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1. Introduction

In many of the investigations of a seismic wave propagated through
the earth, the heterogeneous medium is approximated by means of an
appropriate layering of homogeneous media, and the effect of the hetero-
geneity on the wave propagation is calculated by using ray theory,
which reduces the study to a boundary value problem. However, it is
quite laborious to calculate the effect of complexity of a crustal strue-
ture or topography on seismic wave propagation by using that treatment.
To avoid that laboriousness, we consider instead that the propagation
velocity of seismic waves fluctuates about an average velocity spatially
and that some structural periods are introduced as elements of the
spatial variation. This enables us to reduce the calculation of that
effect to the treatment of wave propagation through a heterogeneous
medium with a periodic structure. It is well known that wave prop-
agation through such a medium can be solved by means of Hill’s equa-
tion (¢f. Humbert, 1926 ; Strutt, 1932; McLachlan, 1951; Brillouin, 1953).

In previous papers (Yoshiyama, 1960; Yoshiyama and Onda, 1962;
Onda, 1964 a, b; Onda, 1966 a, b), we have obtained the nature of
waves propagated through periodic structures, not by means of direct
solutions of the boundary value problem but by means of solutions of
Hill’s equation. Using a corresponding travel time with distance as a
variable, we can reduce the one-dimensional wave equation to one from
which a quantitative discussion on wave behaviour for wave frequency
is made very easily. Solutions of the equation are obtained by adopt-
ing the modified Whittaker’s sigma method (Onda, 1964 b and 1966 a).

*  This paper, together with the Author’s previous investigations (Onda, 1964 a, b;
1965: 1966 a, b), forms part of a thesis, submitted in partial fulfillment of D. Se. require-
ments at the University of Tokyo, 1966.
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The solutions from this method are very convenient to discuss their
convergence and nature.

Generally speaking, two independent solutions of Hill’s equation
are bounded or unbounded for the whole range of the variable, accord-
ingly as the parameters of each term of the equation give a stable or
an unstable region of solutions. In our problem, the stable and unsta-
ble regions exist alternately with increasing frequency. However, seis-
mological interest lies usually in the first unstable region which is
associated with the lowest frequency (Onda, 1966a). Moreover, the
solution of the equation of waves propagated through a periodic strue-
ture cannot be, straightforwardly, connected with the study of progres-
sive waves which play an important role in seismological applications
(Rayleigh, 1887; Yoshiyama, 1962). Accordingly, to study the effect on
progressive waves, we must make some necessary modifications to these
solutions. They are investigated by using the transmission coefficient
for a structure in which a periodic one is intervened between two
homogeneous media.

The transmission coefficient is expressed by complicated functions of
the wave frequency, the velocity undulation and the thickness of the
heterogeneous medium. Though only one example was evaluated in a
previous paper (Onda, 1966 @), some interesting results are deduced from
the calculation of several examples. The first part of this paper con-
cerns them. Similar characteristics are obtained from direct solutions
of the boundary value problem, and are connected with the resonant
phenomena of waves in periodic structures (sections 3 and 4). The last
part deals with a supplement to the wave equation in a medium where
variation in velocity is expressed by a sum of many periodicities.

2. Transmission coeflicient of waves through
a periodic structure

It is important to study the effect of a periodic structure on a pro-
gressive wave. However, the direct solution of a wave equation in
that medium cannot express the progressive wave explicitly. So, we
consider a structure in which a periodic medium is intervened between
two homogeneous media and discuss that effect in terms of a transmis-
sion coefficient of waves passing through this structure. To eliminate
the boundary reflection of waves in this structure, it is assumed that
the velocity and its gradient are continuous together at both interfaces.
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Fig. 1. Schematic illustration of the

calculation when ¢>0.

The transmission coefficient 7' of the wave through the medium,
where the velocity varies as (see Fig. 1)

c(x)=cy(1-+¢) <0
=¢y(1l+4¢ cos ) 0<e<xy=2nx[y (1)
=co(1+-¢) L, <

has been calculated in a previous paper (Onda, 1966 a, eqs. (122a; b)).
In the unstable region,

—  exXp (—1%—1if) 9
cosh (x2, sin 2¢) cos ¢ (2)

where

Zo=7X[2=nT , p=e/2,
tan ¢ =tanh (uz, sin 25)(cos 20 —26—26* cos 2¢)/sin 20 ,
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In the stable region,
T=cos ¢’ -exp (—ivz,—1¢’) , (3)

where

sin 2vz, ,

tan ¢’ ==
¢ 2 yi—1
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and where v is determined by

2w g 1
20 _(q—e 2(1+_ )
7Co =< 2 y—-1

Several examples for various undulations ¢ and thicknesses of the
periodic structure have been evaluated, and these results are shown in
Fig. 2. From this figure, we obtain that the effect of the periodic
structure on progressive waves corresponding to the stable solution of
the wave eguation apparently occurs rarely, while near the frequency
range giving the unstable solution a characteristic attenuation appears.
This apparent attenuation has the following characteristics: The larger
the velocity undulation ¢, the greater becomes the apparent attenuation,
and the wider is the associated frequency band; the thicker the heter-
ogeneous medium, the greater becomes the attenuation, and the narrower
is the freguency band.
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Fig. 2. Modulus of the transmission
coefficient for a periodiec structure. The
velocity distribution is ¢(x)=co(1+¢ cos 7'x)
for 0<a <z, and co(l+¢) for £<0 and
1o<x. 2o/mr=n is the number of velocity
maximum (¢<0) or minimum (¢>0) in the
intervening medium so that xo=2nx/7.

Fig. 8. Modulus of the transmission
coefficient for an alternation structure.
The velocity distribution is co(1+¢’) for
Tw<0, Cm—2)r<rx<@m—1)r and 2nx
<Tx; and is co(l—¢’) for (Cm—L)n<ilx
<2mr, where m=1,2, -+, n(=2/z).
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3. Comparison with the transmission coefficient of
waves through an alternation of strata

An alternation of two homogeneous layers in which the velocity is
co(12¢), respectively, and each thickness is L/2 is also a periodic struc-
ture. The transmission coefficient in this case is computed for three
values of ¢ and two values of the thickness of the alternation by means
of the matrix method, and these results are shown in Fig. 3. We find
that the nature of the attenuation over the frequency range of interest
shown in Fig. 8 is similar to one in Fig. 2. There is a slight difference
between their micro-structures, which will be elucidated in the near
future.

When this alternation covers a very wide extent, the velocity dis-
tribution is expressed by

o1 g s (=17 1) ©
c(x)#co[l 10 5 7 cos a(zn—1)m L]. (4)

Hence, the transmission coefficient for the n-th maximum attenuation is
obtained (Onda, 1964 b, eq. (22)) as

Tmzsech(&a&wn), w, =T (5)
2 ¢, 2

In the present case, as n=1, ¢,=4¢'/r and w,=mc,/L, we have
T.=sech (2¢'x,/L) .

When ¢ is large, the difference between this factor 7, and the coef-

ficient obtained from Fig. 8 may not be neglected, whereas if ¢ is

small, the difference is negligibly small, e.g., if ¢=0.01, it is smaller
than 10—°. '

4, Resonance of waves in a periodic structure
In the paper (Onda, 1966 @, p. 10), ‘it has been noted that the

characteristic attenuation is caused by a type of resonance in the periodic
structure. From the preceding section of this paper, the nature of the
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Fig. 4. Schematic illustration of a three layered
structure which is the simplest alternation.

transmission coefficient of waves propagated through the alternation of
homogeneous layers is in agreement with the one with periodic struc-
ture. We consider the simplest case of one eycle of the periodic strue-
ture and calculate the amplitude distribution of the displacement in the
intermediate medium, |u.|. This structure is schematically shown in
Fig. 4. In the result we obtain

e = A4/ 142 coszPte®,  for hgy=n/2 , (7)
Ly )

where A is a constant and 2, is the thickness of the intermediate me-
dium, which equals z/r. It follows from this expression that the loop
of the envelope of the displacement amplitude occurs at #=0 and =z,
respectively. Consequently, since the condition kw,=z/2 turns out to
be w=7yc,/2, a resonating oscillation at the frequency giving the unstable
region in the periodic structure is verified.

5. Wave equation in a heterogeneous medium
with some periodicities

We assume that the velocity varies as
c(@)=cy(1+¢ cos 7.&+¢, cOS 1,2) , (8)

where the ratio 1,/y, is rational, and that the product ey, is of the order
of magnitude of the product ey,. If yi/ro=m,/m,, m, and m, being any
mutually prime integers, we can define 7, satisfying r,=m, (=1, 2).

For simplicity, let each product ¢;m; be of the order 6. As a result,
the wave equation valid within the order ¢ is expressed by
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If m,=m,=1 and ¢, =e,=¢/2, they agree with the equation and the varia-
ble of periodic variation in velocity, respectively, obtained in the previous
paper (Onda, 1966 a, egs. (3) and (4)). The solution of this equation
is obtained easily by means of so-called Whittaker’s sigma method
(Onda, 1964 b, Appendix; 1966 a, Appendix).

In conclusion, the author wishes to express his sincere thanks to
Professor Ryoichi Yoshiyama for his valuable encouragement, and also
to Professor Yasuo Sato and Dr. Ryosuke Sato for their helpful sugges-

tions. A part of the computation was done through the project UNI-
CON, IBM Japan.
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