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Abstract

In this paper, a theory of long waves around a breakwater is in-
troduced by use of the method of the buffer domain, the behaviors
of the waves thereabouts being elucidated with the aid of an electronic
computer. Among the obtained results, the most conspicuous feature
is an appearance of the reflected waves which produce a maximum
wave height exceeding twice the amplitude of the incident waves in
the nearby part of the mouth of a breakwater, causing a rotation of
waves as a complementary flow.

Other than the approximated theories developed so far, the bound-
ary conditions at the rigid walls of two breakwater wings are satisfied
rigorously in the theory established in this paper (by use of the method
of the buffer domain).

1. Introduction

When a train of periodic waves invades a gap of a breakwater,
miscellaneous effects of a breakwater upon invading waves are expected.
This problem has already been treated, theoretically and experimentally
by many authors’-?-®*¥, their studies having been carried out on the
basis of approximated theory devised from Sommerfeld’s diffraction
theory which was established for light diffraction by a single semi-infinite
plate.” In the studies”®*®* cited above, a problem of a gap of a break-
water is treated by superposition of two wings of plates, one of which

1) W.G. Pexny, and A.T. PRICE, «Diffraction of sea waves by breakwaters”,
Directorate, Misc. Weapons Development Technical History 26, Artificial Harbours, Sec.
3D, 1944.

2) J.A. PutNaM, and R.S. ARTHUR, < Diffraction of water waves by breakwaters”’,
Trans. Amer. Geophys. Union, 29 (1948), 481.

3) K. Moc1, Bull. Earthq. Res. Inst., 34 (1956), 267.

4) Frank L. BLUE, Jr. and J. W. JonxsoN, Trans. Amer. Geophys. Union, 30 (1949), 705.

5) G. WoLrsonN, Handbuch der Physik XX, Kanpitel 7.
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extends to the right and the other to the left, neglecting the influence
of a wing upon the waves diffracted by another wing or suitably approx-
imating such effect. But if a gap of a breakwater is small, the above
approximation might not be possible, since it is expected that a wing
has not a little influence upon the diffracted waves from another wing.
Hence, the numerical calculations of the theory developed in this paper
have been made for the waves in the range of small kd (k: a wave
number of the incident waves, d: a half width of a gap of a breakwater).

In the present purview, a general theory is developed on the basis
of a long wave equation in Section 2 by use of the method of the buffer
domatn which has been introduced first by the author, numerical com-
putations and their discussions being done in subsequent sections.

In the nearby part of a mouth of a breakwater, vortices of water
are, in general, produced with inertia terms of an equation of motion
supposedly outweighing the term of acceleration as a result of an increase
in velocity of water particles, so that the applicability of a long wave
equation becomes very dubious to this problem. ‘

Although there exist the above-mentioned circumstances, a rigorous
treatment of this problem based on a long wave equation is considered
to be still highly significant. Since such rigorous treatment has not as
yet-been made considerable insight would, if carried out, be brought
the problem of the effects of a breakwater with a small gap upon long
waves including tsunamis.

2. Theory
In this section, a development of a general theory is described.

2,1. The Geometry of a Used Model.

Referring to Fig. 1, a breakwater is assumed to be thin plate with
infinitesimal thickness, which is located in the open sea so as to separate
the waters into two semi-infinite regions. The origin of the coordinate
is centered in the midpoint of the mouth of a breakwater, of which
the breadth is taken as 2d, a breakwater being situated on the 2-axis
of the Cartesian coordinate.

The depth of the sea is assumed to be uniform throughout an entire
portion of the domains of water. Then a train of periodic waves is
propagated perpendicular to the breakwater, which is stated by

Coexp(—iwt—1iky), (1)
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Fig. 1. Geometry of a used model.

where

¢,: an amplitude of the incident waves,

o: an angular frequency of the incident waves,

k: a wave number of the incident waves,

t: a variable of time,

y: the y-component of the Cartesian coordinate.

In the above expression, only the real part has a physical meaning,
following the usual convention.

2,2. A Goverwing Equation and Boundary Conditions.

An equation employed in the present article is a long wave equation,
i.e.,

1 9°C _0%¢ , 0°C

2 2 T a2 2’ (2)
¢t 0t 0z oy

where
¢ : an elevation of water surface,
¢: a veloeity of a long wave.
For the case of periodic waves, the equation (2) is reduced to

277 277
0% | 0%

IR0, (3)
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Then k is related with @ through the relation w=Fkec .
Using the polar coordinate, (3) is written, as an another expression,
as follows:—

62CI
ort

1t
r or r?

BELEY

+ 00°*

+ k=0, (4)
where » and 0 are the components of the polar coordinate.

In the equations (8) and (4), ¢’ stands for the quantity of ¢ from
which a time factor exp (—iwt) is excluded. For the sake of simplicity,
the prime of {’ is omitted in what follows, unless otherwise stated.

As far as the boundary condition is concerned, we have the condition
at the rigid wall of the breakwater expressed as

98 0 (y=0; [z>d)
0y
or (5)
oC _ )
8—0_0 (6=0 and = ; |x|>d).

The above condition denotes that the flux of water vanishes at the wall.

2,3. A principle of the Analysis.

A principle of the analysis used in the present work is a method
of the buffer domain which was introduced firstly by the author. This
method has already been employed in the analysis of the problems on
long waves in canals of several kinds of forms®-?, in the vicinity of an
estuary' ™, and so forth. This method is recapitulated hereunder.

When two domains are connected through a small region, the former
of which is named a ‘‘non-buffer domain’’ and the latter a *‘‘ buffer
domain’’ (see Fig. 2), the solutions in the non-buffer domains are firstly
expressed by a series of functions with orthogonal properties, while the
solution in the buffer domain may be described in an appropriate form
which not always necessitates the nature of orthogonality of the ex-
pression.

6) T. Momo1, Bull. Earthq. Res. Inst., 40 (1962), 719.
7) T. MoMo1, Bull. Earthq. Res. Inst., 42 (1964), 449,
8) T. Momo1i, Bull. Earthq. Res. Inst., 43 (1965), 745.
9) T. Mowmo1, Bull. Earthq. Res. Inst., 44 (1966), 121.
10) T. Momo1, Bull. Earthq. Res. Inst., 43 {1963), 291.
11) T. Moxo1, Bull. Earthq. Res. Inst., 43 (1965), 459.
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Then connecting the above solutions by
use of the boundary conditions between the
adjacent domains and exposing each mode of
the expressions by virtue of the orthogonali-
ties of serial solutions, we can arrive at in-
finite simultaneous equations. Hereafter,
approximating the expression in the buffer
domain appropriately, the above-mentioned
simultaneous equations are reduced to the
forms which are approachable by direct anal-
ysis or numerical procedures. In this way, all
the unknowns in the buffer and non-buffer

Fig. 2. Figurative ex- domains begin to be analytically or numeri-
planation of buffer and non- cally known quantities.
buffer domains. Finally, substituting these known values
into the formal expressions in each domain,
the behaviors of the waves in all domains are elucidated analytically
or through numerical calculations.

Non-buffer
domain

Non-buffer
domain

2,4. Formal Solutions.

In this section, formal solutions of the waves are presented.

In our model, all the domains are separated into three parts, that
is to say, (referring to Fig. 1)

the domain D, is a region such that 0<0<x and d<r,

the domain D, is a region such that #<0<2z and d<7r,

and

the domain D, is a circular region defined by 0=r<d .
In the above three domains, the first two are non-buffer domains and
the last one the buffer domain mentioned in 2,3.

To begin with, the formal solution in the domain D, is obtained.

When a train of periodic waves stated by

Lo exp (—ky)

is given, a particular solution of the equation (3) satisfying the boundary
condition (5) is

2¢cosky . (6)

This solution implies standing waves caused at the straight breakwater.
If one obtains a general solution of the equation (3) or (4) under



96 T. Moxo1

the condition (5), the formal solution which determines the wave motion
in the domain D, is described by a sum of the above general solution
and a particular solution (6). And from a physical point of view, such
a general solution is required to be scattered waves leaving from the
mouth of a breakwater. The last requirement is fulﬁlled if the first
kind of the Hankel function is employed. - -

Suppose that the domain D, is extended hypothetlcally to the lower
half region so as to be symmetrical with respect to the z-axis in’ Fig.
1, we can express the scattered outgoing waves as follows:—

i M HP (kr) cos mo
m=0

where ™ (m=0, 1, 2,---) are the unknowns to be determined by the
conditions between the adjacent domains. The satisfaction of the bound-
ary condition (5) then follows as a necessary consequence.

Further, taking account of a symmetry of the phenomenon with
respect to the y-axis, this expression is reduced to

é cem HE (kr) cos 2mé . (7)
Now the formal solution in the domain D, becomes from (6) and (7)
=2, cos ky+ %f{”"ﬂéh’ (kr) cos 2mé , ©(8)

where {, is the height of waves in the domain D,.

In like manner, the formal solution in the domain D, is obtained by
an extension of the domain D, to the upper half plane in Fig. 1 in such
a way that an entire region begins to be symmetrical with respect to
the z-axis. That is to say,

=m§;0Cé2""H D (kr) cos 2ma , (9)

where ¢ and (™ (m=0, 1, 2,---) are a height of waves and unknown
factors respectively in the domain D, and where modes relevant to
cos (2m+1)6 (m=0, 1, 2,---) are excluded because of the symmetry of
the problem for the y-axis.

This expression, of course, satisfies the condition (5) at the break-

water.
Let us finally consider the solution in the domain D, or buffer domain.
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In this area, a form of the Fourier-Bessel expansion is taken. Allowing
for the symmetry of the phenomenon with respect to the y-axis, the
formal solution becomes as follows:—

g2=§0 ZEm T, (kr) cos 2mO-+ L&+ T, s (kr) sin (2m+1)6} (10)

where @™, (&m0 (m=0, 1, 2,---) and ¢, are unknown factors and a wave
height in the domain D,.

We have now arrived at the state which makes possible a formation
of infinite simultaneous equations by use of orthogonalities of serial
solutions in the non-buffer domains D, and D;.

2,5. Infinite Stmultaneous Equations.

In this section, an infinte number of simultaneous equations are
derived from the formal solutions (8)-(10) and the conditions between
the adjacent domains. Such conditions are as follows:—

C2=C1
oL, _0¢, | tor (r=d, 0<0<n) (11)
or or j ‘
and
=0,
9, _ 3 | for (r=d, 7<0<27). (12)
or or 5

The first relations of (11) and (12) stand for the continuities of wave
heights and the second ones the continuities of velocities of water
particles.

Substituting the formal solutions (8) and (10) into (11), and applying
the operators of the orthogonal functions in the domain D, i.e.

So cos 2n0d0 (=0, 1, 2,---) (18)

to them, we have the following:—

{Jz:»(kd)} ZéZﬂ) +£En§ (2,)n+ 1) {J2m+l (kd)} C£2m+1)
J4,(ked) mwso (@mA+1)— (@) (g, (kd))
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2 (kd) J I (kd)
~ } G =2e, } G, (14)
H' (kd) (72 (kd)
where n=0,1,2,---,
1 for n=0,
en—: { } (15)
2 for n=1,

and where the quantities in the wavy brackets are taken in the same
order. On the occasion of the above reductions, the expansion® of cos ky
by the Fourier-Bessel series is used, i.e.

cos ky= § Emedzm (k1) COS 2m0 . (16)
m=0
In like manner, after substituting (9) and (10) into (12), the operators

Szn cos 2nfdo (n=0,1, 2,---) (17)

T

are applied to them. We have then the following equations:—

{Jzn(kd)} Cém— _z_snﬁ (2m+ 1) ‘ {Jmﬂ(kd)}cémﬂ)
J4,(kd) T ow=0 2mA+1)—=(2n)" \J/ ., (kd)

2 (kd)
"{ }cw:o, » (18)
H,Y' (kd)

where the quantities in the wavy brackets are taken in the same order
and n=0,1, 2,~--.

Comparing the applied operators (13) and (17), the range of the in-
tegrations is from 0 to = for the former and = to 2z for the latter,
though the other factors are completely identical to each other.

As infinite simultaneous equations for numerical calculations, we
might employ the forms given in (14) and (18). But these equations
are further reduced to more simplified forms in consideration of the
capacity of used computer, stability of infinite simultaneous equations,
efficiency of numerical calculations, convenience of a few interpretations of
the behaviors of the waves around the mouth of a breakwater and so on.

12) S. MorigucHI, et al., Sugakw Koshiki IIT (literally, Mathematical Formula III)
(Iwanami Shoten, 1961), 211.
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Setting down

F,n - J2m+l(kd)
et e
Frj om m= 2mA1) = (20)° (7, (kd)

in (14) and transferring these quantities to the right-hand sides of the
equations, (14) then becomes

Juu(kd)) H,? (kd) Jon(kd) F,)
L I L i L
Jou(kd) m (ked) Jan(kd) Fi),

where the quantities in the wavy brackets of (20} are taken in the same
order.

Solving the equations (20) in terms of & and {*, the following
are obtained as the solutions:—

8 =26l {FLHL (kd) — FLHE (kd)} (21)
and

0 = P T4lkd)— F Tu(kd)} (22)
where

A=J},(kd) HSP (kd) — J o (kd) He ' (kd) (23)

_Likewise, substituting (19) into (18) and solving the former in terms
of {& and (™, we have

G = {FY Hi (kd) — FLHE kd) )

and

g _—_% {Fn’ Jzn(kd) —F,.len(kd)} ’ (25)

where 4 is the same as that described in (23).

From (21) and (24), the expression (¥ is reduced to the following:—

e =e,, . (26)
And also, from (22) and (25), the relation
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i = — g 27)

yields.

In (26) and (27), » is a non-negative integer extending from 0 to
infinity.

Using (26) and (27), the infinite simultaneous equations (14) or (18)
are reduced to the following series of simplified equations:—

2,8 myy [Teald)
= a0 2m+1) = 20) (g7 (kd))
H,P (kd) J Jon(led)
+{ ?(‘Zn) :871 } C.O ] (28)
| H (kd) (74, (kd)
where n=0, 1, 2,---, the quantities in the wax}y brackets being taken

in the same order. »
The above infinite simultaneous equations are final forms on which
the approximation of the expressions of the buffer domain are given.
Before such approximation, modifications of the formal expressions
described in 2,4 are performed by use of (26) and (27).

2,6. Simplifications of the Formal Expressions.

Let £ be a scattered wave in the domain D,. The expression (8)
becomes

=2, cos ky -+,
(29)

L =20 L HL (kr) cos 2mo .
m=0
If one considers the waves at points symmetrical with the z-axis, i.e.

(r, ) and (r, 6;) for 6,=—80;, (0<0,<=), the scattered waves & in the
domain D, are, using (27), expressed by those in the domain D, as follows.

& (r, 0,) 1
=L (r, 0,) (30)
= _C3(Ir ’ 03) ’ ) ’

where the equality of the first two expressions are due to the symmetry
of cosine function for the xz-axis.
From the above result, it turns out that the scattered waves on
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both sides of a straight breakwater behave asymmetrically in such a way
that these waves at the points symmetrical with the breakwater are out
of phase by =, and that the amounts of the amplitudes of the waves
are equal to each other.

Since the unknowns &#™ have been excluded from the infinite sim-
ultaneous equations (28) in 2,5, the formal expressions in the domains
D, and D, are rewritten as follows.

Glr, 0)=2Ccos ky—Ls(r, 05), (31)
Gl , 0) =3 e HY (k) cos 2mo; , (32)

where 6,=—80, for 0<0,<w. -
Let us next consider the waves in the domain D.
A substitution of (26) into (10) yields

&=8, i} Emelom (k7)) COS 2m0+i LEmHD Jo (k) sin (2m+1)6 .

And taking account of the relation (16), the above expression is also
reduced to

Co=C0 08 Ky + 3 CEm 0 T, 4o (k) sin (2m+1)0 . (33)
m=0 !

This expression is a final form to be obtained in the domain D,.

Here, attention is focussed on the behavior of the wave on the line
running between either corner of the mouth of a breakwater.

Setting down

y=0 or 6=0 for 0<x<d and = for 0>a>—d
in (33), (83) becomes
&= .

This expression denotes that the amplitude of the wave on the straight
line mentioned above are rigidly equal to that of the incident wave for
any value of kd.

2,7. The Zeroth Approximation.
In this section, a limiting case

kd=~0
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is considered. This case denotes that the invading waves are very long
in wave-length as compared with the breadth of the mouth of a break-
water.

Then the approximations
Jolkr) =0
for r=d (34)
Iullr)=0 (m=1)

are admissible.
Using (34), the infinite simultaneous equations (28) become

H," (kd) Jo(kd)
L
HY (kd) JJ (kd)
and
Y..(kd)
z{ } =0 (n=1). (36)
Y. (kd)
From (35), when kd~0,
=0
because of Y,(kd)—>—oco (kd—0).
From (36),
=0
for n=1.

Substituting the above two expressions into (82), it is found that
the waves in the domain D, vanish when kd—0, i.e.

G(r, 6:)=0. (87
Then the expression
G(r, 0,)=2%, cos ky (38)

follows from (31).
The last equation stands for an occurrence of complete standing
waves in the domain D, without any disturbance due to the mouth of

a breakwater.
Putting the approximation (34) into (33), the expression of the waves
in the domain D, becomes
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Lo=Cycos ky . (39)

This expression says that the waves in the mouth of a breakwater
behave like standing waves with the same amplitude as that of the
incident waves. But since our consideration is made under the condition
kd~0, it seems to terminate in estimating the rough behavior of the
waves.

At any rate, when kd is very small, a gradient of the wave height
around the mouth of a breakwater is, from (87)-(39), very large. When
a theory is developed on the basis of a long wave equation, a velocity
of water particles is proportional to a gradient of the water surface.
Therefore, the velocities of water particles begin to be so great in this
region that the use of a long wave equation might be doubtful for the
sake of predominance of inertia terms in the equation of motion, which
are neglected in a long wave equation used in the present work.

For the reasons mentioned above, no further computations and dis-
cussions are performed.

2,8. The (21+1) th Approximation.

In this section, a theory of the (2/+1)th approximation (I=0,1,2,
---) is presented.

In order to make the infinite simultaneous equations (28) approachable
to actual calculations, the approximation is bestowed on the expressions
of the buffer domain or the domain D,.

The meaning of the (21+1) th approximation is as follows:—

In the expression of the buffer domain, the Bessel functions J.,.(kr)
for r<d are retained up to m=2l+1 (I: non-negative integers) and those
above m=2[+1 are neglected, i.e.,

I (kr) =0 (mZ204+1)
Jw(kr)=0 (m>20+1)

for r<d, where 1=0, 1, 2,---.
The formal expression in the buffer domain D, then becomes, from
(33),

(40)

1
L=Gocos ky+ 3 80 n (o) sin (2 +1)0 . (41)

Applying the approximation (40) to (28), these equations are reduced
to the following:—
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2, & mty  [Jen (kd)} A
T m=0 (2m-+1)°—(2n)* {Jz/”HLl (kd)
H (fed) T lld)
+{ } gem :6,,{ } G (42)
Hy' (kd) Jin(kd)
for n=0,1, 2,---1,
and
2oy o BMAL g A Yk =0 43)

7 A (2m+1)— (2m)

for n=I1+1, [+2, ---, -
where [ is a non-negative integer referring to the (2I+1) th approxima-
tion and where the quantities in the wavy brackets of (42) must be
taken in the same order.

Now, if one specifies the value of I or the degree of the approxi-
mation, the unknowns

¢t and &Y n=0,1,2,---, )

are readily calculated from the simultaneous equations (42), the higher
modes

C?EZ") (n:l+1 ’ l+2 = = ')

being obtained by a substitution of {#**® (n=0,1, 2,---, I) into (43).

Using the unknown factors obtained in such a way, the behaviors
of the waves in the vicinity of the mouth of a breakwater are elucidated
numerically through formal expressions (81), (32) and (41).

The actual calculations of the above-mentioned procedures are carried
out with the aid of an electronic computer.

In the following sections, numerical calculations and discussions of
the results are made.

3. Numerical Calculations and Discussions

" In the present work, endeavour is devoted primarily to a develop-
ment of a theory with only a few numerieal calculations made.

3,1. Check of Convergence
In this paragraph, a check of convergence is carried out through
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the calculations of the amplitude in six directions, i.e., 6=0+-¢, =/4, /2,
and 0—e, —=x/4, —x/2 (e is an infinitesimal) for parameters kd=0.1, 0.5,
1.0, 1.5 and 2.0. These curves are sketched in Figs. 3 to 32. Accord-
ing to these figures, convergences of the theories under the cited ap-
proximations in each figure are fairly good except for the nearby part
of 7/d=1.0 (the neighbouring region of the domains D, and D, (or D))
in which a little disagreement of the approximated curves is seen. Such
disagreement is ascribed to a deficiency of the adopted approximations.
In the formal expressions (8) to (10), the higher modes contribute sig-
nificantly to these expressions in the nearby part of r/d=1.0, such
contributions decaying rapidly when departing from r/d=1.0. As seen
in the variations along the breakwater (Figs. 3, 6, 9, 12, 15, 18, 21, 24,
27 and 30), the amplitudes around points (x==+=d, y=0) are not always
smooth. The singularity of the corner points of the breakwater might
be considered to cause the disagreement of the approximated curves.
In order to avoid such disagreement, we must calculate the theory under
a more generalized approximation, but, in our formulation of the theory,
the computation has arrived at a state of overflow in an electronic com-
puter which is due to an existence of Y,(z) (the second kind of the
Bessel function) and the number of the element of the simultaneous
equations. A further consideration is, therefore, required to bury the
lack of agreement in formulation of the approximated theory.

3,2. Variations of Amplitude 1n Typical Directions

Referring to Figs. 3 to 32, the variation of the amplitude along
these directions is discussed. These figures (Figs. 3 to 32) are depicted
in large scale for convenience of experiment.

In Figs. 3, 9, 15, 21, and 27 (the curves of the amplitude along
the forward part of the wall of a breakwater), an outstanding feature
is an appearance of undulatory variation of the amplitude having |{|=
2.0 as the axis of the undulation. Among them all, the first undulation
has the largest amplitude, the subsequent ones beginning to be small
in amplitude leaving from the mouth of a breakwater. Such undulation
is caused by rotating waves occurring in the forward sea of a break-
water, as will be seen later in the figure showing the overall variation
of phase of the waves. A similar phenomenon was found in the works™
concerning a long wave in the vicinity of an estuary, in which, though
rotating waves were not ascertained definitely, diverted waves appear

13) T. Mowmo1, Bull. Earthq. Res. Inst., 44 (1966), 1009-1040.
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Fig. 3. Variation of amplitude |{| along the forward wall of a breakwater
(0=0+c¢) for kd=0.1.
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Fig. 4. Variation of amplitude [Z| along the direction 6==/4 in the forward
waters of a breakwater for kd=0.1.
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Fig. 5. Variation of amplitude || along the direction ¢==/2 in the forward
waters of a breakwater for a specified value of kd=0.1.
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Fig. 6. Variation of amplitude || along the wall (0=0—¢) in the rear waters
of a breakwater for kd=0.1. e




108 T. Moxo1

]

Fig. 7. Variation of amplitude |£| along the direction = —z/4 in the backward
waters of a breakwater for a specified value kd=0.1.

14

Fig. 8. Variation of amplitude [I] along the direction #=—=/2 in the backward
waters of a breakwater for a specified value kd=0.1.



fel

2.5

A Long Wave around a Breakwater 109

10 20 30 40 50 60 170 &0 S0 100 (10 (.0 130 140 150 160 170 180

Fig. 9. Variation of amplitude [{]| along the forward wall of a breakwater
(0=0+¢) for a specified value kd=0.5.
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Fig. 10. Variation of amplitude || a]ong the direction 6=x=/4 in the forward
sea of a breakwater for kd=0.5.
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Fig. 11. Variation of amplitude |Z] along the direction 0=r/2 in the forward
waters of a breakwater for kd=0.5.
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Fig. 12. Variation of amplitude {Z| along the wall (§=0—¢) in the backward
waters of a breakwater for kd=0.5. C
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Fig. 18. Variation of amplitude [{| along the direction 6=—=/4 in the back-

ward waters for a specified value kd=0.5.
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Fig. 14. Variation of amplitude || along the direction #=—=/2 in the rear

waters of a breakwater for kd=0.5.
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Fig. 15. Variation of amplitude |{| along the forward wall of a breakwater
(0=0+¢) for a specified value kd=1.0.
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Fig. 16. Variation of amplitude [;| along the direction #==/4 in the forward
sea of a breakwater for kd=1.0.
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Fig. 17. Variation of amplitude |Z| along the direction 6==/2 in the forward
sea of a breakwater for a parameter kd=1.0.

o 0.5

Fig. 18. Variation of amplitude || along the rear side of the wall (§=0—¢) of
a breakwater for kd=1.0.
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1t

Fig. 19. Variation of amplitude [{| along the direction 6=—=z/4 in the back-
ward waters of a breakwater for kd=1.0.
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Fig. 20. Variation of amplitude || along the direction ¢=—=/2 in the rear
waters of a breakwater for a parameter kd=1.0.
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Fig. 21. Variation of amplitude |7| along the forward wall of a breakwater
(6=0+¢) for a specified parameter Ad=1.5.
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Fig. 22. Variation of amplitude |Z| along the direction 6==/4 in the forward
waters of a breakwater for Ad=1.5.
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Fig. 23. Variation of amplitude |{| along the direction 6=z/2 in the forward
sea of a breakwater for kd=1.5.

05

Fig. 24. Variation of amplitude {I! along the rear side of the wall of a break-
water (0=0—¢) for a parameter kd=1.5.
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Fig. 25. Variation of amplitude || along the direction 0=—=/4 in the back-
ward waters of a breakwater for a specified parameter kd=1.5.

Fig. 26. Variation of amplitude |I| along the direction 6=-—=z/2 in the back-
ward waters of a breakwater for a parameter kd=1.5.
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Fig. 27. Variation of amplitude || along the foward wall of a breakwater
(0=0+-¢) for a specified value of kd=2.0.

fel

2,0

1.0 r/d
[ 0.5 10 LS 2.0 23 30 3.5 40 a5
s=n S11th app.
X
“
9th app.

o5

Fig. 28. Variation of amplitude |I' along the direction 0==/4 in the forward
waters of a breakwater for kd=2.0.
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Fig 29. Variation of amplitude |{| along the direction #==/2 in the forward
sea of a breakwater for kd=2.0.
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Fig. 80. Variation of amplitude |Z| along the rear side of the wall of a break-
water (#=0—c¢) for a parameter Ad=2.0.
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Fig. 81. Variation of amplitude |{| along the direction 6=—=/4 in the back-
ward sea of a breakwater for a specified parameter kd=2.0.
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Fig. 82. Variation of amplitude |I| along the direction §=-—=/2 in the back-
ward sea of a breakwater for a parameter kd=2.0.
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in the nearby part of an estuary causing high waves at the straight
coast. Through Figs. 3 to 32, a scale of a wave-length (1) of the in-
cident waves has been drawn in. Comparing this wave-length and a
change of the amplitude in the figures, it turns out that the undulation
of the amplitude along the forward wall of a breakwater is repeated
with nearly a wave-length of the incident waves.

Noticing the variations of the amplitude in the direction of the in-
cident waves (perpendicular to a breakwater) (Figs. 5, 11, 17, 23 and
29), the amplitude undulates nearly every half a wave-length of the in-
cident waves. The amplitude of these undulations is increased gradually
as 7 increases, which might be considered to tend eventually to a unit.

In the figures showing the amplitudes in the direction #==/4, the
undulatory variations have approximately a wave-length of two-thirds
of that of the invading waves (refer to Figs. 4, 10, 16, 22 and 28).

For the reader’s convenience, the wave-lengths of the undulatory
motions of the amplitude in three directions, i.e., #=0+¢, =/4 and =/2
are sketched in Fig. 33.

o
o
z ~<
om o :
=4 4
4mnd ‘lf/,;'
0Z0
z—lz
m 3
<
m
N

WEN

T ~BREAKWATER MBREAKWATER

CENTER OF GAP OF BREAKWATER

Fig. 33. Figurative explanation of a wave-length of the undulatory varia-
tions of amplitude in three typical directions in the forward sea (i: a wave-
length of the incident waves).

In the above figures (Figs. 4, 10, 22 and 28) except for Fig. 16, it
is found that the top of the second or third undulation exceeds in height
twice the amplitude of the incident waves. Such extraordinary high
waves are a counterpart of the high waves occurring at shore, both of
which are produced by rotating or reflected waves near the mouth of
a breakwater (This reasoning is ascertained later by the figures showing
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the overall variations of the amplitude and phase near the mouth of a
breakwater).

As far as the variations of the amplitude in the backward sea of
a breakwater are concerned, the amplitudes are in general decreased as
r increases (see Figs. 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31,
32). The primary part of the decrease takes place in the nearby region
of the mouth of a breakwater.

Table 1. The values of || at r=24d in the backward
sea of a breakwater*

kd |
N1 0.1 0.5 1.0 1.5 2.0

0—e¢ 0.138 0.216 0.253 0.252 0.230
—rl/4 : 0.139 0.219 0.287 0.331 0.357
—r/2 0.140 0.230 0.319 0.417 0.519

Inspection of Table 1 reveals that the rate of decrease of the am-
plitude (the decrement of the amplitude for a distance 2) is greater for
small kd (=0.1 to 1.0) than for large kd (=1.0 to 2.0). Since the
amplitude of the waves on the line connecting two corners of a break-
water, as shown in Section 2,6. (Stmplifications of the Formal Expres-
sions), is a unit (equal to the amplitude of the incident waves), the
wave heights for parameters kd=0.1, 0.5, 1.0, 1.5 and 2.0 are decayed
from a unit to about 0.139, 0.219, 0.287, 0.331 and 0.357 respectively
as 7 increases from 0 to A+d in the rear side of a breakwater.

In Table 1, another feature is found such that large wave-length
of the invading waves (corresponding to small kd) favors the diffraction
of the waves in the rear waters of a breakwater.** When kd=0.1, no
directivity is seen for the waves transmitted through the mouth of a
breakwater. As kd is increasing, the amplitude in the direction of 8=
—x/2 begins to be large gradually as compared with that in the direction
6=0—¢. When kd becomes 2.0, the amplitude of the former amounts
to nearly twice that of the latter. Such tendency of directivity (con-
vergence of the energy along the direction of the incident wave) pre-
sumably grows severe with an increase of kd.

*) r=21+d is a point apart from the outer margin (r=d) of the buffer domain D:
by a distance A.

*%)  Such tendency is also found in the experiment made by Mogi (refer to the paper
cited in the introduction), although his experiment was carried out for relatively large kd.
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3,3. Owerall Variations of Amplitude and Phase

In this paragraph, the behaviors of the waves in the nearby part
of the mouth of a breakwater are elucidated for two specified parameters:
kd=0.1 and 1.0. The variations of the amplitude and phase for kd=0.1
are presented in Figs. 34 to 37, and those for kd=1.0 are shown in
Figs. 38 to 41.

In Figs. 34 and 38 showing the variations of the amplitude in the
forward sea of a breakwater for kd=0.1 and 1.0 respectively, a con-
spicuous feature is an appearance of high waves exceeding in height
twice the amplitude of the incident waves. The feature is illustrated
in Fig. 42, in which the regions of high waves -are represented by
«HIGH I” and “HIGH II’’. In Figs. 34 and 38, high waves are seen
in only two parts, but such portion of high waves might extend to the
outer region of the depicted figures, as supposedly shown in Fig. 42
(designated by ‘“ HIGH III"’, “HIGH 1I’”’ and “ HIGH II’ ”’ and so on).
Comparing two high waves in Fig. 34 or 38, the waves adjacent to the
mouth of a breakwater (corresponding to ‘‘ HIGH I’ in Fig. 42) have a
higher wave height than the high waves a little apart from the entrance
of a breakwater (corresponding to ‘“HIGH II”’ in Fig. 42). Among
high waves hypothetically shown in Fig. 42, the part of “HIGH 1"’
might have the highest wave height, and, leaving from the mouth of
a breakwater, the wave height in the regions of the heigh waves pre-
sumably decreases gradually. Such a tendency is also conjectured from
the figures showing the variations of the amplitude along the forward
wall of a breakwater (Figs. 3, 9, 15, 21 and 27).

In Table 2, the values of a maximum wave height of the high
waves in the forward sea (referred to ‘“HIGH I” in Fig. 42) are tab-
ulated for a change of kd. This table reveals that a maximum wave
height along the forward wall of a breakwater increases with augmenta-
tion of kd from 0.1 to 1.5 and thereafter decreases to take a maximum
at kd=1.5.

Comparing two figures relevant to the amplitude variation in the

Table 2. Maximum wave heights in the nearest part
from the mouth of a breakwater

kd 0.1 0.5 : 1.0

1.5 2.0

4 2.21 032 | 2381 | 231 2.35
: l(maximum)
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Fig. 42. Figurative explanation of variation of wave he]ght in the forward
waters of a breakwater.

forward waters of a breakwater (Figs. 34 and 88), the isolines of the
amplitude for kd=0.1 (small kd) run comparatively parallel to the wall
of a breakwater as compared with those for kd=1.0 (large kd). Such
a trend might be considered to prevail for other values of kd.

The cause of generation of the afore-mentioned high waves is an
occurrence of reflected waves accompanying rotating waves in the nearby
part of a breakwater, which will be ascertained later in the variation
of phase.

In Figs. 34 and 38, the isolines of the amplitude in the neighbouring
regions of the domains D, and D, (see Fig. 1) were interpolated appro-
priately,*** because the deficiency of degree of the approximation of
used theory causes insignificant irregularity in these regions, of which
mention has already been made in Section 3,1. (Check of Convergence).
In order to make detailed discussions of the behaviors of the waves in
these regions, an improvement of the approximated theory, therefore,
is required.

In the next section, we turn our attention to the variation of phase
in the forward sea.

In Figs. 35 and 39 (the former is relevant to kd=0.1 and the latter
to kd=1.0), rotating waves accompanied by the waves reflected at the

***%)  This convention is followed in the fizures showing the overall variations of the
waves around a breakwater (Figs. 35, 36, 37, 39, 40 and 41).
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Fig. 44. Phase variation of waves in the forward sea of a breakwater.

breakwater are seen. These behaviors are figuratively illustrated in
Fig. 43. As shematically shown in Fig. 43, the incident waves in front
of the entrance of a breakwater advance toward the breakwater to
penetrate partly into the inside of a breakwater through the entrance
and to divert partly toward the nearby part of the wall facing the open
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sea, the latter of which are reflected to the outer sea producing high
waves near the wall (exceeding twice the amplitude of the invading
waves). The waves reflected in such a way are propagated in an oblique
direction instead of the counter-direction of the invading waves (to the
direction from A to B in Fig. 43). In bordering regions of the incident
and reflected waves, a row of rotating waves (RI, RII and so on) is
then produced as a complementary flow of the above two kinds of waves.
And also, outside the reflected waves, rotating waves (stated by RI’ in
Fig. 48) appear as a counter-flow of the reflected waves (A_)B in Fig. 43).
A sequence of such rotating waves, therefore, might be predicted in the
outer region of the depicted figure. From Figs. 35 and 39, the rotating
waves are found to rotate with a period of the incident waves (the
variation of the gyrating waves closes with a phase of 2z). Further, as
shown figuratively in Fig. 44, a velocity of whirling waves is slower in
propagation to the direction perpendicular to a breakwater, while being
faster along the direction of a breakwater.

Our attention is next turned to the behaviors of the waves in the
backward sea of a breakwater for specified parameters kd=0.1 and 1.0.

NOIL23Y1a

BREAKWATER WING

17
\_/g

PARALLEL

T3AVHL 3AVAM
IN3QIONI 40

DIRECTION OF PROPAGATION
OF WAVES

Fig. 45. Figurative explanation of phase variation of waves in the leeward
of a breakwater gap.

According to Figs. 36 and 40, as already noted in Section 8,2 (Vari-
ations of Amplitude in Typical Directions), definite directivity of the
waves is found for large kd (corresponding to the waves of small wave-
length as compared with a breadth of the entrance of a breakwater),
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while no appreciable directivity is seen for the waves of small kd (cor-
responding to long wave-length). As seen in Fig. 40 (for kd=1.0), a
gradient of the amplitude of the waves is the greatest along the wall
of a breakwater to diminish gradually in magnitude as the direction of
the propagation is turned to that of incidence of the waves. Referring
to Fig. 41 (the figure concerning the variation of phase for kd=1.0),
the isolines of phase in the nearby region of the mouth of a breakwater
run relatively parallel to the wall of a breakwater (see Fig. 45). This
implies that the propagation of waves is more favoured in the direction
of incidence of the waves than in other directions, which is consistent
with the directivity of the variation of amplitude (Fig. 40). As the
waves advance, such directivity of phase gradually disappears as a result
of divergence of the waves due to the diffraction (when r=4d in Fig.
41, with the isoline of phase running almost in circular form having the
center in »=0). On the contrary, when kd=0.1, an explicit directivity
of phase is not found (refer to Fig. 87). The waves which penetrated
through the entrance of a breakwater are propagated uniformly to all
the directions.

4. Complementary Remarks

As far as a mechanism of generation of high waves near the gap
of a breakwater is concerned, a definite explanation has not been given
in this paper. It is probable that a high wave denoted by “HIGH I”
in Fig. 42 is produced as the result of coupling of the waves reflected
and diffracted at the two breakwater wings. In order to examine this
possibility, the numerical calculation of the theory of the waves in
front of a single breakwater wing is useful, which is established by
Sommerfeld®. This calculation is reserved for a future paper.

In the experiment made by Putnam and Arthur® or Blue and
Johnson'®, the used approximated theory is considered to be useful for
the waves of relatively short wave-length. In Blue and Johnson’s ap-
proximated theory, they estimated that, when a gap of a breakwater is
as great as 24 (4: a wave-length of the incident waves), a departure of
the approximated theory from a rigorous one is small. As the ratio of
a breakwater gap and a wave-length of the incident waves (2d/4) begins

14) G. WOLFSOHN, loc. cit., 5).
15) J. A. PutxaM, and R.S. ARTHUR, loc. cit., 2).
16) Frank L. BLUE, Jr. and J. W. Jouxsox, loc. cit., 4).
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to be small, the coupling effect of both breakwater wings upon the
waves becomes so great that the approximated theories devised by the
above-mentioned authors cannot be applied to such a problem. For the
waves of a large wave-length as compared with a width of a breakwater,
the procedure developed in this purview is powerful. In the subsequent
papers, the difference of the results obtained by the approximated theory
(devised by Putnam and Arthur or Blue and Johnson) and the rigorous
theory (developed by the author) will be examined.
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