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1. Introduction

The study of the surface wave propagated along an uneven surface
is important to geophysicists, but seems to be intractable because of
mathematical difficulties. In a previous paper (Onda, 1967b), the effect
of an undulatory surface on surface wave propagation was investigated
by using an appropriate conformal mapping. In that paper, an approx-
imate equation for a wave passing along this surface is equivalent to
the equation of waves propagated through a periodic structure. It is
found by careful investigations that the latter waves have the following
characteristics (Yoshiyama, 1960; Onda, 1966, 1967 a):

1) It is very difficult to calculate the amplitude of a progressive
wave in a periodic structure;

2) The wave with a wave length twice the structural wave length
is unstable, and the unstable wave results from the resonance in this
structures; and

3) The apparent and characteristic attenuation of progressive waves

appears near the frequency of the unstable wave.
Therefore, it follows that the main feature of surface waves propagated
along the undulatory surface is given by these characteristics. When
it is uncertain whether the solution is satisfactory or not, it will be
necessary that the solution obtained is examined from other stand-
points.

The procedure treated in this paper is the perturbation method,
according to the classification of the previous paper (Onda, 1967b). This
title in the classification is ascribed to expanding the boundary condition
given upon an uneven surface about the mean level. Let us assume
first that an original wave as the first approximation fulfills the free
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stress on the mean level, and the stress on the given boundary does
not vanish on account of the uneven surface. Then a secondary wave
is calculated so as to give free stress upon the uneven surface. This
method has been studied by Mr. Homma (1941), Dr. Sato (1957) and
many other authors.

The wave treated in the previous paper was of the SH type. In
this procedure, however, since we replace the unevenness of a topography
by a corresponding stress distribution applied on the even surface, we
cannot calculate the secondary SH wave propagated along the surface.
Therefore, the wave treated in this paper is not of SH type but of
Rayleigh type.

In section 2, a brief sketch of the perturbation method is given. In
section 3, when the original wave is of the Rayleigh type, the secondary
Rayleigh wave, which will constitute the main part of the secondary
wave, is calculated. The sum of the original wave and the secondary
wave ftravelling in the same direction as the original one corresponds
to the transmitted wave, and the secondary wave travelling in the
opposite direction becomes the reflected wave. Therefore, when the
surface is sinusoidal, the equivalent transmission and reflection coef-
ficients are easily calculated. As already stated, the nature of the
surface wave propagated along an undulatory surface is similar to waves
propagated through a periodic structure. In section 4, the coefficients
obtained here are compared with these for the periodic structure.

2. The perturbation method

We assume that the medium is isotropic and homogeneous and that
the motion is in the (x, 2) plane. The wave in the medium is calculated
by two potentials which are solutions of the equations

*+hp=0,  (F+Ek)}=0, (1)
where
h=w/V,, k=w/V,, (2)

and V,, V, are velocities of the longitudinal and transverse waves and
® is the circular frequency. Let V, and r be the velocity and wave
number of the Rayleigh wave. The displacement components of the x-
and the z- axes are

w="09 9 w=9% _ 8 (3)
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In addition we assume that the surface is uneven in bounded extent
in the 2 direction, that the elevation of the surface is small compared
with the wave length and that the surface gradient is much smaller
than unity. The topography of the surface is given by

z=f(x), (4) z:0 z=f(x) 2:0

where f(x) is some function for @, <wx<w, 77777777777 T T

. | |
only and is zero for other values of X=x X=%,

x (Fig. 1). Since &>k>h, these as- Fig. 1. Geometry of the uneven
sumptions are expressed as topography.

If1<1 and |ef|<1. (5)

If the maximum of the gradient, [(f').|, is smaller than the product of
the maximum of the elevation, |f.|, and a constant with the dimension
of the wave number of the unevenness, 7, the first of expressions (5)
is rewritten as

()l S ful =7/6 [6fn] <15

hence it follows from both parts of (5) that r is of the order 7.
If the tangential and normal stresses upon the surface f(w) are
I(x) and N(x) respectively, these are calculated (Love, 1952; p. 80) as

Vw) =02+ (2 —a2)- '~z 2L+ 1)

(6)
N(xy=[zz—2xz-f +wx-f*/A+ 7).
The boundary condition in our problem is given by
T(x)=0 and RNx)=0 at z=f(x). (7)

As the first step of solving the problem, we consider, as the first
approximation, an original wave which satisfies free stresses upon the plane
surface z=0. Let the wave be satisfied by the potentials (¢°, ¢°).
However, the condition (7) is not fulfilled by the wave (¢°, ¢°) alone,
by reason of the uneven surface. The secondary wave determined by
the potentials (¢°, ¢°) is calculated so that the sum of them (¢°+¢°,
¢*4-¢*) satisfies the condition (7). Here, it is assumed that the distur-
bances in the secondary wave are small compared with the motions in
the original wave.

Under the assumption (5), substitution of the Taylor expansion of
the right-hand side of (6) into (7) yields, neglecting higher order terms,
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—_ /?O —_
[sz]Fo: _—[%] f+ [xxo]zzo'f' ,
0z Je=o

(8)

—_ AO
[72"],00 = _[sz_] f,
) 0z Je=o0

where the stresses of the left-hand and the right-hand sides are calculated
by means of (¢, ¢°) and (¢° ¢°), respectively. We have essentially
replaced the free-stress condition on the perturbed surface by an equiv-
alent stress distribution on the surface z=0. All quantities in equation
(8) are calculated at z=0. We put

&;\s ::T‘. iwt—ilc’x’
1.0 TOon | o)

[gz\s]Z:o: Nz)eit=i*= | )

where k' is the wave number component of the z-direction of the incident
wave (4%, ¢°). If the Fourier transform with respect to = is applied to
these stresses and the potentials (¢°, ¢°), then together with equation
(9), after interchanging the order of integration, we have the final expres-
sions for (¢°, ¢°):

o = L" twierdrs 1| N a,
2y 2rp ) -
1 (= 1 (10)
=L oie-rdns 2| Nowioperay,
T 2rp -
where
— —2i8p e zm— A7
sin)=|__ F(;) e :,
: 15(:—7])~)\“z dé’ s
s =" B
(28 —Fk°) (1)
16 {x—n)—Ag2 d ,
0= e
— 2"/52 16x —n)— Aﬁ d;—
¢i(7) E F(f)
and
—_ 2 J2\o__AL®
F(&)=28— Y —45 2,48 , (12)

:-l/éz_h::, 26:1/52_]62.
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In these expressions, (¢;, ¢;) are the potentials observed at x=x with
application of a tangential stress with unit magnitude at x=7, whereas
(¢3, ¢3) are observed at x=a with application of a normal stress at z=7.
The displacement is obtained by substituting ejuations (10) into (3).

3. Reflection and transmission of Rayleigh waves
passing along an undulatory surface

Let the original wave be a Rayleigh wave travelling in the +z
direction, then %' is # and

¢0: ¢Oeiwt—iu—w ,

1
¢0:¢Oeiwt—ixx—v’z’ ( 3)
where
Go=2E Ty VT, V=V ER,  F(em)=0.  (14)
2vky
Whence, from eguations (8) and (9),
T(x)=1pdv— v {2rvf(x) +12(v+)f (2)}, (15)

N(@) = pgo»— ') 26"~ ) f () .

Substituting these expressions into ejuations (10), we can calculate the
secondary wave generated by an uneven surface z=f{x). In this paper
the Rayleigh wave in the secondary wave is studied, because it predom-
inates at a sufficiently great distance from an uneven area. We shall
call it the secondary Rayleigh wave.

The path of integration in equations (10) js transformed into Som-
merfeld’s contour developed by Lapwood (1949). A Riemann sheet is
defined as the real parts of 2, and 2, being positive, for a complex
variable { whose real part is &, and the branch cuts are taken by letting
the imaginary parts of 7, and 4, be zero. As is well known, the
Rayleigh wave is estimated by the residue on this sheet. On this sheet
both exp(—4,2) and exp{—2,2) become zero when |¢|—c, so that the
path of integration is taken separately, accordingly as x—7>0 or
x—7<0. If x—7>0, the path is taken in the upper half plane,
and the pole is at {=—«; while if ©—»<0, the path is in the lower
half plane, and the pole is at {=x. If the Rayleigh potential resulting
from x—»>0 and x—7<0 are noted by (33, ¢f2) and (47, ¢7%) (7=1, 2)
respectively, we have, from the calculation of residues,
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ve _ —ATKY i vs _ 2m(2kF—K®)  icipem
— e iKk(z vz’ — e ik{x—n)~—vz
U F (= T F(=w)
s 2ml(2KP—K7) oy Arky
Nt — e ik (z—n) vz, ;3:
TR (=) TFED
and
—e _ —ATEY iei—my— e 27126 —K?) icimomy—
— euc x—7) vz, S = em(z n)—vz
T F () - F'(k)
e =212 =) ieia—m—viz ot = drry
R — " T35/, ~ ’ 2R T T 47, v
: F'(k) T F(n)
where
P = 2R (2 ),
K v y

F'(—k)=—F"(x).

e—i:dx—n)—v’z .

(16)

(17)

(18)

Substitution of expressions (15), (16), (17) into equations (10) yields

8 — kv kﬂ*h’z r o iwt—ikz—vz “ 4
2= _—hFL'((:*—c)—)—% et g_mf (pdy ,
I

p A

and, by means of the formula

Slf’(v)-g(fc—v)dv == r

—oo

F(n)g (x—n)dy
for functions f(zc)=0,

—8

8P (v—y)
r =1

eiw!-}-ircx—vz = —2ix17d ,
cesrd, | feeody

sb;s = 4[‘:”,(’/_”')(2’92_]62) ¢06iat+ix1—-v’z

I () S_Nf(,?)e—zm a7

B8P (v —y) J, piwttikz—y’ Sw —2iky
=1 h giwttikz—v'z e ik d .
R CTRRA ~ flppedy

— Ez_) Twt—Iikz—v’2 e ’ .
T e |- rear;

(20)

Since we have assumed that the gradient of the topography is small
everywhere, we have
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|”_renar=0; (21)

hence the secondary Rayleigh wave travelling in the +a direction is
neglected under the accuracy treated in this paper. That is, the Rayleigh
wave propagated past an uneven surface is unaffected. Accordingly the
modulus of the transmission coefficient past the uneven surface is unity :

Tr=1. (22)"

The Rayleigh wave evaluated from the potentials (¢z°, ¢%°) is one
travelling in the —x direction; that is, it is the reflected Rayleigh
wave from the uneven surface. The factor in expression (20), excluding
the phase variation for time and space, noted as R, is regarded as the
complex reflection coefficient for the uneven surface, and then the
reflected potentials are expressed by

ES):RR< ¢06—V2 eimH—ilcx , (23)
( gz’ %e‘””)
where
8y —y) S‘” oie
R.= gy
R —_—F((Ii) _mf(v)e Ui

If an uneven surface is specified by (¢f. Fig. 2)

f@)=I(1—cosyx) for 0<z<z,=2nx/r, (24)
we get

1) This form may be understood more easily in Mr. Homma’s work (1941) than in
this paper. In that paper, the secondary Rayleigh wave for the original Rayleigh wave
generated by the surface {cosp(x—n) is expressed, in the notation of Eq. 38 of Mr.
Homma’s paper, by

G(p)
A *p)
where G(p) is an analytic function with the property G(0)=0, 4 corresponds to F(§) in
this paper, and the original Rayleigh wave has the factor exp (fat+ilx). Then, when p=0,
the surface is perfectly flat, the phase variation of the secondary wave in Eq. (38) is
equal to that of the original wave and the wave is travelling in the same direction as the
original one. However, along the flat surface, there cannot be the secondary Rayleigh wave
of this kind. As a result, we obtain the potential of the secondary wave

$+(p=0)=0,

$r=1(

egiat+ilEp) e ,

and, similarly,

$x(p=0)=0.
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Ro=1 8FE2V’2(V_V')|—e—m0 sin k1, 1 gi ez sin (2k —7),/2

F'(k) L £ ) 2k —7

- gmitetz sin (2’9"’(‘7’)3’0/2] .

2+ (25)

Since the wave number r is always positive, the reflection coefficient
becomes a maximum when 2s—7. In particular, if 2=y, those coefficients
when r=7/2 are expressed by

Ten=1,  Run=—i-0.15"z,. (26)
incident _ If @, is large, the coefficient Ry, is
Rayleigh wave '?gﬁggi‘,’ave in some cases larger than unity, and

E— it contradicts the assumption on the

reflected i ] ] 1 1

Rayleigh wave
2y * =T (1~-cosyx) tory surface should be confined to a
77777577 T T Tl - telatively bounded extent.
xt0 X2 x5 2nm/y Consequently, we find that
Fig. 2. Geometry of the undulatory though the transmitted Rayleigh

surface. wave is the same for all wave fre-
quencies, the amplitude of the reflected Rayleigh wave is proportional
to that of the incident one, the surface undulation I" and the linear
extent @, of the undulatory surface, near the resonant wave frequency.

4. Comparison with waves propagated through
a periodic structure

In a previous paper (Onda, 1967bd), it was found that the effect of
the undulatory surface on the surface wave propagation corresponds
to that of the horizontal heterogeneity of the medium on the wave
propagation. In this section, the result obtained in the preceding section
are compared with those in a periodic structure, where the velocity
varies periodically in a limited extent as (cf. Fig. 3)

c(x) =co(1+e¢) for x<0, }
=c¢y(1+ecosyx) 7 0<e<w,=2nz/r, (27
=co(1+e) ” 2, <.
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In the transmission coefficient of waves gty
through this strueture, a characteristic c,(1+e) ¢ (l+ecosyr) ¢ (1+e)
attenuation appears near the specified —m Vo ——
frequency w=7c,/2, and waves with [ !
other frequencies are transmitted X0 X"%o 2anly
without being affected by the structure transmitted wave
(Onda, 1966). If we consider the refiected wave
reflected wave, it follows that the Fig. 3. Schematic illustration of the
reflection coefficient is the greatest near periodic structure.
the specified frequency, and the reflected wave with another frequency
is apparently not observed. The relation w=y¢,/2 implies that k=7/2,
so that the greatest reflection at k=7/2 agrees with that obtained in
the preceding section.

Now, the transmission and reflection coefficients for this charac-
teristic wave are expressed as follows (Yoshiyama, 1960),

incident wave
—

_ exp (—tkw,)
cosh (7¢,) for k=y/2, (28)
R,=—14tanh (&)

»

E=rx/2=kx,, k=wlc,, n=¢/2.
Providing that 7, is small, we obtain the approximate expressions

Tp: €Xp (—’l:k.’l?o) y

R,= —iSlx, for kE=y/2. (29)
P 2 b

Since the phase of these coefficients is measured from x=0, the trans-
mission coefficient 7', should be regarded as unity, in order to be com-
pared with the coefficient T.,. It appears that expressions (29) agree
with expressions (26), if ¢/2 in the former corresponds to 0.1xI" in the
latter.

In the calculation on Rayleigh waves, since the surface undulation
was replaced by an equivalent stress distribution on the plane surface,
the ratio of the stress amplitude to the displacement amplitude of the
incident wave is calculated, for the purpose of comparing the velocity
undulation in a periodic structure with the surface undulation. The
displacement in the periodic structure has been obtained by Prof.
Yoshiyama (1960). If u, is the displacement of the incident wave and




598 I. OnDA

S, is the stress in the periodic structure induced by the incident wave,
we have, when k=7/2,

. 7001/@; 4,

S,= *%m cosh {7(&,— &)} exp (—ié) . (30)
where
ul=—A_1: exp (—1kx) , (31)
V pe,

and, if 7§, (>7¢) is small, we have
Sz—.:, '-‘?:(01/700—21416_“ .

Here, as c,=c¢(1-+ecosyx), if 4S, is the amplitude of the stress variation
in the periodic structure, the absolute value of the ratio is

14S,/u,| = wpcy-ef2 . (32)

On the other hand, in Rayleigh waves passing along the undulatory
surface, we have from equations (9), when Poisson’s ratio is 1/4 and
k=7/2,

T(x)= pp,['£%1+0.8 cos yx —2.3 sin 1) ,

3
N(w)=ps,['k*-0.5cos 7z . (33)

Hence the stress amplitude in this case may be estimated as about 2.5
-pp, k. The displacement at the surface of the original Rayleigh wave,
[1o], is given by

o] =V [P+ [0’ [ = 0.5k , (34)
whence

48

Uo

2.5 . V. \
=22 I =8.8p0 Vel )
075" " pO YR (VR

=3.50pVakl . (35)

Therefore the results in the calculation on the Rayleigh wave must be
multiplied by about 3.5, so as to be compared with ones from the
periodic structure. In the result, the direct correspondence of the
product £/” to the velocity undulation ¢, submitted in the previous paper
(Onda, 1967 b), has about a 30 per cent error. It seems that this difference
is caused by the converted body waves radiated from the uneven surface
into the medium.
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5. Concluding remarks

As a continuation of the study of waves propagated through a
periodic structure, a surface wave propagating along an undulatory
surface was investigated in an earlier paper (Onda, 1967); it was found
that the main features of the surface wave may be analysed from the
solution of the equation of waves propagated through a periodic struc-
ture. The problem of surface waves passing along an uneven surface,
which is a boundary value problem, has not been satisfactorily solved.
In this paper, the solution obtained in the previous paper is justified by
using another procedure, that is, by means of an approximate expansion
by perturbation of the boundary condition given upon the uneven
surface. In this caleulation, we assume that the elevation is small
compared with the wave length of a propagated wave, its gradient is
much smaller than unity, the wave length of the surface undulation is
of the same order as that of the propagated wave and the undulatory
surface covers a limited extent. In the result, although there is some
uncertainty in the precision, we reach a conclusion similar to the one
of the characteristics of the wave propagation obtained in the previous
paper. Then it follows that the effect of the undulatory surface on the
surface wave is as follows: The wave with the wave length twice the
wave length of the surface undulation is unstable, the instability resulting
from the resonance along the undulatory surface, and the apparent and
characteristic attenuation appears near this specified wave frequency.

The perturbation method has several advantages, e.g., to elucidate
the effect of the topography and the interaction between the incident
wave and the other waves generated at the uneven surface and to
estimate the degree of approximation. However, it should be noted that
the solution derived from this method is not valid when we treat the
problems of the uneven surface with a wide range and a steep slope.

On the other hand, notwithstanding that the conformal mapping
method has not been sufficiently studied up to date, is appears that this
method gives useful information for the study of the surface wave
propagation.
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32. HUENICEIRL TW B RMmMEED 3 L 4 ) — i
JE GRS 2 AED B 3% & D prig——
WERIRRT & M T

FHEOMEIIEFC ST, FECEETHEA, ETRHROD IFAIELNTHEL. o
#3L (Onda, 1967b) G, = OMOWITELACHSS CEh A E A UEEEY Lo TCW5 L %
Hovle, 2T, BHRTMOWEY, ThEPoKE, il 9B i I oTi~T
KTz,

FHRCHESAPEREECEDLS U A ) ~ % 0ol 25 8, FhEFTCETELT
RWEREO BT, IBMIHELRV. T2T, KORELH < 1) EMORIRILED 3 EOEEC
NTUPNE, 2) HEREOFRND F72/h X, 3) BRLTWAREDOEEIL, EbhaloBELRT
REETHS., ThoOEEDDL LT, HHEMOBRGMEXHETS Lo, “ROCRETS
BhRpic, TOWDLH, BEHOFLFAUHEACHKET VA Y -3, =2 Tk EO L &
TEHIbRh. Wbl BRLTWAER L TEbs V1 ) —3L, &IRE FoaR
I Z e BIE, BHEX TR, THIZX LT, Aol L MR ZRkE DR
3, MHDOEDOPERIFEMEROBEROFCHYTIEILLOL X, RREAD. - OWEIL
FIHIRGEDOE I NBE e W EHEL T, TORMFHLBHLIL 208 1 FnbBEohsbot
RUTths. 0T, FANEEREHLLEOWEND, *OEEOAEROES—EOLE L
LEBMEEERD, TLT, ZOWMTER oo HETHHETE WA YL, SHEEKROE
FTERTHE, BROHZEMEEL TELABIE, FOBEKERLCLT, R oRs
MNHbhs LHEEIRS.




