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1. Introduction

Calculations for a homogeneous elastic sphere were reported in the
first study of theoretical seismograms illustrating the effects of gravity
on the propagation of spheroidal disturbances”. In this investigation
it was found that the influence of gravity on the non-dimensional
frequency is large for modes with periods longer than 200 seconds and
decreases rapidly with increasing frequency, becoming negligible for
shorter periods. The resulting theoretical seismograms, however, did
not greatly differ from those calculated for the corresponding case
excluding the effect of gravity?.

The present study, the second investigation of the effect of gravity
on the periods of the free oscillation, its effects on the phase and group
velocities, common spectrum and on the resulting theoretical seismograms,
is an important part of our continuing program of investigation of the
generation, propagation, dispersion and attenuation of seismic waves in
realistic spherical earth models®~>. The theoretical seismograms reported

(Contribution No. 57 Geosciences Division, Southwest Center for Advanced Studies.)
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here, which represent disturbances on the surface of a Gutenberg-Bullen
A’ earth model, were calculated by summing the contributions from the
free spheroidal oscillations through the tenth radial mode, for all orders
from the gravest with periods near 50 minutes to those with periods near
80 sec. Radial distributions of displacement, phase and group velocities,
the common spectrum and theoretical seismograms were calculated and
comparisons were made with the corresponding quantities found for the
case without gravity®—*.

Notable results of the study of the propagation of spheroidal dis-
turbances on the surface of a Gutenberg-Bullen A’ earth model, when
the effect of gravity is considered, are:

1. The difference of non-dimensional frequency between the present
case and the case which excludes the effect of gravity is a rather com-
plicated function of the order number n and the radial mode number 7.
The discrepancy is large for modes lying along the special transition
segments between each radial mode and the next higher one; it tends
toward negligible values as the order number increases.

2. The corresponding phase and group velocities exhibit their
greatest differences for the first three radial modes and for orders less
than about 15. The maximum group velocity for the radial mode 7=3,
which is associated with the R, wave?, is larger when the effect of
gravity is included. The present calculations indicate that gravity does
not influence the period and velocity of the waves corresponding to the
fundamental mode group velocity minimum.

3. The radial distributions of displacement show that there is little
difference between the two cases except for certain modes which move
to a branch of different character.

4. The common spectrum does not exhibit any great difference
between the two cases.

5. There is no difference in the theoretical seismograms initially
following the occurrence of the disturbance, but the diserepancy caused
by the introduction of gravity becomes increasingly large as time
progresses. A short period wave suddenly becomes predominant near
the antipode.

4) T. Usami, Y. SATO and M. LANDISMAN, “Theoretical Seismograms of Spheroidal
Type on the Surface of a Heterogeneous Spherical Earth”, Bull. Earthq. Res. Inst., 43
(1965), 641-660.

5) T. Usamr, Y. Sa10 and M. LANDISMAN, “Theoretical Seismograms of Torsional
Disturbances Excited at a Focus Within a Heterogeneous Spherical Earth — Case of a
Gutenberg-Bullen A’ Earth Model —”, Bull. Seism. Soc. Amer., in press.



=

ipn:

Pyt

P (cos 0):
(ry 0, p):
WSy Syt

Smn! T’Irm :

t:

(U, v, w):
U.(r), Vu(r):
iWny Ut

(%), (0,):

[iun]: [ivn] .
Ve, Vg:
Vso:

Y.(r):

as

Theoretical Seismograms of Spheroidal Type 603

2. Glossary

The problem of a non-gravitating sphere?

The problem of a gravitating sphere

radius of the earth

radius of the core

phase and group velocities

radial and colatitudinal stress on the earth’s surface
time function of the external force

Fourier transform of the function f(f)

gravity in the undisturbed state

radial mode number

unit of the imaginary number

(: Z)/ Vso)

degree of an associated Legendre function (azimuthal
mode number)

order of an associated Legendre function (colatitudinal
mode number)

circular frequency of free oscillation

P wave diffracted into the shadow zone by the core
associated Legendre function by Ferrers’ definition

polar coordinates

common spectrum of radial and colatitudinal components
of disturbance

coefficients of spherical surface harmonics in the expansion
of radial and colatitudinal components of applied force
time

displacement in the »-, 6- and @-directions

function giving the radial distribution of » and v
contribution of a normal mode oscillation for the radial
mode number ¢ and the order number n

a " i n

Z Z i W 5 Z Z iUy

=1 n’'=0 i'=1 n’=0

i iun’; i ivn’

n'=0 n’=0

velocities of dilatational and shear waves

S wave velocity on the surface of the earth
function giving the radial distribution of ¢

ratio of the colatitudinal to the radial component of
displacement of the surface
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B: value of the gravity potential on the surface of the earth

r: universal gravitational constant

7: non-dimensional frequency of free oscillation (= ka = pa/Vy,)
A,y Lamé’s elastic moduli

po: density in the undisturbed state

¢: gravity potential due to disturbances
(0, p): geographical distribution of external force (=¢@(cos0) in
the present case)

3. Fundamental Expressions

The spheroidal disturbances of a radially heterogeneous elastic sphere
may be expressed in terms of the polar coordinates (», 0, ). When the
effect of gravity is considered, these expressions are

(0,0, )= (), v(p), w(o), $o)-exp (Gotiap,  B.D)
W)= 3} ApUy(r)-Pi(cos 0)- 22 mp- f4(1) ,

o(p)= 3 Ay V(1)L P(cos 0)- % mgp. f(p) ,
mn do sin

(3.2)

. Pr(cos §) —si

w(p)= Sim- Ay, V,(r). 12 " mp-f*(p),
o sin 0 cos

$(B) = 35 Ana V(1) P2(cos 0)- 2% mep- £4(n) .

where u, v, w are the displacement components in the -, 0-, @-directions
and ¢ is the gravity potential due to the disturbances. U,, V,, and
Y, satisfy the simultaneous differential equations,

E@r—(zx,,+2p0n>+ L4rU, 4T, +n(n+ 1)~ U, 1V, +3V,)]

d

OUn o 2Un:0 s
ar (9,U,)+pop

+ 0o Yn + pogoXn —pPo

d [,;(VFM)] + L [5U 437V, —V, —2n(n+ DV, ]

dr. r (3.3)

+‘£Xn+&yﬂ— £odo Un+[Oop2Vn:O ’
r r r




Theoretical Seismograms of Spheroidal Type 605
X,=U,+ 2y, ™Mt
r r

As noted in §2, y is the universal constant of gravitation and p, and
" g, are the density and gravity in the undisturbed state. A dot over a
quantity implies differentiation with respect to the radius . Equations
(3.3) may be reduced to a form convenient for numerical integration,

A4+2pn U,+MU,+NV,+LV,+(@pa*+K)U,+JY,= 0,

Po
LY+ MV, +NU,+LU,+(pi*+ K)V,+JY, =0,
Lo
Y.+ % Y,— ——”("zj Uy, = ear| (U + 292 Un ’”("‘g Dy, ].

(3.4)

where the dash implies differentiation with respect to the dimensionless
radius {=7/a. The coefficients in (3.4) are

M= +24) po+20+2) [pL

N =—n(n+1)2+p)/pl ,

L =n(n+D[QA+3m) o2~ [piL —agi/C] »

K =22 [pf —[2(242p2) + n(n-+ D)) [po*+ 290/ —ag;
J =a,

= [po+2p(0L

A+mlpL

L = [p+20+2m) [pl —ag,/C

K = — o —n(n-+1)(2+2p) .l

J =a/C .

(3.5)

f! |

In a liquid media, too, the equations (8.4) and (3.5) are valid provided
that y=p'=0. Since no torsional motion can exist within a liquid, the
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equation system (3.4) may be reduced to two independent equations for
the two unknown quantities, U, and Y, without difficulty. They are

AU, +BU,+CU,+DY,+EY,=0, }
Y. +BY,+CY,+DU,+EU,= 0.
where

A=2p'a’lpQ

o 2ol (222

‘ ’ 2 2, bl
C :p2a2+K_Mn(n+1) [p”*a2{)‘ag°+ 64 +2Z‘0°+<ag— 4
€@ ol P P *opt

R e Y]
D =p@’lQ ,
B =2/,
C = —n(n+1)drarpJ]QC +1/2) ,
D = —4zayp, P'a’/Q
E = —dzaylpi+po 200> —n(n+1)agd/0)/CQ1 ,
Q =pa*—n(n+1)2/pl* .

nn+1) [ 222 A2

+E>_T('pﬁcﬂ2+ p%C>] ’

(3.6)

)

(3.7)

Values of V,(¢) may be obtained from U, and Y, by means of either
the second equation of (3.4) or the equation derived by eliminating V;

and V.’ from the first and second equations of (3.4).

At a boundary between two different media, the values of U,, V,

and Y, and their derivatives with regard to ¢ may be

obtained from

the corresponding values for the other medium by means of the boundary

conditions. These conditions are
( Un)1 = ( U’n)Z ’
( Vn)1= ( Vn)Z ’
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2 n(n+1) _ » 204 m(n+t1)
[(/H-Z/z)U +2y,- T—ZVn]l—[(i+2#)Un+ 4y, - mtl) ml,

(v 5] <[ 5],

( Yn)lz ( Yn)Z 9
(Y, —4mrap,U, )= Y, —4drayp,U,]. -

(3.8)

When the core is liquid, one of the boundary conditions at the core-
mantle boundary assuring the continuity of the colatitudinal displacement
V, disappears and the condition of the continuity of the colatitudinal
stress component gives no effective means to determine the initial values
for the core. Supposing that simultaneous equations (3.4) are numerically
integrated from the surface towards the center, the value of (U,),-
for the core may be calculated by solving the third equation of (3.8) and
the second equation of (3.4), ¢ and ¢ being put to zero, for two unknowns
(U.),=, and (V,).-, of the core.

The displacement components in the time domam can be obtained
from (3.1) by the technique of Fourier transformation

n cos Sun o Ton
U= E%Pn(%s 0) mgo S ( i )

X U, (7). f*(p)-exp (ypt)~dp ;
d cos S"" S T )
v 0 . m mn
s g DRSO gy ( B | E
X V(1) f*(p)-exp (jpt)-dp ,
1 Pr(cos ) = —sin S‘” Sun o Tm
= — . _|..
s 27 n% sin 0 cos met ( E, )
X V1) f *(p)-exp (gpt)-dp .
In these expressions, S, and 7,, are the coefficients of the spherical
surface harmonics in the longitudinal and colatitudinal expansion of the
radial and tangential stresses applied on the surface of the elastic sphere.

Es and E,, the radial and tangential stress at the free surface r=a,
are written as :

Ey=(1+2p),- t’fn<a>+%)—a— (@U,(@)—n(n+1) V() , (3.10)

v

_1_
2n

§M

(3.9)
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EF(p)a-(Vn(a)—%(Vn(a)— U.(@) . (3.10)
Ey=FE,=0, together with the equation

V(a)+ 2L ’”“ Yu(@)=4ar+(00). Up(a) , (3.11)

give the surface conditions of the free spheroidal oscillations of a gravita-
ting elastic sphere.

Equations (3.9) were evaluated by contour integration which showed
that the disturbances can be represented by superposition of the contri-
butions from the poles corresponding to the free oscillations

) _J Prcos 0). €08 [ S, T..
ut) =g 2, Prleost) o me <dES/dp+ dET/dp)

X U (r)-*(p)-exp (1)

P=iPn ?

t :_'7_ ___Pm /] cos Smn Tmn
o) = 3 g Prcosd) Hmo- [ ( aBsJdp dE‘T/dp>

(3.12)
X V(7)) f*(p)-exp (J'pt)]

P=i{Pn I

¢ _J mP(cos §) —sin [ S T on )
W=y 2 T e cos 0 <dES/dp T

X Vo(r)-£*(p)-exp (jpt) |

P=ipn *

In this formula ;p, are the freguencies of the free spheroidal oscillation
of the gravitating earth. In the present study, a purely radial stress
was assumed to act on the surface in a small circle around the pole.
In this case, m=0, T,,=0 and the azimuthal component of disturbance,
w, is identically zero.

4. Earth Model

A detailed explanation of the Gutenberg-Bullen A’ model used in
the present study was presented in our previous paper®. Except for
trivial modifications, the model follows Gutenberg’s distribution of the
velocities of compressional and shear waves and Bullen’s A’ distribution
of density. The radial variation of P and S velocities and of density
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appear in both graphical and tabular form in an earlier report®.

5. Non-dimensional Frequency

The non-dimensional frequency 7 (=ka=pa/Vs) of spheroidal oscil-
lations of the earth was caleculated by numerically integrating the
simultaneous equations (3.4), under the conditions of zero stress and
continuity of gravity potential on the surface. The integration was
executed from the surface towards the center, assuming the radial
displacement on the surface to be 1.

The solutions to the problem of free spheroidal oscillation in a radially
heterogeneous sphere were found for the non-gravitating case by a two-
dimensional search for the two unknown quantities, namely, 7, the
dimensionless eigenfrequency, and «, the surface ratio of displacement
(=nV,/U,). In the present case, however, the surface value of the
gravity potential 8 enters as a third unknown and the problem of deter-
mining the free oscillations is solved by a three-dimensional search for
the unknown quantities 7, « and 3. Test criteria for the search are
the vanishing of the tangential stress at the bottom of the mantle and
the vanishing of the displacements and gravity potential at great depth.
The actual search for the unknown quantities was performed in the
order «, # and 7. The search process employed in the present investi-
gation is similar to that adopted for ease (I), which is described in the
corresponding report?.

The values of dEs/dp, which are necessary for evaluating the contri-
butions of each mode, were computed in a manner similar to that used
for the torsional problem®.

Non-dimensional freqguencies of free spheroidal oscillations were
calculated for vibrations with periods longer than about 80 seconds cor-
responding to the first ten radial modes.

Curves of dimensionless eigenfrequency vs. order number » are
presented in Figure la. For comparison, the frequencies for case (I)
are shown in the illustration as broken lines. In order to show the
discrepancy between cases (I) and (II), the low-frequency portion of

6) Y. SAT0, T. Usami, M. LANDISMAN and M. EwING, “Basic Study on the Oscillation
of a Sphere Part V: Propagation of Torsional Disturbances on a Radially Heterogeneous
Sphere. Case of a Homogeneous Mantle with a Liquid Core”, Geophys. J., 8 (1963),
44-63.

7) Y. SAT6 and T. Usami, “Basic Study on the Oscillation of a Homogeneous Elastic
Sphere. II. Displacement Distribution”, Geophys. Mag., 31 (1962), 25-47.
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Figure la. Non-dimensional frequency (p=Fka=(27a/Vs0)/T) of free spheroidal

oscillations for the Gutenberg-Bullen A’ earth model.

Solid curves and solid circles

refer to the gravitating case and broken curves and open circles to the case without

gravity.

Figure 1a appears in enlarged form as Figure 1b. These ﬁgurés show

that the discrepancy of non-dimensional frequency between cases (I) and
(IT) becomes smaller as the order number 7 increases.
feature is the large difference in frequency along the transition segments
Free spheroidal oscillations in these portions of
the diagram are characterized by large amplitudes near the core-mantle

between radial modes.

A noteworthy

boundary and the corresponding disturbances greatly resemble Stoneley-
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Figure 1b. Enlargement of a part of Figure la to illustrate some of the details
for small values of the colatitudinal order number =.
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wave propagation along the fluid-solid interface. Along these segments,
the frequencies for case (II) are larger than those for case (I) and the
difference is nearly constant.

When n=0, which corresponds to simple expansion and contraction
of the earth, the introduction of gravity is accompanied by a decrease
in frequency for the low order purely radial modes and an increase in
frequency for the higher radial modes. By comparison, the introduction
of gravity in the problem of the homogeneous elastic sphere? is ac-
companied by a decrease in frequency, which effect diminishes with
increasing radial mode number 7.

For the fundamental mode, i=1, the introduction of gravity is
associated with an increase in the frequency of the graver orders of
vibration for the present realistic earth model and for the homogeneous
elastic sphere”. The increase in frequency diminishes in both cases for
larger values of the order number n with, however, an important dis-
tinction. The frequency increase associated with the introduction of
gravity decreases monotonically with order number for the homogeneous
sphere. By contrast, the realistic model shows that the effect of gravity
on fundamental mode frequencies reverses sign in the vicinity of orders
n= T and 8 and, after a fairly smooth excursion, gradually diminishes
with increasing order number.

For the higher modes, 7>1, the introduction of gravity is accompanied
by a complicated pattern of frequency increases and decreases as a funec-
tion of order number % and radial mode number 7. As previously noted,
the largest of these frequency changes is often associated with the regions
of transition which are equivalent to Stoneley-wave propagation along
the core boundary.

Comparison of Figures la and 1b with the corresponding illustrations
for the homogeneous elastic sphere” indicates that the effect of gravity
on the frequency of the spheroidal oscillations is greatly influenced by
the physical properties of the earth model.

6. Radial Distribution of Displacement

The radial distribution of the radial and colatitudinal displacement
for cases (I) and (II) is presented in Figure 2 for radial modes i=1~4
for the orders n=1, 2, 5, 10 and 15. The thick line represents the
present result and the thin line corresponds to the non-gravitating
case. The solid and broken lines indicate the radial and colatitudinal
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RADIAL DISTRIBUTION OF DISPLACEMENT

SPHEROIDAL OSCILLATION Gravitating ~ Case Without
GUTENBERG-BULLEN A Case Gravity
U
nv
n=|
r/a i=| i=2 i=3

-40- 20 40 24012 2
1.0 %ﬁ_’__[_ T Y T

2 -1 0 | 2
[ T
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~
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-2 - 2 -20-0 O 10 20
2 -1 O 1 2 -

|
|
/\

n=10
T N 240 e 4300
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05 [ - w\ -‘/_f_,” X -
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Figure 2. Radial distributions of the radial and colatitudinal components of
displacement. The thick curves refer to the gravitating case and the thin curves to
the case without gravity. Solid lines —radial component, broken lines — colatitudinal
component. Chain lines indicate core-mantle boundary. Radial displacement taken
equal to unity at the free surface.
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components, respectively. All results have been normalized so that the
radial displacement of the surface is one. When n=1, the center of
the sphere oscillates along the polar axis. ,

The introduction of gravity is not, in general, accompanied by great
changes in the distributions of displacement. The mode =2 and n=15,
however, exhibits a remarkable change, especially near the core boundary.
Referring to Figure 1b, it may be noted that the introduction of gravity
has caused this mode to migrate from the end of the transition segment
to the beginning of the ordinary segment occupied by the higher orders
- when 7=2.

The displacement distributions for the modes of transition segments,
for example those of (:=2, n=10), (1=2, n=15), show large amplitudes
near the core-mantle boundary, which is a characteristic feature of the
Stoneley-wave along a boundary of two different elastic media.

7. Phase and Group Velocities

Phase and group velocities may be calculated from the non-dimen-
sional frequency by means of the asymptotic formulae

C=Vg-p/(n+1/2) (7.1)

Table 1. Phase and group velocities for the Gutenberg-Bullen A’
earth model when the gravitational effect is considered.

\ C (Phase Velocity) km/sec. U (Group Velocity) km/sec.
m 1 2 3 } 4 ’ 5 1 \ 2 3
100 4.12 5.95 | . 7.19 8.12 | 9.05 @ 3.8, 4.5 5.60
130 8.91 9.03
200 4.60 7.23 8.68 8.80 | 11.06 | 3.5 5.66
300 5.31 8.19 8.51 | 10.87 3.8 6.3; 8.5
340 : 6.7
360 8.65
400 5.29 8.29 9.11 4.4, 8.5, 6.8
500 6.36 8.37 9.77 4.9 7.3 | T.4,
600 6.62 8.93 | 10.44 5.8 5.45 7.1
650 5.5
700 6.68 9.88 | 11.82 6.8, 6.0, 5.3
800 6.61 10.34 7.50 8.15
900 6.50 10.61 7.8
1000 6.37 10.76 ’
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Figure 3. Phase and group velocity as functions of period for the radial modes :=1~10.
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and U= Vo-dyjdn . (7.2)

Graphical results are presented in Figures 3a and 3b and numerical
values at several representative periods are given in Table 1, which may
be compared to Table 2 of the non-gravitating case?®.

Since the phase and group velocities are related to the frequency
7 by the simple expressions above, the entire pattern exhibited by the
frequencies for these two cases is projected in the corresponding phase
and group velocity curves. Differences in phase and group velocity
associated with introduction of gravity are large for modes on the
transition segments and are especially ev1dent for the graver orders of
the first three radial modes.

The introduction of gravity alters the group velocity of the funda-
mental mode at long periods, but the velocity and period of the Airy
phase minimum is not significantly changed. The maximum group velocity
near 500 seconds for the radial mode =3, associated with the R, wave?,
becomes larger with the introduction of gravity. The group velocities
of the higher modes exhibit well-developed narrow maxima for modes
on the transition segments.

8. Common Spectrum

The common spectrum of the radial and colatitudinal components
of displacement is defined to be

IS T
Sz mn mn ‘U, . Fk ,
i (dE’S/dp + dE’T/dp> U.(r)-f*(p)

(8.1)
8= (dES%er dg%p)-vn(r)-f*(p)-
Using these expressions, equations (3.12) may be reduced to
u(t)= % 2, #S3-Pricos 0)- 0 mp-exp (jpt) ,
v(H)="3 3 S WP’"(cos 0)- "> mp-exp(jpt), + (8.2)

m 0 —a) .
Z iS;'MS-—)“ sin me-exp (th) .
ymyn sin 6 CcoSs /

Since the common spectrum {;S¥, ;Sz} is independent of the variables
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Figure 4, Common Spectrum of radial and eolatitudinal components of displace-

ment. Values of the radial component for purely radial oscillations (n=0) given by
solid circles. ‘
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t, 6 and @, it may be used to calculate the displacement at all times
and locations.

The radial and colatifudinal components of the common spectrum
are shown in Figures 4a and 4b. The dots in Figure 4a refer to the
values for the purely radial oscillations, n=0. Negligibly small values
have been omitted from the figures in the interest of clarity.

The common spectrum becomes extremely small for modes lying
along the transition segments discussed in section 5. Comparison of the
common spectrum in the present study with that found for the non-
gravitating case shows that:

1) In general, the results are quite similar for the two cases.

2) The introduction of gravity is associated, for ¢=1 and 2, with
a decrease of the largest values of the radial component of the common
spectrum and an increase of the corresponding colatitudinal component.

9. Theoretical Seismograms

A purely radial stress was assumed to be applied at the surface in
a small circle around the pole, implying axial symmetry (m=0). Its
spatial distribution is

(0, p)=0"(cos 0) 1 0<0, (6,=0.04 radian) 9.1
, = os 0)= =\V. T .
@, o c 0 6,<0 b adian )
The time function was taken to be
'—‘1 ’—t1<t<0
fy=4 1 0<t<t, (t,=0.02) 9.2)
0 t<|t|

The Fourier transform of the function f({) is
F¥(p)= —47 sin’ (pt,/2)[p (9.3)

The largest values of colatitudinal order number » employed in the
synthesis may be inferred from the curves in Figure 4. Beyond these
values, the spectral amplitudes are small and contributions from these
modes were considered to be negligible.

Theoretical seismograms were calculated at three points on the surface,
namely 6=30°, 90° and 150° for the time interval ¢=0.005(0.005)2.00,
and at eight points =15°, 45°, 60°, 75°, 105°, 120°, 135° and 165° for
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Figure 5. Theoretical seismograms of spheroidal disturbances on the surface of a Gutenberg-Bullen A’ earth model when the gravitational effect is con-

sidered. The external force is taken to be a uniform radial stress acting on a circular area around the pole.

—(1%1s0) and (19140).

Arrows indicate arrival times expected for various body waves.

Solid lines —(iou14) and (10v140), broken lines

Unit of time: (circumference of the earth)/(surface shear velocity).
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the time interval ¢=0.005(0.005)1.0. They are shown in Figures 5 and
6. 2ra/Vs, the time required for a shear wave to circle the globe, is
taken as the unit of time.

In figure 5, the solid lines refer to () and (yvy,) and the broken
lines to (1) and (v,). The arrows show the expected times of arrival
for various body wave phases as predicted by geometrical optics. The
agreement between the expected times of arrival and the actual times
of appearance of the phases is satisfactory. The travel time curves of
these phases for the present earth model were presented in Figure 6
of our previous paper?’.

Comparison of Figure 5 with the corresponding illustration for case (I),
Figure 2, reveals that the results for the cases with and without gravity
are quite similar shortly after the time of application of the external
force. The difference between these two cases increases continuously,
however, with the passage of time and becomes increasingly obvious,
especially for the body wave arrivals (solid lines).

These theoretical seismograms realistically reproduce much of the
character of the long period arrivals that are observed on actual tele-
seismic recordings. Figure 5 reveals the presence of the direct compres-
sional and shear arrivals, phases reflected from the core and the free
surface, as well as waves which have been transmitted through and
refracted by the core. The Rayleigh waves end abruptly at travel times
corresponding to the minimum group velocity of the fundamental mode,
Uanin=38.57Tkm/see, which is found for periods near 220 seconds. This
illustration confirms that, as in case (I), the fundamental mode is pri-
marily related to the surface waves and the higher modes correspond
to the body waves. These body waves may be more clearly identified
in the theoretical seismograms shown in Figure 6, which is a summation
of only the higher radial modes (i>1).

The high velocity higher mode wave designated R,, which is an
outstanding feature of the seismograms in Figure 6, is associated as in
case (I) with the Airy phase produced by the group velocity maximum
of the radial mode ¢=3, for periods near 500 seconds”. The amplitude
of this wave increases near the pole and the antipode, as is characteristic
of surface waves on a sphere. The inclusion of gravity is accompanied
by earlier arrival times for the main.part of the R, wave; Figure 6
shows that this difference increases with the passage of time.

The onset of the R, wave in case (I) (without gravity) is especially
clear for epicentral distances between 15° and 45°. The onset of the
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Figure 6. Theoretical seismograms consisting only of higher radial modes. Curves

of travel time versus distance for various body waves are indicated by appropriate

labels for broken and chain lines. Solid line and broken line seismograms refer to

gravitating and non-gravitating cases respectively. Notation and time unit as in

Figure 5.
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R, wave, previously associated with the higher radial mode 7=2", occurs
earlier for case (II) (with gravity), an observation consistent with the
higher group velocities found for case (II) in the vieinity of the corre-
sponding group velocity maximum near 400 seconds. The correlation of
the onset of the R, wave with the higher radial mode i=2 may receive
further support from the observed increase in colatitudinal amplitudes
for case (II) (Figure 6). This observed increase is concordant with the
larger values of the colatitudinal component of the common spectrum
previously noted in the discussion of case (II) in section 8.

Figure 7 illustrates the gradual change in the wave pattern as the
observation point approaches the antipode. The body phases which have
spent all or almost all of their travel time as compressional waves begin
to predominate as the antipode is approached. This observation, based
on travel times, is supported by the increase in radial amplitudes and
coincident decrease in colatitudinal amplitudes of the body phases for
seismograms near the antipode in Figure 7. These results may also be
seen in the plot of radial and colatitudinal components of body wave
amplitude as functions of epicentral distance, presented in Figure 8.

The predominance of short period Rayleigh waves near the antipode
may also be noted from the seismograms in Figure 7. This increase of
Rayleigh wave amplitudes is an essential characteristic of surface wave
propagation on a sphere.
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