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1. Introduction

The activity of an earthquake swarm, represented by frequency of
occurrence, depends obviously on stress concentration and on the properties
of the medium.

The importance of medium structure in this problem was pointed
out clearly in papers by K. MogiV-?. Mogi distinguished three types of
shock pattern according to material characteristics: 1) in a homogeneous
medium the main shock occurs without preceding foreshocks, but after it
many aftershocks could follow, 2) in a fairly heterogeneous medium there
could be expected a small number of foreshocks, but 8) in extremely
heterogeneous medium the activity is revealed in the swarm type shocks.

Statistical properties of earthquake swarms were investigated very
carefully, but rarely could one find some ideas on mechanism governing
earthquake sequences. We should, however, refer here to the paper of
T. Terada®, who proposed a comparative model of swarm mechanism based
on observation of the Ito as well as of the Kwanto District earthquakes. This
mechanism supposes a group consisting of a large number of latent origins
of earthquake which are gradually ripening or approaching a critical state.
The time of attaining such a state is distributed about the mean value
according to some statistical law.

*)} On leave during 1965-1966 academic year from Institute of Geophysics, Polish
Academy of Sciences, Warszawa.
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It seems, however, that the single events in swarm series are not
independent between themselves, but that there should exist specific inter-
action and dynamical connection between developments of separate shocks.
The dislocation theory could provide here a suitable tool to describe the
swarm process, when taking a group of dislocations into account. The
model based on the dislocation theory is, of course, a great simplification
of the real process, but its relatively simple form presents many advantages
in comparison with the theory of cracks.

The numerous achievements in crystalography and, generally, in solid
state physics suggest that the application of the dislocation theory to the con-
tinuous media could also bring some explanation of main developments in
earthquake processes. Medium structure presents undoubtedly a great
role in the process of earthquake swarm; the complicated characteristics
of medium, including all its internal failures, would be simplified, in the
present attempt, to the homogeneous medium with a number of internal
sources representing origins of development of dislocation nuclei.

The classification by Mogi could be also related to our concept of
dislocation sources nuclei. Mogi’s heterogeneous medium could thus cor-
respond to a medium which would have a great number of sources, while
a homogeneous one would be characterized by a small number of sources.

The dislocation theory is applied here to describe the whole process
of shock swarm. Previously applications of the dislocation theory were
made either to a single earthquake theory®.® or to the sequence of earth-
quakes in the problem of aftershock series®.

2. Basic structure of the model

Let us take an elastic medium of parallelpiped shape (V=LoH,D,),
which undergoes dislocation processes to cause earthquake swarms in it
(Fig. 1a). We assume that a certain number of dislocation sources are
distributed in our active volume, that is to say, dislocations are being
produced at definite places in the medium under the action of stress field.
Roughly speaking, a dislocation is repeated by a pair of dislocation lines,
around which the bounding energy of dislocation is accumulated. After
physical considerations on their properties, we know that these lines are

4) S. DrosTE and R. ‘TEISSEYRE, Sci. Rep. Tohoku Univ., Ser. 5, Geophys., 11 (1959), 1.
5) R. TEISSEYRE, Acta Geoph. Pol., 9 (1961), 3.
6) R. Teissevre, Acta Geoph. Pol., 12 (1964), 23.
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Fig. 1. Basic structure of the model.

of opposite sense to one another. Hence a dislocated area inside the
medium is bounded by a pair of dislocation lines of opposite signs, or
shortly by a pair of dislocations (Fig. 1d). Development of the dislocated
area is therefore replaced by an outward movement of dislocations (lines).

Dislocation processes are probably controlled by wvarious conditions
of external stresses and the internal constitution of the medium. We will
not discuss here the generating mechanism in detail, but we will only
assume that an external stress (f.i. shear) generates, at numbers of fixed
places in the medium (called sources), small dislocation pairs of edge- or
screw-types (called elementary dislocations).

A dislocation line is conventionally represented by a cylinder with
its radius proportional to the square root of energy concentration, which
is given as the square of a displacement vector b,—the Burgers vector

of dislocation. The radius (o) and the associated energy (e) are given
respectively as follows:
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where, po radius of dislocation, I, length of dislocation,
bo Burgers vector, o separation of dislocation lines,

s shearing strength, ¢ rigidity modulus.

In the following we also assume that the minimum separation is equal to
the sum of the dislocation radii 2p0,. The energy of an elementary dislo-

2
cation is thus given by e;= Lgd"— In 2, when it is of the screw type.
T

Returning to properties of the active volume, let us take further
assumptions for simplicity’s sake in mathematical treatment. As shown
in Fig. 1a-c, we slice the volume into a sheets of plates so that they may
be several times as thick as the supposed radius of dislocation cylinders,
po. Then we cut each slice into 5 pieces of narrow strips, where their
width is taken as 3l (I, is average length of dislocations). Hence, the
total length of the strips becomes L=apfL,.

We now assume that the above-stated treatments (slicing and cutting)
of the volume do not seriously. affect dislocation processes, that is to
say, all of the dislocation sources are involved in either of the strips evenly
and all the dislocation lines will move only in parallel to the strips. Thus
our model has been reduced to a linear system with randomly distributed
n sources in it. The external stress, which is tentatively considered as
shearing, is governing the time rate of dislocation-pair production ; practical
considerations would be later limited to the case of unchanged external
shearing stress in time and also to constant dislocation-pair production.

3. Dynamic development of activity

We will consider dynamic development in the successive time intervals
7. Starting at the moment ¢=0, we assume that at all n sources the
dislocation pairs with minimum spacing 20, are generated, one pair in
each dislocation source. Average spacing between dislocations (of different

L—20m
n

pairs) is thus given by 2d,= This situation refers to the be-
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ginning of the first interval 7,, We assume that the dislocation can move
under the influence of the external shearing stress p,. The velocity of
dislocation movement describes the rate at which the dislocation surfaces
spread outwards in regard to position of their sources. According to the
equation of motion for dislocation lines”, we have
Vo=po—S or %:p_ou—_s’ (3)
where, vy average dislocation velocity,
v viscosity coefficient for slipping processes along layerlets.
The average velocity vo refers thus to stress level pp, and one could
omit any assumption regarding s and v, when assuming directly some
value of v, instead of p,.
Assuming the triangular distribution of distances, symmetric about
do, between dislccations in the interval: 0<d<2d, (the mean value d, has
0

thus here an arithmetic sense), we can define an average time to=7 re-
0

quired to finish this stage of process by mutual annihilation of all dislocations
considered here (this being equivalent to the whole area being uniformly
slipped along parallel dislocaticn planes). The average interval of single
occurrence of each “join and release” process of dislocation energy discharge

is then expressed by time T0=2%, giving the frequency of occurrence
during first interval of activity (zo<to): 770=% . Each occurrence is
0

represented by energy release® corresponding to the energy of the ele-
mentary dislocations:

E=ey="0h 1n3. (4)

T

We would like now to define the time-interval 7z, as connected with a
rate of stress field expenses on dislocation pair production by the following
condition: 7ywe=2p,, Where 20, is minimum spacing between dislocations
of a pair. Thus the above conditions express that after time 7, a new
set of pairs is generated in each source. All relations related to the present
time interval are here summarized,

b

o= L =20 (5)
n

7) loc. cit., 5).
8) R. TEeissevre, Acta Geoph. Pol., 12 (1964), No. 2.
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t0=_7 TO: ) ‘;’:-7?0, 7)070:2100- (6)

From relations (6) also follows:
ﬁodo =nNnpPo . ( 7 )

After time interval 7, we next consider the second time interval r,;
in our active volume a new set of dislocations should be considered as
related to the same group of sources. Among the newly created n ele-
mentary dislocation pairs, Ni=n—7, now form double pairs, while 7,
form single ones (because there have remained at the n—7, sources the
pairs belonging to the previous 7, interval). A double pair can be tempo-
rarily treated as a pair with the Burgers vector twice as great as a
single pair: b;=2b,. Later we will return to this question. Simul-
taneously we would assume that dislocation lines limiting these dislocation
surfaces are also separated by double distance 4p,. Hence the average
dislocation spacing in pairs 20; will be expressed as follows,

20, = 70200+ (1 —10)4p0

, or py=2p,— 1, (8)
n n

From this immediately follows average value of distances between neigh-
boring dislocations (belonging to adjacent pairs):

od,=L—2om (9)
n

Taking analogy to the previous interval (zq), we obtain,

t1=—d~1—’ T1=2‘tl, i=771 ’ ’U]Tl=2p0, (10)
V1 n T,

md1=;70d0=npo=c0nst. . (11)

Among the 7; occurrences in the 7; interval, however, some could be related
to dislocations of double and others to dislocations of single pairs. Number
of single pairs equals 7o, double n— 7, ; respective probabilities are given by :

T e 270(m—70)

Py 107= " —

_ (n—mno)?® _ Ni
ay= e , “1——T— e’ (12)

where, ay probability of join-process of two dislocations belonging to
elementary pairs,
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ay probability of dislocations from double and single pair,
a; probability related to join-process of two dislocations be-
longing to double pairs. Hence respective number of occur-

rences representing the greatest energy release in this
2

interval (E1=4e,) is given by ey = Nzl -
n

In the third interval we will have, in analogy, the following relations.
The average spacing between disleeations of a given source: 2p;, where

P2=3P0—%Po—%100 . (13)

This relation expresses that dislocations spread out at a rate @=vi, the
first two terms on the right side being equal to o+ po, whereas the third
term bringing a decrease corresponding to the relative amount of disloca-

tion discharges n multiplied by po.
n

The number of sources unaffected by the previous energy release now
equals

Na=(n—70)( " . (14)

This represents the decrease of the former number of unaffected pairs
Ni=(n—m) by the factor equal to ratio of unaffected sources in the 7y
interval, n—», to the total number of possible cccurrences, n. The pro-
bability of the strongest shocks in the r: interval is given by

N3

o= ,
n?

(15)

and corresponding number of the strongest occurrences is given by as7s.
We are now able to express these relations for an arbitrary time interval
(the (k+1)-th interval), as given in Table 1.

The average velocity of dislocation movement is related not only to
the external stresses but also results from local stress concentration in a
considered region. An increase of local stress concentration is caused by
dislocation production at individual sources.

In the (k+1)-th time interval the unaffected source (by previous
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Table 1. Relation describing the (k-1)-th interval of activity.

Relation

Relation at

T{=To, Vi=Up

Meaning

k-1
pr=(k+1) po— 2 'Sy 3;
n i=y

half of dislocation spacing around
sources

2dp— L—2pn
n

average distance between dislocations
of different pairs (sources)

average dislocation velocity (related

Uk Yo to total stresses in this interval)
d ' d half-time (i.e. mean time) required
te= 2k =1k for energy release of all dislo-
Uk Yo cations
T, —oltk frequency of occurrences expressed
L by their average time
Tk _ T number of occurrences in the (k+1)-th
k= Th ”k_ﬁ interval
e 1 7k 1 frequency of skocks (e.g. daily)
e Tk 7o T
condition for length of time interval
Tk V=200 Tolo=2p0 required for generation of a new set
of pairs in dislocation sources
7k d=npo=const auxiliary relation
Nk=nk]—]1(1—£) number of unaffected sources from
im0 n beginning until this interval
_ N2 probability and number of the strong-
A= o Gk est shocks in the (k+1)-th interval
E (g+1) =m?e,; m<k+1 m<-t energy of the strongest shocks
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energy release occurrences) represents a series of positive and negative
dislocations situated with a source between them (Fig. 2a). The dislocations
in a series are not independent; in this case a mutual interaction should
be taken into account. In the result the dislocations are pushed near the
first outward (leading) dislocation, where the greatest stress concentration
will occur?.

We should, however, return to the problem of stress distribution
around dislocations. Small dislocation area bounded by two dislocation
lines has stress distribution schematically indicated at Fig. 3a. For greater
distance between the edges of a dislocated area the stresses are con-
centrated almost only around the border of dislocation, that is, along the
dislocation lines (Fig. 3b-dislocation lines are here perpendicular to the
drawing plane). For a dislocation series the schemative stress distribution
is shown in Fig. 8c. We can see that at least some dislocation near the
first leading dislocation can be treated as one dislocation with appropriately
greater Burgers vector (at Fig. 3c: first three dislocations). This can be
formally brought into evidence by calculation of distances between dislo-
cations in a series and then comparing those distances with dislocation
radii. Let us assume that dislocations had originally equal Burgers vector
bo. Then, for (k+1) dislocations of the same sign we have the following
situations!® :

1) As a result of dislocation interactions the concentrated stress is
acting on the first leading dislocation, being totally (k- 1) times greater
than the average (external) stress field: (k+1)p, where p is external field.

2) The successive distances between dislocations are given as follows:

Ti,Hl:‘lEﬁz%fiAir),; (Jia—13), (16)
where j; is the i-th root of the Bessel function J;. These distances are
comparatively small near leading dislocation and greater for internally
lying dislccations, that is, for dislocations lying nearer their common
source. All successive dislocations separated by the distance 7;:,1, less than
20, shall be treated as one dislocation with Burgers vector resulting as their
sum. To describe the situation properly one could use here the crack
theory, but in a rough approximation, we can assume that the leading
dislecation has now the appropriately greater Burgers vector mby, where
m represents a number of dislocations gathered inside ranges of their

9) L D. EsHELBy, I. C. FrRANK and F.R.N. NaBarro, Phil. Mag., 41 (1951), 351.
10) loc. cit., 9).
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dislocation radii 2mp, (Fig. 8c). From the above result it follows that the
N i,i41 Slo
200
The joining process of dislocations proceeding from neighboring sources
should be described by the joining of two series of dislocations and in
this way we can explain the gradual increase of the stronger events
with time.
The respective energy release corresponding to the strongest occurrence
is given now by

number m in the (k+1) interval is defined by the condition,

2
E ex1) =mzﬁ2b—°li In 2=m2e,, (17)

T

where m is smaller than the number of dislocations created around a given

source, m<k+1. Or, for r;=7o=const., mé%, where t is the time from
0

the beginning of swarm.

Next dislocations in this series could form immediate replicas according
to successive contacts of dislocations from both series (Fig. 2b). The
swarm process will reach its maximum level when the number of shocks
in some 7,, interval becomes equal to the number of generated pairs,
that is, equal to n. More exactly, one should here take into account dif-
ferent energy releases and compute an equivalent number of shocks as
reduccd to energy e, of the elementary dislocation.

The above presented considerations and their results will remain valid
even if one assumes slow movements of randomly distributed sources.

4. Simplified theory of swarm development

According to former ccnsiderations the rate of generation of new
dislocations in the assumed sources is equal to time 7. These dislocations
either increase the total number of dislccations inside an active volume
or increase Burgers vector cf the previously existing dislccations related
to the same scurce (as it was pointed out in regard to the first dislo-
cation in series shown at Fig. 3c).

Let us now assume a simplified model of swarm development. First
we assume that external stress remains constant (pi=po), then vi=wvo.
Also, the intervals of activity defined as time required for generating a
new set of dislccation pairs in all n sources will remain constant, i.e. 7;=7o.
In the present model, we also consider that activity can be represented
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by the sum of activity related to the respective set of dislocations. Then
the number of events can be synthesized by geometrical construction as
explained in Fig. 4. If we denote here by n; the partial activity function
(number of shocks in time) related to each triangle separately, then the
total daily frequency will be given by a sum, .#;. Bach triangle repre-
senting one set of dislocations will thus have a constant mean discharge
time ¢. Let us assume that rto=1o, Where, 7 is an integer.

Oscillation with the period 7z, is expected due to this generation
interval time and to those properties of dislocation interactions, which
prevails time connected energy release in a number of annihilation processes
of dislocations!?.

— 5 =h
° _-I Ti=To} cOnst.
U= Vo

N N A
A IO el Mo
Sa oS ~ ~, ~, So ~ ~

Fig. 4. Development of swarm activity.

11) loc. cit., G).
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Repeated generation of dislocation pairs causes increasing activity as
shown at Fig. 4. The mean half-time of discharge is assumed here
constant and equal to ¢.

After time 2t,=2rty, the activity will reach its maximum level as
we learn from Fig. 4; we notice that 2sn pairs of elementary disloca-
tions have been created during this time.

Starting from this moment we have a stable activity with some oscilla-
tion with period ro. Between the time 2¢,=2r7; and 4t,=47r7, the number
of generated dislocation pairs will amount to 2rn, as there are 27 time
intervals. As the activity is at constant level, we are expecting also 2rn
events corresponding to the elementary dislocations release, or a some-
what smaller number when taking compound release of dislocation series
into account. From the above consideration we can deduce that mean
activity in the period (0, 2¢,) is half of the stationary one and the maxi-
mum number of dislocation pairs contained in the volume is equal to
(Fig. 4). Thus the above simplified considerations lead us to some
important relations as follows:

time interval (2¢o, 4fp): number of pairs generated=2m‘ } (18a)
number of pairs annihilated=2rn

time interval (0, 2): number of pairs generated=2rn } (18b)
number of pairs annihilated=1rn

maximum number of dislocation pairs at maximum level=rn. (18c)

Lastly we would like to present a simple geometric reasoning related
to the danger of a very great earthquake due to sui generis spontane-
ous process of dislocation annihilations. This would depend upon how
far the dislocation lines are from each other and this we can express
simply by ratio of a minimum distance between dislocations at full activity
2d., to the distance of elementary spacing 2p,, as follows:

H=2m (L2200 g o Ly (19)
200 ™ 20010
/lbotu’n

When 2d,, is small, that means when 2prn= approaches L, the

=S
possibility of simultaneous discharge becomes increasingly greater. The
ratio H expresses to what extent our volume is fulfilled by the elementary

dislocations.
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5. The Matsushiro earthquake swarms explained

by the present model

There have been a number of local shocks in the Matsushiro area
since August 1965, which seem to offer an interesting example for the
dislccational model. In the following, therefore, we shall apply a certain
set of parameters to the model and examine to see if it explains the basic
features of the sequence satisfactorily or not.

As reported by many seismologists, the swarm activity started in
early August 1965. Then it developed to an activity level of 70—90 felt
shocks and 700—800 unfelt shocks per day, so far as the JMA’s reports
are concerned (Fig. 5). The activity maintained this level for a con-
siderably long time until March 1966 when it developed to a new level
several times as high as the previous one. For simplicity’s sake in treat-

Daily Frequency
of

¢a2000
Recorded Earthquakes

1500 ~

1000

500

Aug. Sep. Oct. Nov. Dec. Jan. Feb.  Mar
1965 1966

Fig. 5. Daily frequency of swarm earthquakes recorded at Matsushiro (after J.M.A.).
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ment, however, let us limit our discussion to the sequences in the initial
and the first stationary phases as illustrated in Fig. 5. We shall also
assume that the general tendency of the present events is well represented
by the JMA’s records which are based on observations at the Matsushiro
Seismological Station equipped with the WWSS system by USCGS. This
assumption may be reasonable as the said station is located in the central
part of the seismic area. We take the observational data by JMA
and ERI into consideration and estimate LoDoH, at 10x7x4km?® (Table
2). As to the parameters for the medium, we also assume g and S at
10! c.g.s. and 107 c.g.s., respectively. Low value of strength assumed
here would be attributed to fracture mechanism along material failures.

Table 2. Parameters for the case of the
Matsushiro earthquake swarms.

Parameter Observed Assumed Computed i Remarks
7 — 10" c.g.s. —
S — 10°~10°c.g.s. —_
LDyH, 10X 7X4 km? — —
4D — 0.5 km —
Io — 100, 30~130 m
dy — — ~1.5(~0.2km)
200 — — 6~26 m
bo — — 0.18~0.032 cm
€ — 10" erg — M=0~1
Emax See Fig. 7 — See Fig. 7
vo — — 6~26cm/hr ToUo=200
¢ 40 days — —
79 4~5 days — —
r — — ~10 to=7 7o
S 700~800 — — Daily freq. (stationary)
7max | — — 80 DI =%max (r1—1)
n i — — 410 - n=9max (r7o—1)
2rn “ 3x10° — 8x10*

Comparison of Fig. 5 with Fig. 4 leads us to estimate ¢, at about
40 days. For the purpose of deriving 7o from observations, we worked
out a Fourier analysis on the daily frequency of shocks for the period
of 120 days following October 25, 1965. So far as the present analysis
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Fig. 6. Spectrum of daily change of earthquake numbers (Oct.
25, 1965 —— Feb. 22, 1966).

is concerned, there are two noticeable periods of harmonics (14~15 and
4~5 days) besides a very low-frequency harmonics (Fig. 6). The first
period is more likely to indicate the tides’ influences on the sequence than
to indicate the effect as illustrated in Fig. 6. So let us here assume that
the second period is attributed to the present effect. We then obtain,
To=4~5 days and r= to ~10. We also obtain 2] % =T700~800 as the
To

average level of seismic activity in the stationary stage (Fig. 5). Simple
consideration on the present model leads us to relations as follows,

27 =Y (r—=1)
n=7(r7—1)

(20)

Hence, 7, and n are computed as 80 and 4 X 10% respectively.

Before entering the discussion on the size of an elementary dislocation,
we have to take some assumption on the value of ep; f.i. eg=102erg. This
inevitably means that there are no earthquakes of energy less than the as-
sumed level. It is obvious that there are numerous earthquakes of far less
energy. However, we do take the above-stated assumption as our current
interest lies in seeing the micrc-seismicity with respect to a magnitude
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range of M=0~1, which is the level detectable by the WWSS system at
Matsushiro. By use of egs. (1) and (4), we obtain b=0.2 cm, and ac-
cordingly, 20,=6 m. On the basis of these results, the following para-
meters are estimated:

1b=30m, 4D=05km, dy=05km,

where we assumed that 4D=d, to represent uniform distribution of dis-
location sources in the medium. All the parameters thus estimated are
listed in Table 2, where we find several parameters computed in two
different ways. For instance, the most probable separation of the dis-
location sources, do, are given as 1.5 km by use of n, 4Dy, and LyDoH,.
Another way to estimate it is to use wo and ¢, which gives dy=0.2
km to show a reasonable agreement with the former, in the order of
magnitude. The second parameter that works as the next check point
is 2rn, which is computed as 8x10* using » and n. The same para-
meter estimated alternatively (total number of shocks which occurred
during ?o, in the stationary stage) is 8x10°% which does not differ much
from the previous value in the accuracy of order of magnitude estimation.

The most serious disagreement is noticed on the third check point,
Erax. As given in eq. (17), energy of any shocks occurring in the (k+1)-th
interval cannot be larger than m2,. In Fig. 7 is illustrated the Emax-

Intensity M  Eterg)
Scale : l 1
‘ , ' ! ! | ' ! 10%°
! E ! ; : ——— - ~5
v ! f | ___*. ' Emox=1M"Eo 10"
v I B N B
u P | ’? E i =/772t90i ~3 0
1 *’/E I -—-—-}—-—-—i--—-—lr-—-—-{— 14
I F 75 munn S A R A
'S N TS S DS N S R
Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar.
1965 1966
Feb. 7. Theoretical upper limit of earthquake magnitude (—— - —)

as compared with observations (*).

curve as a function of time which was computed on the basis of the
above-stated parameters. Starmarks in the same figure show when the
station received the first shocks of each of the increasing intensity scale.
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The vertical scales on the right indicate energy and magnitude of shocks
corresponding to the felt intensity. It is evident that the theoretical curve
of Emax does not explain the observations.

The present disagreement seems to suggest our model’s limit of ap-
plication to earthquake phenomena. We should improve, more or less,
the model so as it may promise better explanation of the nature. We
tentatively consider that the following two modification might be useful
for this purpose.

The first possibility is to consider that energy of the unit shock, e,
increases to e;, e, and so on as the activity develops. Another possible
modification is to lessen the assumption that dislocation lines move only
in one common direction. We do not know concretely what kind of modifi-
cation should be applied to eq. (17) for Em.x. But we may assume, as a
test, that the index of m increases to 4 for the case of two-dimensional
movement and interactions of dislocation lines. The chain line in Fig. 7
illustrates the said case, which fits the observations better.
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