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Abstract

In the paper are discussed the boundary conditions for disloca-
tion density current in the layered media. The assumption of
dislocation flow brings, to some extent, an explanation of earthquake
distribution along a hypocentral surface. The angle of the inclina-
tion which in Benioff’s graphs suffers rapid change at about 300 km
is in our case changing gradually according to respective changes
of rigidity 4. The relative rate of stress accumulation could be
calculated basing on shape of hypogentral plane.

1. Introduction

Recent developments of dislocation theory (Bilby,”» Kondo,*®
Hollander,”* Kosevich®") and its applications to earthquake problems
(Teisseyre) imply that the distribution of dislocations and their mutual
interactions in the earth interior could be treated in an uniform way
by the method of continuous dislocation field.

In an earlier paper™ we discussed the problem of fold deformation;
here we intend to approach the dynamic problems of dislocation flow.

We assume here that a deformation of an element of medium is
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given by deformation vector u; and by distortion tensor wu,,:
dX;=dwx;+du;,+u,; de, | (1)

The respective coordinate transformation presents anholomic trans-
formation. The dislocation density tensor is related to distortion tensor
U, by the following relation (we restrics our consideration to first order
terms only)

§ Wi, = S Samdon

amn: ektnumk:l

(2)

where index m refers to Burgers vector, while n to tangent vector to
dislocation lines.
From the last equation the continuity of dislocation density follows:

amnm = 0 ( 3 )
We assume further, that in our medium stress momentum vanishes;
hence we have"

Ugikg,ss =0 (4)
where

1
Uik = 5} [05— %3]

In several cases we can assume that equation (4) is fulfilled by sym-
metric field

The equilibrium equations %;,,.,=0, could be expressed in terms of u,,
using stress-strain relation™

Dik = N0 0,5+ 2000 5,1

_ N (6)
Dir = N0 Ugs T 2000 (31

Dikk=Dise+ Dirr (7)
where: stress tensor ;. splits in parts corresponding to elastic deform-
ation p;, and plastic deformation 7;, connected with distortion u,,; symbol
Wi,y denotes 1/2(w;,+u,;).

14) loc. cit., 12).
15) loc. cit., 12).
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Mainly we will deal here with plastic deformation only and in
several applications we will also assume u,,=0, that is volume element
remaining constant under plastic deformation.

Considering dynamic problems we will describe the dislocation move-
ments by means of tensor of dislocation density current. The definition
of dislocation current density tensor could be given through integral
relation representing time change of dislocation density inside a volume
VvV and on the other side by the dislocation flow through surrounding
surface:

cgggda,dr= —Squ,sdas (é )

or in form of continuity equation

cdar'l'Iars,s:O ( 9 )

~ where:

I,,,—dislocation current density; index a refers to Burgers vector;
indexes 7,s to dislocation line tangent and to direction of
dislocation flow respectively;

c—shear wave velocity.
From eq. (8) and (2) follows

Iars = Cekrsuak (10)
which is equivalent to
. 1
Wom = —_sm'rsIars 1
o (11)

It is also worth noting here that in equation of motion

ﬁam,m=p1}a (12)

the acceleration of volume element o7, is given by time derivations of
vector u, only.

2. Formulation of boundary problem

We would like to consider in this paper a medium having layered
structure, boundary surfaces forming parallel planes. Let us choose the
coordinate system as on Fig. 1, and consider a boundary plane e.q.
x,=0, separating two neighbouring layers with constents X\, ¢ for ;>0
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and X\, ¢, for 2,<0. The continuity of stress components 7,, is now
expressed by
Diua=Dh;  ,=0 (13)

X3 However, according to (6) -stress tensor
splits into elastic and plastic (distortional)
parts, hence from the condition (13) we
get for plastic stresses

Dis=Dh—Api; ; 2;=0 (14)

A,
— — /% = X; where: 4p;; denotes the differences in
Ao Mo elastic stresses.
The aim of this paper is to investi-
Fig. 1. gate behavior of dislocation density and

dislocation current in the horizontally layered earth structure. Especially
we will deal with characteristics and changes of these fields as result-
ing from boundary conditions.

From eq. (14) we have further (for u,,=0)

1
LWty = PoWhise) — Edpsk (15)

We can easily prove that any differentiating along a boundary does
not change this condition, so we get also

1
W iahy,0 = Mok, — Edpak,s ;o s=1,2 (16)

Let us now consider the contour integral crossing boundary (Fig.
1), and let its surface tend to zero by assumption that lengths of ele-
ments in the v, direction are reduced to zero. Thus the contour integral
becomes reduced to line integral along boundary, passing over it and
below it. On the other hand, however, we can transform this contour
integral into surface integral with dislocation density as integrand. If
the later is continuous this surface integral will tend to zero as its
surface does:

:f v, = g(um — 0 )d, = Sgamdan -0

However, in a general case we could expect some distribution of disloc-
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ation density along boundary plane, if so the density «,, will be no
longer continuous at this plane. Instead of the above written equation
we will get the equation defining linear density of dislocation distribu-
tion on the boundary plane x,=0:

S(u’me_ugns)dxs= gﬁmsdxs ’ 8:1, 2 (17)

Hence in general we get further conditions for ,=0:
Uy — Uns = Lms } s=1,2 (18)
From eq. (18) follows also
Umert — Woart =Bt } s=1,2;t=1,2 19)

In the case of dynamic problem we obtain that boundary conditions
remain the same for time derivatives of the above quantities. The re-

spective boundary equations for time derivatives we will denote by (15),
(16), (18), (19).

3. Static problem

Some of the above given conditions could be expressed in terms of
dislocation density. From eq. (2) and (19) we get

Ay — Oy = P12 — Bman (20)

This states that possible discontinuities in dislocation density «;,
would be compensated by derivatives of linear density of dislocations

along boundary.
Adopting symmetric distortion (5) we get further from (16)
.1 1
U g3 — U= zﬁpsz,l_ ‘Q‘Apsl,z (21)

where the right side is given by derivatives of elastic stress differences
at boundary x,=0(dp,;;=py;— ). Comparing (20) with eq. (21) we get
(putting p=p,+4p) the condition of consistence:

%(é ADgon— %Apam_Aﬂags>zﬁsl,z—632,1 (22)

which reduced to
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%Apsz.l“_ %dpsmzdﬂa& (23)

if linear density vanishes at boundary. Further if one postulates the ,
continuity of elastic stresses, then either a3 =0, or distortion elements
are not symmetric: wy 7= U5, U7 Usgse

4. Dynamic problem

For time dependent problem we will try to express boundary condi-
tions in terms of dislocation current tensor components. Using (11) we

get from (15) (L. = — L.,):

%{e(klps[L})m_ ic]l‘o_e(klpﬂlifo)ps: —Aﬁsk (24)

0

If distortion u,, is symmetric we can omit symmetry operator ( ):

1

B Ly 0 I = — Ay,
c Co 2
1.,
e i SN (25)

E‘IMZ_ Fo Ign: —idpsz
c 2

Co

From the condition (1'8) we get

lImza - _l‘Ignzs = Bnu
¢ ¢

L 1 (26)
_Im31 - _-[21131 = Bm2
c C

Comparing eq. (25) and (26) for m=3 we come to following conditions
of consistency:

l<idi)31 =+ ﬂlges) = B.Sl

JIANY” C

1/1 4 27)
*‘(—Ai)sz‘%‘ r Igal>: ‘*Bsz

JIANy” C

This condition corresponds directly to condition (22) for static flelds;
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returning to original equation (15), (18) we notice that (22) could be
split in two separate equations. Here again from eq. (27) it follows
that if there is no generation of linear dislocation density £,.=0 at
boundary, then either elastic stress is not continuous or current com-
ponents I,=1%,=0, I,,=1% =0, or at least distortion is not symmetric
Uy 7 Unzy sy 7= Ugs.

In the last case of non symmetric distortion u,, we should return
to equation (24) and write following condition instead of (25):

B Bt L) — 5‘7 (T8 + I%) = ~%Az'>31

~«?‘)L%(Issxﬁ'lzlz) - -%(Igsl‘i‘lgu): _%Apsz . (29)
ﬁlm - ﬂ Ing = lA;Z}ss
c Co 2

Condition (26) remains without change.

5. Dislocation flow through a layered structure

Let us now consider in detail changes at boundary of dislocation
current components I ,, for the most important cases.

We assume that some external field of tectonic forces, represented
here by stress tensor p;,, causes dislocation flow. However, it is not
necessery to specify the nature of these forces, but some conclusions
regarding intensity of stress accumulation at different depths will be
deduced further on from the consistency equations (27). Moreover, it
is neither necessery to specify whether we have upward or downward
direction of flow, nor its velocity. In the discussion on dislocation flow
in a layered medium, we will refer to these stress components involved
in the considered dynamic process.

Case A: Burgers vector of dislocations parallel to =, dislocation line
parallel to w,, velocity of dislocation propagation in the plane
2.2,

This case describing screw dislocation field represented by components
I, «=1,3, Transformation properties in plane wx,x, of I.. are the same
as for vector.

This process is connected with the p., and p,, components of stresses.
The 2., field is involved in boundary conditions.
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Referring to Fig. 2 we have for the direction of velocity

I
tgor =1 =L
g vl 1221 (30)

Assuming symmetric distortion we
get from (11)

qu: _Im: Iaz:;: —Is3z

/225 Iua: _1131: 232 = ’_-[223 (31)
o< 1524 A, p X Iy = — Ly =Iln=—1Iy
Ao, !
orfo Hence (30) could be expressed as
follows
tga— —dm (32)
Fig. 2. 331

Using boundary conditions (25), (26) we can express tg in two ways

tga= — I+ Coézl
I+ coBa
tga= — I+ coBa (33)
&Igﬂ - _00_42532
Iz 24t

where I3, IS, ¢, refer to first layer.
Here and further on we assume that any components of linear
density B.., not related to index of boundary surface z,=0 vanish, that is

Brn=0; m, n+3 (34)

. Thus only B,; could be different from zero. Then we get from
equations (33):

o -1
tga= tgao(l +c°—€32)
1331

1 1 CodDs \ 7!
—tga=—tga, 1——0—32—)
2 Ho ( 2ptIs

For a system of n layers this result can be easily generalized to
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tga, _q 6021‘4 :ész
tgan Igsl
L tga, oy ( (85)
Ho =1 Co( D3 — %)
1 tga, 2/‘0[(3)31

From the observational data on earthquake distribution along some
surfaces (e.q. hypocentral plane) we can estimate angle a(x,), then from

eq. (35) a relative course of P,(z,) and i,éaz could be determined.
Namely from eq. (27) follows that

Co( D5 — D%) _ G i ,é Ho— o ( Co < 5 )
T T e . T T 0 (1420 2 B
2#31231 I3, 7 ? o I3, 7 ’

and combining this result with difference of equations (35) we get
L= —1I?):

n . —1
tga, = tgao(l_c_oz Baz) (36)
I, 7
Assuming here 3, 4=0 we get =300
1
simple relation 100 - X3
o, =a, (37) 3
. . . % | Iszn
Case B: dislocation lines parallel r o™ A
to x, Burgers vector | To g !

parallel to direction of
propagation, both in the
2@, plane. -
This case is represented by edge ., [A60°
"dislocation flow and is given by
components I°*; o, 8=1,8 (Fig.
3), a||B (symbolic notation).
This process is connected with the p,,, P33, Dy components of stresses,
The p, and p,, fields are involved in boundary conditions.
Direction of propagation can now be determined by following ratios
ﬁ — I323 — Il23 —_ I3"3 1323

=== =Eatgr; B —tgly 38
o I Iu L. T (38)

Fig. 3.
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because first and third index refers to Burgers vector and velocity vector
respectively. This can of course be easily verified by transformation
properties. From the above equations immediately follows:

L= I — 1y, + Uy = 0
and also:
1121-[323 = I1231321 >0

Last equation states that I, = —ctl; and ILp,=city shall have the same
sign, hence distortion u,; cannot be symmetric here.

The boundary conditions (26) and (29) bring together with (38) the
following combinations:
dividing the first equation of (29) by the first one of (26):

o1 —etgi) — 1 —ctgier) (12 ) - Ol (34 @B )T (a9

Ig23 1223 \ Ig23
dividing the first equation of (29) by the third one of (29):
APy 7' CodDs cdps 7!
cta2a — ctgla (1+ CodlPas ) _ _CodPn <1+ j ) 40)
LSRR 7% (N BN AR 778 OB (

dividing the first equation of (26) by the third one of (29):

1 1 CodPss - — c018.31 / codps \7
—tga— —tga (1 -+ ) = 1+ ) 41
Iz o N 2mlln /el 2l @

From these three equations we have to determine the course of
&, By, APy, 4Py for given distribution of ¢t and ¢. To this aim let us
investigate the effect of summation of boundary conditions (39), (40),
(41) over several layers. As one can see from eq. (26) (29) we will get
for n layers instead of qualities B, 4Dy, 4Ds, the sum of these quanti-

ties related to each boundary S B (Bh—P%); (Pla—1D%). The system
1
(39), (40), (41) could be written taking also (38) into account, as follows:

(1 + G En:a Bal)/-lvx(l - Ctgzan) = /"0(1 - Ctgzac) - _Ic_oo_ (p;ﬁ - pgl)

I 223 1 323

Co

21,13,

O (D5 — ﬁgs)tgao] =ctga,+

t a”[l o _
8 - 2#01223

(D% — D) e (42)

Ltgan[l FR—
1t

s 1 n
— (D&— p23)tga'o] = *tgoq,(l S, 1831>
2t 15, Ho !

Ig?i}
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From the second and third we get here

/’enCtgantga()(l + C—: > le) = petgagtga, - tga, tga, L‘; (D3 —D%)
13,7 213,

and then comparing with first equation we obtain

(1 Loy !%) tatgactea, + tga,) = ptge, (ctga, + tgay)
323

hence
(147250 )= L CIER). 43)

I5, T ﬂn(1+0tg2an)
Assuming here f‘_, Ba=0 (no production of linear dislocation density
1
at boundaries) we get
to(1+ctgay) = g, (1+ctg’a,) (44)

there we can easily find that for g, >p, is a,>a,.

Case C: dislocation lines in the x,v; plane, Burgers vector also in this
plane, but perpendicular to dislocation line element dz, velocity
of propagation and Burgers vector parallel.

This process is connected with the p; and p,, components of stresses.

The p,, components is involved in boundary conditions.

X3

X3‘

Issa A

di3y
A,
et X

Fig. 4. : Fig. 5.
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This case corresponds to edge dislocation field and is represented by
components I°? with «||v; « L8 (symbolic notation), Fig. 4. Only dif-
ferent from zero components are here I, I,.

To determine the value of ratio (I,,,)/(I,;;) a simple geometric reason-
ing could be erroneous, as we don’t know how to deal with dislocation
line components. So, here we shall for rigorous proof return to trans-
formation properties. We take transformation in x,», plane by simple
rotation between the system x,x, and x,2,. In the system z,z, we as-
sume that I,;,,=0 and dislocation field is represented only by a com-
ponent I, (Fig. 5). Then we get for the components in the a2, system
I313:Sin aszmf; 1131 = —CO0s aI3’1’3’

Hence

=—tga (45)

Using now boundary conditions (25) and second equation of (26) we
get (6,,=0):

tger, =tga,+ 33 B, (46)
1131 1

Similarly combining first and second equation of (26) we get

C . o
wtga, = ptgo, — —2— (i — P3.)
2-[131

% | but together with consistency con-
dition (27) we will return again
to (46).
Assuming that i:ész:O we
get here '
s o, =a, 47

R M
Aor o

as the condition for propagation
direction.

Fig. 6. Case D: dislocation lines in the a2,

plane, Burgers vector

parallel to dislocation line, direction of propagation perpendi-

cular to dislocation lines but in the same plane zx, (Fig. 6).
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This process is connected with the ., p,, components, The p,, com-
ponent is involved in boundary conditions.

This case is represented by screw dislocation field, respective current
components are Ig,; al| B; o Lv(Lyys, Iiy). Their ratio equals to

Ill3

331

=tga (48)

by the similar arguments as used for derivation (45). According to
asymmetry of I,,, this ratio is just reverse of ratio given by (45).

Therefore we can easily get the corresponding equation by putting
instead of tga the value-ctga :

ctga, =ctga,— —Ic% > Ba (49)

131 1
and for ﬁ] B.,=0 we get as before
1

6. Application to earth structure model

Our starting point for discussion of dislocation flow are data con-
cerning parameters p, o, ¢ in the earth mantle up to 700 km on one side

[

\_A/km

1000
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and the Benioff’s graphs'® representing typieal tectonic models as given
by hypocentral planes on the other side (Fig. 7 and Fig. 8). Our idea
is that earthquakes which originate along a hypocentral plane are mutu-
ally connected. It means we assume that this plane represents a path
of dislocation flow. However, we will not enter here into consideration
where this flow originates. Before further discussion we should notice

| _
__/_\ i o
|
£
)
[l 1 1 1 1 1 1 ] 1 1 1 1 : 1 1 10
1500 km 1 o
|
!
-0
\ B W
e Q
o o Y i
@ o
- ]
A ] . L
Y e
]
% / Yw : L s00
’ 7
/ * Vi
/ 4 "
/ S/ &
/ A ,
/ i \J / i
’
// ‘ v /
7/ -
N V¥
) 1 1 1/ 1 ! /1 1 ' 1 ' 1 1 1 700
1500 km 0
Fig. 8.

that estimation of hypocentral planes itself as well as angles of their
inclinations were based on rather widely scattered points representing
earthquake foci, For the case A of screw dislocation flow (7; [l EZE, EE ||7j:,
17, @;-unit vectors of coordinate system) we get according to (37) the
propagation path as straight line (Fig. 2).

For the case B of edge dislocation flow @,L d?,?ll?f,?.lﬁ?,?& ||7Z;) ac-
cording to equation (44) we get the path represented in Fig. 8, where
angle « decreases with decreasing p towards earth surface. Calculation
was performed assuming for depth z=700km the value a=60°

For the case C of edge dislocation flow (_5J_ EE,_EH?, JEL%Z?L?J) we
get constant direction of flow.

For the case D of screw dislocation flow @i\ﬁ,fl? dé i@,?_ﬂ':)
holds the same.

16) H. BENIOFF, * Seismic evidence for crustal structure and tectonic activity”,
Geol. Soc. Amer. Special Paper, 62 (1955), 61-73.




Dislocation Flow Through a Layered Earth Structure 373

Cases A and B are here the most interesting as they represent the
flow along hypocentral plane with dislocation line lying in this plane.

Relative value of the rate of stress accumulation can be now es-
tablish based on the given formulas.

From the second equation of (35) we get using (87), (81):

Co

.:111"_ .(3)2 = Hu— 1
21321(29_ D5e) = M — o (51)

Similarly from (42) and (44) (8, =0) we can calculate relative course of
Dy and P, :

Cﬂ ) — 10 ) — _ 2
—21223(1031 p;l) Ho— [ (52)
Co ™ 20\ __ 1 Ko— My 2
G (g — ) = a1+ T Pt ) —
2[(3)23(7933 D8s) tgao(]/# 2 ( + #0 tg ao) #0) (53)

Basing on the above given analysis it is possible to calculate the
relative rate of stress accumulation for a given depth. (Fig. 9).

o

100 \

20 |- P32, P31 \

300 |- \
< 413 \
~o
Q
w500 S~
. ~
o0 - P33 S

700 - ~

] L \
0 05 relative scale 10 15

Fig. 9.

800

According to these preliminary studies we got thus the following
results :

1) Assumption of dislocation flow explains roughly the earthquake
distribution, the corresponding hypocentral surface forms curved surface
for edge dislocation flow whose inclination angles fit to observational
data (Figs. 3 and 8).
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2) Changes of inclination of the above-mentioned surfaces are con-
nected with changes of rigidity p.

3) Relative value of stress rate Py, Ds, D can be determined up to
700 km depth.

In conclusion we should add a few remarks. In the above given
considerations on direction of dislocation movements we discussed the
processes of dislocation flow, which represent a kind of “plastic” be-
haviour of internal material in the earth.

It should be noted that these ¢ plastic ”” properties of material could
be to some extent modified just by existence of active slipping planes,
as one can call planes of dislocation movements. Therefore such proper-
ties as angle of internal friction could be in reality influenced by
structural changes due to dislocation processes.

In the given approach we have considered distortional deformation
as a more general type of deformation in an elastie, horizontally stratified
medium. Nevertheless, this deformation is characterized by some plastic
features; therefore the possibility can be considered that stress-strain
relation for distortional part of deformation (lower of equations (6))
should be governed by other (plastic) constants.

The above consideration were applied here to dislocation density
field, as a kind of approximation of single dislocation distribution. Thus,
it seems resonable to extrapolate those results also for the case of
single dislocation. That case has some parallelism with the results
obtained by Kasahara® on equilines of displacements due to a buried
fault in a layered medium; however physical mechanism seems to be
quite different.
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