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1. Introduction

The earthquake swarms at Matsushiro, during their daily activities,
have been raising up many questions among earth scientists about the
process and nature of earthquake genesis. The precise observations,
which have been currently undertaken, are successfully revealing many
interesting phenomena of such earthquake activities. At the present
stage of such investigation, it will not be too early to make any mathema-
tical approach for finding the possible kinematical process involved in the
activities of earthquake swarms. Such mathematical analysis would be
useful for advancing the understanding of mutual relations among various
observational quantities and also for clarifying the possible mechanism of
earthquake genesis.

As for the kinematical process of earthquake swarms, there are
several existing theories. T. TERADAV regarded the train of earthquake
swarm as a certain statistical distribution of which example is seen in
the fall of camellia flowers. M. ISHIMOTO*® and F. KISHINOUYE" inde-
pendently presented the theories that the earthquake swarms are accom-
panied by the crustal deformations. T. MATUZAWA®® has remarked that
the spatial distribution of aftershocks is restricted within the uplifted
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area. S. KusakABE’ and H. BENIOFF® have regarded the sequence of
aftershocks as the phenomena of the elastic aftereffect. K. MoGr
has presented the view that the earthquake swarms are the phenomena
of elastic shock in the heterogeneous media. These theories have made
valuable contributions for advancing the understanding of the genesis
mechanism of earthquake swarms. However, since these theories are
not formulated as problems in the field of kinematics, they are not always
clear regarding what boundary conditions are postulated in the process
of earthquake swarms. Therefore, when one tries to formulate kinema-
tical processes involved in these theories, one often comes across several
ambiguities.

Thus, in this paper, an attempt is made to formulate a kinemati-
cal process for the activity of earthquake swarms as a boundary value
problem. The purpose of such an attempt is to derive various mutual
relations which are thought to exist among observational quantities
about the earthquake swarms.

The problem is settled as follows. Firstly, a visco-elastic medium
is postulated as the medium within which earthquake swarms take place.
Secondly, the medium is supposed to be under initial stress. Thirdly,
certain internal forces are supposed to act as the source of deformation.
It is well known that the activity of an earthquake swarm is accom-
panied by the crustal deformation, which remains almost permanently
even after the cessation of its activity. In order to account for such a
semi-permanent deformation and also for the time dependency of the
activity, it will be natural to postulate that the medium is visco-elastic.
The viscous property of the medium is thought to be due to the weather-
ed substances, liquid or liquified materials which exist along disconti-
nuities of various kind within the hard rock mass. The elastic property
is supposed to be due to the hard part of the rock mass of the earth’s
crust. The medium is supposed to be composed of the laminations of
the elastic elements and viscous elements. Anisotropy, which appears
from the lamination model, has been taken into consideration throughout
the analysis as a generality of the treatment.

It will be a widely accepted view that earthquake swarms are the
phenomena which take place under initial stress. In spite of this general
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10) K. Moc1, Bull. Earthq. Res. Inst., 41 (1963), 615-658.
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view, it seems that the study on the effect of the initial stress is not
always satisfactory. Recently, however, M. A. BioT,"” has developed a
method of the systematic treatment for the mechanics of deformation
under initial stress. This enables us to deal with the above problem.

In order to formulate the kinematical process of earthquake swarms
as a boundary value problem, the internal forces acting at an interface
are introduced as the source of the deformation. As regards the exis-
tence of such internal force for the development of earthquake swarms,
there are several different views. The case of the non-existence of the
internal force, however, will be included in this case as the limiting one
of very small value of internal force.

Thus, in this paper, we will treat of the deformation of an aniso-
tropic visco-elastic medium, composed of elastic and plastic elements, due
to internal force under initial stress. For simplifying the mathematical
analysis, we will assume that the medium is incompressible, the defor-
mation restricted in the plane strain and the speed of deformation
sufficiently slow as to allow the inertia term to be neglected. The effect
of gravity is not taken into consideration in this paper. The internal
force is supposed to act at a plane lying in the infinite medium. The
deformation is also assumed to be local and vanishes at the large distance.
As for the initial stress, the principal one is supposed to act along the
direction of the coordinate. The internal force is supposed to act verti-
cally to the interface like liquid pressure. Under these restrictions, the
relation between the deformation and the internal force is derived by
the method developed by Bior.

In order to complete the problem we have to know the relation
between the process of deformation and the activities of the earthquake
swarm. The activities of earthquake swarm will be considered with
respect to several parameters such as daily numker of small shocks,
magnitude of shocks, radiated energy, ete. In this paper, the frequency
of small shock occurrence will be taken into consideration as the para-
meter of the activity. Then, the frequency of small shock occurrence
will be related to the process of deformation by the ideas which have
been developed in the theory of dislocation.

The occurrence of small shoeks is considered to be accompanied by
the sudden formation of small slips. These small slips are, according to
the theory of dislocations,'® believed to occur as the result of accumu-

11) M. A. Biot, Mechanics of Incremental Deformations (John Wiley, 1965).
12) A. H. CotTrELL, Dislocations and Plastic Flow tn Crystals (Oxford, 1953).
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lation and migration of numerous dislocations. Moreover, these numerous
dislocations are thought to ke produced by the plastic deformation of
the medium. In consequence of all this, the occurrence of small shocks
will be considered to be related to the plastic deformation of the
medium. As regards the quantitative relation between them, several
formulae are given in the theory of dislocations.®¥ In this paper,
we will use the relation that the density of edge dislocations is propor-
tional to the curvature of the plastic deformation. We also assume that
the numkter of small shocks is proportional to the number of small slips,
and that the latter is proportional to the density of dislocations. Thus,
the number of small shocks is proportional to the curvature of the plastic
deformation. If we represent this relation in terms of the time rate,
it becomes that the frequency of small shock occurrence, for example,
the daily number of small shocks, is proportional to the speed of the
plastic deformation in the progress of the curvature. Since the curvature
of the deformation is geometrically expressed by the spatial second de-
rivative of the displacement, the above relation will be represented, as
the first approximation, as being that the frequency of the small shock
occurrence is proportional to the speed of plastic deformation as far as
the time sequence is concerned, and to the curvature of the deformation
as far as the spatial distribution is concerned. The total number of
small shocks is proportional to the curvature of the plastic deformation.
In this way, the activity of the earthquake swarm is related to the
process of deformation of the medium.

In 2, the above problem is formulated as the boundary value pro-
blem by Biot’s method, and the solution is given in the general form.
In 3, the relation of the internal force and the deformation is obtained
for the liquid-like internal force at the interface. In 4, the deformation
responses are computed for several types of internal force with respect
to a single harmonic component of the deformation. In 5, are examined
the characteristic features of mutual relations among the number of small
shocks, deformation of the medium, and the internal force. In 6, a
consideration is given for the kinematical process of earthquake swarms.

2. Boundary value problem

In this section, we will show that the problem of deformation due

13) A. H. COTTRELL, 4bid., 12), p. 29.
14) J. J. GILMAN, “Microdynamics of Plastic Flow at Constant Stress,” Jour. Appl.
Phys., 36 (1965), 2772-2777.
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to internal force under initial stress is treated as the boundary value
problem. The methods of analysis of a problem of this kind have been
developed by BioT."® We will follow his method.

For simplicity, we will assume that the media are anisotropie, visco-
elastic, incompressible and that the deformation is restricted in plane
strain. We will consider principal initial stress s;, and s,, and assume
8,=0. The effect of gravity will not be taken into consideration in this
paper. The internal forces are supposed to act along the interface y=0,
and are functions of time and a co-ordinate . The speed of development
of the deformation is supposed to be so slow that the inertia effect can
be neglected. Under the above restrictions we will formulate the problem
following BroT’s method.

The mechanical system of the deformation of continuous media is,
in general, completely described by the systems of those basic equations
which are equilibrium equations, stress~strain relations, and strain dis-
placement relations. First, the stress~strain relations will be derived for
the media which are composed of elastic elements and plastic elements
(2-1). As is shown by BIoT"® the media are represented by an equiva-
lent anisotropic, visco-elastic medium. From the system of basic equations,
the field equation will be derived for displacement potential (2-2). The
field eguation is, then, solved under the boundary condition given at the
interface (2-3 and 2-4).

The formulations will be represented in Laplace transform with res-
pect to time ¢ with parameter p. This procedure bases upon the corres-
ponding principle’” between visco-elastic media and purely elastic media,
which states that Laplace transformed equations in the visco-elastic
media have the same forms of equations in the elastic media, and that
the deformation coefficients in the transformed space are expressed by
functions of p. Therefore, the solutions will be first obtained in Laplace
transformed space, the solutions as funections of ¢ will then be obtained
by applying the inverse transformation.

In order to treat the internal force which is a function of z, we
will use the Fourier transformation with respect to « with parameter &.
We will also consider the deformation which vanishes at large distances.
That is, we will consider localized deformation within an infinite medium.

15) M. A. Bror, bid., 11).
16) M. A. Biot, dbid., 11), chap. 4, §2.
17) M. A. Brot, ¢bid., 11), chap. 6, §3, p. 359.
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2.1. Media and their stress~strain relations

Let us suppose that the earth’s crust is made up of laminated media
of elastic elements and plastic elements. The elastic elements are thought
to correspond to hard rock mass, and plastic elements to correspond to
soft thin layers which develop along discontinuities within rock mass.
These may consist of fractured zone, fissures, joints, unconformities or
interface of plane of stratification. The property of plastic elements
will be represented, for the first approximation, by viscous liquid. It is
shown by BIoT® that the visco-elastic property of such laminated media
is represented by an equivalent continuous visco-elastic media.

For simplicity let us assume that the materials are incompressible
and the deformations restricted in plane strain. Then, according to
Bror"®, the stress~strain relations of such equivalent continuous media

are given by
311——8:2]\76”
s, —s=2Ne,, 2.1)
312:2Q3w ’

where s, 8., and s,, are the incremental stress components referred to

the co-ordinate axis after deformation. s is the two-dimensional mean
stress defined by

s=%(sn+sm) : 2.2)

Incremental strain components are defined by

=00 g =0V ezy=l(ﬂ+ "’“), 2.3)

ox i 6y’ 2890@

where % and v denote the displacement component in & and y directions
respectively. Incompressibility is expressed by the condition

exte,=0. 2.4)

N and @ are deformation coefficients in operational form, and are ex-
pressed by those composing elements as

{ N:a1ﬁ1+a2ﬁz (2.5)
l/ézal/él'l'az/éz .

18) M. A. BioT, tbid., 11), p. 360.
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N, N,, @, and Q. are deformation coefficients of composing elements. «,
and «, represent fractions of the unit thickness of the composite medium,
and are

a,+a,=1. (2.6)

The deformation is also expressed by alternative deformation coeffi-
cients M and L, which are defined by

M=N+ %P
(2.7)
P _oalp
L=Q+=
gl
P=S,,—8S, (2.8)

where S;; and S,, are initial stresses. These coefficients are used to
represent the stress~strain relation referred to the co-ordinate axis before
deformation. These coefficients are also expressed by those of composing
elements as

{ M=a1M1+C(2M2 (2.9)

1/L=ca,/L,+ /L, .

As a special case of the medium, if we take the purely elastic me-
dium for the elastic elements and the purely viscous liquid for the plastic
elements, the deformation coefficients of each material are, as given by
Brot,”

{E1=L1 , My=M,, (2.10)
Lg:M2:7p ’
and
L= 1,
p+r (2.11)
M:M—i—pM' .
where
{L,:Ll/al v r=(aly)/(ay) , (2.12)

M=aM,, M =ay.

19) M. A. Bro1, ibid., 11), p. 360.
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7 is the coefficient of viscosity being defined by

0.,
ot

b= i
(2.13)

S —‘3=77%
911 at b

where t,, is the incremental stress component referred to the co-ordinate
before deformation.

If the deformation coefficients of viscous elements are sufficiently
small compared with the elastic element, namely, if L,>L, and 117./1>M2,
the equations (2.11) become approximately as

[ L=mle (2.14)
M= a, M, .

This approximation will be used in 4 for the analytical evaluation of
the force~displacement relation at the interface.

2.2. Freld equations

Let us consider the case where the initial stress field is given by
S, and S,, referred to & and y axes (cf. Fig. 2.1). S, and S,. are taken
positive when they are extensive. Then the equilibrium equations®” are
given by '

asll.—}-%.—- PQQ:O
ox 0y oy

2.15)
95, 0sn_ p0O _

ox oy ox

)

where P is the difference of initial stress as given in the eguation (2.8),
and @ is a local rotation defined by

w:l(g_;’——%”yi) . (2.16)

Introducing the displacement potential ¢, which is defined by

{“= —04/0y 2.17)
v=0¢[0% ,

we get the field equation of ¢ as

20) M. A. Bror, sbid., 11), p. 38, equ. (6.17).
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¢ Lom 09 120 g (2.18)
oy* 0ytox® ox*
where
{m:<gﬁ—é)/(@+P/2>=(2M—E>[E (2.19)
k*=(Q—P/2)/(Q+P[2)=(L—P)/L .
2
Sae+,422

]
1
]
: Si2 + 412

/
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/ 7
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/ A
/ e
P
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Fig. 2.1. Representation of the initial stresses Si, S, Siz and the ir-
cremental stresses sii, s, s12.  (After BioT)

2.3. Boundary conditions

Let us now consider the deformation due to certain internal forces
which are acting along a plane within an infinite medium. In order to
formulate this as a boundary value problem, let us take this plane as
y¥=0, and separate the medium into region (I) and (II) according to y=0
(cf. Fig. 2.2). For each region, boundary forces are given at this inter-
face y=0. The components of incremental forces acting along the inter-
face are denoted by 4% and 4f{"(i=I,II). Then, these incremental
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boundary forces are obtained from the general expressions of boundary
forces,®” and are

—Afizdfgzsu'*‘})ew—snal
0 (2.20)

’“Af;———_l’ LI:S22 +S226z:c .

y
Region T y >0
X
I_, ﬁ bs

A n ,[i/Afy . y=0
W

RegionI
g y <0

Fig. 2.2. Boundary forces at the interface y=0. (After Bior)

As is seen in this eguation, the condition of stress continuity holds at
the interface y=0.

Since the field of deformation is described by the displacement poten-
tial ¢ the solution is first obtained for the certain displacements which
are given at the interface. Then the solutions are related to the inter-
nal forces by using the boundary force~displacement relation of the
equation (2.20).

2.4. Solutions

We apply Fourier transformation for « to the field equation (2.18).
Then, it becomes

d'¢

dy*

—2me %2; g =0, (2.21)

where ¢ denotes the Fourier transform of displacement function ¢, being
defined by

21) M. A. Bior, dbid., p. 41, equ. (6.27). In this equation, by putting S12=0, (n, x)r=
—x/2, (n, y)r=n, for region I, and (n, ¥)rr=7/2, (n, 2)rr=0 for region II, the equ. (2.20) is
derived.
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86 W) =Flow, v: 0} =|" oo, vye~ed . (2.22)

General solutions of the equation (2.21), which decay at infinitely large
distances, are given in the form of

$1(&, y) = AePrev 4 Be~fatv (2.23)
Gulé, 1) =Ce'Pr 4 Detfr  (Re >0, i=1,2).

A, B,C, and D are arbitrary constants which will be determinated by
boundary conditions. £, and f., whose real parts are chosen as positive,
are the roots of the equation

pi—ompr k=0, (2.24)

and are

(2.25)

{ﬁlzl/m—%l/’n—/?é——:k; (Re £,>0)
po=V'm—Vm*~k (Re £,>0) .

We denote the displacement at the interface y=0 by ,, v, %y, and
¥y for region I and II respectively. Then, the boundary conditions are,
at y=0,

(@, 0)=1u,0(x) , w(x, 0)=v,(x), for region I . (2.26)
Us(@y 0) =Usp(®) ,  Vo(@, 0) =wy() , for region II.

The Fourier transformed boundary conditions are, then, at y=0,

{ﬁl(ir 0)=u(¢) , V. 0)=7,() , for region I (2.27)
Us(€, 0)=WU(§) , Du(&, 0)=7D(6) , for region II,

where notation bar denotes the Fourier transform of a function with
respect to », as shown in the eguation (2.22).

By substituting general solutions of the equation (2.23) into the
equation (2.26) with the equation (2.17), A4, B, C and D are determined.
Thus, we have the solution of displacement potential as

M’ v :m{(ﬁw—iﬂzmww-<aw—imo>e-ﬂzw} w>0),
5511(5, ?/) :m{(ﬁm "iﬂz'ﬁzo)eJrBlw'l‘ (aao‘f‘ iﬁ17710)6+625y} (y< 0) .

(2.28)
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The solutions of displacements are, from the equation (2.28) and
the equation (2.17),

W, y) = —E¢r (2.29)
771(5: y) = '—7’551 !

where the notation prime denotes the differentiation with respect to ¢y,
¢'=04[0(y) . (2.30)
The solutions of strain components are, from the equation (2.29) and
the equation (2.3),
Zuall, Y) = — 8, G y) =8¢
{e-,y@, §)=— G+ - (@31

The solutions of the stress components are, from the stress~strain
relations (2.1), (2.2), and equilibrium equations (2.15),

5(e : y)= —if* [(21\7 ~Q+§)¢’ —(@ + %)gﬁ”'] :

- el AP (6 PN

su( y)=—1 [< @+ Z)Q <Q + 2)(’D :l’ (2.32)
86, y) = —iL[@m+ 1) —¢"],

Sule, 1) = —£Q[s 4+,

where m is given in the equation (2.19). The explicit expressions of
the solutions in terms of displacement, strain components and stress com-
ponents are obtained by substituting the solution of ¢, the equation (2.28),
into the equations (2.29), (2.31) and (2.32). The expressions of the so-
lutions in the original x, ¥ space will be obtained by applying inverse
TFourier transformation to them.

Now, the relations of these solutions to the internal forces are ob-
tained by the internal force~ displacement relation at the interface of the
equation (2.20). We denote the normal and tangential component of the
boundary forces by 7.(¢), 7:(¢), 7.(6) and T,() for region I and II respec-
tively,

By substituting the equations (2.32), (2.31) and (2.29) into the equation
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(2.20), we obtain

R (2.34)
T,= £L{a11u10""<a12+ -—,\—)'1/7710} ’
and
— ) Sa \— _ .__}
%—'LSL{ (am'*‘T)uzo Q921U
o (2.35)
T,= gL{an?/_‘zo‘*“(aqz“}‘ %2 >7:/¢720} ’
where
a'11=181+ﬂ2
a’22:ﬁlﬁz(1@1+ﬂ2) (2-36)

A= [91/92 —1.

These are the equations which give the relations between internal force
and the displacements at the boundary. When the internal forces are
given, the boundary displacements are computed from the equations
(2.34) and (2.35). The displacement field, strain field, and stress field in
terms of the internal force are, then, computed from the equations (2.28),
(2.29), (2.31) and (2.32), by substituting the equations (2.34) and (2.35)
into the equation (2.28). The expressions of the solution in the x~y
space will be obtained by applying inverse Fourier transformation to the
above solutions. The expressions in the time domain will be obtained by
applying inverse Laplace transformation. In the next section, we will
show an example of deformations due to internal force of special forms
which seems to be related closely to the kinematiecs of earthquake
swarms.

3. Deformation due to internal force

Now we will consider such a special internal force that is, like liquid
pressure, acting normally at the interface, y=0, towards both media,
region I and II, (Fig. 2.2). We will assume that there is only the nor-
mal component of the internal force, ¢, and no tangential component, r,
at the interface. The internal force is supposed to be a function of
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co-ordinate = and time ¢, and is expressed by the product of the space
function and the time function.

From the condition of stress continuity at the interface, y=0, we
have the relations

ql(x: t): _qz(xr t):QO(xa t) (3'1)
(@, )= —zalw, £) =0 (3.2)

Suffix 1 and 2 represents the boundary force to the region I and II re-
spectively.

Since the deformations due to such internal force are supposed to be
symmetric with respect to « axis, we have the relations from the equa-
tions (2.84) and (2.35),

Vyo(X, B) = —v50(2, £) =v4(2, t) (3.3)
Uyo(, T) =10(2, 1) =12, t) . (3.4)

Therefore, we will hereafter calculate the solutions in the region I.
The solutions in the region II are obtained by the above relations.

By substituting equation (3.2) into the equations (2.34), we obtain
the relation,

@t SulL) g5 (e 1y (3.5)

11

7/_‘10(5 ’ jD) =

This means that, at the interface, tangential displacement, %,,, is induced
by the normal displacement, 7, and its amount is determined by the
condition of vanishing of tangential force.

Then substituting the equation (3.5) into (2.34), we have

Tl D) =¢L “”“““(‘f;ﬁs”/ L) 5, ) (3.6)
or
ToolE, p)=— oy T, ) - (3.7)

E gy Qs — (G Szz/L) -

These represent the force~displacement relations at the boundary. There,
@y, @y, and a,, are given in the equation (2.36) and are the functions of
B. Since j is the root of the eguation (2.24), we have the relations:

pA=E",




Deformation of an Anisotropic Visco-elastic Medium 1637

and
Bt Ba=1"2(m+ k) , (3.9)

where, m and k are, as given in the equation (2.19), functions of defor-
mation coefficients and initial stress. Thus, from the equations (2.36),
(3.8), and (3.9), we have

=1/ 2m+ k) = +/2{@M — L)/L+ /(L —P)/L)
tn=lV 2+ k)= (L—P)JLA 2{@M—L)/L+ \/ (E—P)/L} (3.10)
tp=l—1=A/(L—P)/,—1.

As a limiting case, when the initial stress is reduced to zero, these
coefficients approach to a,—0, 4y =a,—2,/N/Q. Therefore, the equation
(3.6) is greatly simplified to

Tu(é, D) =2t/ NQiT,(2, 1) . (3.11)

This is the force~displacement relation without the initial stress.

In order to make analytical examinations for the force~displacement
relation, let us derive an approximate expression of the equations (3.6)
and (3.7) for a moderate initial stress and for media which contain suffi-
ciently weak plastic elements. If we assume P/L <1, that is, the amount
of initial stress is sufficiently small compared with the deformation coeffi-
cient of the elastic elements, and also assume M ~ L, that is, the values
of anisotropic elastic constants of the materials are of the same order,
by neglecting the terms of the second order of P/L, we have approxi-
mate expressions for the equations (3.6) and (3.10),

Tulé D) =81 ] f—ﬂ%]ﬁw(s, ), (3.12)
where
a=2+/M{1—(P/4]T)}
=/ MP (3.13)
r={1—(P/8M)} .
As is seen in the above equations, the second term of the equation (3.12)
is due to the effect of initial stress P.

By substituting the deformation coeflicients of the equation (2.14)
into the equation (3.12), we have finally
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7ule, D)=t [ VP 0= [t ) (3.19
or
(4, p)—ﬁ( =95 Q'w(E D), (3.15)
where
{“EWW Vialet (3.16)

0="P/(y/es) .

These equations represent the force~displacement relation in the
transformed space. The relations in the original space are obtained by
applying the inverse Laplace transformation with respect to time ¢ and
the inverse Fourier transformation with respect to space . By applying
the inverse Fourier transformation to the equation (3.14), we have

q\lo(xr p) ZF_l{(?w(E, p)} ’ (3‘17)

where

F—lzigwe-ﬂfrd};‘ .

T

When the deformation and the internal force are given by a single
harmonic element, being denoted by

27[’!)
= (3.18)
(o, ) = o, (3.19)

where & is the wavelength of the harmonic element, the equation (3.17)
becomes

Go(p)——[V p —0 1/*] Bo(p) « (3.20)

By applying inverse Laplace transformation to the equations (3.17)
and (3.20), we have
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{‘ho(x: t) :L_1°F_l{qm(5, p)} [} (3 21)
_T7—=1)A 27:9’/‘ :
q(Z,t)=L {qo(p) c0s =2 } ,
where
1 ctjoo
L—IE_,§ edp . (3.22)
TVJe—do

In a similar way, we have

vy(2, 1) =L FY,&, p)},

v, ) =L {ﬁo(p) cos ?_Z.} , (3.23)

The equation (3.20) is approximate relation between the internal
force and displacement at the interface of an anisotropic viscoelastic
media under initial stress, and valid for moderate initial stress and for
media of weak plastic elements.

In the following sections, we will examine the time function of the
force~displacement relation in connection with the development of
earthquake swarms. The evaluation of the spatial distribution of defor-
mation will be left for further treatment.

4, Numerical examples of internal force~displacement
relation in the time domain

In this section we will obtain the displacement responses for several
types of internal force in the time domain. And also we will obtain the
patterns of internal force which are necessary to produce the given
modes of deformation. The calculation will be made for the approximate
force~displacement relation of the equations (3.20), (3.21), and (38.23).
The responses, therefore, are limited for a single harmonic element of
the deformation, and also for a special type of the medium which is
composed of laminations of very hard elastic elements and very soft
viscous elements as described in 2.

Case I: q(t)=q.H(?)

H(t) E{O (¢<0) (4.1)
1 (¢>0)

This is the case where the internal force is suddenly applied in the
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form of step function. g, is the constant of its amount. The Laplace
transform of the equation (4.1) is given by

00) =g~ (4.2)
D .
Substituting the equation (4.2) into the equation (3.20), we have

i (p) =L, 1
Vo(p) = v 4.3)

By applying inverse Laplace transformation®” to the equation (4.3),
we have

2(t) :%5—1/%%]”(1/%) , (4.4)

where Erf is an error function defined by

Erf(w)= 1/27S:e—x2dx . (4.5)

For the convenience of numerical representation, we will introduce para-
meter i, ¢, t; and £ defined by
t,=1/20=(p/c;)/2P ,
t'=t/t,, (4.6)
A=t ft, .
These parameters may be called as t,: critical time, ¢: non-dimensional

time, t,; reference time, and /: coefficient of initial stress effect. Then,
the equation (4.4) becomes

wlt) = 'ﬁq" A (4.7)

[

where

"y — 7 1/2)Bt’ ]_——,
A(t)'\/ge( P ETf(\/—z‘ﬂt ) )
1/8,=Vt,/12V' M, V7. , (4.8)
M,=a,M,, 7.=7/c, .

29) A. ERDELYI et al., Table of Integral Transforms, Vol. I (MeGraw-Hill, 1954), p.
233.
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An approximation of this eguation for small values of 5¢° is obtained
as

()= i‘h : VL{V?{H%M} . (4.9)

The rate of displacement is obtained from the eguation (4.3). By multi-
plying parameter p for both sides of the equation (4.3), we obtain

pv(p)z% : (117/3) . (4.10)

Since the term pwv(p) is the Laplace transform of the rate of displace-
ment, dv/dt=7(t), the Laplace inversion®® of the eguation (4.10) results
in

! _%q | e 1 1 St }
)= £2 5 {1 S B (/) (4.11)

By using the parameters of the eguations (4.6) and (4.8), we have

. _ %q, /
w(=E0B() (4.12)
where
—_ ﬁ 1/2)8t’ 1
B(t) =ty Eover (L ). (4.19)

An approximation of this equation for small values of ¢’ is also obtained
as

olt) = ;“g o 1/__{1+/?t} (4.14)

In Fig. 4.1 is shown the responses of the displacement v and the
rate of displacement ¢ as functions of non-dimensional time ¢ =t/t,, cal-
culated from the exact equations of (4.7) and (4.12). The units of v and
¥ are taken as £.q,/S, and (£/t,)-(q,/S,) respectively. It is noticed in
these figures that, corresponding to such a step type of internal force,
the displacement starts to build up and continues to develop, the rate
of deformation being at its maximum at the beginning and decreasing

23) A. ERDELYI et al., ibid., 22), p. 235.
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gradually. The characteristic feature of the continuous progress of de-
formation with gradual fall in its rate is due to the effect of the visco-
elastic property of the medium.
of the deformation rate is approximately proportional to 1inWV'e.

1t will also be noticed that the decrease

10.0 I
q=g.H(t)
] Bre
\Y
oo P (A)
-0,
/éﬁ’;oj,/
%
o) | t'= t/to 2 3 4
50
. M (B)
\
a //&9‘6—’_/
B=02
(e} i t/__: t/to 2 3 4

Fig. 4.1. Responses of the displacement v and the rate of displacement ¥ at the
boundary due to the step type internal force ¢. The units of v, and ¢’ are taken
as non-dimensional values, being =qo/So, 2qo/(Soto), and t/t, respectively.

meter B=to/t. represents the amount of initial stress.

The para-

The effect of initial stress appears in the later stage of deformation
in such a way that the deformation tends to develop with increasing
time rate as is seen in Fig. 4.1 for the larger values of 3. This character-
istics may find some correspondence with the creep buckling of rock

deformation under a constant loading.
q(t)=q{H(t)—H({t—7)}
0 <z
1 t>7

Case II:

H(t——z')Z{

(4.15)

This is the case where a constant internal force is applied for a

finite duration =.

The responses of displacement v and its rate v are

obtained from the responses of case I as having such differences as
771o(t) _v(t '—T), 7}10(t) —-?)(t—‘r).
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In Fig. 4.2 is shown an example of this case, the period of duration
r being taken as r=0.1 and 0.5. As is seen in the figure, when the du-
ration of the force is short com-
pared to i, deformation decreases
as the internal force disappears.
This will represent the recovery of __|
elastic deformation under the resis-
tance due to viscous elements. *°

However, the displacement does not )2
show complete recovery, remains as Vv
a permanent deformation, which is

due to the viscous property of the *

medium.
Case III: \.\\\.__
— 1/7 o] 05 1.0 L5
9(t)=aua+ 1) Ta —
_ Fig. 4.2. Responses of the displacement
=qo(a-+1)1/ t_01/ t due to a constant internal force of finite
t+a duration . Solid line is for r=0.5, and

(a=aft, t'=t/t,) (4.16) broken line is for =0.1.

This is the case where the internal force continuously develops and
dies out. The function forms of the equation (4.16) are illustrated in
Fig. 4.3-(A). These curves represent various patterns of time function
according to the value of the papameter a. The coefficient ¢,(¢+1) in
the equation (4.16) is taken as such a normalization that the value q(?)
should have the value ¢, at £ =1. When a=0.1, the function represents
a pulse-like force. When a=10.0, it represents an almost linearly in-
creasing time function. When ¢=1.0 and ¢=0.5, it represents forces
which suddenly build up and hold a nearly constant value. Therefore,
we shall be able to examine the characteristics of deformations by this
single function for several kinds of internal forces.

The Laplace transform of the equation (4.16) is given by?*"

q(p):qo(a-}-l)\/t_g[ %——nV??e“PErfc(l/@)] 4.17)
where Erfc(x) is defined by
Erfe(w)= V2_§”e~ﬂdx. (4.18)

24) A. ERDELYI et al., ibid., 22), p. 136.
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Substituting the equation (4.17) into the equation (3.20), we have

() = LDV TV 7 1 mp e Erf/ap)] . (4.19)
a'(p—0)

By using the convolution formula in the Laplace inversion® of the
equation (4.19), we have

ot)=% qo(a’z:,lﬁ/ﬁStH(t-—r)e‘w—”(l/Z)l/-07(2'+0()—3/2df. (4.20)

After a little calculation, with some approximations for small values of
J6t, we arrive at

x [1+éﬁ(t’+a){l-< t,ia>l’2}+()(ﬁﬂ)]. (4.21)

The response of the rate of displacement is also obtained for small
values of ét,

=55 (NG R ] e

These responses are shown in Fig. 4.83-(B) and (C). It will be interes-
ting to notice several special features in these curves.

¢=0.1: When the internal force suddenly builds up and then de-
creases with gradual fall, the displacement starts to increase approaching
gradually to a certain value. On the other hand, the rate of displacement
7 decreases very rapidly. It is interesting to notice that there is such
a state of deformation where the displacement continues to increase even
though the internal force gradually turns to decrease.

a=10.0: When the internal force shows an almost linear increase,
the displacement also shows a similar increase, the rate of displacement
showing an almost constant value.

¢=1.0 and 0.5: When the internal force starts to build-up to a
certain value, the displacement shows a little slower build-up, the rate
of displacement gradually decreasing.

As seen in the above cases, for such internal forces, the displacement

25) A. ERDELYI et al., ibid., 22), p. 131 and p. 267.
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(A)

(B)

30

20

or

(C)

0

Fig. 4.3. (A) The patterns of internal forces which are represented by the equation

g=qola+1)v #/(t’ +a), for a=0.1, 0.5, 1.0, and 10.0.

(B) Responses of the displacement for the internal force of (A). The unit of v

is \/;r— yQQ/So.

(C) Responses of the rate of displacement for the internal force of (A). The

unit of % is (V' 7/2)sqo/(Seto). This curve is also read as the frequency 7 of the small
shock occurrence in earthquake swarms as functions of non-dimensional time ¢’.

Solid lines are for 8=0.1, dotted lines are for 53=0.
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always increases, the rate of displacement decreasing. The gradient of
the rate of displacement depends upon the mode of action of internal
force. The rate of displacement easily decreases even though the inter-
nal foree increases in the initial stage of deformation. Therefore, there
is the necessity for some development of the internal force to increase
the rate of deformation. Let us now examine the patterns of necessary
internal forces for given modes of deformations.

Case IV: v=2,H(t) (4.23)

This is the case where the deformation starts with a constant rate
%, The displacement associated with this case is of linear increase,

v(t):{o <0 (4.24)
b >0
The Laplace transform of the eguation (4.24) is
41
v(p) =V - (4.25)
P

Substituting the equation (4.25) into the equation (3.20), we have

o ad[ = 17,1
qo(p) = 5{[1/ p —0 Vg]vopz. (4.26)

Applying the inverse Laplace transformation*” to the above equation,
we have

St . 2 { e 1 ’
fy= Soboy 2 Vt(l——t)}. 4.27
In Fig. 4.4 is shown the curves of ¥, v, and ¢ as functions of t'=t[t,,
for the value $=0.3. As expected, the amount of the internal force,
which is necessary to hold the constant rate of deformation, gradually
increases.

Case V: v ="0,{H(t)—H(t—7)} (4.28)

This is the case where deformation develops at a constant rate for
a finite duration of period r. The displacement associated with this case
is

26) A. ERDELYI et al., ibid., 22), p. 235.
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v(t) =vt{H(t) — H(t —7)} . (4.29)

The pattern of internal force which is necessary to produce such a
deformation is given by the difference of the forces of the case IV which
are separated by the period r, being
shown in Fig. 4.4 by solid and
broken lines. As the rate of defor-
mation vanishes, the internal force
suddenly begins to decrease and -
continues to decrease with gradual V
fall in its rate. This pattern may
find a correspondence to the stress
relaxation in rock deformation un- gy -
der a constant displacement. -

Case VI: 05 A\

q}(t):@o(a+1)2{{_i AVt \ \\

t+a A\ T~

| S.2<

(A=0(a+)V't,, a=aft, t'=t/t,)
(4.30)

This is the case where the rate
of displacement continuously in-
creases and gradually begins to die
out. 7,is a certain constant which

[0} 0.5 1.0 R
t'= 1/t

Fig. 4.4. The pattern of displacement v
and internal force ¢ which corresponds to
the constant rate of deformation %, which
is computed by the equation (4.27). The
unit of the internal force is (2/v 1 )Sstoo/

. The parameter B is taken as 5=0.3.

represents the value of ¢ at ¢’ =1.0.

These patterns are illustrated in Fig. 4.5-(A) for several values of para-
meter a. The displacement associated with this rate is obtained by
integrating the equation (4.80), which becomes

v(t)=24[V't —1V a tan"V'T/a] . (4.31)

The curves of displacements of the equation (4.81) are illustrated in
Fig. 4.5-(B). There are not many differences in the forms of the dis-
placement even though there are many differences in the forms of the
rate of displacement. This feature will be easily understood by the re-
lation that v is only the time gradient of the displacement v. Now, let
us derive the differences of the internal forces which are necessary to
bring about such differences in 9 as in the equation (4.30).
The Laplace transform of the equation (4.30) is given by
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po(p) :A[\/ 5 V@ e Brfe(V @) ] : (4.32)

Substituting the eguation (4.32) into the equation (3.20), we have
~ a'A_ ,— —_— S
pQO(p) :7]/ T [{l —1/7zap e pE’)"fC(l/ ap)}

eom

1 S, S
—5{~—1/ 22 Erfe/ap }} . 4.33
» Vo ) (4.33)
By applying the inverse Laplace transformation® to the above equation
(4.33), we have

X0 :%[%1/ @ (t+0) 12— SH(E) + 1 @ (t+ a’)*’“] . (4.34)

Integrating the equation (4.34) with respect to time ¢, introducing non-
dimensional time ¢’, we have

o e o

a
(4.35)

under the initial condition
q,(0)=0 at t=0. (4.36)

In Fig. 4.5-(C) are illustrated the patterns of ¢ for several values of
the parameter a, and f.

2=10.0: When the rate of displacement shows almost linear in-
crease with time, the internal force should also increase almost linearly
with time. .

a=0.1: When the rate of displacement suddenly builds up to a
certain value being followed by a gradual decrease, the internal force
should also build up rapidly. It is noticed, however, that the internal
force continues to increase even though the rate of deformation begins
to decrease. In the later stage of deformation, after reaching some
maximum value, the internal force gradually decreases.

This is an effect of initial stress. When the value of the initial
stress is large, the decrease of the internal force appears from the
earlier stage of the deformation. This feature is shown in Fig. 4.6,

27) A. ERDELYI et al., ibid., 22), p. 267.
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where the internal forces necessary to produce such deformation are
shown with respect to several values of initial stress; ie. f=t,/(7./2P)=

20
V/Vo o.l
[
n 0.5 &
of o (A)
- -\
\.
/ono.
/ ¥=1/to
(o] a5 1.0 1.5 2.0

o) /
05

(B)
02
/

60
5=
0 05 10 15 2.0
10—
q
0.5
[o] 0.5 1.0 15 20

Fig. 4.5. (A) The patterns of the rate of displacement which are represented
by the equation (4.30). The unit of ¢ is taken as .
. (B) The patterns of the displacement which correspond to the rate of defor-
mation (A). The unit of v is 2dt,.
(C) The patterns of the internal forces which are necessary to produce the
above patterns of displacement and the rate of the displacement. The unit of ¢
is Sotovo/<. The solid lines are for =0.1, the dotted lines are for B£=0.
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0.1, 0.5, and 1.0.

a—=1.0 and 0.5: When the rate of displacement starts to build up
approaching to a certain value, the internal force should also increase
but at a slower speed than with the case of a=0.1.

Thus, from the above examples, it will be evident that the internal
forces are required to increase as far as the rate of deformation increases.
On the other hand, a decrease in the rate of deformation does not always
mean a decrease of the internal force. Whether the internal force de-
creases or not is reflected upon the decreasing rate of the rate of de-
formation, and is also controlled by the amount of the initial stress.
The effect of initial stress works so as to reduce the amount of the
internal force which is necessary for producing the given mode of defor-
mation.

[¢] Qs LO L5 .0

t'=t
Fig. 4.6. The internal forces ¢ which is necessary to produce the deformation

with its rate 9=ta+1Dv T/’ +a), (a=0.1). B=to/t:=ts/(7/2P) represents the effect
of initial stress. The unit of ¢ is Setoto/=.

5, Development of earthquake swarms

In the preceding sections, we have derived the deformations of an
anisotropic visco-elastic medium, which is composed of purely elastic
elements and weak plastic elements, due to internal force under initial
stress. The next problem is to find the relations between these kinema-
ties and the activities of earthquake swarms.

The terminology of “earthquake swarm” is used, according to Ma-
TUZAWA®®, to mean the sequence of earthquakes taking place in a certain
limited range of time and space. As regards the range of time and

28) T. MATUZAWA, Zisin-gaku (Kadokawa-shoten, 1950), p. 248.
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space, however, there are several different views. In the narrowest
sense, as is seen in RICHTER’s book®”, it is used to mean one of such
classifications as foreshocks, aftershocks, and earthquake swarms. In
this sense, the earthquake swarms are defined as a long series of large
and small shocks with no one outstanding principal event.

On the other hand, IsHIMOTO™ and KISHINOUYE®™ have presented
further views that the concept of earthquake swarm could be used in
another wider sense, including foreshocks and aftershocks. ‘This is ke-
cause of the idea that the genesis mechanisms of such are thought to be
the same, being characterized by the crustal deformation.

In the broadest sense, the terminology is used by TERADA.*® He
has shown that the activities of earthquakes in the ecentral part of Japan
over several tens of years, having the great Kanto earthquake in 1923
at its centre, can be regarded as an earthquake swarm. In this paper,
we will use the terminology of earthquake swarm in the sense of IsHI-
MoTo and KISHINOUYE.

The activities of earthquake swarms will be marked by the rise and
fall in the frequency of small shock occurrence and also in the magnitude
or energy. In this paper, we will consider the frequency of small shocks.
As regards the development of larger shocks, it will be left for a fur-
ther treatment.

Now let us consider the relation between frequency of small shocks
of earthquake swarms and the deformations of the medium. It might
be natural to suppose that occurrence of small shocks is related to that
of dislocation within the earth’s material as stated in 1. Any small
shock will be considered to correspond to the sudden occurrence of a
small slip which might have resulted from migration and accumulation
of numerous dislocations which are produced by some other causes.
Therefore, we shall be able to assume, as the first approximation, that
the frequency of occurrence of small shocks is proportional to the time
rate of dislocation genesis.

Let us denote the frequency of ocecurrence of small shocks by #,
which is defined by the number of small shocks per unit volume per a
certain time interval during which the shocks are counted. The dimen-
sion of the frequency is number/cm®/sec. Let us also denote the time

29) C. F. RICHTER, Elementary Seismology (W. H. Freeman and Company, San Fran-
cisco, 1958), Part I. Chap. 6.

30) M. IsmmMoTo, loc. cit., 2) and 3).

31) F. KISHINOUYE, loc. cit., 4).

32) T. TERADA, loc. cit., 1).
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rate of dislocation genesis per unit volume by the rate of dislocation
density p. The dimension of the dislocation density p is number of
dislocation/em®. Then our assumption is written in the form:

n=cp, (6.1)

where ¢ is a proportional constant of which dimension is em™.

Since it is shown in the theory of dislocation that there are some
relations between dislocation density and deformations of the media, we
shall be able to relate the frequency of earthquake occurrence % to the
deformation of the medium. As a relation between dislocation density
and deformations, we will use such a relation that the density of edge
dislocation needed to produce a given bending deformation is inversely
proportional to the radius of curvature » of the deformation,

1 1

p== = (56.2)
b r
.
_ r— where b is Burgers vector, a
- unit of dislocation (cf. Fig. 5.1%%).
<\\\ Since the radius of curvature is
\\\\\ related to the displacement v by
the geometrical relation,
Fig. 5.1. The density p of edge disloca- i: ﬂ} , (5,3)
tions in plastic bending is given by p=1/(r-b). r dax?
After C .
(After COTTRALL) we have the relation
., ¢ |d¥®
N =— s 5.4
b | da? 6-4)

where ¥ denotes the rate of deformation, v=dv/dt.
When the deformation is given by a single harmonic component,
V=1, cos (2nx)/Z, the relation (5.4) becomes

2 JEP
ﬁ:i( 27 ) ‘ Do cosz“a'
b\ 4

, (5.5)

where ¥ is the wave length and v, is the amplitude. These are the
relations which connect the frequency of small shocks with the defor-
mations of the media.

33) A. H. CorTrELL, Theory of Crystal Dislocations (Gorden and Breach, 1962), p. 29-
30.
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From equations (5.4) and (5.5), it can be said that the frequency of
small shocks is proportional to the rate of deformation as far as the
time sequence is concerned, and it is also proportional to the curvature
of the deformations as far as the spatial distribution is eoncerned.

Using the relation (5.5), the curves of % in Figs. 4.1~4.6 in 4 can
be read as being those of #. Thus, the schematic representation of the mu-
tual relations among the three factors, frequency of small shock occurrence,
deformation, and internal force, is obtained and presented in Fig. 5.2.
From these figures, let us now examine the special features in the mode
of development of 7 for the given types of internal foree, and also in
the mode of internal forces which are necessary to produce the given.
developments of earthquake swarms.

Case A: The internal force is suddenly applied and is held nearly

constant. (Fig. 5.2. D)

This case corresponds to case I and the ¢=0.5 and 1.0 of case III
in 4. The developments in the frequency of the earthquake swarm for
this case are also presented in Fig. 4.1. (B) and Fig. 4.3. (C). The curves
which are obtained for the rate of deformation are also the curves for
the frequency of the small shocks of earthquake swarms because of the
relation (5.5). As seen in these figures, the frequency of small shocks
decreases with time. The form of its decay function is proportional to the
inverse square root of time at the early stage. It is interesting to note
that the frequency of small shocks decreases even though the internal
force is held nearly constant.

The corresponding displacements are seen in Figs. 4.1. (A) and 4.3.
(B). As seen in these figures, the displacement starts to build up rapidly
and continues to develop with a gradual fall in its rate. The decrease
of frequency of small shocks with time is, therefore, due to nothing but
the decay of the speed of deformation.

The amount of deformation js computed from the equations 4.7),
(4.6), and (38.16) by taking into account those numerical values which
are the average elastic constant of the elastic elements «,M,=10" dynes/
em?, the average viscous constant of plastic elements 7/a,=10* dynes/cm?/
sec, the wave-length of the harmonic element & =5x10° cm, the reference
time ¢,=100days=0.86x10"sec, and the initial stress p=100 bar=10
dyne/cm®. From equations (4.7), (4.6), and (3.16), we have

N Gy g
v(t)_m A(t). (5.6)
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Substituting the above numerical values into equation (5.6), the value of

v is computed.

Table 1.

Qo being computed from the equation (5.6).

In Table 1 are shown the values of v at t'=1 for several

(A) The amount of the displacement v at the boundary
one year after the application of a step type internal force

(B) The

critical time t,=»/P as functions of viscosity 7

and initial stress P.

(A) (B)

v1(t=1 year) te

7
qo=100 bar 90=10 bar go=1 bar P=100 bar P=1bhar

1022008 | 2—3mm 0.2—0.3mm | 2—3x10~2mm| 3x10orear 3 10#vear
1020 2—3x10! 2—3 2—3x10-1 3x10¢ 3x102
1018 2—38x102 2—-3x10t 2-3 3x102 3
1016 2—3x103 2—38x102 2-3x10! 3 3x10-2
1014 2—-8x10¢ 2—-3x103 2—-3x102 3x10-2 3x10-4

values of viscosity, which range from 10* to 10" (cGs), and for internal
force of 100 bars~1bar. As is seen in the equation (5.6) and in Table
1, the amount of v is proportional to ¢, and also to the inverse square
root of the average viscosity of the plastic element. In Table 1, the
value of the critical time ¢ ,=#/P is also shown as functions of the
viseosity » and the initial stress P.

It is seen in the table that the deformation of the order of several
hundreds of mm per year is produced by the internal force of 100 bars
when the value of the average viscosity is of the order of 10* cGs.
When the internal force is as small as 1 bar, the viscosity should be as
small as the order of 10 c¢Gs in order to produce a deformation of the
same order.

Case B: The internal force gradually increases.
and C.)

This case corresponds to the case a=10.0 of case III and case VI
of 4. The development of the frequency of small shocks for this case
is represented in Fig. 4.3 (C) for a=10.0 and in Fig. 4.5 (A) for ¢ =10.0.
The frequeney of small shocks gradually increases as the internal force
increases in the case of Fig. 4.5 (A), but it is not so in the case of
Fig. 4.3 (C). Whether or not the frequency of the small shocks increases
depends upon the rate of deformation.

Case C: The internal force rapidly builds up and is followed by a

(Fig. 5.2. A, B,
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Fig. 5.2. The schematic representation of the mutual relations among the
frequency of small shock occurrence 7, deformation v, and internal force gq.
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relatively rapid decrease. (Fig. 5.2. E)

This case corresponds to the case a=0.1 of case III in 4. As is
seen in Fig. 4.3. (C), the frequency of the earthquake swarm is
maximum at the beginning of its activity. The frequency then gradually
decreases with time. The form of its decay function is proportional to
1/(t+a)** in the ranges where the effect of internal stress is sufficiently
small. Incidentally, the decay function of this case seems to be closely
related to that of aftershocks. In order to examine the coefficient of the
time exponent, the curves of frequency are plotted in log-log scale as
shown in Fig. 5.8. Dotted lines show the case where the initial stress
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Fig. 5.3. The frequency of small shock occurrence as a function of
non-dimensional time t'=t/t,, which is computed from the equation (4.22).
The dotted line shows the case of initial stress free. The solid line shows
the case $=0.3.

is zero. It is seen in this figure that the exponent of the decay function
depends upon the values of a and the values of initial stress. When
a=0.1, % is approximately proportional to ¢=** for ¢'>0.1, and when
a=0.5 and 1.0, 7 is approximately proportional to t=** for ¢'>0.1. Thus
the exponent of the decay function depends upon the way the internal
force is held. According to Utsu,*” the time sequence of aftershock is

34) T. Ursu, Geophys. Mag., 30 (1961), 546.
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represented by the formula

, A
=
(t+c)?

where A and ¢ are constant and p ranges from 1.0 to 1.3 for destructive
large shocks. Therefore, the time sequence of aftershock seems to cor-
respond to the case when the internal force vanishes very rapidly and
the effect of initial stress is very small.

Next, we will examine the forms of internal forces which are needed
to produce given types in the frequency of small shocks in earthquake
swarms.

Case D: The frequency of small shocks is nearly constant. (Fig.

5.2. B.)

This case corresponds to case IV and the case of a=0.5 and 1.0 of
case VI of 4. As is seen in Fig. 4.3. (C) and Fig. 4.4, the internal
force associated with such a pattern of frequency is an almost linearly
increasing one. The deformations continue to grow-up as seen in Fig.
4.3. (B). Therefore, when the small shocks continue to occur with almost
constant frequency, it does not mean that the activity of the earthquake
is stationary, but that the internal force is increasing and the deformation
is in progress at a constant time-rate.

Case E: The frequency of small shocks increases with time. (Fig.

5.2. A))

This case corresponds to the initial stage of case VI in 4. In this
case the internal force also increases with time. Asis seen in Fig. 4.5,
the rate of increase in fregquency is controlled by the time function of
internal force and the value of viscosity.

Case F: The frequency of small shocks decreases with time. (Fig.

5.2, C, D, and E.) '

This case corresponds to the later stage of the case a=0.1 of case
VI in 4. As is seen in Fig. 4.5 for a=0.1, the internal force does not
necessarily decrease. On the contrary, the force continues to grow-up
for a while with gradual fall in the rate of development. Therefore,
there may be the case when the maximum internal force will appear
after the maximum frequency of small shocks has passed. In such a
case, the deformation may chance to meet the condition where the rate
of internal force reaches zero under the continuous development of the
deformation. In such a state of deformation, if its speed is kept con-
stant, a part of the strain energy which is stored in the elastic elements



1658 S. NAGUMO

of the medium may be radiated. This is one of the conditions of failure
of elastic-plastic deformation as shown by JOHNSTON and GILMAN®.

As regards the development of the deformation in this case, the
decrease in frequency of small shock occurrence only means the slowing
down of the speed of development of the deformation. Therefore, the
cessation of the development of deformation will be indicated in the cessa-
tion of the small shock occurrence.

6. Considerations on a kinematical process of
earthquake swarms

In the preceding sections we have derived the mutual relations
which are expected among the frequency of small shock occurrence, de-
formation of the medium, and the internal forces acting at the interface
in the process of the development of earthquake swarms. Since these
relations are derived from a mathematical analysis of a hypothetical
model under several restrictions, the confirmation of the existence of
such relations in nature should be handed to the observations of the
phenomena which are really taking place in nature. For the convenience
of such comparisons, it would ke worthwhile making a brief sketch, as
a summary, of the kinematical process and its characteristic features of
earthquake swarms.

Outline of the process:

Firstly, we have assumed that the media, within which the activities
of an earthquake swarm are taking place, are visco-elastic ones, being
composed of elastic elements and weak plastic elements. They are also
assumed to be initially stressed. For simplicity, it is also assumed that
the media are infinite, incompressible and the deformation restricted in
plane strain, the principal initial stresses acting in the directions of the
co-ordinates.

Under these conditions, if there is no additional internal force, no-
thing seems to happen except the buckling instability. This feature
will be noticed in connection with the condition of the commencement
of an earthquake swarm. If one does not need the presence of some
internal force for such a commencement, one should take into considera-
tion either buckling phenomena or some other alternative mechanics.

When a certain internal force begins to act at a plane interface in
the medium of infinite extent, the deformation starts to develop. The

35) W. G. JouNSTON and J. J. GILMAN, Jour. Appl. Phys., 30 (1959), 141
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mode of such development is determined by the mode of action of inter-
nal force and the visco-elastic properties of the medium as solved in 3
and 4. As the plastic deformation develops, it produces numerous dis-
locations within the medium, and these are supposed to result in a finite
number of small slips accompanied by small shocks (5). In such ways,
the number of small shocks is thought to be related to the plastic de-
formation of the medium, and also to the activity of the internal force.

Frequency of small shock occurrence versus deformation :

As stated in 5, the frequency of small shock occurrence in an earth-
quake swarm is considered to be proportional to the rate of deformation
as far as the time sequence is concerned, and also proportional to the
curvature of deformation as far as the spatial distribution is concerned.
Therefore, the occurrence of small shocks in the earthquake swarm is
thought to indicate that deformation is in progress, the larger values of
frequency being considered to indicate a higher speed of deformation.
The increase in the frequency indicates that the progress of deformation
is accelerating, and the stationary values in the frequency indicate that
the rate of deformation is almost constant. The decrease in the fre-
quency indiecates that the speed of deformation is slowing down.

The frequency of the small shock occurrence will be represented by
the number of small shocks per day or per hour according to the time
scale. However, since the occurrence of small shocks in the earthquake
swarm is not uniform in the time sequence, there is some ambiguity
about the mean value of the rate of occurrence when the freguency is
represented by the daily number of occurrence. Therefore, the total
number, i.e. the accumulated sum, of the small shocks will be also the
other measure of the above relation, and is expected to ke proportional
to the total amount of the deformation.

IsHiMoT0*® and KISHINOUYE™ have already put forward the views
that swarm of earthquake is the phenomena which are caused by a
crustal deformation, in connection with the mechanism of the Ito earth-
quake swarm. The kinematical processes treated in this paper are not
only in accordance with their views but also place an emphasis upon the
dependence of frequency of small shock occurrence to the rate of defor-
mation.

Frequency of small shock occurrence versus internal force:

Since the frequency of small shock occurrence is considered to be

36) M. IsHIMOTO, loc. cit., 2) and 3).
37) F. KISHINOUYE, loc. cit., 4).
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caused by the deformation of the medium, and since the deformation is
supposed to be caused by the internal force, the rise and fall in the
frequency of small shock occurrence is supposed to be a reflection of the
activity of the internal force. When the frequency increases or is sta-
tionary, it is thought to indicate that the internal force is increasing.
Even though the frequency begins to decrease, it does not always in-
dicate that the internal force also begins to decrease. Whether the in-
ternal force decreases or not is reflected on the rate of decay curve in
frequency. When the internal force begins to decrease very rapidly,
the exponent of decay function of frequency will be proportional approx-
imately to 1/(t+a)**. When the internal force is held nearly constant,
decay function of frequency will be proportional to 1/1/¢.

Viscosity :

There is another interesting feature regarding the viscosity of the
media in connection with the speed of deformation. As is seen in Table
1, when the value of the viscosity is =10 cGs, the speed of the de-
formation is about 2~3 mm/year for an internal force of 100 bar. This
value of the deformation is of the same order of the crustal deformation®
due to its tectonic origin. The value of 7 =10, which is derived from the
postglacial uplift of the Fennoscandia, will be considered as a normal
value of the earth’s crust. Therefore, even though the internal force
of about 100 bar is acting at a certain interface in the medium, the
speed of the deformation is of the same order of that of tectonic
movement as far as the viscosity of the medium is held as the value
»=10" cGS. On the other hand, the speed of crustal deformation
accompanied by earthquake swarm is reported as being as 0.75 mm/day
by TsuBor® in the It6 earthquake swarm of 1980. Therefore, in order
to account for such a high speed of crustal deformation, the value of
the viscosity should deecrease approximately in the order of about 103~
10—* for an assumed internal force of about 100 bar.

It will be very interesting to notice that the reduction of the value
of the viscosity is needed for the development of earthquake swarms.
Such reduection of the viscosity will naturally be anticipated in the pro-
cess of earthquake swarms if one accepts the viewpoint of the thermo-

38) A. OxapA, Bull. Earthq. Res. Inst., 40 (1962), 431-493.

39) A. E. SCHEIDEGGER, Principles of Geodynamics, 2nd edition (Springer, 1963), p.
157.

40) C. Tsusol, Jap. Jour. Astr. Geophys., 10 (1932), 103.
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dynamical activities for the process of earthquake genesis. For instance,
the viscous properties of clayey materials, which develop along
discontinuities in rock masses such as fractured zone, fissures, weathered
unconformities, ete., may easily be changed by conditions of temperature,
internal pressure, chemical reactions, etec. Such conditions may very
likely be changed by the intrusion of magma, or the permeance of
magmatic steam and gas into the earth’s crust.

7. Summary and conclusions

As a possible kinematical process of earthquake swarms, the process
of deformation of an anisotropic visco-elastic medium due to internal
force under initial stress is considered.

The kinematical process is formulated and solved as a boundary
value problem by the method developed by BioT. Several relations are
derived for the mutual relations among the deformation, rate of defor-
mation, and the internal force.

Then the process of deformation is related to the activity of earth-
quake swarm by assuming that the small shocks of earthquake swarm
are accompanied by the plastic deformation of the medium. The assumed
relation is such that the frequency of small shock occurrence is Propor-
tional to the speed of the deformation as far as the time sequence is
concerned, and to the curvature of the deformation as far as the spatial
distribution is concerned.

Using these assumptions, the characteristic features of the develop-
ment of earthquake swarms are examined for the mutual relations among
the frequency of small shock occurrence, the process of deformation and
the mode of internal force. The main results obtained are as follows:

(1) The presence of small shocks in the earthquake swarm is
thought to indicate that the plastic deformation of the medium is in
progress. Such small shocks continue to occur as far as the plastic de-
formation of the medium continues to progress.

(2) The increase in the frequency of small shock occurrence is
thought as being an indication that the progress of the plastic deforma-
tion is accelerative.

(3) When the frequency of small shock occurrence is stationary,
the plastic deformation is thought to increase almost linearly.

(4) When the frequency of small shock occurrence decreases, the
speed of plastic deformation is thought to be slowing down.

(5) When the internal force is held stationary, the frequency of
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small shock occurrence decreases, its decay function being proportional
to ¢4,

(6) When the internal force begins to decrease very rapidly, the
frequency of small shock decreases by the time function which is pro-
portional to (t+a)~**. This case may correspond to the earthquake
swarms called after-shocks.

(7) As regards the effect of initial stress, unexpectedly, the large
one is not found at the early stage of the activity of earthquake swarms.
The major part of activities is controlled by the forced deformation due
to internal force.

(8) The reduction of the viscosity of the medium is needed for the
commencement of earthquake swarms.
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