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1. Introduction

In a continuing series of studies of the fundamental properties of
theoretical seismograms related to the torsional and spheroidal oscillations
of an elastic sphere, results for the cases of a homogeneous sphere with
or without liquid core and of the Gutenbérg—Bullen A’ earth model have
been presented in previous reports.”” Until now, the gravitational effect
has been neglected in these investigations; the present report is the first
of several which will consider the influence of gravity on the periods of
the free oscillations, the changes it produces in the resulting phase and
group velocities, as well as its effect on the Common Spectrum and the
resulting theoretical seismograms.

For this investigation, theoretical seismograms were computed for the
surface of a homogeneous gravitating elastic sphere by superposition of
the disturbances associated with the spheroidal oscillations. Contributions
to the motion which are associated with the fundamental radial mode for
colatitudinal order numbers n=95~160 and those associated with the
tenth radial mode (i=10) were calculated in addition to those already
reported for the case neglecting the effect of gravity. Non-dimensional
frequencies, phase and group velocities, the Common Spectrum and theo-
retical seismograms were calculated and comparisons were made with
corresponding quantities for the case without gravity.? ,

Remarkable results of the study of the propagation of spheroidal
disturbances on the surface of a homogeneous gravitating elastic sphere
include:

1. The non-dimensional frequency for the present case tends toward
that for the case neglecting the gravitational effect as the colatitudinal
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order number n increases. The discrepancy is noticeable only for smaller
n and it practically vanishes for n=20~40.

2. QGravity makes the non-dimensional frequency for n=0 smaller,
that for n=1 of the fundamental mode larger and its effect on the other
modes depends on the radial mode number 7 and colatitudinal order num-
ber n.

3. The difference between the phase and group velocities for the
cases with and without gravity is not very great.

4. The Common Spectrum of the colatitudinal component for the
present case differs greatly from the corresponding quantity for the case
neglecting gravity. However, the general features of the theoretical
seismograms for the two cases do not show any appreciable discrepancy.
This means that the differences between the Common Spectrum for these
cases may be cancelled during the process of summation of the contribu-
tions from the various modes.

2. Frequency Equation and Non-dimensional Frequency

It is assumed that:

1. The sphere is homogeneous

2. The spheroidal oscillation is considered

3. The radial component of stress is applied to a circular area

around the pole '

4. The effect of gravity is included. :
Hereafter, the present case will be referred to as case (B) and the case
neglecting gravitational effect as case (A). The displacement on the sur-
face is expressed as

(w, v, 1v)=2%gio (u(p), v(p), w(p)) exp (jpt)dp, (2.1)
in which |
wp)=3, (Un(r)/E)-P}(cos 6)-  (Cmn cos me + Crnn sin mo)-f*(p)
I pn %
v(®)=Z, (Valr)/E)- - Pi(cos ) » ) 1*0)5 L (a.9)
w(p)= Z; (mVau(r)/E) ‘—P%;i)— -(=Cpnsinmo+ C,, cosme) - f*(p).

Con and C..,. are the coefficients of spherical surface harmonics determined
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by the geographical distribution of the applied force, * (p) is the Fourier
transform of the time function at the source and PZ (cos 6) the associated
Legendre function by Ferrers’ definition.

Un(r) and V,(r) are functions giving the radial distribution of the
displacement components and are expressed

Un(r)=R[%fn+l<kC)— ;j’g {1+ (n+ 1)(M<k>—1>}jn<kc)]
+ 5 L L0) = Vines09) 4 (Lla)+ n)julaf) |+ TonE,
. 1 ; : (2.3)
Va(r) =R[fk—(M () = 1)gnia (k) =~ A1+ (n+-1) (M ()~ 1)} yn(kC)]
a - n_a . L=t
+85[ Snal09) = LAL)Fn)iala) |+
where {=r/a.

The coefficients R, S, T' and E are determined from the boundary
conditions on the surface for the continuity of the stress components, and
of the gravitational potential and its derivatives. These coefficients may
be represented by the expressions

R=dag a3 —ao3 32, S=—as 33 +as as,

T=as asz —az as,

a1 Q2 Q13
E= axn a2 az (2.5)

1z A3z A33 ],

where a;; can be written

an=(2+2)-7ul0)+2 {1+ (1) (410) - 1)} 2L
m

{2 1 e ) 00~ 1) = 2 )|

ta="(L ()= 1)-dula) +2] {(La) +m) LT+ 1g) - 1] (o)
i q

+ (=2(L0) 1) +ln+ 1)) fneala)/a |

a3=2n(n—1)/a,
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2(1—mn)

o= (01() = )7 (1) + 222

{1+(n+1)(M(k)—1)}-jn(k)

+%(2—M(k)) (k)

an= {200 +n) 250 + 1]+ 2Ll ~2) nen(a)
q q

a23=2(n——1)/a s

ts1=—d=ppa- "L (1~ n(M(k) = 1)} - Gulk) ,

O32— *—47»'7"0&'

azz=(I"n—p?) (2n+1)—4zyon .

In (2.3) and (2.6), j.(x) is the spherical Bessel function and

2 2
2;192 =@’ [fp*+a(p*+41) = V(Bp*—aX(p*+ 4T PP+ dn(n+1)a?f 7]
Br=p/n, a=p/(A4+2p),
_ I'n(n+1) r
Lig)=1 14y L
D=1t - e MO ey
F=i7r7p.

3

The integration of (2.1) can be evaluated by contour integration.

Z ™ (cos 0) - (Cmn €0S Mm@+ Crppsin me) «

m,n,i

Un(?")
E dp

l\')]%

X

74(0)-exp (int) |

p=:0, 1

Mg.

g % (COS 0) (Cmn COos me -+ C;nu sin ng) .

X [ c;;;(;p )-exp (mt)]

[\ [Q.

P=:Py 2

As
noted previously® the entire contribution may be found from the residues,
which give the results
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where ;p, is the root of the frequency equation E=0. w has a similar
expression.

In case (A) the non-dimensional frequency (p=pa/Vs) is a function
of the ratio 4/p only, while in case (B), as is seen from the expression
(2.6), it is a complicated function of 4, x, Vs, @ and 7p. In the present
study the following numerical values are assumed.
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Fig. 1-A. Non-dimensional frequency (ka=(2ra/Vs)/T) of the spheroidal free
oscillation for a homogeneous elastic sphere. Solid curve and solid
circle refer to the case without gravity, and broken curve and open circle
to the case of a gravitating sphere.
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Fig. 1-B. Enlargement of a part of Figure 1-A showing detailed features for

smaller values of colatitudinal order number nz.

a (radius of the earth)=6370 km

Vs (velocity of shear waves)=6.667 km/sec

Ve (velocity of dilatational waves)=11.55 km/sec

(
A=p
(
(

L
7
r

density)=5.52 gr/cm?®
gravitational constant)=6.67 x 1078 c.g.s.
=154.2245x 1078 c.g.s.
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The non-dimensional frequency is calculated and is given in Figures 1-A
and 1-B in the form of continuous curves. In the present study, addi-
tional computations were made for case (A) for the tenth radial mode
(¢=10) and for the fundamental mode for colatitudinal order numbers 95
through 160. The curve of non-dimensional frequency vs. order number
for the fundamental mode can be almost linearly extrapolated up to n=160.
Solid lines refer to case (A) and broken lines to case (B). The difference
between the non-dimensional frequencies for these two cases becomes
smaller as the colatitudinal order number % increases. Figure 1 shows
also that the non-dimensional frequency (period) of the fundamental mode
of case (B) is larger (smaller) than the corresponding value of case (A).
In order to show detailed features, a part of Figure 1-A is drawn in
magnified scale in Figure 1-B.

When n=0, that is the case in which simple expansion and contrac-
tion repeats alternately, the non-dimensional frequency will be given by
solving the equation of motion®

d*u , 2 du 2 p(p?+4rI")
+______u+—._.__..u=0, 2-10
dr? v dr 12 A+2p ( )
under the condition on the surface that
(2u) B gy, (2.11)

dr r

The non-dimensional frequency thus obtained is smaller than that of case
(A) and they are related by the expression

20 = (2.12)

When n=1, the effect of gravity in the three coupled equations of
motion? appears on both sides of these equations. It not only serves to
reduce the frequency as for the case of pure dilatation, above, but also
enters as terms which make the frequency larger and thus makes the
relation between the frequencies for cases (A) and (B) complicated. Further
study of this point will be the subject of future investigations.

3. Phase and Group Velocities

Phase and group velocities ave calculated by the asymptotic formulae
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C=Vs-7;/(n+1/2) , (8.1)
and

U=Vs-dy/dn. (3.2)

The results are given in Figure 2 which also shows the results for case
(A). In Figure 2, thick lines refer to the case (B) and thin lines to the
case (A). The difference between the two cases is small except for the
fundamental mode and for the first higher radial mode for small values
of colatitudinal order number n. For the fundamental mode, the phase
velocity for case (B) —with gravity— is larger than that for case (A),
while the group velocity for case (B) is smaller.

4, Common Spectrum

The radial and colatitudinal components of the Common Spectrum, as
defined in our previous paper,” are given in Figure 3, in the form of
continuous curves. A part of the figure is shown in a magnified scale
to show detailed features. The spectral values of the radial-component
for n=0 are given by solid circles, which correspond to the solid circles
in Figure 1. In Figure 3, the Common Spectrum of case (B) is given by
thick lines and the values for case (A) appear as thin lines. The dif-
ference between these two cases is not very great, but the difference for
the cclatitudinal component is much larger than that found for the radial
component. The results for the fundamertal mode for orders larger than
100 are given in another enclosure.

5. Theoretical Seismograms

Axial symmetry (m=0) is assumed in the following numerical com-
putations. The spatial and temporal distributions of the applied force
are assumed to be the same as for case (A), without gravity. Thus the
spatial distribution is

1 046
0(0, o) = 0(cos 6) = :

lo 00, (5.1)

and the time function is
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COMMON SPECTRUM OF U
Thin Curves  NO GRAVITY
1000} -

/ Thick Curves  GRAVITY IS INCLUDED

160
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Thick Curves GRAVITY IS INCLUDED

Fig. 3. Common Spectrum of radial and colatitudinal components of the disturb-
) ance. Curves for the fundamental mode in enclosure. To show the
features of the curves clearly, part of the figure is shown in magnified
scale in another enclosure. Thin and thick curves correspond to the
case of non-gravitating and gravitating sphere respectively.
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-1 —4L<i<0
flt)={ 1 0<t<ty (5.2)
0 Itl>t1 ’

from which there results

f*(p)=—4j sin® (pt,/2)/p . (5.3)
The numerical values assumed are

0p=0.04 radian,

t1=0.02 (unit=2ra/Vs) . (5.4)

The largest values of colatitudinal order number nm.x employed for each
of the radial modes are®

=1 2 3 4 5 6 7 8 9 10
Nmax=160 79 73 69 64 60 60 39 44 54

THEORETICAL SEISMOGRAM OF SPHEROIDAL DISTURBANCES
ON THE SURFACE OF
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Fig. 5. Theoretical seismograms showing the change of wave pattern near the
antipode. Notation and unit of ordinate scale are the same as those in
Figure 4.



790 T. Usamr and Y. Sato

Theoretical seismograms were calculated at three points on the surface
for epicentral distances 6=30° 90°, 150° and the results are shown in
Figure 4. In this figure, the solid lines imply (jou160) and (1ov160) and
broken lines refer to (1u160) and (1v160), Where the parentheses mean:

(iun)=§l foiun , (1vn) = é

n=

iD=

ilvn . (5 . 5)
0

Expected arrivals of the various body phases calculated from the
simple theory of geometrical optics are indicated by the arrows in Figure
4. The travel time curves for these body waves are found in an earlier
report.”

The theoretical seismograms are quite similar for the cases (A) and
(B) except that there are slight differences during the passage of the body
waves. This implies that the effect of gravity is negligibly small for
most arrivals displayed by the theoretical seismograms. Figure 5 was
prepared to show changes in the wave pattern near the antipode. Since
waves such as the surface waves (and the PS-waves) converge towards
the pole or the antipode, the amplitudes of these waves increases rapidly
as they approach the antipode. By contrast, P and S waves which arrive
at the antipode directly from the origin do not show any change in am-
plitude near the antipode.

The numerical computations were carried out on an IBM 7090 through
the project UNICON to which our sincere thanks are due.
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to a circular area around the pole. Arrows show the arrival times of various phases of body waves calculated by the theory of geometrical
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and shear velocity of the sphere. The labels nPmS imply PP... PPSS...SS, for multiple reflections which travel n times as P and m times as S.
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