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Introduction

In relation to mathematical treatment of statical deformations of the
earth’s crust associated with an earthquake, J. A. Steketee (1958 a, b)
developed and reviewed the elasticity theory of dislocations. His method
of representation of a fault as a dislocation surface in a three-dimensional
elastic half-space has been applied to actual faults accompanied by large
earthquakes by M. A. Chinnery (1961, 1964, and 1965) and recently by
F. Press (1965).

On the other hand, K. Kasahara (1957, 1958a, b, 1959, and 1964) and
L. Knopoff (1958) have developed two-dimensional models for very long
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strike-slip faults on the consideration that the shear stress on the fault
surface should vanish in the case of fault formation, with assumed initial
stress field in a semi-infinite elastic body.

Recently J. Weertman (1964, 1965) has made use of the concept of
continuously distributed infinitesimal dislocations on a plane to study
problems of slippage on very long faults with finite friction.

Kasahara’s and Knopoff’s models, as well as Weertman’s can be con-
sidered from the view-point of two-dimensional analogue of Steketee’s
representations.

It may be difficult, at least in general, to obtain the solution to given
change in stress on the faults L with various dip angles in a two-dimen-
sional half-space, but if the problem is to compute the displacement and
stress field due to given two-dimensional Somigliana dislocation, that is,
the displacement discontinuity arbitrarily specified on L, the solution can
be easily constructed. Some advantages of the latter formulation can
be pointed out from the geophysical view-point (e.g. Press 1965). Besides,
once the latter problem is solved, the former can be obtained by numerical
calculation with the aid of computers.

It is our main purpose in this paper to obtain and list the funda-
mental expressions for two-dimensional dislocations to the latter problem
for geophysical applications, e.g. for the models of very long strike slip
and dip slip faults with various dip angles associated with an earthquake.

Sections 2 and 3 treat of the displacement and stress fields corresponding
to some nuclei of strain in a half-plane, two-dimensional analogue of the
previously obtained solutions in the three-dimensional case (Maruyama
1964), while Section 4 complex variable representations which may have
much merit in problems such as to obtain the stress field along an
arbitrary line element, particularly on the faults L, in the form of its
normal and tangential components.

Section 5.1 contains some examples of making use of complex repre-
sentations in Section 4, for fundamental screw and edge dislocations in an
unbounded region. In Section 5.2 we shall show some results of cal-
culations of the strain energy changes due to shear cracks under the
condition of partial stress relaxation on the crack, with discontinuity in
displacement of more realistic type. Some comments on Knopoff’s calculation
(1958) are included in this Section.

On the reciprocity relations, which will be referred to in Section 3,
concerning a force or a nucleus of strain acting at a point and the cor-
responding displacement or stress field at another ponit, Section 1 treats
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of the problem in the three-dimensional aeolotropic half-space. Such
genelalization will be convenient for understanding of the ‘force equivalent’
problem in the static case in an aeolotropic inhomogeneous medium (cf.
Burridge and Knopoff 1964) as well as for general use.

1. Reciprocity relations in a semi-infinite aeolotropic
medium (three-dimensional problem)

In this section while introducing notations such as G%(P, Q) or Gi(P, Q),
for later treatments, we will show reciprocity relations connecting some
of them to one another. Let the medium be a three-dimensional elastic
solid which may be aeolotropic. ,

Rectangular cartesian ccordinates are dencted by z; cr & (i=1, 2, 3).
The elastic displacement vector has components ;. The strain tensor e;;
and the stress tensor z; are defined by

l(aui 8u,~>

== + , 1.1

== ooy o (1.3)

Tij=Tj= Cijki em=c1~jm% . (1.2)
1

In this section the summation convention applies over the whole range
(1, 2,8). The elastic modulus ci;; (which may be a function of position)
is unchanged by interchanging ¢ with j or %k with I or the pair (ij) with
the pair (kI). In an isotropic medium with Lamé constants 2 and ¢ (which
may be also a function of position) we have ’

Ti;=4 035 €pi+ 2 €35 (1.2)
The equations of equilibrium are

6 Tij

a.’L'j

+pfi=0, (1.8)
where p(x1, @2, x3) is the mass density of the material and fi(x;, 2, as)

the body force per unit mass. Elastic potential or strain energy per unit
volume is given by

1
'IU=ET{J' Cij . (1-4)

For either an internal surface element or boundary surface element
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of the body with surface normal vy, if fk denotes the force per unit area,
exerted by the positive side of the normal upon the negative side of the
normal, it is related with the stress tensor 7i; by the formula

v

Tk=Tkl Y. (1-5)

We shall make use of particular solutions of the equations of equilib-
rium of elastic body which tend to become infinite in the neighborhood
of chosen points. The solution having the point Q(x, 2», 23) as a simple
singular point is the one due to the force acting at @ on the body. It
may be obtained by considering the case where the body forces per unit
mass fi are different from zero within a finite volume V and vanish out-
side V and then by passing to a limit by diminishing all the linear dimen-

sions of V indefinitely, but supposing that S“Pf xdx1, dxs dxs has a finite

limit (Love §130). In this way a force acting at Q, of magnitude F, in
the direction of the axis of x,, is found to be such a limiting case on
condition that

XSS des dige d {F for k=m (1.6
Pl dey dry dvs= 0 for kxm. -6)

We introduce the notation G%(P, Q) so that the displacement component
in the direction of the axis z, at P(&), &2, &3) caused by a force, of magni-
tude F, acting at the point Q(x1, 2, x3) in the direction of the axis of xn
will be expressed by F'xGL(P, Q). In the notation like G%(P, Q), the first
letter in the parentheses, P in this case, is used to denote the field point
and the second letter, @ in this case, the point at which a force or a
force system acts on the body ; the superscript, k& in this case, is used to
dencte the component of the quantity and the subscript, m in this case,
the component of the force or force system.

If we apply the reciprocal theorem to two sets of body forces and
the corresponding displacement fields in a semi-infinite elastic body: a
force acting at @ in the direction of x,-axis and the corresponding dis-
placement field and the force of the same magnitude acting at P in the
direction of zx-axis and the corresponding displacement field, then it is
easily verified that

The (kl)-component of the stress field at P, which is denoted by G3 (P, Q),
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is derived from the displacement field GL(P, Q) as

G (P, Q)=Gx (P, Q)
a0

=cklrs(P) afs Grm (Py Q) y (1'8)
in an isotropic medium
= (Pl Gh (P, Q)+ s P) =2 G (P, @)+ 2G5 (P, @} . (1.8)
9 < 0y, 9§,

Consider next the field due to combinations of double forces or strain
nuclei. We define the notation Gi(Q, P) as follows:

Gi(Q, P)=Gi(Q, P)

= Cklrs(P)—a-

ag:sGL"(Q, P, (1.9)

in an isotropic medium

0 3} 0
=A(P)3u-2-GF (Q, P)+PH-2-Gr (Q, P+ GE (@ P)} . (1.9
()klaéh!(Q )F‘()askz(Q ) afzk(Q ) ( )
Now, for example, I x ag G3Q, P) may be considered as the limit value
3

of the superposition of x;-component of displacement at @ caused by a
force F'/4&; acting at P’ (&, &, &3+ 4%3) in the direction of x, and that caused
by the force of the same magnitude at P (&, &, &3) in the opposite direction,
that is, as the displacement in the direction of x;-axis at @ caused by a
double force at P. Therefore Gii(Q, P) defined in equation (1.9) may be
considered up to a dimensional constant as the displacement at @ in the
Zn-direction caused by a combination, specified by combination (kl), of
double forces or strain nuclei which will be referred to simply as a force
system (kI). Thus, since the displacement field G5 (Q, P) at Q is a limit
value of linear combination of displacements satisfying the boundary con-
ditions on the free surface and at infinity, it also satisfies the boundary
conditions. The force system (kl) in an isotropic medium can be shown
schematically as represented in a figure in Maruyama (1964).

Comparison of equation (1.8) with equation (1.9) and use of equation
(1.7) give

G (P, Q)=Gi(Q, P). (1.10)
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The (mn)-component of the stress at @ caused by a force system (%I)
located at P is expressed by definition of stress as

i(Q, P)=Gi(Q, P)=G&(Q, P)=Gi(Q, P)

= Counrs(@) %sz@, P), (1.11)

in an isotropic medium

°Gi (Q, P)+ @ 52~ Gu(@, P+ 2-Ga(@, P)}. (1.12)
Ty, Lm 0y,

= R(Q) onl'ﬂ a

Substitution of equation (1.9) into equation (1.11), use of relation
(1.7) and interchange of order of differentiation yield

G;h;fn(P’ Q)= zzln(Qa P) ’ <1'12)

with the help of expressions to be obtained from (1.9) and (1.11) by
interchanging the role of P with that of Q.

2. Two-dimensional relations in an isotropic medium

From this section forward it will be assumed that all quantities
depend only on the two coordinates x2 and a3, and are independent of =z,
that is, (0/0x;)=0. Then, instead of considering the entire region occupied
by the body, we may restrict the investigation to one of its sections in a
plane parallel to (zpx3)-plane. Further, it will be assumed that the body
is isotropic with Lamé constants 2 and p, which may be functions of
coordinates x» and x3 when the body is inhomogeneous.

By these assumptions we find that the system of equations of equilib-
rium and stress-strain relations (1.1), (1.2)’, and (1.3) can be divided
into two mutually independent Systems I and II, since u; is related only
with 712, 712 and fi, conversely 712, 713 and f; only with u;. System I can
be expressed by

_"7’1;,2ﬁ+@3~+pf1=0 (2.1)
0xs 03
and
61(1
T12=Fl'a“1;
A' - (2.2)
oUy
Tig=p -,
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while System II by

0792 a‘i'zs
T2 7B 4 pfy=0
| axz axg sz

0723 0733
— "+ =0
%2 %3 ofs

Top=Ad+ 2#%;2
2

Ouz , Ous >
— 4
axz axa

and \Tes= #(

2'23=7~A-i-2/x%li

Z3
where

d:—al‘i—}- au3 .
6x2 8x3

The latter is the system of equations in the case of plane strain. In
what follows indices such as & and I represent the values only from (2.3).
Since considerations are limited to points of the (x;;)-plane which is
assumed to be the plane of one of the normal sections of the body or the
cylinder, when talking of a region occupied by the bedy, we will have in
mind a two-dimensional region in the (xsxs)-plane. Surface tractions

’.;’1 do and f’kdo, which are the components in ;- and xi-directions re-
spectively, of the force acting on a rectangular area perpendicular to the
(22 w3)-plane with base do¢ and unit height, will be considered as the
tractions acting on the line element in the (2. 3)-plane, where f;’l and Tv‘k
may be expressed by

v

Ti=tuw (2.5)
Tk=7k1 i ) (2.6)

instead of by equation (1.5).

In a similar manner to what was tfaken in the three-dimensional
problem (cf. Steketee 1958b, Maruyama 1964), we begin with Betti’s
reciprocal theorem. By means of divergence theorem in two-dimensional
cases we can verify the following relations:
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Sgu@f@pdS’ + Ku?)flv‘iz)da =S Su?)ﬁ”pds + Su@f’%’)dg (2.7
S Loy s Lo

and
Sgui‘)fi”pdS + Sug)f’?)da =Sguﬁ”f§c”pds + Suil”fv',‘c‘)do ‘ (2.8)
N Ly N Lo

which hold for every pair of scalar fields «” and u{®, vector fields u§”
and uf® which satisfy System I and System II respectively and which
are single-valued and continuously differentiable for twice in the closed
region S--L, with L, as its boundary. In the integrals over L, in

equations (2.7) and (2.8), Iv’l and Ty are the tractions at the point of the
boundary Lo, the superscript v refers to the normal to L, which points
- outward from S. When p=constant, equation (2.7) is identical with
ordinary Green’s theorem concerning u{” and wu®.

In either system we can obtain the field due to a force acting at a
point or fundamental singularity. It is necessary to be defined in a two-
dimensicnal manner instead of by equation (1.6). We obtain the field
caused by a force, of magnitude F' per unit length, acting at Q(xs, x3) in
the direction of axis x;, by passing to a limit, supposing that

Sgpfl dxsdas=F, (2.9)

for System I and that caused by a force F' per unit length acting in the
direction of axis z,, by passing to a limit, supposing that

F for k=m

(2.10)
0 for Ikxm,

Sgpfk dxs dxs= {

for System II.

In the definition of body force F' per unit length acting at a point @,
instead of considering integrals taken over a small area including the
point and passing to a limit, as in equations (2.9), (2.10), the resultant
of the tractions at the boundary curve ¢: of the area, which we can choose
to be a circle of arbitrary small radius, may be taken so that

Xfu vdo=I", (2.9)

Ge

STkl vido=o,,. F, (2.10)

ge
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where the direction v; must be to the

Lo exterior of the domain excluding the
interior of the circle, that is, toward
the point Q.

Now we treat of the problem
on the displacement field containing
discontinuities in displacements or
tractions across some arcs or interior
boundaries in a region in the (x2as)-
plane. In order to apply the reciprocal

Fig, 1. The outer boundary L, and theorem to the case, we may well
interior boundaries Ly, Lq, ..., Ln, proceed by the following technique as
suggested by Boley and Weiner (§2.7).

We consider a body, with no body forces, occupying a region S+ Lo
with interior boundaries L across which the displacements and tractions

are required to have specified finite discontinuities, 4ui(P) and Ai’l(P) for

System 1, du.(P) and Ai’k(P) for System II, where P is any point on the
interior boundaries. That is, it is required that

lim 2,(Q) —lim (Q)=4u(P)
Ei:rrg i’l(Q)—lég 7,(Q)= AT (P) (2.11)
and ' )
lim 20(Q) —lim (@) = dux(P)
gm m@)—g_g; Ti(Q)=AT+(P) (2.12)
:

where the + and — signs denote the limits obtained by approaching P
from opposite sides of L. Throughout the remainder of S- Lo, the dis-
placements and tractions are required to satisfy the hypotheses of the
reciprocal theorem in the case when no interior boundary exists.

First we take a region S+ L, with only an interior boundary L across
which the displacement and the traction have specified discontinuities of

du;,(P) and Ai’l(P) as in equation (2.11) for System I.
If the specified boundary L does not cut the region S+ L, into separate

parts, it is convenient to extend it so that it does; dui(P) and Aiy’l(P) are
then also extended to be zero on the portion added to L, so that displace-




820 T. MARUYAMA

ments and tractions are continuous across
the added portion. Let S, and S, be the Lp
two portions of S, L, and L, their respective Lg
boundaries exclusive of the common bounda- Sp
ry L (Fig. 2).
Assuming the possibility of existence
of at most one solution of this problem Lo

and choosing another solution w«(P) and
v . . . Fig. 2. A region S+L, with only
T1(P) such that it has a smgularlty at Q an interior boundary L,

corresponding to a force acting at @, in

the direction of x;-axis, of magnitude F' per unit length, and has no dis-
continuity in displacements and tractions across L, we apply the reciprocal
theorem to these two sets of solutions in the closed region S,+ L.+ L and
in the closed region Sy,-+Ly+L. If the values of the quantities on L in
each case are taken as their limits as a point on L is approached from
the interior of each respective region, all the requirements of the reciprocity
theorem in the case when no interior boundary exists are satisfied. If Q
is in S, we have for S,+L,+L

SgulfipdS—l-gqu’Ida:SuIZy’l do, (2.13)
Sq LiLg Lt Lg
and for Sy+Ly,+ L
Sul 7id- = {uif do. (2.14)
L+Ly L;—Lb

In the integral over L in equation (2.13), v; is the normal to L which
points outward from S, and in the integral over L in equation (2.14), v,
is the normal to L which points outward from Sp. If the orientation
outward from S, is used in the integral of equation (2.13) as well, and
the + and — signs in equation (2.11) are taken as corresponding to the
limits from the interior of S. and S, respectively, equations (2.13) and
(2.14) may be combined as follows:

Fxu(Q)= SAuJV'IdG — S’u;df‘ld(f
i L (2. 15)
— gulTI(Irr+ guITlda ;
Ly Io

The left-hand side can be obtained from the first term on the .left-hand
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side of equation (2.18) by taking first the force acting at Q as body forces
distributed in a finite region around the point @ and then by passing to
a limit under the condition (2.9). As in all applications of Green’s theorem,
excluding the point @ from the region and replacing the first term on
the left side of (2.13) by a line integral over a small circle surrounding
Q, we may arrive at the same result by using the definition (2.9).

If @ is in S, the same formula in equation (2.15) can be obtained.
Since the integral over the extended portion of L in equation (2.15) does
not affect the result, the tractions as well as displacement fields in S,
and in S, should be continuous across the extended portion of the boundary.

If the interior boundaries consist of more than one disconnected part
Ly, Ly, --+, L,, we arrive at the same result as in equation (2.15) by
extending the boundaries appropriately so as to cut the region S+ L, into
separate parts each of which has no interior boundary, and by applying
the reciprocal theorem to each closed region of them. Therefore, we may
take the interior boundary L over which integrals are taken in equation
(2.15) as the union of all the interior boundaries Li, L, - -, L.

In a completely analogous manner to the above we obtain the formula
for System II:

F X un(Q) =g g, Ty do — Sui. AT do

L L
- S?tkf’i do+ Suh Tido , (2.16)
Ly o

where u;, and TL is a solution which is continuous throughout the region
except at @ where it has a singularity corresponding to a body force
defined as in equation (2.10) or (2.10), while ux(P) and L;‘k(P) is any
solution which has discontinuity in displacement dux(P) and that in traction
A]v’k(P) specified by (2.12) across the interior boundaries L, Ly, « -, Ly,
or across L, when the body is free of body forces throughout the
region S+ L.

These general relations (2.15) and (2.16) will be used later for explicit
expressions of displacement or stress field. ~

As for the discontinuity in the traction across L, if we consider tensile
cracks opened by uniform pressure inside the crack, it should be taken
as zero. If it is the case of shear cracks of which two sides are deformed

in contact with each other, Ai’l or Ai’k must be zero, owing to the law
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of equal and opposite action and reaction, since we make no distinction
between the coordinates before and after deformation, so far as we are
remaining in the classical or infinitesimal theory of elasticity as in this
paper.

For ordinary dislocations, or displacement dislocations, it is assumed
that the tractions are continuous across L, that is, AL;’1=A£;’k=O.

Next we take up the strain energy of a body occupying a region S+ Lo
with outer boundary Lo and with interior boundary L across which only
displacement discontinuity is given.

From the restriction of our problem d/dx; =0, the elastic potential or
strain energy per unit volume w in equation (1.4) can be divided into
two parts w(I) and w(II) which correspond to System I and System II
respectively :

w=w(I)+w(II). (2.17)

From equations (1.1) and (1.4) we have

1_ ou
I)=— L 2.18
w(I) 2711 oz, ( )
1_ ou
I)=— k. 2.19
wlll)= s (2.19)

First consider the case for System I. Assuming that the body is free
of body forces and that u; and 7y are continuous with those first deriva-
tives in a closed region S+ Ly, the total strain energy per unit length of
the body W(I), which may be considered as the total strain energy in a
plane parallel to the (azx;)-plane, may be written

W(I)—S‘wdx day = 0 =1
= S 23 = 2 Sg p (urtn)das das= 2 Suﬂ'ulﬁd" ) (2.20)

S S t Ly

where equilibrium equation (2.1) and the divergence theorem are used.
Applying equation (2.20) to two closed regions Sq+Lq+L and Sp+Lp+ L
with common boundary L across which discontinuity in displacement Au;
is given and proceeding in a similar way to that in the case of obtaining
equation (2.15) we find the strain energy per unit length of the bedy as

W(I):%

L

Suli’ldo—%SAul’.;’lda . (2.21)
Lo
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The minus sign is correct since the normal v is chosen to point outward
from Sy, in other words, from (—) side to (+) side, as in equation (2.15).
Similarly we have for System II

W(II) = %S’N;j’kda - %Sduk’j’kdo‘ . (2 . 22)
Lo L

3. Two-dimensional relations in a semi-infinite isotropic medium

In this section let the elastic body be semi-infinite and isotropic. For
the time being it may be inhomogeneous, that is, density o and Lamé
constants 4, £ may be functions of position. Rectangular cartesian coordi-
nate axes are taken so that the xs-axis penetrates the body from the free
surface 2;=0 (Fig. 3). It is assumed that all quantities are independent
of the coordinate xi, that is 9/dx; =0, as in Section 2.

LS N SSRGS

Xy

X3
Tig. 3. Rectangular cartesian coordinate axes taken so that x;-axis
penetrates the half-plane with x;-axis as its free boundary.

For convience’ sake we use the same notations G%(P, Q), Gi (P, Q) etc.
in Section 1 also in two-dimensional cases of this Section. Here P and @
denotes with coordinates (£, &) and (2, 25) respectively in the (xz2s)-plane.
Superscripts and subscripts such as k, [, and m are taken from (2, 3).

On the basis of reciprocal theorem of equations (2.7) and (2.8) we have

(GL(P, Q)=G1(Q, P),
corresponding to equation (1.7).
Stress fields at P due to point forces at @ are given by
GE(P, Q)=p(P),-GI(P, Q),
1

G (P, Q)= AP GA(P, Q)+ (P

h
‘ =Gn(P, Q),

0 0 1 (8.2)
Gm ) m ’
2e (P Q)5 GL(PQ)}
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corresponding to equation (1.8).
Displacement fields at @ due to strain nuclei at P which are denoted
by GL(Q, P) and GZ&(Q, P) may be defined as

[ L(Q, P)=n(P)-2GH(Q, P),
_ ““a [ 5 ] (3.8)
sz (Q’ P>:/’(P)0kl%;‘Gh (Q, P)+lu(P)lTEkGl (Q; P)+a_fle (Qa P)J'

' =Gr(Q, P),

corresponding to equation (1.9). The strain nuclei at P which produce
the displacement fields Gi.(Q, P) and Gi;(Q, P) at Q@ may be schematically
represented in Fig. 4, and those which produce GZ(Q, P), GE(Q, P), and
G%(Q, P) in Fig. 5, by the definition (3.3). In Fig. 4, the sign ®
indicates a force acting at the point in the direction of x1-axis, perpen-
dicular to the paper toward the front side of it, the sign ® in the opposite
direction, that is, toward the reverse side of paper.

N N

(12) (13) (22) (23) (33)
Fig. 4. Force systems cor- Fig. 5. Force systems corresponding
responding to G, to Gki.

The schematical representation of strain nuclei in Fig. 5 is similar to
that in the three-dimensional case (e.g. Steketee 1958b, Maruyama 1964),
but the representation in Fig. 4 is not.

From equations (3.1), (3.2) and (3.3) we have

GY(P, Q)=Gxn(Q, P)
GH(P, Q=G (Q, P)
corresponding to equation (1.10). The (1n)-component and the (mn)-com-

ponent of the stress at Q caused by the force-system (11) and (%l) respectively
located at P may be expressed as

(8.4)

1(Q, P)=p(Q)-2GL(Q, P),
o (3.5)
H(Q P) = AQomn -~ Gl(Q, P)+ (@] 2-G1(Q, P)+ " Gr(@, P)}
oxy, O Uy

=Gi"(Q, P)=Gi'(Q, P)=Gi’(Q, P),
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corresponding to equation (1.11). In a similar way to what was taken
in the derivation of equation (1.12) we find

(P, Q) =Gi}(Q, P)
Gu.(P, Q=G (Q, P).

Now we use equations (2.15) and (2.16) to obtain the field due to
dislocations in a semi-infinite isotropic medium. We take in the (z2 x3)-
plane a region of which outer boundary L, consists of the line of free
boundary and a semi-circle of radius R, which is distant from all the
interior boundaries L across Wthh discontinuity in displacement or in

stress is specified. As for u; and Tl in equation (2.15); or u; and Tk in

equation (2.16) we take the field due to a force I’ per unit length acting
at a point @ in the semi-infinite medium.

Assuming that
Uy = O<l>
R

Um= O(%)

for large R, contributions from the third and fourth terms on the left-
hand side of equations (2.15) and (2.16) taken over L, tend to zero as
R, tends to infinity, integrals over the boundary of free surface being
zero, we obtain the displacements at @ expressed as

(8.6)

ul(Q)zgd’ul (P) Gil (P, Q)Ul dO"—' SATH(P)GKP’ Q)UldO'
Q):Sduk (PG (P, Quido— SATM(P)G;;(P, Qudo

These equations may be written, by use of relations (8.1) and (3.4), as
follows:

ll

Ju(P)Gh(Q, )vzdo—SAfu(P)Gi(Q, P)udo

L

Sduk )GE(Q, P dU—SATkL(P)GZI(Q, Pludo.

L

(3.7)

We observe in equation (3.7) that the discontinuity in displacement
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duy or Au across the line L may be interpreted as distributions along L
of a certain type of force system with magnitude corresponding to du; or
Aduy, while the discontinuity in tractions may be done as distributions

along L of body force with magnitude corresponding to Ai‘l or Aflu’k. Further
we observe in equation (3.7) that force systems equivalent to discontinuities
in displacement Au; perpendicular to the (xs2s)-plane are represented as
shown in Fig. 4, while those to discontinuities in displacement %, and us
parallel to the plane are represented as shown in Fig. 5.

It is seen from our derivation that the essential role in the ‘force
equivalent’ problem is played by the relation (3.1) and by the relation
(8.4) which is derived from the former. The corresponding relations
(1.7) and (1.10) in the three-dimensional aeolotropic medium will clearly
play the same role in the three-dimensional corresponding problems. This
knowledge will also serve to symplify the computations given in the
previous work on the three-dimensional problem in a semi-infinite isotropic
body (Maruyama 1964), as in the method of F. Press (1965) who took
advantage of the solution by Mindlin and Cheng (1950).

The stress field at the point @ due to dislocations in the semi-infinite
medium is given by differentiation with respect to the coordinates of @
and multiplication by elastic constants. If the point @ is not on L, dif-
ferentiation can be performed in general under the integration sign in
equation (3.7), then the stress field may be obtained by means of introduced
notations Gi7(Q, P), Gr'(Q, P) etec. as

en(Q)= SAuI(P) G0, Pl do— SATH(P)G}”(Q, Plv do
(3.8)

Let us now compute the explicit expressions of Gi(Q, P), GHQ, P) ete.
for isotropic and homogeneous medium, that is, in the case when p, 4, p=
const.

Substitution from equation (2.2) into equation (2.1) leads to

V2, + —i—pfl =0, (3.9)

where V2=02/0xs+ 02/0x3 .

If it is the case when the body force of magnitude F per unit length



On Two-Dimensional Elastic Dislocations in an Infinite and Semi-infinite Medium 827

defined as in equation (2.9) is acting at P (&, &) in an infinite medium,
the solution to equation (3.9) may be given by the well-known logarithmic
potential

w(Q)= — F log R, (8.10)

an

where R=PQ= "V (£,—&,)?+ (xs—&5)?. In fact the solution (3.10) satisfies
the Laplace equation V?u;=0, except at P(&, &), and the equation cor-
responding to (2.9), concerning the line integral surrounding P.
Superposing the field due to an image source at P'(&s,—&s) of the same
magnitude with the same sign to the field (3.10), we find that the resultant

w(Q)=— 21; (log R+1log S), (3.11)

where S=P'Q= V(x;—&)?+ (x3+E&;)?, satisfies the condition of free surface
on the line x3=0, hence we can obtain the explicit expression of Gi(Q, P).

For the field for System II due to a force acting at a point in an infinite
medium we have the solution in the textbook of Love (§148). The dis-
placement at Q(xs, 23) due to a force F per unit length acting at the
origin in the direction of x.-axis is given by

) j—(2——01)logR—afﬁg—}

" 4 | R?
i (3.12)
S Jla Ty T |
4rp R? J

where R=V 2i+22 and a=(2+p)/(2+2¢). The stress components sz, Tas,
733 are given by the equations

_ F X2 2275
722—§{ —(1+a) 7‘3?"}—2&#}

F x x5
=g () 2l -13)

_F{ N X2 X5
=g (1=) 20T

We can show that equation (2.10) in the case when m=2 is satisfied by
these equations.
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In order to obtain the corresponding solution in a semi-infinite medium,
we may proceed, for instance, as follows. If we replace x2 by (x2— &)
and z3 by (w3—¢&;) in equations (3.12) and (8.13), we have the field due
to the force acting at (&, ;) in the infinite medium. Since 733 is odd in
x3 and 733 is even in x3 in equation (8.18), it is seen that the superposition
of two fields, the one due to the force acting at (£, &) and the one due
to the force at (£;,—&;) of the same sign, makes a field with zero shear
stress and doubled normal stress on the line x3=0, with no singularity
added in the half-plane z3=0. Therefore we can construct the solution
in the semi-infinite medium ;=0 by adding three fields: the one in the
infinite medium, the one due to the force of the same sign at the image
point with respect to the line x3=0 and the solution of the boundary
problem where the boundary x3;=0 is subjected to normal loads, that is,
two-dimensional analogue of the solution of the problem of Boussinesq, in
which the load is taken as twice the negative of the normal stress on the
line 23=0 of the original field.

In the same way we can obtain the solution in the case when the
force is acting in the direction of xs-axis in the semi-infinite medium by
starting from the solution in the infinite case which may be obtained by
interchanging 2 with 3 in equations (3.12) and (3.18). However, the image
source to be added must then be taken as of opposite sign in order to
make shear stress zero on the boundary x;=0.

Substitution from equation (2.4) into equation (2.3) leads to

(1) 22 2 4 =0 (3.14)
axk axh

In a similar way to what was taken in the three-dimensional problem
(Steketee 1958, Maruyama 1964), we may use two-dimensional Galerkin
vectors. When no body force is present in equation (3.14), the displace-
ment field may be given from a Galerkin vector I =(I"s, I's) as

U=V — L (&> (3.15)

axlc axh
Substitution from equation (3.15) into equation (8.14) with f,=0 yields
vavel.=0, (3.16)

which shows that each component of the Galerkin vector is biharmonic.
Assuming that the solution of twe-dimensional analogue of Boussinesq
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problem may be obtained from a Galerkin vector I'=(0, I") which is per-
pendicular to the free boundary, as in the case of the three-dimensional
one, we have from equation (3.15)

0? I
U= —
2 axzaxg
wm=(vr—a 2\
y o3

(8.17)

Taz=

9 ( , az> ,
—2 I
oo, \V Y o

3

0 < 2 0% )
+2 r.
axg v * ax§

T33=H

A biharmonic function /'(x2, x3) may be written in the form
P=A(£L’3 +ix2) +B($U3 - sz) + x:;C(x;; + ’sz) + st(x3 - sz) , (3 . 18)

where A(z), B(z), C(z), D(z) are arbitrary functions of 2. From equation
(8.18) we have

V' =2{C'(x3+1x2)+ D' (23 —122)} .

Functions here shown must be found so that shear stress vanishes and
normal stress is equal to the given normal loads on the boundary x;=0.

Stress components on the boundary may be expressed from equations
(8.17) and (3.18) as

{T:zs: 2#1{ _ a(AIII _ B/N) + (1 —_ 2&) (C” - DN)} (3 . 19)

ty3=2p{ —a(A"+B")+(1—a)(C"+D")}.

But the normal loads on the boundary of our Boussinesq problem may
be given from equation (3.13) in the form

Pz(x2)=ip;|:—(l—a) f 1 — 1 }+a5 &3 _ &s H

{ E3tiwe E3—ixs { (E3+img)®  (&3—1ixa)?

for the force in the direction of x.-axis at (0, &) and

Ps(x2)=2—lz_l:— { fsjixz * 53—1’[562 } —0({ (ssf;%y * (53_&;962)2 }:|

for the force in the direction of ws-axis acting at (0, &).
The form of each unknown function in the second formula of equations
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(3.19) can be obtained as a linear combination of functions that appeared
in the expression of Pa(x:) or Ps(x:) so that it has no singularity in the
half-plane x3=0.

Deciding constant coefficients we have in the case of Pa(xs)

A" (23 +120) =

i{ _(1=a)(1=2a) 1 ,1-2a & }
dmp a? p+ixs a  (p+ixy)?

iF ((1—a)(1—2¢) 1  1—2«a &3 }
4zp a? P—12s a  (p—ix)?)’
iF {_ lma 1, & }

dzp a ptize (p+ime)?

iF (1—a 1 &3 } .

B"'(x3 —Z$2)=

C”(xg -+ ’sz) =

D”(x;; - sz) —

dzp @ p—ime  (p—ixg)?

and in the case of P3(x)

F {1—2a 1—2a &3
A" (23 + 122) { + }
(s + i 4n,u a® p+zx2 a  (p+iz)?
B///( 3—1372 F { 1—2«a + 1—2«a 53 }
47r;z P—1%2 a  (p—ix)?
C"(x3+12) = «{ E? } ,
47/1 @ p—l—zxz (p+1ix2)?

' , F (1 1 &s }
D" (3 —ixs)= — — + ,
(2 2) 47qula p—ixy (p—ixs)?

where p=uxs-+&s.

Hence, by means of equations (3.17) and (3.18), the displacement field
to our Boussinesq problem may be obtained, omitting arbitrary constants,
for Pa(x2)

— {—2(1_")2 log S—2(1—a) P — 90 T3 | 4o TSP®

dmp @ S? St St
i {2( 1—a > avctan 22 2733 +2(1—a) T2¥3 _yq 2235
? 4y a P S2 S2 St ’

and we have for Pj(x2)
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Up= 4F {—2( 1-a > arctan 22— 2(1 —a) T8 42 T . go LD }
T y

@ P S S? S*
Uz = F {_zlog S+2P _9a®5% 4 g4 x3§3p2} ’
dap |« S2 S? S*

where S= Vai+p?.
Thus the final displacement components at (xz, x3) to the semi-infinite

medium for a force F per unit length acting at (0, &) in the direction of
Z2-axis become

_£.,)2 —
Uy = F l:_ (2—a)log R—a (ws=&) _ (2—2a+0a%) log S
4drp R? «

—{ (2—a>p2+2ap53—2a5§}§+4a»p2(p—53>53 T;?] ,

3.20
oy = F raxz(gﬁs_&) | )
dmpl R?
_|_2< 1 ;a )arctan %-*- (2—a) (p—25) ?; —4ap(p—53)53%ﬂ ’

while for a force F' per unit length in the direction of x3;-axis we have

F [—a 962(933 — 53)

2T dzp L R?

_2< 1—«a >arctan 24 (2—a) (29—253):6—2+4ap(?9"53)53'@‘} ’
e D S 5 (3.21)

=L [_(Z—a) log R+a =8l (2=2ata®) ) o
4y R? a

+{(2— @) p? — 2apts + 208 §+4ap2(p—53)s3 —5—4] ,

where p=E&;-+a3, R= V ai+(2;—5)2 and S= V ai+p2.

Omitting the factor F' we can obtain explicit expressions for Gi(Q, P)
from equation (3.11) and for Gi(Q, P) from equations (3.20) and (3.21).
As for System II we make the assumption =g, that is «=2/3, for the
sake of simplicity in the following. Then we have for System I:

1 1 1
GYQ, P =—[1 L4 —] .
(Q, P) o log (3.22)

and for System II:
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172, 1 1 (-6
@ ,p=_[_1 11 (#3—&)?
(Q, P) oruls PR3 R
5 1 2 (pP+pS—E&Y)
+5 g L2
6 5 3 S?

(p*€s— %)) :I
g4

+4
3

3 — 1 r_l_ (932—52) ( 53) 22—
G3(Q, P) 2l 3 o 2 arctan( 2p )

12 (22—&)(p—28) 4 (xz—sz)(p'zgs_pgg)]
3 S? 3 St : |
3.23
G?}(Q P): 1 rl(xZ_SZ)(xli—éli) _Larctan<x2—€2>
’ onpl 8 R2 2 D
E (xz—fz)(p 253) (962—52)( 253—2753)
* 3 S? iy 3 St :l
3 _ 112 1.1 (@3 —&3)?
Gi(Q, P) 27:#[3 log 5 + 5
5.1, 2(@—pi+8), 4 (pP&—p*E)
I R A S ]

In what follows as well as in equations (8.22) and (3.28), Q= (xs, x3), P=(£,&5),
p=2x3+&;, R=P—Q= V(xz —&)2+(23—&)? and S=P'Q= \/(xz — &)+

By use of equation (3.3) we obtain explicit expressions for G}(Q, P)
and G%(Q, P) as follows. For System I:

GhL(Q, P)=2—1ﬂ[% +§1—2-](x2—éz)

, =L[jx3—53) __p_}

u(Q, P) 2r R? S?
and for System II:
L[E_L 4 M+_7_L
2zL3 R? 3 R4 3 82

4 (8p*+p&—28) | 82 (pP&—p*i) |, _

_g AY S43 3 3 B SSG )53 (xz EZ)
_1_|:(x3—53) _4 (=& + (p—10%3)
o2n R? 3 P" S?

_4 B8p°+p*%:—6pdi) | 32 (p*s— pifg)_]
3 St 3 S6

gz(Q; P):

; _ 1
22(Q7 P)_ 3
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GL(Q P)=L[_5_ (ws—&) _ 4 (we—&) 1 (5p+26)
23\ 3 R2 3 R 3 Sz

(3.25)

P2 —pEs—263) | 32 (p3&;—p2E
62t 32 WP o,y

10 11 ,4 (@3—&)2 1 1
: ,P=—[—~———+———3 i
5(Q, P) orlL 3 R® 3 R* 3 2

(PP —5p&s+283) _ 32 (p3&s—p*é))
s 3 m Jiza—sa

_4
3

3 _ 111 (w5—&) , 4 (33—&)°
4(Q, P) 2ﬂ[3 &), 4

1 (p—2&) 4 (p*—5p*s+6péi) _ 32 (p453—p35§):|

3 8 3 S* 3 S¢

By the help of equation (3.4) we may easily obtain explicit expressions

for G¥(Q, P) and G(Q, P).

and for System II:

From equation (3.5) we have the following expressions for System I:

[__1__+2<(x3_53)2 _L.}.zﬁ]

2(Q, P) = —oh - el

i

l

a
or
2%[ _gl#a—&) _ 2_&]@:2 —&)

2(Q, P) L

(3.26)
3(Q, P)

2] B (x '—E) v I
__.__2__3__%_1_2 _4 (xz._fz)

13 a3 1 (x “‘{: )2 1 p2
13(Q, P)__—_j—zs_f__7+27|

p g1 qg@s—&)f 32 (w—&)* 20 1
ozl " R? R 3 R 3 8
16 (7p2+3p53—35§) _32(1044'410353—427253)

3 St NE

#(Q, P)=

-+
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2(Q, P)=

2(Q, P)=

5(Q, P)=

T. MARUYAMA

+128 (?9553 —p4§§) ]

S8
g 3 .
G2(0, P ;,L[_g(xg—ss) 432 (@5—&)° 8 (5p—2&)
@ P) 2= R* 38 RS 3 st
32 (8p®+4p2E;—6psl) (p*6s—p*&)
+228 . —128 g (2 —&2)
;/L[él i_g (963_53)2 _*__32 (x3”—53>4 _ii
2:L3 Rz 3 Rt 3 RS 3 82
_ 16 (4p°—3pSs—38) | 32 (3p*+8pE—12p%))
3 S* 3 S°
128 PP ]
SB

M _8,(~”03—§3) 32 (23—&)° | 8 (3p+26&)

o R* + 3 RS + 3 S4

_ 32 (p®+ 8p?E; — 6pLl) +128 (p*6s—p*&3) :l(xz__gz)
3 S6 S®

,,/f_[i_L_S_(_xsﬂﬂL_“___
2:L3 B2 3 Rt 3 RS 3 S
1 16 (2p*+3p5;—88) 32 (p*+12p°6;—12p%))
3 S* 3 S¢
1198 P%6: —p*&) ]
SS

_/f{é (ws—85) 32 (23-&)° 8 (p—2%5)
2:13 Rt 3 RS 3 g

32 (p*+4p*;—6p3) (p*:—p°&)
+f—8~~ 36 —128 358 (x2—&,)

J‘_iifl,,lf_ﬁ(xisi)i.ggw_ii

2L 3 R? 3 R? 3 RS 3 S

416 (2p°—9pS+35) _ 32 (p*—16p:+12p%;)
3 St 3 S6

1 P8 ]
S8

(3.27)
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500, P =_pe_[§ (=) _ 82 (3—&) _ 8 (p—2)
Q. P) 2r L3 R“ 3 R 3 S4
4 1 , 16 (x3—&)% 32 (x3—6&) 4 1
p__[_ﬁ 16 (wa—¢s)* 82 _41
5(Q, P) 3 R2+ 3 R* 3 RS 3 §?
_ 16 (p*—3p&;+3§&5) | 32 (p*—12p°&; -+ 12p%5)
3 S 3 S6
(P& —p*é))
+128—3?——:|

These expressions are the same as those to be obtained by integration
with respect to & from Wi, Wi, Wit and Wi" which are listed in the
previous paper (Maruyama 1964), though calculations are lengthy, as

W@, P)=|_ whda,
5@ P)=|_ Wads, et

So far we have chosen the orientation of the line element do of L
arbitrarily. If we take the positive direction of the line element ds of L
such that the tangent ¢ and the normal v to the line are oriented with
each other as z.- and xs-axis, then we have

dé;
ds
dse

ds

If we use ds in place of do in equations (3.7) and (3.8), in the cases
of continuous tractions across L, they may be written in the forms

yo= —cos (¢, &)= — ,

(3.28)
va=cos (t, &)=

(@)= Sdul{Gia(Q, P) d&,— Gh(Q, P) dés)
) (3.29)
= Auk{Gu Q P déz '“Gm (Q, ) dés} ’

(3.30)
Auk Q P (ZE2 2n(Qy P) d&(i} ’

z-’I'I'Lﬂ

a-|
SAuHG 1(Q, P) dés)
-]
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where the repeated suffix & is to be summed over the values 2, 3 as before.

4. Complex representations for an isotropic and
homogeneous medium

In this section we cons1der two-dimensional problems as in Section 3,
by means of complex representations. The body will be assumed to be
isotropic and homogeneous from the beginning. Cartesian coordinate
system of reference in the plane will be denoted by (z, y) for convenience
of the familiar expression of complex variables, with the y-axis taken
downward so that the semi-infinite body occupies the half-space y=0. It
will be only necessary for reference to Section 3 to replace

(22, @3), (&2, &3), and (uz, us)
by (z, ), (& 7), and (v, o)
respectively.
The first part of this section treats of the field with displacements

perpendicular to the (z, y)-plane, that is, for System I, while the second
part the field with displacements parallel to the plane, that is, for System II.

4.1. Expressions for System 1

Euilibrium equations when no body forces are present for System I
may be written in terms of new variables

aflx+iﬁv_=o (4.1.1)
ox oy
o ((’72;1 (4.1.2)
o 6u1 o
Tiy= 1 ,

where retaining «; and suffix 1 in 712 and 73 in equations (2.1) and (2.2),
we reserved the use of z corresponding to the third axis that is perpen-
dicular to the plane, for the familiar expression of a complex variable
x+1iy.

Substitution from equation (4.1.2) into (4.1.1) yields the harmonic
equation
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02 0° )
=0,
<6x2 + dy? “

We assume that %; is an analytic function of variables «, ¥ inside
some region. If we introduce new variables

{Fx”y (4.1.3)
F=x—1y,

then differentiations with respect to # and y being combined as

we have

from which it follows that
uy = 11(2) +12(z) ,

where y; and 2 are arbitrary functions. Since u; is a real function it is
seen that we must put

7.1_(5) = X2(z) ’

where xi1(z) is the complex conjugate of yi(z), therefore u; is taken as the
real part of a holomorphic function of the complex variable z.

It may be more convenient to adopt the expression

uy=Re{x(z
rn=Re{y(z)} (4.1.5)
or 2pu=7y(z)+x(2)

where Re denotes the real part.

From equations (4.1.2) and (4.1.5), with the help of equation (4.1.4),
we obtain

Tz — ity =1(2) (4.1.6)

where y'(z)=dx(z)/dz.
Consider some curve AB in the (xy)-plane and suppose that positive
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direction along the curve is from A4 to B. We draw the normal v at
any point of AB to the left when looking along the curve in the positive
direction. Then the tangent and the positive direction of the normal are
oriented with respect to each other as the x- and y-axis (cf. Fig. 6). It
should be noted that the orientation of normal v is opposite with respect
to the normal n in Muskhelishvili (1953a, § 32).

As in the preceding sections, 71 ds is understood to be the force acting
on element ds of the arc AB, from the side of the positive normal, and
we have as in equation (2.5)

Ty= 14 cos (¥, @)+ 1y €08 (¥, )
which may be written
Ty= —Im{(c1x—ir1y) (cos (v, ¥)—i cos (v, 2))} ,

where Im denotes the imaginary part. From this, with (4.1.6) and the equation

cos (v, ¥)—1 cos (v, x)—di
ds
which is easily verified by the relations
cos (v, x)= —cos (t, y)= — dy , cos (v, y)=cos (t, x)= ﬂ
ds ds ’

where ¢ is the positive direction of the tangent, ds the line element with
the orientation of ¢, we obtain

Tty dz
Tl— Im{ ()ds}

P (4.1.7)
= —*J; Im l,{( )}
Equation (4.1.7) may also be written in the forms
T,= —TIm ety (2
1 {7/ (2)} (4.1.8)

=Re{e“ "/ (2)},

where (¢, ), (v, *) denotes the angle between the tangent and the z-axis,
or the normal and the z-axis, as usual, measured counterclockwise from
the z-axis in the plane. \

Let X; be the total force in the direction of x;-axis, measured per
unit length of the a;-axis, exerted across AB by the region on the positive
side of normal upon the region on the negative side. Then we have from
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equation (4.1.7)
By B
X1=S Tlds{—Im {X(Z)}]
A A

where [ 17 denotes the change in value of the function in the brackets
as the point z passes along the arc from A to B. It follows that this
resultant force does not depend on the shape of the arc joining A and B
except that it leaves the region. Therefore if we write the force simply

Xi=—Im{x(2)}, (4.1.9)

it can be understood to be the resultant force exerted by the positive side
of normal to an arbitrary arc connecting the variable point B, the coordi-
nate of which is z, with some fixed point A.

We now note some results in complex variable theory which will be
used in what follows (cf. Muskhelishvili 1953 a, b; Green and Zerna 1954).

Let L be a simple smooth contour, a simple smooth arec or the union
of a finite number of such disconnected arcs and contours in the (zy)-plane.
If L contains arcs, their ends will be called ends of the line L. When L
consists of disconnected parts a positive direction must be chosen on each
of these parts.

The arc with the ends A4, B will be denoted by AB, where the positive
direction along the arc is from A to
B (Fig. 6). If we draw around any
point on L not coinciding with an end,
x a circle of sufficient small radius, this

A circle will be divided by L into two

J/ parts, one of which will lie on the left

and the other on the right when looking

in the positive direction of L. They

will be regarded as the left and right

neighborhoods and denoted by (+) and

(—) respectively. We draw the normal v

Fig. 6. (+) and (—) neighbor- at any point on L to the left when looking
hoods and the orientation of . ey . .

normal » to the curve 4B, al(?ng L in the positive direction. The

' orientation of the normal v is such that

it points to the positive side (+) of two neighborhoods and such that the

sense is consistent with the orientation of the normal in previous works

(e.g. Steketee 1958; Maruyama 1963, 1964) as well as in the previous

sections of this paper.
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Denote by S’ the part of the plane which contains all the points not
belonging to L; in other words, S’ is the (ay)-plane cut along L. If L
consists only of arcs, then S’ is a connected region, while if L includes
contours, S’ consists of several connected regions bounded by these contours.

Let F(z) be some function given in S’ (but not on L) and satisfying
the following conditions:

1) The function F(z) is holomorphic everywhere in S’.

2) It is continuous from the left and from the right at all points of
L, other than the ends.

3) Near the ends ¢

| Fle)| <-— (4.1.10)
lz—c|®
where C and « are positive constants and 0= a<1.

In 2) F(z) is said to be continuous at the point { on L from the left
(or from the right) if F(z) tends to a definite limit F*({) (or F~({)) when
z approaches { along any path which remains on the left (or on the
right) of L.

Such a function F(z) will be called sectionally holomorphic in the entire
plane. The line L will be called the line of discontinuity of F(z).

The problem in which we are concerned is to find the sectionally holo-
morphic function F(z) with the line of discontinuity L, the boundary values
of which from the left and from the right satisfy, except at the ends,
the condition

FHO)-F~()=f(0), (4.1.11)

where f({) is a function given on L. If we assume that the function F(&)
satisfies the H condition on L, the general solution of the problem is given
by the integral of the Cauchy type

Flz)— 2m§ cf( de+c, (4.1.12)

where C is an arbitrary constant. Here, a function of position on an arc
or contour f(¢) is said to satisfy the H condition or Holder condition, if
for any two points {;, {2 on the arc or contour the inequality

| F(&2)—F(&) | <Al G-G|" ' (4.1.13)

holds, where A and g are positive constants and 0<g=1.
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As regards the boundary values F*(¢,) and F~({o) at any point & of
L, other than its ends, when C=0 in equation (4.1.12), they are given by
the Plemelj formulae

) =L+ L Cfﬁcéo az

(4.1.14)

N | 1 { )
F~(&)= —T?“f(Co)-i-—z—;i—S - dc,
where the principal values of the integrals must be taken on the right-
hand sides.

As an application of this solution we can treat of the problem of
dislocations stated in previous sections.

Now we denote by L the union of non-intersecting smooth arcs in the
plane on which the discontinuity in displacement is given, since the field
must be obtained by the help of sectionally holomorphic functions.

If the discontinuity in displacement is expressed by

uf () —ur (O)=4w,(¢) on L, (4.1.15)
we have from equation (4.1.5)

O+ Q=)+ ({)+2¢duy on L. (4.1.16)

Since we are concerned in the case of continuous tranctions across L in
this section, from equation (4.1.9)

0= ©=2"()—2() on L. (4.1.17)
Adding (4.1.16) and (4.1.17) we find
2110 =1 (Q)=pdu() on L. (4.1.18)

First we consider the case when the body occupies the infinite region.
Assuming that x(C) is sectionally holomorphic in the entire plane and
vanishes at infinity, the solution to the condition (4.1.18) may be obtained
from equation (4.1.12) as

x(z)=—”«_§ Aw(®) gr (4.1.19)

Next, the solution to the problem in the semi-infinite medium which
includes L on which the discontinuity in displacement is given may be
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easily constructed by means of this solution.
In fact, defining x0(z) as in equation (4.1.19) by

W)
70(2) 27”.5?_7“ dt (4.1.20)
and putting
1(2)=x0(2) + 10(7) , (4.1.21)

we find that z(z) is sectionally holomorphic in the semi-infinite region =0
with the line of discontinuity L and vanishes at infinity. The displacement
field satisfying equation (4.1.15) may be written by equation (4.1.5) as

riy=Re {30(z) +20(2)}

or ul:%[ 1 S Aty dC—i—{ 1 S L dC} (4.1.22)

2mi ) C—z 2z ) {—z

By use of the rule

the expression including the stress components may be obtained from
(4.1.6) as

T12— %1y = %o(2) + 10(Z) (4.1.23)

from which it is seen that the requirement r;,=0 on the boundary z=%
is satisfied. Thus we have the required solution in the semi-infinite medium.

Starting from the first equation in (3.29), we can arrive at the ex-
pression (4.1.22) by the help of (3.24) and the relations

([z=matizg, Z=a2—ixs (4.1.24)
(C=&+i&, T=&—it.

4.2. Expressions for System II

Equilibrium equations when no body forces are present for System II
are written in this section, in place of equations (2.3) and (2.4),
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Jgt_xr_ afxyzo
w (4.2.1)

0Ty + 0tyy _ 0
ox oy

and

X

I 3_u)
2y #<ax+3y (4.2.2)

TUU=2A+2#%§° ’

where

A=a_u+a_v

ox oy

From these equations it can be derived that there always exists some

biharmonic function A(x, y) of x, ¥ called a stress function or Airy function
by the help of which stresses may be expressed as

A ”A a%A

’ Cxy— T A A2 YYT T e 4.2.3
oy? Y oxoy Fuu Oz’ ( )

Taax™

As in Section 4.1, assuming that A is an analytic function of
variables z, ¥ inside some region and introducing new variables z,Z by
equation (4.1.3), we have

32 82 >2 34
L T Y A=16_ 7 _A=0.
( a2 oyt 32207

Hence A may be written
A=201(2) +2¢2(2) + 01(2) + 02(2)

where ¢1, 3, w1, and w; are arbitrary functions. A being real we must put

?o(7)=o1(2) , 9(Z)=w1(2) .

Thus we have A4 in the form
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A=Re{zp(z) + o(2)}
=%{5¢(Z)+ch_(z)+w(z)+w)}. (4.2.4)
Using (4.1.4), from equations in (4.2.8)
Tont Tyy=2(2+ #)4:4% A

02

A.
022

z'yy — Txx + zifxy = 4

These are given in terms of ¢'(z), ¢’(z) and their complex conjugates as

[rent =202+ 1) 4=2{¢'(2) +¢'(2)}
lfyy—‘rxx-{-Ziz'xy:z{gso”(z)+¢,f(z)} (4.2.5)
where

P(z)=0'(2). (4.2.6)

In order to obtain an expression for displacement we may proceed
in a similar way to what is taken in Green and Zerna (§6.4). Introducing
new variables D, D defined by ‘

D=u+w, D=u—iv
and noting that

_
—az+62
oD

Tyy— Taw+H 20Tay= —4p——

dz '

we have from equation (4.2.5)

20 (L-+2D)= 2 o)+ )

2020 — —(2/(2) + )}

These equations may be integrated to give
2p(u+iv)=ro(z)—z ¢'(2) - 4(2) , (4.2.7)

where
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A+3p _ 2

_10 (4-208)
At p a

K=

In the same way as in Section 4.1, taking some arc AB in the
region, we consider the force acting on element ds of the arc, from the

positive side of normal, which is expressed by (Tv'x ds, Ty ds). By the help
of relations in Section 4.1 we have

Tv'x= Txx COS (U, x) + T2y COS (1«', y)
FAdy #A ds
oy? ds oxdy ds

~ (%)

71’11,/: Ty COS (¥, &)+ Tyy COS (v, ¥)
_PA dy  PA dx
dxoy ds = 0x* ds

c({is (8A>

in the complex form

Substitution from equations (4.2.4) and (4.2.6) into this equation leads to

TotiT, = o(2)+2 02+ 9(2)} . (4.2.9)

It is sometimes required to be concerned with the force acting on an
element ds of the arc as divided into the normal component Nds and
the tangential component Tds with respect to the arc. If these com-
ponents are again understood to be of the force exerted by the region
on the positive side of the normal, the complex form (T+iN)ds is to be

obtained from (Tx+zTy)ds by rotation of coordinate axes, we then have
easily

T+iN= ie‘i(""’)—(%{@(z) +z¢'(2)+¢(z)} . (4.2.10)

From equation (4.2.9) the total force (X, Y) per unit length, exerted
across AB by the region on the positive side of thé normal upon the
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region on the negative side of it can be obtained by integration with respect
to s from A to B along the arc. It is convenient to write the force in
the form

X+iY=1{p(z)+2¢'(z) +¢(2)}, (4.2.11)

for the variable point B with coordinate z and some fixed point A. This
is a similar manner adopted in equation (4.1.9), and we have

Zv’x+i§’y=g—(X+iY) , (4.2.9)

S

T+iN =@ di(Xﬂ'Y) . (4.2.10)
S

Applications of theory of sectionally holomorphic functions to the
dislocation problems as plane strain deformation will be made in the same
way as in Muskhelishvili (1953 a, §109) in which an application to the
problem of insertion of the same material into a hole is treated of as due
to D. I. Sherman.

As before we denote by L the union of non-intersecting smooth arcs
in the plane on which the discontinuity in displacement is given as

g(Q)=du+w)= {u"(Q)+w* ()} —{u )+ (0}, (4.2.12)

then from equation (4.2.7)

ke (0) =L o () =7 (Q)=rp~(0)—L ()= ¢~ () +2¢9(C) on L. (4.2.13)
Since we are concerned in the case of continuous tractions across L in
this section, we have the condition

)+ () + 0" ()=¢ () + on L, (4.2.14)

[
ﬁ‘
i
&
+
S
G

from equation (4.2.11).
Adding (4.2.138) and (4.2.14), we find

00— (0)= —Z‘fi~g(C) on L. (4.2.15)

o) =g (O=={e" O - O} =T O -¢ (O} .  (4.2.16)

In the first place we treat of the case when the body occupies the
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entire plane.

We assume that the field will be expressed by means of sectionally
holomorphic functions in the entire plane with the line of discontinuity
L, and that u+iv in (4.2.7) and X+4Y in (4.2.11) have no poles and
vanish at infinity. On this assumption ¢(z) must be a sectionally holo-
morphic function in the entire plane with line of discontinuity L and from
(4.2.15)

—2¢ 1 g€ .
ole) =2 27[@,5 28 g (4.2.17)
and hence
1) — 2# 1 QC)
¢'(2) £+1 27ri§ (C—z)zdC ( )
N , 4.2.18
ST VR N PP
£+1 2riL {—z dt=a 23 ) {— ’
. 1ey— d
V‘\hele qg ng(C)'

From (4.2.15) and (4.2.18) the left-hand side of equation (4.2.16)
may be found to be in the form

¢ () =g (O)=—21 (- gD -C(0)} . (4.2.19)

Owing to the assumption that the expressions of u-4v and X +4Y contain
no poles in the entire plane, z¢'(z)+¢(z) as well as ¢(z) should have no
poles, as seen from (4.2.7) and (4.2.11). Therefore the sectionally holo-
morphic function which will ke obtained on the formula (4.2.19) should
be added by the terms which cancel the poles of ¢'(z) on the right-hand
side of equation (4.2.18). Thus we obtain

#lz)= ,czf1 271n'{_g 7 d:_S zcg;(i) dH[ng—(Cz)]:b} ’

L

H(z)= xz-fl{_Z}riS 9E) gz 4 1,SQ(C)d< ¢ )} (4.2.20)

With (4.2.18) and (4.2.20) we have
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zgo’(z)—kg’)(z):%[—ig g(_cl dC+—2—}r—i~§g(C)d< E:i )J . (4.2.21)

L

Finally, for the displacement and the resultant force on arcs we obtain
from equations (4.2.7) and (4.2.11)

uhiv= xil[z;fé’(fid“{zﬂ gtc) dC}—{—L—Sg(C)d(zﬁ)}]

L ;) C—z 23 ) {—2
(4.2.22)

oo 2l e L e o )1
(4.2.23)

The last term in the spuare brackets on the right-hand side of
(4.2.22) or (4.2.23) is the complex conjugate of the last one in equation
(4.2.21); if we denote the latter by F(z),

F(z)= %5g(§)d< g:z ) . (4.2.24)
Putting
{—z=Re", (4.2.25)
F(z) may be written in the form
Fe)= - g0de. (4.2.26)

L

It may be shown that F(z) has no discontinuity when z passes across
the line L. Take a point z in a vicinity of L and consider the integral
(4.2.26) when z passes across L to the other side along a line ! through
¢y on L, other than its ends. If we denote by A;B; a sufficiently small
part of L including {, in it, it is clear that the contribution to the integral
(4.2.26) from the part of L other than A;B; is continuous with respect
to z. On the other hand owing to the assumption that g({) satisfies H
condition on L, it is clear that g({) is bounded on the part A4;B;, and we
have

’

Sczbl Q(C)de‘““‘ <C l [e“2i“]:="b

{=a1 =aq

where C is a constant and a, «, are the values of a at {=a;, b
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respectively. Since ap tends to a, =
in this inequality, as z tends to &, on
x the smooth line L (Fig. 7), the contri-
bution to the integral (4.2.26) from
the are 4;B; must become zero. Hence
F(z) shows no discontinuity across L.

It is also seen from equation
(4.2.26) that F(z) vanishes at infinity,
since the angle subtended by L tends

7 to zero as z tends to infinity.

Fig. 7. Az 2 tends to Co a tends to Thus u+iv in equation (4.2.22)
‘wetn and F(z) shows no dis- and X +1{Y in equation (4.2.23) satisfy
continuity across the smooth arc. the required conditions on L, that

is, the given discontinuity in equation
(4.2.12) for u-+iv and the continuily for XY in the limit values from
the left and right sides of L, as well as the condition at infinity.

We now consider the case when the body occupies the semi-infinite
plane y=0 with a free boundary y=0, using the method in Moriguti
(1957, p.71).

On the functions ¢(z) and ¢(z) obtained in the case of infinite region,
which we write as ¢o(z) and ¢y(z) in what follows, we introduce a function
%0(2) which must be holomorphic whenever both ¢o(z) and ¢o(z) are holo-
morphic, by the formula

20(2)=2¢(2) + do() - (4.2.27)
Defining ¢1(z) and x1(z) by

[e1(2)= —%(2)

ly1(2) = — 0(Z) (4.2.28)

and a function ¢(z), which must be holomorphic whenever both ¢;(z) and
x1(2) are holomorphic, in the formula

11(z)=zo1(2) + d1(2) (4.2.29)

we have the equation

{o(2) + 01(2)} +2{¢o(2) + @1(2)} + {¢o(2) + ¢1(2)}

= {po(2) = 0o(2)} + {x0(2) — 20(2)} + (2= 2){i(2) + ¢i(2)}

which vanishes on the boundary where z=2%.
The solution in the semi-infinite plane may then be obtained by putting
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o(z)= @o(z) +¢1(2)
P(z)=do(2) + ¢n(2),

by which the boundary condition for y=0 is satisfied in the form

(4.2.30)

X+i¥=0. (y=0) |
From equations (4.2.27),5(4.2.28), and (4.2.29) we have

o1(z)= —{2¢i() + $0o(2)} ,
20i(2) + di(2)=1(2) + (2= 2)i(2) |
= —0o(2) — (2 —2){@u(z) + 205 (2) + 9i(2)} ,
and obtain from (4.2.7) and (4.2.11),

2p(u+iv)=k{po(2) — 204(Z) — fo(2) }
—{~00(Z) +204(2) + Po(z) } (4.2.31)
+(z2—2){0(2) + 20, (2 +¢o(z)},

X +iY=i[{po(z) —200(Z) — o(2)}
+{ —0o(2) +204(2) + ¢o(2)} (4.2.32)
—(2—2){eu(2) +2¢'(z) + 4i(2)}1 ,

where
9 4
(%) /c+1 27:sz zJC’ )
- 4.2.33
o o A ) B
2mLC z 2mi {—z
The results may also be written in the forms as
iy — & 1 gr jlggd?_{_l*d,g__éjl
utw x+1[2ni§C z C+l2m —% 3 2m'§g (-2
1 1( g jT‘ggd}+1g_dC—i
+m+1[2xi§€—2dc+l24’:ih§—z CI Zm'Lg -z
B 1715_ 1 _71_S_l 1 _1SdC—E}]
e ) T e o) T e ) Y
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o Zpil: 1 S 9 1 S
X+i¥ = e+
Rt o {ZniLC

L

B xz-ﬁil[Z}riISCzEdc+{ 21-15

+(z—2){2}riggdc_1_z—2ii§gd 1 1.§gd(c-z il

L

Starting from the second equation in (8.29), we can arrive at the
expression (4.2.34) in the case when #=2, i.e. 2=y, by the help of (3.25),
(4.1.24) and the relations

= Auz+14
g sl (4.2.36)
g=Aus—1dus .

5. Some Typical Problems in an Infinite Medium

In this section we collect and arrange some simple typical two-
dimensional problems concerning the fields caused by shearings or ruptures
on the basis of previous expressions.

We take coordinate axes of reference (z,y) in an infinite isotropic and
homogeneous medium, and assume that the discontinuity in displacement
takes place along the real axis.

For System I we have from equations (4.1.5), (4.1.8), (4.1.6) and
(4.1.19), with z=x+1y,

pts =Re{x(2)) (5.1)
Ty= —Im{e“"y/(2)} =Re{e*=y/(2)) (5.2)
T1e—iT1y=1%'(2) (5.8)
and
L Auy(§
)= [ Al (5.4)

L

where the integral is taken over a segment L of real axis on which the
discontinuity in displacement Au;(§) is given as

duy(8) =i () —ur (&) (5.5)
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corresponding to equation (4.1.15).
Since y'(z) may be transformed as

Ao j éulf)) de

' 1
2 jdul(f)d =

2ni &z Jima 2m E— zé

with the help of the derivative of 4u(¢) with respect to &

Aul_digzml(s) (5.6)

stress components may be expressed in the form

e ﬂFAul]"zb+ S‘m‘ o1
T il e—a ke 2w ) e o

For System-II, we have from equations (4.2.22) and (4.2.23) the
expressions '

utiv= fc-ll—l[zfrilgsgzdé— 21@5532%;(22;? jgd(éiz/ﬂ (5.8)

,-_Zyi[lgg 1gg '(z-z)g_ 1 ]
+2Y = 5.9
e e omi e T omi Lgd<$—z> (5:9)

L L

where integrals are taken over a segment L of real axis on which the
discontinuity in displacement is given by

9=9&)=u* (&) —u (&) +i{v (&) —v (&)} = du+idv, (5.10)

corresponding to equation (4.2.12).
On the left-hand sides of equations (5.8) and (5.9), however, it is

rather convenient to write in the form
{ 21(u+iv)=rg(z) - ¢(z) — (2 —2)¢'(2)

X+iY:i{gp( ) ﬂ(§)+(z_§)‘/(?} ‘ (5-11)

where



On Two-Dimensional Elastic Dislocations in an Infinite and Semi-infinite Medium 853

~ 2 L} ¢ | 5.12
ole)=" 17 Znigf—zdé (5-12)

L

as in equation (4.2.17). These expressions are of the type in the case of
tensile cracks appearing in the book of Green and Zerna.
As in equation (4.2.5) we have

Tant Ty =2{¢'(2) +¢'(2)} . (5.13)
Taking a line element ds at the point (x, %) in the direction of y-axis
or z-axis and applying equation (4.2.9) to the case, we obtain

Tax+1Tay= — -a‘ay—(X + ’LY)

5 (5.14)
Tyy - iTxy= - i 4(X+iY) .
ox
By use of these formulae, from (5.11) we obtain
o+ Ty = ¢'(2) — ¢'(2) + 2¢'(2) — (2 — 2)¢"(2) (5.15)

Tyy— 1Tay=¢'(2) + ¢'(2) + (2 —2)¢"(2) -
It is sometimes more useful to have stress components expressed in
integral forms containing the derivative of g(§) with respect to &,

’ d d .
-4 D . 5.
g dEg(S) T (du+idv) (5.16)

Writing ¢'(z) in the form

)=~ L[ O™ L0 el

IC-I-ll 2eilé—zdi=a 270 )E—2

or differentiating (5.9) with respect to x, with transformation by inte-
gration by parts, we obtain from equations (5.13) and (5.15)

4,1 j 1 [ g _JE:I) 1 [ ,(7 ]€=b
T+ Tyy= - N + N
W1l 2milé—zlime | 27l E—7 Jime

1 S gl " 1 S g/ .
(R , .
o)L 2m,L5_§dE} (5.17)

L

2n (1 [ g F*_ 17 g T =2 g T
Ic+1l ZniLS—z:La ZziLE—E]e=a+ ori L (6— ]

1 S g 1 S g’ (z—z)g g
+ dé -+ 1&— dér, 5.18
Sri)E—z o 2mi)E-z - 2m ) (¢ L

Tyy Ty =
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where

= _ (a9 =i—= d .
g (d{:) dfg dF(Au idv).

Y

5.1. Screw and edge dislocations

First we consider the cases of constant discontinuity in displacements.
If we put

du;=0 (E<—R, 0<8&)

=const.%0 (—R=£<0) (5.1.1)

in equation (5.4), we have

As seen from this equation and the equation (5.8), the contribution to the
stress field from the term for §= —R tends to zero as R tends to infinity.
Putting

B=4u, (5.1.2)

and neglecting the term for £= —R, we have

—t£B
2(2) ony 1082 (5.1.3)

omitting a constant term. Hence we obtain from equation (5.1)

u1=—B—argz=-§arctanl, (5.1.4)
or 2z x

which is the displacement field referred to as due to a screw dislocation
with dislocation line along w;-axis with the Burgers vector B. From
cquation (5.1.8) we have

and hence
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e By
lx™ 9~ .”62+’_l/2
B_x
27 a? 492

(5.1.5)
le=
Similarly, putting

gE)=4u=0 (E<—R, 0L§)
=const.x0 (—R=<£=0)

in equation (5.12), we have

o(2)= 2p_ du [10g(§ z)jr:o .

£+1 2ni =-R

Neglecting the term for §= —R in this expression for the reason that the
contribution to stress field from the term for £é= —R tends to zero as R
tends to infinity, and putting

B=4u (5.1.7)

we obtain, omitting a constant term,
(5.1.8)
(/clogz log Z

(5.1.9)
(log z+logz—

If we separate the expression for u+iv into the real and imaginary parts,
we have

u=£(—2— ry +arctan1)
2z \k+1 22 + 9? x

B(_ 1 22— r—1

(5.1.10)

v= log V a%+92 )

2z e+1 22 +9% r+1

which is the displacement field referred to as due to an edge dislocation
along x;-axis with the Burgers vector B.

For the stress components due to this edge dislocation, according to
equations (5.15) and (5.1.8), for instance, we obtain
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¢ B y(3z*+9?)

£+1 2= (2®+9?)?

__# B z(*—y?

= = 5.1.1
£+1 27 (2%+9?)? ( 2

¢ B yx*—y?)
+1 2r (224y2)2

Txy

Tyy

If we put
dui(a)= duy(b)=0

in equation (5.7), the shear stress i, in the slip plane due to 4u;(§) is
obtained as

_r duy .
- 2ﬂ§é_xds, (5.1.12)

similarly, putting
9(a)=g(b)=0

in equation (5.18), the shear stress 7.y, in the slip plane due to g= Adu(§)
is obtained as

2 pf oA
Toy== e ZﬂSE——xds' (5.1.13)

These equations (5.1.12) and (5.1.13) are referred to as the shear
stresses due to the continuous distribution of infinitesimal screw and edge
dislocations lying on the slip plane. The total length of the Burgers
vectors of the infinitesimal dislocations lying between & and €+d§ are
represented by dw,dé and 4u'd§ for screw and edge dislocations respectively.
In these cases, the reverse problem how to calculate the dislocation distri-
bution corresponding to the specified shear stress over the slip plane has
been solved (e.g. Leibfried 1951, Head and Louat 1955) and used by
Weertman (1964) on geophysical problems.

5.2. Strain energy changes due to shear cracks

J. A. Steketee (1958 b) has shown that the crack problems can be put
in terms of dislocation theory. He constructed, as an example, the formulae
for the displacement and stress fields of the tensile crack of Griffith type,
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by starting from the computation of the two-dimensional Somigliana tensor.

Here we shall take up the problem of strain energy changes due to
two-dimensional shear cracks by utilizing the foregoing expressions. Of
two-dimensional shear cracks, L. Knopoff’s and A. T. Starr’s which belong to
the cases of System I and System II respectively are the most typical ones.

In the calculation of the field containing a surface on which shear
stress vanishes, Knopoff (1958) took advantage of the analogy with electro-
statics. He evaluated the energy difference between two static states: the
state of the solid in a uniform, flawless condition and the state of the
solid after a crack has been introduced, by use of a formula from the
book of Stratton (1941).

If we follow Knopoff’s analogy, however, a question arises in the
calculation of strain energy difference: Why it contains no mention about
the boundary condition at infinity? Since the formula which Knopoff
(1958) referred to, equation (20), can be derived for a field caused by
a fixed set of electric charges as seen in Stratton (1941), it seems
that the source or the boundary condition that caused the initial elastic
field should be considered when applying the formula to the case. In
reality, Starr (1928) showed in the first part of the paper, the result
of calculation that the strain energy difference between the state of the
solid in a uniform, flawless condition and the state of the solid with a
crack is in the direction to be increased by the existence of the crack. In
order to avoid this result, Starr takes the second approach to the problem
in the paper, by considering that the boundary at infinity is fixed while
the stress on the crack slowly diminished. If we proceed along the Knopoff’s
method of calculation, the same as the first way in Starr, we are to obtain
the result that the energy difference between the two states is zero, in the
case of System I.

In connection with the boundary condition, we recall the theorem of
Colonnetti which states that the strain energy associated with the dislc-
cation is independent of the initial state of stress which may exist in the
body, if no additional forces are applied on the outer surface when the
dislocation was produced (cf. Steketee 1958 b, Nabarro 1952).

Concerning this theorem and its application to the problem of facture
in geophysics, Steketee (1958 b) gives a very interesting account as follows :

“...we have to recognize that the surface of the earth is essentially
free and if a dislocation is made under those circumstances, Colonnetti’s
Theorem shows that the strain energy can only increase.

“In this dilemma one may perhaps see an additional argument for the
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generally accepted idea that earthquakes are not world-wide phenomena
but that their cause lies in local conditions; if one considers the whole
earth it is difficult to see any restriction on the displacement of its surface;
on the other hand if a particular region is considered it is easy to imagine
that certain parts may obstruct or prevent the displacement of others and
give rise in this way to boundary conditions of the type in which parts
of the surface are no longer free, creating in that way the possibility of
escaping Collonnetti’s Theorem.”

If we take up a bounded region including the crack and consider the
decrease in strain energy plus the work done slowly on this region by the
outer region, we can get out of the consideration of the boundary condition
at infinity. We shall denote this sum by A in what follows. This quantity
A is the proper one that may be interesting when compared with the
energy radiated in waves in the case of rapid formation of the crack.
The increase of A can be considered to be balanced by the increase of
surface enhergy of the crack in the theory of Griffith crack (e.g. Yokobori
§9.3).

In the case of calculation of 4, that is A(I) and A(II), the initial fields
are taken as being the same as Konoff’s and Starr’s for System I and
System II respectively.

As for the additional fields to be superposed to these initial fields in
order to obtain the fields containing cracks, we shall treat of two types
of discontinuity in displacement on the crack: one of which is the type
generating the additional field to make the fields of Knopoff’s and Starr’s
for System I and System II respectively, but generating the stress field one
component of which tends to infinity at the ends of the crack when the
approach is from the outside of the crack; while the other type of dis-
continuity in displacement is the type generating finite stresses everywhere.

Now we consider the strain energy of a body occupied by a region
S+ Lo containing interior boundary or the crack L across which dis-
continuity in displacement is specified. ;

In the same way as in (1.1) and (1.2), if ¢, <¥;, and w® define the
initial equilibrium state and e;;, 7i;, and w the state due to dislocations in
the three-dimensional case, we have, for the strain energy per unit volume
w' in the final state, the expression

2w = %(T%—F Tij) (0?_7 -+ eij)

L

. (5.2.1)
=0 w+ ) “heis T Tiel) .
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The expression between parentheses in (5.2.1) may be written, in the cases
we shall treat of, in the form

1
—Z—(T?ﬂu’ -+ ‘:i,-e?j) = T?jeij: ri,-e?j . (5 .2. 2)
In our two-dimensional problem %’ may be divided into two parts

w'=w'(I)+w'(II), (5.2.3)

where w'(I) and w'(II) are the strain energy per unit volume in the final
state for System I and System II respectively.
Corresponding to equation (5.2.1) w'(I) may be written

w'(l)= 1 (eh+7u) (e +en)

2
1, (fm‘} 8u1>
=—(ty+° ).

g (it 7) om oy
Applying this formula to a region S+ L, with the interior boundary or
the crack L, in the same manner as in the derivation of equation (2.21),
and using the equation of equilibrium and the general relation (5.2.2), we
obtain, by the help of divergence theorem, the total strain energy per unit
length as

wwu)=vv%1y+w«1y+guﬂamdo—Sduﬁawda
Ly L

=WWHWm+wmwm

Ly

(5.2.4)

where WO(I) and W'(I) are the total strain energies per unit length in the
initial and final states respectively, and where the continuity of tractions
across the boundary L is considered.

Using the expression of W in equation (2.21), from the first of equation
(5.2.4) we have

WO(I) —W/(I) + %Sul{fgl—l‘ (7(1)1 + T”)}Uld(f

Lo
L (5. 2. 5)
= ES duy {Tlx)z + (7?1 + Tu)]”lda .

L

Since 3 and (29 +7y)y; in the integrand on the left-hand side of this
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equation are the forces in the x;-direction per unit length of the boundary
L, exerted upon the region in the initial and the final states, the integral
on the left-hand side is the work done by the outer region; accordingly,
the left-hand side is nothing but the quantity A(I) previously defined. On
the other hand if we write the integral of the right-hand side of equation
(5.2.5) in the form

— [%Suf{ —th—(h+ry) judo+ —%—Suf{fgz + (e + Tll)}”lda] ’
b L

since —tiy, and — (e} +7y)v, are the forces per unit length exerted upon
the positive side of L, while 7y and (73 +7y;)y; are those exerted upon
the negative side of L, the right-hand side of equation (5.2.5) may be
considered as the negative of the work done on the region by the crack,
which we may well take simply as the work done on the crack. Hence
we have

A(I)=Work done on the crack

:%Sdul{'r(l)l+<T?l+rll)}”ld0‘ . (5.2.6)

L
In a similar manner, we obtain for System II

A(IT)=Work done on the crack

=%Sduk{fgl+(7gl+7kl)}”ld0 . (5.2.7)

L

Now we compute explicit expressions for A(I) and A(II). The initial
uniform fields to be taken are

u?=§y, Tiz=0 and =S (5.2.8)
y24
for System I and
O:iy, Q)0=£x
2u 2u (5.2.9)

Toe=Tyy=0, Tz=S8

for System II.
For a segment of z-axis L=(—a, a), as the first type of dislocation
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Fig. 8. Shear stress on the slip plane due to the displacement

AVE
discontinuity in the form .f 1—(—) ! .

U \e/ ]
we take
Au1=U1«/1 (é * on L for System 1,
@ ‘ (5.2.10)
E 2
du =U \/ 1— (—— on L for System 11,
a
and obtain as in Appendix
"(z)=zLS sm“ @
i “ (5.2.11)
o N R
2a
and “
#le)= 3-#1 21igeduz' d
e — _
0n U (5.2.12)
—=_ et DR
+1 2a —{Var—22+iz}

where Va2—2z? is that branch, holomorphic in the plane cut along (—a, a),
taking the positive value on the upper side; for large !z | this branch is
—iz+0(1). Displacements and stresses due to these dislocations may be
obtained for System I by
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{pu1=Re {x(2)} (5.2.18)
T1p—1T1y= Xl(z)

as in equations (5.1) and (5.3), we have on the x-axis

uf =2 Va2 —g?
(lz|<a)
uf=——Ui\/a2—x2
2a
U =0 (|Jz|>a)
=t &
20 Va2—g?
(|z|<a)
TF:[!U1 X
* 20 VaZ—22
Tl:r:O (Ixi>a’)
Tiy= — ﬂUl (|x[§a)

2a
— rU, {_I x | _1}
T U Var—a2
while from equations (5.11) and (5.15) for System II we obtain on the
2-axis

(|z]>a)

2p(u+iv) = rp(z) — ¢(2)
Taxt+ T2y =¢(2) — ¢'(2) +2¢(2) (5.2.14)
Tyy —1Tay= Sol(z) + @’(2) ’
which give
ut= i \/az 2
2a
U (|z|<a)
u=——Va2—z?
2a
u = (|z |>a)
—r-1 Lx (jz]|<a)
£+1 2a

_rm1 Uz 5
Tl Za{ (2| Va “2+””} (Jz[>a)
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p U x

zjZ_ - ,\/
r+1 a Va2—a?
(|&]<a)
-_ 4 U x
Te.
£+1 a Vaz—2?
Tee=0 |x[>a
o2n U
e (jal e
J 2 U lz] }
Txy—/:-{-l —(;{ Va2 —q? 1 |z|>a
Tyy=0.

Assuming that the shear stress is only partially relieved on the crack,
to a fraction y of its initial uniform value S, as in Burridge and Knopoff
(1966), we have the relations

S— ”2U‘—rS for System I, (5.2.15)
a

S—_2¢ g=rS for System II. (5.2.16)
r+1 a

From equations (5.2.6) and (5.2.7) we obtain the work done on the crack
as follows: :

A=

l"_—-——.

duy Ty dx + ; gdulrlydx

L

F (-2 @82 (5.2.17)

2 2 ‘
1+r> .2

8 1—7r HEI

Il

A(IT) =

By

duzy, dx + —;—Sdurxydx

L

T - +1) LS
8 J

~Z(14r) Ly
2\1—7/ k41

(5.2.18)

As seen from previous equations or in Fig. 8, the discontinuity in



864 T. MARUYAMA
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A A

] I €

U, u

\_/ g
Fig. 9. Shear stress on the slip plane due to the displacement

. 213
discontinuity in the form jl—(%) } /2

{

displacement Au; or Au starts too sharply from the ends to be expected
in actual circumstances, correspondingly the stress 71, or 7 tends to
infinity as the approach to the end is from the outside of the crack on
the x-axis.

Next we take an example of the crack with discontinuity in dis-
placement starting gradually on the crack from the ends and with finite
stresses everywhere; in these cases, however, the shear stress due to this
type of dislocation is not constant on the crack and the resultant shear
stress cannot at every point vanish.

The discontinuity in displacement is now given by

du=U 1{ 1— (—E—>2 }% on L for System I

. (5.2.19)
[ du =U {1—(£> }7 on L for System II.
a
In place of equations (5.2.11) and (5.2.12) we then have
1) =20 (- Vo7 —i(2- Sa)},
2a3 | 2
(5.2.20)

_ 2 U/ 5 /ﬁ_’( 3_§2>}
o(z)= r+1 zasl(a—é)\a 22—l 2 zaz ,

and from equation (5.2.18) we obtain on the z-axis for System I:
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(lz]|<a)

(|z]>a)

(jz|<a)
[~lelva=a+(s-La)} (a]>0

From equation (5.2.14) for System II, on the x-axis we have

3

233 (a? —a?)?
U
2a3

. (zl=0)
(az_x2)7

(|@]>a)

= a3<-—x3+—%a2x> (|z]=a)

£—1 o i _ 3198 2
= 2a3{|%|(x —a?) —I—( x+Eax>} (|x|>_a)k

o 2p 6U

eV — 22
e+1 a3’v @
T;x:—Z#‘ —GUx\/az—xZ
£+1 a

(lz|=<a)

Tpp=0 (x| >a)

()W te) el
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L RNICS S R

Tyy=0.

In an analogous manner to what was taken in equation (5.2.15),
assuming that the shear stress on the crack is partially relieved and at
the center it becomes to a fraction 7y of its initial uniform value S, we
have the relations

=7S for System I (5.2.21)

L= =rS for System II, (5.2.22)

From equations (5.2.6) and (5.2.7) we then obtain the work done
on the crack as follows:

gdul yde+ = S duytiyda
L L

a2S?

-%Ofvﬂ2+ﬂ

:ﬁ<2+T> U2
g2 \1—, /)10

(5.2.23)

A(ll= Sdu 5, dx + 5 Sdu Teyd

=2 (- @+1)(e+1) “252

(247 (1 )
8 <1—r 41 w1

A(I) or A(IT) may also be considered as the decrease in the strain
energy on condition that the boundary at infinity is fixed while the shear
stress over the inner boundary is slowly diminished.

We obtain the same results as in Knopoff (1958) and in Starr (1928),
if we put y=0 in the second equations in (5.2.17) and in (5.2.18) re-
spectively ; the same result as in Burridge and Knopoff (1966) in the third
equation in (5.2.17), paying due regard to the fact that the corresponding
equation in the former is formulated (for the vertical strike slip fault) in

the half-space.
It can be seen from equations (5.2.17), (5.2.18), (5.2.23), and (5.2.24)

(5.2.24)
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that if we estimate the energy release from the relative displacement U,
or U, the estimate depends very sensitively upon 7, as pointed out by
Burridge and Knopoff (1966).

Appendix »

We can easily evaluate the integral

_1 P(§) -
I2)= 2m’g Va2 —£2 (E—z)ds (a1)

L

where L is the segment of real axis (—a, a) in the direction from §é=—a
to E=a and where P(§) is a polynomial

P(S)=Amgm+Am_1Sm_1+ e +A0 (Am#()) (a—Z)

(e.g. Muskhelishvili 1953 a).
For the integral (a—1) we consider another integral

_ 1 P() _
Ae)= 271@'51\/@2—{2 (c—z)dc’ (@-3)

where 4 is a contour surrounding the segment
L in clockwise direction as shown in Fig.
10. and assume that the point z remains
outside the contour 4. As for the function
Va2 — % appearing in the integrand of equation
Fig. 10. The line segment (a-3), a definite branch is selected, the branch
L, acontour 4 and a circle for which the function takes positive values
I' with large radius, on the left side of the segment L, ie., the
branch which has for large |{| the form

va—g——ic(1- L)

C2
. 1a2 1a* )
—_ 1_** _______
’LC( 9 Cz 8 C4 ’
therefore for large |{|
PE)  _ ra- ;
Vg =ttt G O 1+”°+ao+%+”' (a—4)

with ¢g=m—1. Then, according to a theorem, to be derived later,
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9e)= gl bttt ), ()
where, on the right-hand side, the second term in the parentheses is nothing
but the principal part of the first function at the point z= oo,

On the other hand, letting the contour 4 shrink into L and noting
that Va*—* in equation (3-a) will then tend to + Va2 —£2 or — Va2—£2,
depending on the position of { with respect to L, we have

Q(z)=21(z).

The function P({)/Va*~Z2 may be unbounded near the ends of L, but
this equation holds, since integrals taken over a small circle surrounding
the ends tend to zero.

Hence the result is

1 P(§) _1( Pl _ iy
i) Ve (o v s (bt a].

(a—6)

In order to prove the formula (a-5) let I” be a circle with center at
the origin and with radius R so large that 4 and the point z lie inside
I'. Applying Cauchy’s formula to the function

o(z)= P(z)

~ o (et )

which is holomorphic outside 4, Wé have

e L[y 1 [0

27;7,AC~—z ’ 27:@FC—Z

where the positive direction on 7" is assumed to be counterclockwise. If
we write the second integral on the right-hand side as I,, the value of
I, does not change, if R is arbitrarily increased, since the function o(C)
is holomorphic outside 4. On the other hand, we have for sufficiently
large ||, J@(¢)| < C/|¢], and hence

c
L|s——1,
nls S

with a positive constant C; thus when R—>oco, I, 0. But since I; does
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not depend on R, I;=0. Hence

_ 1 P(2) e 1 ([(agC4 .- 4 ap)
27n’S\/a2—C2(C—z)JC 2m:§1 -z dc.

4

The second integral on the right-hand side again vanishes, since the
integrand is holomorphic inside 4. Thus the formula (a-5) is proved.
With the aid of the formula (a—6) we obtain the following results:

1 (e \/az__§2 =‘1_ —_— ~
) = Va7 tic) (a-7)
A" (V=P ge 1 (s 35\ .
ori LT‘E“ 2{ (@) Va7 ~i(#= 2az )} 8)
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44, ERB L ORERLER BT 5
ZRTGH L v H BRIz DT

wEpEnR A I |HOB

Steketee PISEHIFEIC & 785 WiEICH LT, 1 D2OHOHAUTL WHBBNOEETS Z&ick 3
BAERMADOERAREL, B TOEMPMEED SO DAHEET 2 RN ITFRbIT
3.

—755¢ ), Knopoff ZEVWIEA, T LTHWICHI 012783 &5 78 2 RIECOBMmE LTRi:
WL > TROP-TH Y, Weertman FRARTHOONZ REEVHBICHHE LTINS, =
NS5 strike slip fault ORETH 3 o F i3 FEFICENESCOD dip slip fault ORI
THBNIRONTING.

TR RN AN SO EROME IS HOBAMNEL bhict &, Zhik v 3 HHOER
BRDZ ZERPISHEZBRELT S —RIcRETH A5, LhLzo ik {LEBNEEE S
Nl & ZhiclS 9 3 BEOERABS Z 3B 5Th 3.

i, MR & BB EEOME  FEX - LRV E S OKELFMICENGEES LUF0HE D
ORI DI dic, ZDH 2 ORMEE 2 RTHIEE LTIV K-> 125D TH 5.

F2M - |MIMTRE, CWBBOEBETEEDAB Z LRMIST 2 HEAERD, 4Tl
FPC KB EEERD 2. WIHRZNEHOHIORI (1964) OFHMOD 2 KT TH D, ®BZzTELL
T Muskhelishvili ORifkz §109 Sherman D5 &% ki b DOMOBA~HEHE LD TH 5.
BRI X B FBEHEDEB TR TH 2 538, HIFOMMEEI B LTRITIZEOH Hia
ThHI.

5 WA 4 oA TH 3. FIDOERST Weertman & OFicfih, ROEHT
Knopofl, Starr @ shear crack 8 XUTh & XD TR E BHN 2RO shear crack Tt
LT, Knopoff, Starr &F U#ISHIO T C, [SHDMNA crack O _FTEeTHNEEEED
T, crack JERROFE crack it LT (Bick-T) X nfcEdasii L. 2 2¢, crack ic
sEUTRE S e, #EET ORI crack 220 AROFRAEZ LI 2 E %, ZOHBOBELA
NE—DFEAFC ZOEBRIC UTEHBEH» SRS eI miit dDicdic b, ThixT-Em
BEHZEEUTE L &35 L4, shear crack ERRIC & » TIRIBI Nc Bz A VF — L BRI N B,

FLANZ, F3WTHNS HREEMNEIE 3 KTD —BOESHFRGLOW Tz D TR LE T
BT BDC, Ihi—BROETHENEZEDT, FROWHSETCORBOMEDIRY ki ic—o
ORBELZS.



