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Abstract

Numerical calculations of the long waves around a convex or
concave bottom have been made to elucidate the behaviors of the
waves around an obstacle and to determine an effective mesh length
in the construction of a refraction diagram of tsunamis.

Since the invading waves are treated as periodic ones in this
work, a straightforward application of the theory to the evaluation
of the effective mesh length for the leading part of tsunamis might
be a little dubious (for the later phase, the present results are ap-
plicable). But when a dimension of the irregular part of the bottom
(a simple hump) is small as compared with a wave-length of the
incident waves, an interference effect produced by a coupling of the
progressive and retrogressive waves is likely to be also small, so
that the application* of the results of the periodic waves might be
still possible to the leading part of tsunamis dismissing the tip of
the leading waves in which no interference effect taking place in the
case of periodic waves is expected. In the present study, two typical
tsunamis, i.e. the Chile Tsunami and Niigata Tsunami, have been
employed to determine the actual negligible dimensions of the bottom
irregularities.

Furthermore, in the last section, some mention is made of the
waves scattered by the submarine obstacle.

1. Introduction

The primary purpose of the present work is to determine a suitable
mesh size for the construction of a refraction diagram of tsunamis with
the aid of an electronic computer. The problem is treated as being three-
dimensional, that is, circular mounts and basins are located in the- sea
of uniform depth. These forms of the bottom are possible representations
of the actual sea-bed except an elongated submarine ridge.

*) Since our model is of a circular form, the application is of course limited to the
evaluation of a negligible dimension of bottom irregularities of a circular form.
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The development of the present theory has been performed in the
realm of long waves, that is to say, the used equation is a simple long
wave equation. For an analysis of waves of medium wave-length, it is
almost certain that the selection of a basic equation is of great impor-
tance, the use of an equation in terms of velocity potential instead of a
long wave equation being preferable. Such problems are reserved for
a future paper.

At any rate, little seems to have been written on waves around
three-dimensional submarine obstacles. Hence, we take up these problems
in this article.

2. Case of Circular Table

In this section, the case of the bottom of a circular table is con-
sidered, the geometry of which is shown in Fig. 2-1. Incident waves

INCIDENT

WAVE

D2

Di
X

)

D2 D| HI

| Ha

/ /e

Fig. 2-1. Geometry of a used model.
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are assumed to be periodic ones. This form of incident wave is also
used in the subsequent sections.

(2,1) Theory

Referring to Fig. 2-1, the origin of the coordinates is centered at
the midpoint of a circular desk.

Let (x, y) be the Cartesian coordinates and (r, 0) the polar coordinates.
Then using the notations such that

C: wave height, H: sea depth,
t: time variable, g: gravity constant,
c: long wave velocity (=1"gH),

a governing equation is given by

G, e _1 &
oL _1, 2,1
o o ¢ ot @1
or
2 e 2
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Since we are treating of a periodic problem, the above equations 2,1)
and (2,2) become

A ) 2.9)
ox* oy*
or '
a2cr l ) acr i. azcl B —0 94
3r2+7' 8r+r2 302_*_ ¢ : . @4)
where {={"-exp (+iwt) 2.5)
and k=w/c (w: angular frequency of incident waves). ’

In the following, the prime of ' is omitted for simplicity, unless other-
wise stated. This convention is followed in the subsequent sections.
Suppose that the incident waves are expressed by

Cin:C06+ikx
or, in complete form, (2,6)

Lin = Cogtiotrite
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where {, is the amplitude of the incident waves, the only real part
having a physical meaning, the formal solutions in domains D, and D,
(for the region of the domains Fig. 2-1 should be referred to) are obtained
in forms of series as follows:—

in the domain D,,

¢= i‘, AL cosmb-J, (k) ; (2,7
m=0
in the domain D,,
L=Cet+ S, AP cos mo-HO(kr); (2,8)
m=0

where {; (=1, 2) are the wave heights in the domains D; (j=1, 2), AJ
(j=1, 2; m=0,1,2, --.) the unknowns to be determined by the conditions
between the domains D, and D,; and k; (j=1, 2) the wave numbers of
the waves in the domains D; (j=1,2) (hence k = k,) which are related
with long wave velocities ¢; (7=1, 2) in the domains D; (j=1, 2) through
the relations

k;=wle; . (2,9)

In the expression (2,7), the finiteness of the wave amplitude in the
origin (r=0) is assumed so that the Bessel function of the second kind,
Y, (k,r), is excluded, while reflected waves are assumed, in (2,8), to be
outgoing scatterred waves at an infinite point from the obstacle. In both
solutions, a symmetry of the phenomenon with respect to the wx-axis is
employed so that sine-terms are excluded from the series.

In order to determine the unknowns AY (m=0,1,2, ---; 7=1,2) of
(2,7) and (2,8), we have two conditions available, i.e.,

C1=C2 }
o¢ o at r=r,, (2,10)
H >=H,>

or or
where 7, is a radius of the convex circular desk of the sea bottom and
H; (j=1, 2) the depths of the sea in the domains D; (j=1, 2) respectively
(see Fig. 2-1).

Substituting (2,7) and (2,8) into the conditions (2,10) and applying the
operators

rcos n0do  (n=0,1,2, --+)
0
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to them, we have the following simultaneous equations:—

Tl A — H P (k,r0) AP = oFex70)Co

’ 1 ’ s ’ (2,11)
Tl Al —%H (ear) AP =%§j Tilesr ),
Suller) AL — H 3 (k) AR
_2C {(_1)n 21&(;‘:47’0) (m=2n) ’
=2¢, (=), (k) (m=2n-—1),
’ 1 k2H2 2)7 2 (2 12)
Tl A =<t H ) A :
( 7'0) k1H1 ( T )
=9 szz {(_l)nJ;n(kz'ro) (m=2n) s
— &0
lel T ( - 1)n+1J;n—-1(k2'ro) (m =2n— 1) ,
(n:l’ 2’ 3’ Oy .) ,

where the formula?

e+ikx — e+ikr cos @

=J(kr)+2 3 (— 1) ,n(lr) cos 2mo
m=1
+20 3, (—1)"opus(kr) cos (2m+1)0

has been used in the above reductions.

The simultaneous equations (2,11) and (2,12) are readily solved numeri-
cally with the aid of an electronic computer. In the calculation, the
subroutines for obtaining the Bessel functions and solving simultaneous
equations (based on a method of sweeping) are employed. Substituting
the unknowns A%’ (5=1,2; m=0, 1,2, ---) obtained in the above into the
formal expressions (2,7) and (2,8), we can elucidate the behaviors of waves
around the submarine obstacle. This procedure, of course, is carried out
by use of an electronic computer.

(2,2) Numerical Computations and Determination of Mesh Size

In this section, numerical calculations of the theory were made fol-
lowing the procedure described in the previous section (2,1) and their
results were discussed.

Variations of the amplitude and phase in the direction 6=0, 7/2 and

1) S. MoriGUcHI, et al., Sigaku Koshiki IIT (literally, Mathematical Formula III)
(Yuwanami Shoten, 1961), 211.
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7 are presented in Figs. 2-2, 2-3, ..., 2-13 for parameters kr,=0.2, 0.4,
-++,2.0 and H,/H,=4/3, 4/2, 4/1.

To begin with, the variations of the amplitude are discussed.

When the waves advance along the x-axis (the direction of incidence
of waves) through the midpoint of a circular obstacle, the height of the
waves, referring to Figs. 2-2, 2-3 and 2-4, increases in general to take
a maximum at a certain point which moves to the direction of propaga-
tion of waves as k7, increases and also the amount of a maximum wave
height is augmented as kr, increases. Through Figs. 2-2, 2-3 and 2-4,

SUBMARINE 0BSTALE

Fig. 2-2. Variation of amplitude along z-axis for a specified ratio of depth
H/H1=4/3 (the numbers stated in the curves denote the values of kro).
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Fig. 2-3. Variation of amplitude along the %-axis for the ratio of depth
H;/H1=4/2 (the numbers stated in the curves denote the values of k).
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Fig. 2-4. Variation of amplitude along the 2z-axis for a specified ratio of
depth Hz/H:1=4/1 (the stated numbers in the curves denote the values of k7).
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Fig. 2-5. Variation of amplitude along the y-axis for a specified ratio of
depth Hy/H1=4/3 (the numbers stated in the curves denote the values of kro).
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when kr, is large, a valley of the amplitude (a low amplitude point)
appears before the waves reaching the midpoint of the obstacle., Such
an appearance of a low amplitude point is interpreted to be caused by an
interference of the progressing waves and the retrograding ones which
are generated at the outer margin of the obstacle.

Along the y-axis (the direction perpendicular to that of the incident
waves), the variation of the amplitude is as follows. In Figs. 2-5 and
2-6, the wave heights take a maximum in the central part of the obstacle
and diminish gradually leaving from the midpoint. Near the outer margin
of the obstacle, those values approach a unit and some of these take a
value less than a unit crossing the line |{|=1.0. This phenomenon is
considered to be resulted in by an interference of the incident and scat-
tered waves. In Fig. 2-7 (the case for H,/H,=4.0), a slightly different
situation takes places. In this case, when k», becomes large (kr,=1.8
and 2.0), a maximum point of the wave height appears near the margin
of the obstacle and the wave height in the central part somewhat de-
creases. Such behavious are caused as a result of an interference of
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Fig. 2-6. Variation of amplitude along the y-axis for a specified ratio
of depth Hy/H:1=4/2 (the stated numbers denote the curves relevant to a
parameter ko).
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waves which becomes notable when H,/H, is large or when kr, increases.

Since we are now developing a theory on the basis of a long wave
equation in which a vertical acceleration is not allowed for, the appli-
cability of the present theory might be a little dubious to a problem
possessing a large ratio of depth such that H,/H,~4.0. A particular
emphasis therefore is not laid upon the phenomena of the waves for a
ratio of depth H,/H,=4.0. In a future paper, the applicability of a long
wave equation to a three-dimensional problem with an irregular bottom
will be examined.

At any rate, passing through Figs. 2-2, 2-3, ..., 2-7, when the ratio
of depth (H,/H,) is small or when the wave-length is large as compared
with the dimension of a submarine obstacle, the effect of the obstacle
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Fig. 2-7. Variation of amplitude along the y-axis for a specified ratio
of depth H:/Hi1=4/1 (the stated numbers denote the curves relevant to a
parameter kro).
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Fig. 2-8. Variation of phase along the z-axis for the ratio of depth
Hy/H1=4/8 (the stated numbers in the curves denote the values of kro).
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Fig. 2-9. Variation of phase along the z-axis for a specified ratio of depth
H:/H1=4/2 (the stated numbers in the curves denote the values of ko).
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upon the amplitude of the invading waves is found to be small,

Let us next consider the variation of phase. Through Figs. 2-8, 2-9
and 2-10 (the variations of phase along the wx-axis), it is found that a
retardation of phase at the midpoint of the obstacle begins to be great
as kr, increases for a given ratio of depth H,/H, or as H,/H, increases
for a given kr,. Through three figures, a rapid variation of phase curves
is seen for large kv, which is due to a shortening of a wave-length for
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Fig. 2-10. Variation of phase along the z-axis for the ratio of depth
Hy/H1=4/1 (the numbers stated in the curves denote a parameter kro).
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augmentation of kr, Further, a gentle transition of phase curve is seen
in Figs. 2-8 and 2-9 (case for H,/H,=4/3 and 2.0) for a change of kr,,
while such gentleness disappears in Fig. 2-10 (case of H,/H,=4.0), This
situation might be resulted in by a marked interference of waves ad-
vancing and retrograding over the submarine obstacle, which begins to
be severe for a large ratio of depth (H./H,) or large kr,.

Noting the variations along the y-axis which are shown in Figs, 2-11,
2-12 and 2-183, it is found that the component of the waves in this axis
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Fig. 2-11. Variation of phase along the y-axis for a specified ratio of depth
Hy/H;=4/3 (the numbers stated in the curves denote the values of kr).
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Fig. 2-12. Variation of phase along the y-axis for a specified ratio of depth
Hy/H1=4/2 (the numbers stated in the curves denote the values of ko).
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is in a sense advancing towards the midpoint of the obstacle. Approaching
the center, this component of the velocity begins to be small to vanish
at the very point of the center of the obstacle. In the cases of H,/H, =
4/3 and 2.0 (Figs. 2-11 and 2-12), the converging effect of the circular
obstacle upon the waves becomes greater with an increase of kr, for a
given ratio of depth or with an increase of H,/H, for a given kr,. In
Fig. 2-13 (case of H,/H,=4.0), this feature is not seen definitely. For
the range beyond 1.4, the above feature in particular disappears. This
isjcaused as a result of an increase of interference of waves, which is
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Fig. 2-13. Variation of phase along the y-axis for the ratio of depth
Hy/H1=4/1 (the numbers stated in the curves denote the values of kr).
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considered as beginning to be more notable with augmentations of the
ratio of depth and kr,.

In construction of a refraction diagram of tsunamis by use of an
electronic computer, the sea is covered with nets of an appropriate mesh
size. At the intersecting points, the depths of the sea are represented.
In drafting the above refraction diagram, a determination of a mesh size
is required by a suitable means, but so far we have no definite know-
ledge available for such a determination, in particular for a three-dimen-
sional case. In the present study, the theory has been developed under
the assumption that the invading waves are periodic. Therefore, an esti-
mation of the effect of the obstacle upon the leading waves of actual
tsunamis by use of the result of the present calculation might be in-
appropriate, the application supposedly being limited to the waves of a
later phase. In spite of this situation, when k», is small (a resonance
effect due to the obstacle is then likely to be small), the result of a
periodic case is considered to be still applicable to the evaluation of a
mesh size when drafting a refraction diagram for the leading part of
waves*. By the above reasoning, a suitable mesh length is determined
‘from the result of the present calculation.

If one sets up a hypothetical criterion in such a way that, when a
maximum wave height is suppressed below 1.1 times that of the incident
waves, the irregularity of the bottom can be neglected, the following
ranges of bottom irregularities are then negligible in constructing a re-
fraction diagram, i.e.,

kr,=0~0.8  for H,/H,=4/3,

kr,=0~0.4  for H/H,=2.0 (=4/2),
and kr,=0~0.3 for H,/H,=4.0 (=4/1),
which are obtained from Figs. 2-2, 2-3 and 2-4.

Converting the above values to the relation of D(=2r,) to \ (a wave-
length), we have:—

D/N=0~0.25  for H,/H,=4/3,
DA=0~0.13  for H,/H,=4/2, (2,13)
D/N=0~0.10  for H,/H,=4/1.

In order to estimate a negligible length of bottom irregularities on
the occasion of actual tsunamis, two types of tsunamis are taken up, i.e.,

* precluding the tip of the leading waves.
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the Chile Tsunami of May 24, 1960 and the Niigata Tsunami of June 16,
1964. The former represents far-field tsunamis which have a long wave-
length of a period of about 40 minutes and the latter near-field tsunamis
with a period of 20 minutes. Assuming the mean depth of the Pacific
Ocean as 4,000 m and that of the surrounding sea of the wave origin of
the Niigata Tsunami as 500 m, the above values of the period of both
tsunamis are converted to wave-lengths, that is to say,

A =480 km for the Chile Tsunami

2,14
and A= 80km for the Niigata Tsunami. (214)

Using (2,13) and (2,14), the negligible scale D of the bottom irre-
gularities becomes as follows.
In the case of the Chile Tsunami,

D=0~120 km for H,/H,=4/3,
D=0~ 62km for H,/H,=4/2, 2,15)
D=0~ 48 km for H,/H,=4/1,

and in the case of the Niigata Tsunami,

D=0~20 km for H,/H,=4/3,
D=0~10km for H,/H,=4/2, (2,16)
D=0~ 8km for H,/H,=4/1,
The above scales have been determined under the criterion that a maxi-
mum wave height over the submarine obstacle (of a convex form) does
not exceed 1.1 times that of the incident waves.
If one sets up another criterion so as to suppress the maximum wave
height to be negligible below 1.05 times the amplitude of the incident
waves, the negligible bottom irregularities, referring to Figs. 2-2, 2-3
and 2-4, fall in the range
kr,=0~0.5 for H,/H,=4/3,
kr,=0~0.3 for H,/H,=2.0 (=4/2),
kr,=0~0.2 for H,/H,=4.0 (=4/1),

These values are converted to the ratios D to M as follows.
D/x=0~0.16 for H,/H,=4/3,
D/A=0~0.10 for H,/H,=4/2, 2,17
D/x=0~0.06 for H,/H,=4/1,
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In applying the above relations (2,17) to the cases of the Chile and
Niigata Tsunamis, the scales D to be neglected are, by use of (2,14):—
in the case of the Chile Tsunami,

D=0~TTkm  for H,/H,=4/3,
D=0~48km  for H,/H,=4/2, (2,18)
D=0~29km  for H/H,=4/1,

and in the case of the Niigata Tsunami,

D=0~13 km for H,/H,=4/3,
D=0~ 8km for H,/H,=4/2, (2,19)
D=0~ 5km for H,/H,=4/1,

In the foregoing estimations, we took a maximum wave height near
the submarine obstacle as a criterion for determining the negligible mesh
size and, referring to Figs. 2-2, 2-3 and 2-4, the transmitted waves
diminish generally in wave height leaving the obstacle. Therefore, if
our attention is focussed upon the waves passing through the obstacle
(that is mostly the case, in the drafting of a refraction diagram), the
negligible mesh lengths already determined might be effective enough for
the passing waves to hold a desired accuracy.

If one sets up another criterion for a period of waves, one can
readily obtain a negligible dimension of the bottom irregularities following
the afore-mentioned procedures.

3. Case of Circular Basin

In this section, a case where the bottom has a circular basin is
treated, the geometry of which is shown in Fig. 3-1.

(3,1) Theory

In a manner similar to the case of a circular table, the origin of
the coordinates is located at the midpoint of a circular basin.

Using the same definitions and notations as those in the case of a
circular table, we can arrive at exactly the same simultaneous equations
that are described in (2,11) and (2,12). ,

The only difference is that the geometry of the present case has a
concave irregularity at the bottom other than a convex one as in the
previous case. That is to say,
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Fig. 3-1. Geometry of a used model.

T

H,>H, for the previous case (see Fig. 2-1)
and H,<H, for the present case (see Fig. 3-1).

At any rate, a circular portion of a convex or concave bottom with
uniform depth is located in the midst of the supposed ocean of uniform
depth in either case treated in Section 2 and the present Section 3. Such
a uniformity of the irregular portion of the bottom is based on the sim-
plicity of a mathematical treatment of the problem and due to the con-
venience of measuring a dimension of the irregular part.

Now solving the equations (2,11) and (2,12) for specified values of
kr, (=k,r,) and H,/H, the unknown factors A (7=1,2; m=0,1,2, -.-)
in the formal expressions (2,7) and (2,8) are obtained, so that the varia-
tions of the amplitude and phase in the nearby part of the submarine
obstacle begin to be known through (2,7) and (2,8).
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(8,2) Numerical Computations and Determination of Mesh Size

In this section, the results of the calculations are discussed.

The calculations are carried out for the amplitude and phase in the
range kr,=0.2 to 2.0 along the - and y-axis for specified values H,/H,=
4/5, 4/6 and 4/7. The calculated results are visualized in Figs. 3-2, 3-3,

. and 3-13.

In Figs. 3-2, 3-3 and 3-4 showing the variations of the amplitude
along the 2-axis, a marked feature is found such that the waves over
the obstacle, despite a concave configuration of the bottom, are not always
small in height as compared with the wave heights in the outer margin
of the obstacle. In the range up to kr,=about 1.0, such greatness of the
wave heights over the obstacle is conspicuous. Beyond this value of k7,
the wave heights begin to grow large at the rear of the obstacle. A
possible explanation of these behaviors is of a strong reflection of the
waves at the forward margin of the step of the concave obstacle (C—point
in Figs. 3-2, 3-3 and 3-4) in which reflected waves are likely to be
powerful as compared with those at the backward margin (B—point in
Figs. 3-2, 3-3 and 3-4). Through the above three figures, when k7, is
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Fig. 3-4. Variation of the amplitude along the x-axis for a specified
ratio of depth He/H:=4/7 (the numbers stated in the curves denote the values
of kTo).



1486 T. Momor

iy
r 0.2 B
1.o_[a%0 w/ 05 .0 1,5 1
i
T — ] L
0.4 ! ’y;
0.6 ) //
//
0.8 | /
0951
|
1.0 /|
1.2
0.9
14 INCIDENT
1.6
1.8 ;
I
I
0.85+ 2.0 |
SUBMARINE ™
0BSTACLE '

Fig. 3-5. Variation of amplitude along the y-axis for a specified
ratio of depth Hy/H:1=4/5 (the numbers stated in the curves denote the
values of ko).

augmented for a given H,/H, or H,/H, decreases for a given kr, the
amplitude is, as a mean, decreased over the concave terrain. At a far-
away point from the obstacle the amplitude, of course, tends to a unit.

Concerning the variations of the amplitude along the y-axis (refer
to Figs. 3-5, 3-6 and 3-7), the amplitude diminishes toward the central
part of the concave terrain to take a minimum at the very point of the
center, which is the result of the diverging effect of the concave bottom.
Such divergence begins to be great as H,/H, begins to be small or kr,
large.
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Fig. 3-6. Variation of amplitude along the y-axis for a specified
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parameter k7o),

Let us next consider the phase variation which is shown in Figs. 3-8
to 3-13. In the first, the variation along the x-axis is noted. According
to Figs. 3-8, 3-9 and 3-10, the phase at the center of the concave terrain
is accelerated with an increase of kr, for a given H,/H, or decrease of
H,/H, for a given kr,. Concerning the variation along the y-axis (Figs.
3-11, 3-12 and 3-13), the component of the waves in this direction is in
a sense being propagated outwards, this being caused by the divergence
of the waves due to the concave submarine obstacle. Such a feature is
great when kr, is large or H,/H, small,

In the next, the determination of a mesh size is tried. For this
purpose, two criterions are taken in such a way that, when a minimum
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Fig. 3-7. Variation of amplitude along the y-axis for a specified
ratio of depth H/H1=4/7 (the stated numbers denote the curves relevant
to a parameter kro).

of the amplitude near the obstacle deviates from 1.0 (the amplitude of
the invading waves) by 0.1 (first criterion) and 0.05 (second one), the
bottom irregularities are interpreted as being negligible.

If the first criterion is employed, the following ranges of the bottom
irregularities are, from Figs. 3-2, 3-8 and 3-4, found to be neglected, i.e.,

kry=0~1.1  for H, H,=4/5,
kro=0~0.7  for H,/H,=4/6,
and kr,=0~0,5 for H,/H,=4/7,

A conversion of the above values to the relation of D (=27, to A
gives:
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Hy/H1=4/5 (the stated numbers in the curves denote the values of kro).
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depth H:/H1=4/5 (the stated numbers denote the values of ko).

D/n=0~0.35  for H,/H,=4/5,
D/n=0~0.22  for H/H,=4/6,
D/n=0~0.16  for H/H,=4/7,

3,1)

Taking the same examples as in Section (2,2), i.e., the Chile Tsunami
and Niigata Tsunami, the estimations of the negligible scales are made
as follows.

Substituting the values (2,14) into (3,1), we have:—
D=0~168km  for H,/H,=4/5,
D=0~106km  for H,/H,=4/6,

D=0~ T7km  for H,/H =4/7,

(3,2)
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Fig. 8-12. Variation of phase along the y-axis for the ratio of
depth H:/H:1=4/6 (the stated numbers denote the values of kro).

in the case of the Chile Tsunami;
D=0~28 km for H,/H,=4/5,
D=0~18km for H,/H,=4/6, (3,3)
D=0~13km for H,/H,=4/7,
in the case of the Niigata Tsunami,
If the second criterion is used, the ranges
kr,=0~0.6 for H,/H,=4/5,
kr,=0~0.4 for H,/H,=4/6,
kr,=0~0.3 for H,/H,=4/7,
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Fig. 3-13. Variation of phase along the y-axis for the ratio of
depth H:/H1=4/7 (the stated numbers denote the values of ko).

are negligible scales of the bottom irregularities, which have been ascer-
tained from Figs. 3-2, 3-3 and 3-4.

In a manner similar to the foregoing one, the above relations are
reduced to:

DA=0~0.19  for H,/H,=4/5,
DIN=0~0.13  for H,/H,=4/6, (3,4)
DN=0~0.10  for H,/H,—4/1.

Using the wave-length of two typical tsunamis (2,14), the negligible
dimensions D, under the criterion that a 5 percent deviation of the
wave amplitude from that (=1.0) of invading waves should be neglected,
become as follows from (3,4).
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In the case of the Chile Tsunami,

D=0~91km  for H,/H,=4/5,
D=0~62km  for H,/H,=4/6, (3,5)
D=0~48km  for H,/H,=4/7.

In the case of the Niigata Tsunami,

D=0~15km  for H,/H,=4/5,
D=0~10km  for H,/H,=4/6, (3,6)
D=0~ 8km  for H,/H,=4/7.

In our models used in the evaluations of the negligible dimensions,
the sea depth bas been kept constant, i.e. H,=4, while the depth of the
irregular configuration of the boutom, H,, has been varied from 1 to 3
for the convex case and from 5 to 7 for the concave case every
4H(=|H,— H,|y=1. Further, the ratio of H, to H, is taken as a parame-
ter for the calculations of the amplitude and phase. Therefore, H,/H.=
4/1, 4/2 and 4/3 in the case of the convex bottom may be referred to
H,/H,=4/5, 4/6 and 4/7 in the case of the concave one in comparing the
behaviors of the waves. Comparing the dimensions to be neglected (2,13)
in the case of the convex bottom and those (3,1) in the case of the con-
cave one for the corresponding parameter H,/H,, it is found that the
negligible dimensions for the former are, in general, smaller than those
for the latter.

4. Brief Note on Scattered Waves

In this section, a brief discussion of scattered waves is presented.
Let the formal expression (2,7) and (2,8) be rewritten as follows.

— +ikx (s¢c)
C=Ce _ +Lf, } (4,1)
C3=C06+ka+C:(;M) ’
and
Cieor= i Ay cos mO-J (k) —Cet
m:O } (4’2)
L=, A® cosmb- HP (k) .
m=0

Then {{** and £{*® in (4,2) imply the scattered waves produced by the
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Fig. 4-1. Amplitude variation of the scattered waves £(39 around a convex
bottom for a specified parameter kro=1.0 (the stated values in the figure denote
|gtse)], the inserted figure on the rlght hand side of the above figure being a
profile of a used model).
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Fig. 4-2. Phase variation of the scattered waves {{*¢) around a convex bot-
tom for a specified parameter kro=1.0 (the stated values in the figure denote
arg {(#9), the inserted figure on the right-hand side of the above figure being a
profile of a used model).
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Fig. 4-3. Amplitude variation of the scattered waves {(s?) around a concave
bottom for a specified parameter kr;=1.0 (the stated values in the figure denote
|¢tse)], the small figure in the above figure being a profile of a used model.)
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Fig. 4-4. Phase variation of the scattered waves {!s¢) around a concave bot-
tom for a specified parameter kro=1.0 (the stated numbers in the figure denote

arg £(¢), the small figure being a profile of a used model).
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irregularities of the bottom. When the bottom is horizontal without any
obstacle, the formal expressions £, and &, are reduced to a form

Coe+ikz

as a result of disappearance of the terms {{** and (.

Using (4,2), the overall variations of the amplitude and phase of the
scattered waves are sketched in Figs. 4-1 to 4-4 for a few specified
values of H,/H, and kr,

According to Figs. 4-1 and 4-2 showing the amplitude and phase for
H,/H,=4/2 and kr,=1.0 (the case of a convex bottom), it is found that
(1) a small mount of the amplitude implying the convergence of the
waves appears above the submarine obstacle (Fig. 4-1), (2) the scattered
waves are directed mainly along the line of the incidence of the waves,
which are seen from both figures of the amplitude and phase (Figs. 4-1
and 4-2), and (3) the scattered waves are emitted from the backward
margin of the obstacle (the side of the incidence of the waves) (Figs. 4-2).

For the scattered waves in the case of a concave bottom (H,/H,=
4/6 and kr,=1.0), similar behaviors are found. That is to say, referring
to Figs. 4-3 and 4-4, the former of which denotes the variation of the
amplitude and the latter that of the phase, (1) the waves are scattered
primarily in the direction of the incidence of the waves (Figs. 4-3 and
4-4), and (2) the scattered waves are ejected from the backward margin
of the circular obstacle. Such resemblance of the behaviors of the scat-
tered waves in the cases of convex and concave bottoms is rather sur-
prising. The only difference in the two cases is that the scattered waves
above the submarine obstacle for the case of a concave bottom have a
relatively small amplitude in the middle part of the obstacle, above all,
near the outer margin in the direction perpendicular to the axis of the
incidence of the waves, while the amplitude of the scattered waves for
the case of a convex bottom makes up a small mount near the midpoint
of the obstacle. The above low amplitude for the case of a concave
bottom is caused by a total reflection at the outer margin of the obstacle
in addition to the diverging effect of the bottom.
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