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Summary

As a continuation of the study of waves passing through a medium
with periodic structure, the wave equation in a medium where elas-
ticity varies regularly is treated as one of Hill'’s equation. The same
form of the equation appears in the long wave passing through a canal
with undulatory bed. It is shown that, the solution in terms of
Fourier series given in early investigations is inadequate in this
problem, although that sclution is very simple in solving process,
treatment, ete.

1. Introduction

In early papers (Yoshiyama, 1960 ; Onda, 1964 and 1966), wave propaga-
tion in a medium in which variation of a wvelocity is regular was dis-
cussed, in connection with the stability of progressive waves. It is the
purpose of this paper to obtain the periodic solutions of the wave equa-
tion in a medium where variation of an elasticity is regular. An analo-
gous equation appears in a problem on long waves passing through a
canal with undulatory bed (Hidaka, 1936; Yoshida, 1947). In those
calculations a solution expressed in terms of Fourier series was obtained.
Such an expression is very easy to solve the equation and convenient to
be employed. However, it is doubtful that such an expression forms a
fundamental system of solution, since none of the unstable regions can
be represented by such a solution.

In section 2, the solution and the stability chart of the wave equation
are obtained. The procedure to solve the equation is similar to that
outlined in the previous papers. In section 3, the solutions obtained by
Prof. Hidaka (1936) and Prof. Yoshida (1947) are examined from a view-
point of the theory of differential equations.



766

2. Solutions of wave equation for a structure
periodic in elasticity

For the sake of simplicity, it is assumed that a wave is propagat-
ed along the x-axis, and an elasticity varies regularly in the same direction.
If the method described by Prof. Yoshiyama (1960) is applied, the wave
equation is written as

_ P
o ot —a’p, (1)
where o=(pE)"'U,
‘c:gdx/c(x) , (2)

“2=_\/Z(—l perd 1 )=ij 1 d(pC)}+J 1 d(PC)}z (3)

o dx dz Voc dr lch dr lZ,oc dr

?

and p is density, E being elasticity, and U being displacement.
Now, let density be uniform throughout the medium and elasticity
be denoted by

E=E,1+c¢cos1z), e>0 (4)

From equation (2), a travel time ¢ and a velocity distribution are written,
respectively, as

— i dx — 2”77"7‘57“’2_"%@ .
}o coV1+ecosyr reoV1+elo VI—EZsin26’
therefore sn (ar/2)=sin (yx/2), (5)
— 1+dnar+e¢—1+2cnar+dnar)
=c s 6
and e=co \/ 1+dnar (6)

where sn (u), cn(u) and dn(u) are the Jacobi’s elliptic functions,
k2=25/(1 +€) ’
Co= \/ Eo/(’ ’

and a=ycoV1+e.
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The wave equation for a harmonic wave is

Po (o )
dr? +l 2(1+¢) flaz)

Flu) = (en®u—sn?u) dnu SesnZucen?y
1+dnu 2(1+¢)(1+dn u)?

where

esn®uenu (en u+dn )
(1+dnu){1+dnu+e(—1+2cnu+dnu)}

_(+¢){(en?u—sn?u) dnu+ (dn?u— k2 sn?u) cn )
1+dnu+e(—1+2cnu+dnu)

_ 8¢(1+¢) sn2u(cn u+ dn u)?
2{1+dnu+e(—1+2cnu+dnwu)}?

(8)

If a function f(u) be simply sn?wu, such an equation is called Lamé’s
equation. So, the most formal solution of equation (7) will be written
as some series of Lamé’s functions which are a compact solution of Lamé’s
equation. The most applicable solution in many problems on wave pro-
paggtions, however, is the periodic one, and then it is convenient to
express relation (8) in terms of some trigonometric functions. Equation
(7), consequently, becomes Hill’s equation.

If it is noted that arguments of these elliptic functions are real, and
that a modulus % is restricted between zero and unity, the approximate
expressions obtained in the Appendix of this paper are applicable.

Substitution of a variable 2z for ar/9:2, where J; is a Theta-function,
yields that

d2e 9,4
+
dz? 1+e

2 2 2
42 — = tecos 22+ S cosdz+0 3 =0. 9
-2 : @fe=0.  (9)
The solution of equation (9) can be easily obtained by using the method
developed in early papers (Onda, 1964, appendix; 1966, appendix), as
follows :

The conditions of unstable regions and solutions in these regions are
expressed as

(n=1),

2w \2 3 g2 3
(__ =1+ — cos 20 — —(10—cos 40) + O(<?), (10)
1o 2 32
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p= i sin 20+ 0(&?) , (11)

y(z, o)=sin (z—0)+ ﬁ sin (3z— o)

2
+ 2656 {% sin(5z—¢) -+ 8 sin 20 cos (32— o)

+ cos 20 sin (32— o)} +0(e%) . (12)
(n=2),

0

p=0(¢*),

where n is the limit value of 2w/(rco), when vanishing of e. In these
regions, even if all terms of the order & are not neglected, the real part
of measure of stability x for other unstable regions expect for the region
near n=1 can be neglected numerically. In other words, all the solutions
expect for the first unstable region alone can be fairly accurately® re-
presented by ones in the stable region.

In the stable region

—2_0)_2—( _f 3u2—4>2 4
(700> =U-g g ) +0(e*), (13)
oz, v)=sin vz—i{ sin (v+2)z _ sin (v—2)z}
S\%y 8 ,J+1 v—1
2 . ~ ] —
+ 1528 { smy(::‘l)/« _ smv(v_l‘l)z }+O(63) ’ (14)

the second solution ¢.(z, v) being obtained by substitution of cosine for
sine in ¢s(z, v).

From these relations, the stability chart is shown in Fig. 1. The
area of the unstable region is narrow, in comparison with one for a case
of velocity fluctuation (cf. Fig. 1 of the previous paper; Onda, 1966).
Comparing these figures, the effect of a periodic structure is less re-
markable than that for the case of velocity fluctuation, and the nature
of these solutions is similar to each other.
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Fig. 1. The stability chart for the solutions of the wave equation
in the medium with regular variation in elasticity : E=Eo(1+¢cos x).
p' is the maximum value of yu for ¢=0.5.

The resultant expression of displacement in this medium is given by
the form

U=“(1+E—C(1)SW [A, euzy(z, ‘7) + B e_"”y(z,—a)] ’ (15)

where n and y(z, 0) are given by expressions (11) and (12) respectively,
and ¢ ranges between 0 and 7/2, and is associated with the wave fre-
quency in the relation (10). In another frequency domain,

U= raas oy e )+ Bz, 1, (16)

where ¢, (2, v) and ¢.(z, v) are given by expression (14) and v is associated
with the wave frequency in relation (13). The variable z is expressed by

2=M'T=8;2F(Tﬁf/2, k)

_ﬂ{l_i sin y _;._3_62 sin 2yx +O(s3)}r,
2 2 rx 16 2rx

where F (¢, k) is the elliptic integral of the first kind.

It is to be remarked that these expressions of solution are quite dif-
ferent from the Fourier series.

These results can also be obtained by means of a procedure in the
previous paper (Onda, 1964): If, after approximating 2z for yx in expression
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(4), the term o is expanded in a power series of ¢, the wave equation
is written as

2o | (, o? 52< e2> ( €2 ) &2 }
94—+ A1+ )+ el 1——-)cos 22— - cos 4z +O(e3) Lo=0. (18
dzz | 7%c? 8 4 ) 16 8 o8 (£)}e (18)

Since | cos 7 —cos 2z ]=§ |1—cos 27z [+ 0(<?),

however, equation (18) should be discussed within the order e2/4. 'The
condition of stability derived from this equation is numerically similar
to that from the caleulation of expressions (9) to (14).

It is notable that this solution is not the expression of progressive waves.
The stability of progressive waves through this heterogeneous medium
must be discussed by means of calculating the transmission coefficient in
a structure where this medium intervenes between two homogeneous
media, as shown in the previous papers, in which the transmission co-
efficient has been calculated and some pulse transmission has been
discussed.

3. A note on a solution in a canal with undulatory bed

For the propagation of long waves in a canal, the wave equation is
written (Lamb, 1932, p. 274) as

aU g 0 ( oU )
Y 9 Y (pp P2 19
o b o\ o) (19)
where
U = the free surface elevation,
'b = width of a canal,
h = depth of a canal,
and

g = acceleration of gravity.

If U, b/g and bh are taken for the displacement, density and elasticity
respectively, equation (19) is in agreement with the wave equation in
an elastic body. Therefore, if the width is uniform and the depth varies
regularly, that is,

h=ho(1+2 Jcos yzx), (20)

the solutions must be the same as that obtained in the preceding para-
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graph ; (15) and (16). Prof. Hidaka (1936) and Prof. Yoshida (1947) in-
vestigated this problem, the former assuming the form of solution

i A, cos (nyx+90), (21)

and found that the coefficient sequence A, was absolutely convergent.
This can be transformed into the form

n=1

= i % {exp (inyz-+10)+exp (—inyx—id)}
= _i Anexp (inyx) .

The latter assumed the form of solution

> Agexp {i(n+n)ra}, (22)

n=—00

where 7 is a constant.
The expression (21) or (22) is regarded not only as a Fourier series
but also as a Laurent series at the point exp (irx)=0. Substitution

{=exp (ira) (23)
to the wave equation for harmonic oscillations yields
d du |
o (de2 N2 L L2 = 24
¢ Lzt a) UL kiU =0, (24)
where
ko*=0*/(r*gho) .

The positions of the singular points and their exponents are given,
if one writes them following the expression of Riemann’s P equation, by
the form

A
R
=
= o o
8
AR

, 0 | (25)
v,

where
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=— A1+ L2424 4 54+ O(48)} . (26)

The differential equation with four regular points is known as a kind of
Lamé’s equation.

Now, it must be borne in mind that the wave equation does not alter
in form with substitution of {7 for {. Therefore, the relation between
the coefficients of the solution around zero is the same as one around
infinity, and one around {; is the same as one around &Y From the
view-point of the theory of differential equations, the power series solution
around a singular point {, is given by the forms (cf. Erdélyi, 1956, p. 61)

n=0

E}An(C —&o)™" when &, is a regular point, 27)
and

22 An(L—Co)"*" when o is an irregular point, (28)
where 7 is an exponent at a point {,. From these considerations, the type
of solution (22) consists of two solutions one of which is a solution around
zero and the other around infinity respectively, and then it seems that the
solution does not form the fundamental system of the general solution.

For the purpose of reference, the reason why the type of solution
(22) can be taken in the Mathieu’s equation

d>w
dz?

+(a—2q cos 2z) w=0 (29)

is as follows: Substituting
C=exp (iz),
one can write the equation as

@ W | e g gt w=0. (30)

dc? dg

Thus, only two singular points of zero and infinity are both irregular, and
then the fundamental system of the general solution is given by the form

Y @l = Y aneor, (31)

n=—o00 n=—o

Reverting to the subject, since the difference of the exponents at both
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{=0 and oo is unity, the first solution is expressed in terms of Taylor
series at {=0, and the second solution involves a logarithm. Therefore
the general solution of the differential equation (24), which is analytic
around zero, is

Z an Cn= Z an einrx’
n=1 n=1

and (32)

(log C) . Zancn_l_ %_ ilan"=im il n, einrx_l_ _;]vaTl__ Zlbn einm,
) n= n= o n=

0

where the coefficients a, are combined with the following relations
(1=ke®) ay+1:2-dag=0

(n—1)n day_1+ (n® —ke?) an+n(n-+1)dan,1=0, for n>2,
and
(1—Ee2)by+1-2- dby= — (2a1+ 34as) , (33)

(')’l"‘ l)ndbn~1 -+ (nz - k02) bn+'n('n+ 1)Abn+1
=—{(2n—1)dap_1+2n a,+ (2n+1)da,.1)}, for n>2

Here, substitution of (7! for ¢ does not alter the solution (32) and the
relations between the coefficients (33). Prof. Hidaka (1936) showed that
the series sequence a, is convergent for 4<1/2. According to the theory
of differential equations, the convergence radius of this solution is given by
a distance to the nearest singular point, and then it is suggested that the
second series solution would be divergent for a range of almost 4<1/2.

Consequently, it is found that the type of solution (21) or (22) is
incomplete and inadequate for the problem in hand. It is well-known that
if one convergent solution is taken as the form

> @, cos nyx,

the second solution should be taken as

S exp (iyz) dx
[ 2 ancos nyx]*(1+2 4 cos 7x)

from calculation of Wronskian.
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4, Concluding remarks

As a continuation of the study of a wave passing through a medium
with periodic structure, the solution of the wave equation in a medium,
where elasticity varies regularly, is obtained in connection with the long
wave propagation in a canal with undulatory bed in which the form of
the differential equation is similar to that in the elastic wave propagation.

The procedure in this study is similar to that in the previous ones,
but the travel time introduced as a variable instead of the spatial coordinate
in this study is expressed by means of a Jacobi’s elliptic function. When
its modulus is restricted between zero and unity and its argument is
always real, it can be given accurately in terms of trigonometric functions
(see Appendix). The original differential equation involves a polynomial
of some elliptic functions, but it is reformed to Hill’'s equation by means
of this approximation. The solution is simultaneously obtained by means
of the expression derived in the previous papers. The unstable wave
motion (in mathematical sense) appears at the same frequency as that for
velocity fluctuation but its magnitude is negligibly small except for the
specified frequency.

A solution in the long wave propagation passing through a canal
with undulatory bed has been obtained in terms of Fourier series:

HZI ay cos (nyz+9).
Such a solution is considerably simple in solving process, treatment, ete.
In addition, it has some characteristics quite different from the solution
obtained in section 2. So, it is examined from the stand-point of the
theory of differential equations. It was assumed that the solution could
be expressed in terms of Fourier series preliminarily and the relation
between those coefficients was derived, so as to make its relation con-
verge. If a variable { is put for exp (iyx), Fourier series can also be inter-
preted by Laurent series around {=0. Although (™! is taken instead of
¢, the original equation does not alter in form, and then the relation
between the coefficients of the series solution around (=0 is consistent
with that around {=oco. The singular points at zero and infinity of ¢
are both regular, and the respective exponents are together zero and unity.
The first solution of the fundamental system, therefore, is obtained in
terms of Taylor series at {=0, and the second one involves a logarithm.
In addition, there is the nearest singular point to {=0 at {={;, where
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G=—1/24)V (1/24%—1 . As & is of the order of 4, such a solution is
incomplete and inadequate in the problem on wave motions.
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Appendix : Representation of Jacobi’s Eiliptic Functions

in terms of Trigonometric Functions

It is assumed that an argument of a Jacobi’s function is real and
that a modulus % is restricted within zero and unity. Under this condi-
tion, the following expressions are valid and convenient to some numerical
calculations.

Let one take

qg=exp (—rzK'/K), (A-1)

where K and K’ are the complete elliptic integrals of the first kind with

a modulus % and a complementary modulus &'= Vi—j2 respectively, and
it can be expanded (Whittaker and Watson, 1935, p. 486) as

g=2+26+0(c), (A-2)

where

11— Y112 12 K, 9 43
_L11=V1-k_F & 9 36, 43 4s o),
To 1+ Yi-k2 16 82 512 4096 ()

Fourier series for the Theta-functions (loc. cit., p. 464) yield power series
of g for the Jacobi’s functions which are associated with quotients of the
Theta-functions (loc. ¢it., p. 492):

93 N(v) _ (142q)(sin v+ ¢*sin 3v) s
T, 9u(v)  (1+q)(1—2q cos 20) {1+0()}

=sin v {1+4q cos? v+ 2¢*(cos 4v + cos 2v) +O(¢®)} , (A-3)
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9, 95(v) _ (1—2¢)(cos v+ ¢* cos 3v) .
= 9, %(v)  (14+¢?)(1—2q cos 2v) 1+0()]

=cos v{1—4q sin? v+ 2q*(cos 4v —cos 2v)+ O(¢®)} , (A-4)

_ 9493(v) _ (1—2q)(1+2q cos 2v) .
dn = 93 94(v) ~ (1+2¢)(1—2q cos 2v) (1+0()

=1—8¢sin?v+32¢?sin*v+0(¢%), (A-5)
where
’U=’u,/1932,
974={1+2¢+0(¢*)} " *=1-8¢+40¢*+0(¢®) . (A-6)
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41, BEERHAEIE B L Tw 3 EE iz B 2B FEAD R
wEmEn & 0 M I

A% CHESBRNIKE D > T3 B RET A £ 3 BB OREEEIC 2 W TEREEDT
Sete. TOWEDFEE & LTAERBESBANICED > T3 EAE k- /.

PINTICITIE » 72 & FREDERESATTIE 5 &, I E UCEMEE R bdihh 3 ERE Y 2
CHAMMTEL bR, FERRRZ FhOoO0FHEANEENS. AHRE-> THWA3EFEOT TR
Hhs (0,1) THY, FUTHTEHIERICRONTNS DT, Appendix THX =B
kB FEPARMBANSNE. FLTHERAZ b vOFERefis iz, RN CELERIRE-T
RAEzi (§2).

R B UHFERREZ, ESHRUMCERLULTWAKER2ED 2 REOHETHDLN, Zh
CHEUTHiIe7—Y : B X3ENELRTNS. Fhi ROES HicB T HXZTORIKNT
BNTHHMTH Y, HW2HTELRERE BU - LROBHEABLTHE. ThTIhEK
SHERBOED SBHEMZ . ZORIRBDIRT—Y = B T ancos (nrx-+d) TRELT,
FOFY an IBGET2 b0Mb 3 Z b TS, FOHEUT (=exp (irx) DEHEHR
KHLT(=00FhbhDOu—7 Ve bMRTEx3. BEFERNZ {2 ' RBATHe B
RAELEPD, (=0DFEHDOIRLE (=0 DELYDRL A UEKEOMEZE LTS, EiT
FHEAT (=0 (f->T (= BT LR BHEHFRESTHY, TOEKT 0 L 1 THS.
P T—IBROBEREAELIREE DRI (=0 DFEDLVOFA 7 —WHTHEZ bh, H20HIZ
SAEFEA ST, £0L, (=0 CROGANERNR (=0L=—(1/20)+VY (1/24)}*—1TH 3 » b, =
DL UT K DN BRI — D DI TH » TR IS, 8-> TREO MBI 37
EULTRARTHTHB Z MRS N (§3).



