at the field is determined as about 70 m/sec and 130 m/sec respectively.
The critical distance is about 14 meters, so that thickness of the surface
layer is calculated as about 4 meters.

Because the observed records were of velocity-type, they were turned
into ones of displacement-type by numerical integration. The result of
the circular spread is shown in Fig. 4. The relation between the
maximum amplitude of the displacements and the azimuth is shown in
Fig. 5. From Fig. 4, the apparent period of the wave showing the
maximum amplitude is about 50 milli-seconds. As the shear velocity is
70 m/sec, the apparent wave length of this wave is estimated as 3.5 meters.
By relation (26), we have, with the source length of one meter,

ka=x/3.5=0.9.

In Fig. 5, the azimuthal variation for 0.9 of ka, S;(0.9, ¢), is drawn, in
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9=0
N\/\/\-—- ' et
c1abe BT Ay
$=180 gun (set)

s

=270

Fig. 4. Test of directional properties
of SH wave from a gun-type wave generator.
The length of the generator is 1m, and the
distance from the generator’s centre is 10 m.
The records are of displacement-type.

2.0
~o PR -
\ 7N £
.\\. o// \\ /
\ 7 o/
\ o / \. . 7
I.O A / v 4
\ II \ I’
\\‘ Il \\ !
\ /
S \ oA
L !
v v/
\o/ A/
o y ! v ]
0 90 180 270 360
Azimuth (degree )
Fig. 5. Azimuthal variation of maxi-

mum amplitude. The scale of the ordinate
is arbitrary. The dotted line denotes a
calculated value of the radiation pattern of
SH wave for ka=0.9.

which the amplitudes of zero degree in azimuth is taken as a unit.
Agreement between the observed and the calculated values is extremely
good. :

This experiment is not the best example. There are two reasons
for this; one is that ka=0.9 and the other that 2a/r,=1/10. Never-
theless, it follows that the experiment of the directivity for the SH
wave radiation has the advantage of checking the efficiency of the shear
wave generator.

7. Concluding remarks

A field experiment where a horizontal traction with a finite length
is applied on the ground surface has been carried out. In this paper, a
mathematical model for the experiment is studied, and the following
results are obtained :
1) The azimuthal variation of the radial and the vertical displacements
is expressed in terms of a series of sin (2m—1)¢, while that of the
transverse displacement in terms of a series of cos 2m—1)¢. In every
component, terms involving any even multiple of azimuth, 2me, vanish.
2) At far stations, the longitudinal (P) and the vertically polarized
shear (SV) waves predominate in the radial and the vertical components,
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while the horizontally polarized shear (SH) wave predominates in the
transverse one. Near the surface there is a nodal plane of the P and
the SV waves, for these waves at the surface are of the same order
and vary as the square of the ratio of the wave length to the distance,
at most. On the free surface, the SH and Rayleigh waves are significant.
Considering the reflected and the critically refracted waves, we must
certainly interpret the radiation pattern into the medium, but the effect
of the source length disappears with increasing depth.

3) In the vertical bisecting the source, the SH wave predominates, and
the effect of the source length on the wave length is neglected. If the
wave length is comparable with the source length, the observed amplitude
of the SH wave diminishes by one tenth for directions deflected by ten
degrees from this vertical, and the other waves are observed there.

4) In this vertical also, the effect of the source length on the distance
from the source is of the same order as the square of the ratio of the
source length to the distance. The leading term is one from a point source,
while the perturbed term is one from a linear source.

5) The radiation pattern of the Rayleigh wave agrees with the azimuthal
one of the P or the SV wave. It becomes less important with increasing
source length.

Elastic waves from a horizontal traction with a finite length have
the above-mentioned characteristics. It is hoped for the design of the
S wave generator and the S wave observations that the following are
taken into consideration :

1) In order to make the wave energy concentrate into the vertical
bisecting the source as effectively as possible, it is necessary that the
source intensity is symmetrical about the centre, because the total energy
generated from the source is finite and symmetrical intensity leads to
no terms with the even multiple of the azimuth.

2) The observation on the shear wave should take place on this vertical,
because the simplest possible wave form is obtained there.

3) The ratio of the source length to the wave length should be large,
as then the waves other than the SH wave become less observable.

In the future, investigations will be carried out to complete the
subject of this paper. We must consider stratified structures or more
complicated structures, because the actual earth is never uniform. The
boundary condition assumed in this paper is that the intensity of the
source is uniform at every point. This condition in the experiments
may not be so. Moreover, in the experiments, transient waves have
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been observed, so that we must solve the problem by taking a suitable
initial condition into account. It is necessary, too, to clarify whether
the linear theory of elasticity holds good for small distances from the
source. Although the ability to control the wave length or period is
suggested for the reason that the effect of the source length on the
wave length is neglected in the vertical bisecting of the source, this
prediction must be examined by the experiments and its validity must
be justified.
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Appendix I. Displacements and stresses in cylindrical coordinates

Prof. Sezawa (1928) and Dr. Nakano (1928) have obtained the
expressions of displacement and stress components in a circular cylindrical
coordinate system. In some problems, however, it is better to use
displacement potentials. The displacement vector U is expressed by a
sum of the gradient of a scalar potential @ and the curls of two solenoidal
vector potentials A and B;

U——— U1+ U2+ Ua, (AI_l)
where
U=—grad @
U,=—rot 4, div A=0, (AI-2)
and U,=— rot B, div B=0.

In the problems of the cylindrical coordinates, vector A is directed towards
the z-axis and B can be regarded simply as the curl of vector A (Morse
and Feshbach, 1953, pp. 1764-1767). If a plane specified by 2=0 is a free
surface, vector U, is related to a longitudinal (P) wave, U, to a horizontal-
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ly polarized shear (SH) wave and U, to a vertically polarized shear (SV)
wave.

If the 7-, 6- and z-components of vector A are written as (4,, 4, 4.)
we have

A=(0,0,¥), and B=rot(0,0,7,), (AI-3)

and three potentials @, ¥, ¥, satisfy the following equations, respectively,

PO — a5 =0,
/ . } (AI-4)

P~ BT, ,[0t'=0,
where a, B are the velocities of P and S waves, respectively.
If any harmonic wave train in time is considered, these equations

are Helmholtz’s equations. Neglecting the time factor exp (iwt), where
o is the circular frequency, we have the solutions of equations (AI-4)

0= 5 AZ,(Er)e 500, v=+E—I*, h=0]a,

¥,= 3 B.Z,(Er)e" i:)f;na V =+ B2, k=0/p, (AI-5)
— —»7,COS
¥,= 3 C.Z,(Er)e sinna’

where Z, is some cylindrical function. The displacement components
are calculated by (AI-2) and (AI-5). The stress components treated in
this paper are written as

&/ﬂ={<l—2£;>k2 2 % }q; 2<kz = o7,

0z
= 3 [A. (K — 28 +2C,v' %01 Z, (En) gnd, (AT-6)
— P01 O, (1, o0\,
reje= 2azar r 000z <k +28z2> or
= ST [2A w6 +C, (k2 — 267 e 7]-0_Z, (1) %nd

ar sin

— ) B.n Zn(&’r) e—»'chs,no, (AI—7)
» sin
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Gojpe 2 00 1 O, _<k2+2ﬁ 1 o7,

r 000z 1 oroz o2)r 90
=—2 ’n'[2Anve““’-l—C’,,(k?—ZEZ)e—”'Z]lZn(gr) sin, g
r —cos'
) 0 _w; Sin :
+ 2 Buny WZn (Erje _ ognd- (AI-8)

Appendix II. Formulae of Bessel functions

We summarize the identities and formulae of the Bessel functions
which ‘are frequently used in this paper.

1. Identities
=%J,,(z), (AIL- 1)
Jooa(2) =Jui(2) =27 (2), ( )
[].(2)[2°] = = J,(2) 2", ( )
T.(e""iz) =¢"" ], (2), (AII- 4)
J_.(2) =", (2), ( )

Ju—l(z) +J»+1(z)

J,,(z)___( _;_ >" 20 % (2= negative integer). (AII- 6)

2. Integral representations

T2 =1 j "t e o5 nade, (AIL- 7)
Ty Jo
Jo(v/ 22+y2)=%§:ei”“°sacos (2 sin a)da, (AII- 8)
I 1> e-ve—r2iz|+ier

HY (L 21 2 ____S T e, ATI-
Y (kv P 2P) ) Wi dé (AII- 9)
Jo(@)Jo(y) =’217Y Jo(V @+ y*—2xy cos @) da. (ATI-10)

3. Series expressions

ng (¢)dz=2 i Snsani1(2), (AII-11)

Nedu@=1, &=1, =2 ®=1,23,....), (AIl-12)
n=0

oo

(=1)"Jaua(2) = (sin 2) /2, (AII-13)

n=0




Waves Generated from a Horizontal Traction with Finite Source Length 19
> (2n+1)J2n+1(2) =z/2. “(AII-14)

n=0

4. Addition theorems (As to the notations, refer to Fig. A-1.)

e T (@)= 3 Juin(2)Tal)em™, (AII-15)

m=—oco

(@) = 2 TunlZ)TulR)e o (All-18)

m=-—o

z
Fig. A-1. Fig. A-2 Translation of the origin.

Appendix III. Derivation of equations (7)
Let us consider the functions

J,=J,(@)sind, and J,=J(@) cos 0. (AIII-1)

If the origin P is shifted to the point O by a distance z, functions J,
and J., which are expressed by @ and 0, yield by means of the addition
theorems (AII-15 & 16), in terms of Z and ¢, where /QOP=x|2—0¢,
/PQO=¢—0 and 2<Z,

O (@) = D) TnialZ)Tulz)e im0, ]

o (AIII-2)
ST = D TenlZ) e,

m=—co

whence
Jo= 3 (—1)"emial2)Tenl2) cos (2m—1)
4+ S (= 1)"Junse(Z) Tomsa(2) sin 2mep,

o (AITI-3)
Jo= 2 (=1)"Jenn(Z)J2n(2) sin @2m—1)¢

4+ D (=1 "Tons2lZ) Tomsa(2) COS 2m0.

m=-—co
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By using the relation between the negative and positive order Bessel
functions (AII-5), the negative order functions are transformed into the
positive order, and then we get

Jo= 3 (=) "[ens(Z) Ten?) + Tans(Z) Ton-al2) ] co8 (2m—1) 0

=1

3

+ i (=1)"[Jens2(Z) Jomi1(2) — Tom2(Z) Jom-1(2)] sin 2me, (AIII-4)

Jo= 3 (= 1" anss(2) Jon (&) = Tons(Z) Ton-s () sin 2m—1) 0

m=1

+ 3 (1) [ Tons2(Z) Jom1(2) + Tom-(Z) Tanms (2)] cOS 215

1

A2 ). (AITI-5)

Putting @w=¢&r, Z=£&r, and z=E&r, into (AIIT-4) and (AIII-5), we can
easily obtain the expressions (7).
Appendix IV. Derivation of equations (27), (28), (29)

These equations (27), (28), (29) have similar forms, so that we consider
equation (28) only. From (15), with ¢=0,

=<

‘V’_,U(SH)/( / ) 2 ,v(izl)

:_1_ ijudrlj:o e—;”z i (—1)m[J2m+1(57'2) Jom (57’1)

+sz-3($7'z)e72m-2($7'1)]d5
=g [ B e (1 T,

2a 0r: Jo o &
where ¢,=1(n=0),=2(n>1), by the addition theorem (AII—15) with v=0,
1 62 a ==
V:—g_ar_gjodrj eV T 5.

By (AII-B), it is transformed into

Ve__t 0 S drj . cos adar — cos (§7: cos a) cos (£r, sin a)dé
2arm 0r, Jo oy

f © ,—v'z
=_1 . 0 j drlj * cos adaj ¢ cos (§r; cos a+£r, sin a)dé
2ami Ory J-« o o

and by (AII-9),
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1 a8 {°, (" .
= s drlg H®Y (kv (r; cos a+17, sin @)?+ 2*) cos ada.
4(1/ 31"2 —a 0

The substitution of the variable 7, by 7.7, yields

1 9 7
2 or, a

V=

/2 afre
S cos adaso H®Y (k+/ r{cos a+7 sin a)*+2* )d7.

0
Since a/r,<1, Taylor expansion of the integrand is applied, then
z/ _—
V:%%S “H® (ky/ 22412 cos @) cos ade
7y Jo
1 0 a* 0 ”le(n k,\/'T_Z—T t d O(at/rt
812 ors o e Y (ka/ 22 41icost a) tan ada4-0(a/ry).

Again by (AII-9),

+

V=2 (" cosadaf £ cos (er.cos ayds
67‘2 0 0 ))’
¢ o 1o
+ 3! or, 7, 07,
= 9 Sme_“eL(STZ)dE

67'2 0 1),

© ,—v'z

“tan adaS

4
4

(] >
1
2

cos (Er; cos a)d§ —I—O<

0 oy

a2
+ [ -
3! 0r, 1, 01,

2 1 0 re‘”"

/

dsS: cos (sm)i;i +0(a)r).

oy

The first term is the solution from a point source. The second term is
transformed as follows:

I R
TR o B ds 0[ sin (Eryx)]de
- 1 a2 a ooe—p’z 2 (1/2 ooe—u'z
"EFTg_aESo_p' cos (Eﬁ)d&——gr—ggo 7 cos (Ery)dé
2 aZ coe—»’z
57@& N
= (YD ) - 2 (L) HE i)
3t N1,/ 0r, 31\ 7, e

p2 () Hils)
LN T2

These expressions are equation (28). The other expressions also are
obtained in a similar way.
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2) EHTHE, w b w Tk P, SV, vA U —HOKMSA, v TE SH TEORSNERL, KE
Tk SH & vA Y =AM EIEhS.
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